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Fire detection in a museum?

• Detector can detect fire in their room or in their
neighborhood.

• Each room must contain a detector or have a detector in a
neighboring room.
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Modelization with a graph

• Vertices V : rooms

• Edges E : between two neighboring rooms

• Set of detectors = dominating set S :

∀u ∈ V ,N[u] ∩ S 6= ∅
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Identifying where is the fire
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Identifying where is the fire

?

?

b

ca d

a,b

b a,b,c

b,c,d

b,c

c,d

In each room, the set of detectors in the neighborhood is unique.
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Modelization with a graph

Identifying code C = subset of vertices which is

• dominating : ∀u ∈ V ,N[u] ∩ C 6= ∅,
• separating : ∀u, v ∈ V ,N[u] ∩ C 6= N[v ] ∩ C .

5

1

2

6

3

4b

a c d

5

1 6 4

V \ C a b c d

1 • • - -
2 - • - -
3 - • • -
4 - - • •
5 • • • -
6 - • • •
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Facts about identifying codes

• Introduced in 1998 by Karpvosky, Chakrabarty and Levitin

• Existence ⇔ no twins in the graph:

u

v

Twins: N[u] = N[v ]

Given a twin-free graph G , what is the size γID(G ) of
minimum identifying code ?

6/42



Facts about identifying codes

• Introduced in 1998 by Karpvosky, Chakrabarty and Levitin

• Existence ⇔ no twins in the graph:

u

v

Twins: N[u] = N[v ]

Given a twin-free graph G , what is the size γID(G ) of
minimum identifying code ?

6/42



A difficult question...

Identifying Code : Given a twin-free graph G and an integer
k , is there an identifying code of size k in G?

Identifying Code is NP-complete.

Proposition Charon, Hudry, Lobstein, 2001
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Outline

1. Bounds and extremal graphs

2. Study in restricted classes of graphs

3. Variation of the definition
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Part I

Bounds and extremal graphs
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Bounds

log(|V |+ 1) ≤ γID(G ) ≤ |V | − 1

• Karpovsky, Chakrabarty, Levitin in

1998.

• Bertrand and Gravier, Moncel

in 2001.

• Tight example:

b ca

bc

ac

ab abc

• Tight example:

• Complete characterization by Mon-

cel in 2006.

• Complete characterization?
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Some tight examples and a conjecture

pStarsp

Complete graphs minus maximal matching

These are the only graphs with γID = |V | − 1.

Conjecture Charbit, Charon, Cohen, Hudry, Lobstein, 2008
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Characterization of graphs with γID(G ) = |V | − 1

(1) Star K1,n,

(2) Graphs Pk−1
2k ,

(3) Join of several graphs in (2) and/or with some K2’s,

(4) A graph in (2) or (3) with a universal vertex.

(1) K1,6

(2) P2
6

(3) P4 ./ P4

./ K2

(4) P4 ./ K2

./ K1
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Characterization of graphs with γID(G ) = |V | − 1

(1) Star K1,n,

(2) Graphs Pk−1
2k ,

(3) Join of several graphs in (2) and/or with some K2’s,

(4) A graph in (2) or (3) with a universal vertex.

Let G be a connected twin-free graph.

γID(G ) = |V | − 1 ⇔ G in (1), (2), (3) or (4)

Theorem Foucaud, Guerrini, Kovše, Naserasr, P., Valicov, 2011
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Ideas of the proof

γID(G ) = |V | − 1 ⇔ G in (1), (2), (3) or (4)

Theorem Foucaud, Guerrini, Kovše, Naserasr, P., Valicov, 2011

⇐ By induction

⇒ Let G be a minimal counter-example.

• There is u ∈ V s.t. G − u extremal.

• By minimality, G − u is in (1), (2), (3) or (4).

• We can construct an identifying code of size |V | − 2 of G ,
contradiction.
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Ideas of the proof - one small case

Example: G − u = P4

G − u

u

?

1 2 3

In each case, there is an identifying code of size 3.
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Consequence

If γID(G ) = |V | − 1, G has maximum degree ∆ ≥ |V | − 2.

Corollary

Upper bound with the maximum degree ∆?

γID(G ) ≤ |V | − |V |
∆

+ O(1).

Conjecture Foucaud, Klasing, Kosowski, Raspaud, 2012
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Similar results

Characterization of graphs for which the only IC is the whole
vertex set for:

• Infinite non oriented graphs

→ In this class, every vertex has infinite degree.
→ Consequence for finite graphs: γID(G ) ≤ |V | − |V |

Θ(∆5)
.

• Finite digraphs (Foucaud, Naserasr, P., 2012)

→ No oriented cycle.

• Infinite oriented graphs (Foucaud, Naserasr, P., 2012)
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Part II

Study in a restricted class of graphs:

Line graphs
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Identifying code in line graphs

Edge identifying code

Pendant edges

G

L

Twins

L(G )

Identifying code

γEID(G ) = γID(L(G ))
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Still difficult

Edge-IDCode : Given G pendant-free and k , γEID(G ) ≤ k ?

Edge-IDCode is NP-complete even for planar subcubic bipar-
tite graphs with large girth.

Theorem Foucaud, Gravier, Naserasr, P., Valicov, 2012

Reduction from Planar (≤ 3, 3)-SAT.

Identifying Code is NP-complete even for perfect planar 3-
colorable line graphs with maximum degree 4.

Corollary

19/42



Still difficult

Edge-IDCode : Given G pendant-free and k , γEID(G ) ≤ k ?

Edge-IDCode is NP-complete even for planar subcubic bipar-
tite graphs with large girth.

Theorem Foucaud, Gravier, Naserasr, P., Valicov, 2012

Reduction from Planar (≤ 3, 3)-SAT.

Identifying Code is NP-complete even for perfect planar 3-
colorable line graphs with maximum degree 4.

Corollary

19/42



Bounds using the number of vertices

1

2
|V (G )| ≤ γEID(G ) ≤ 2|V (G )| − 3

Proposition Foucaud, Gravier, Naserasr, P., Valicov, 2012
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2
|V (G )| ≤ γEID(G ) ≤ 2|V (G )| − 3

Proposition Foucaud, Gravier, Naserasr, P., Valicov, 2012

• Lower Bound: a code must cover ' half of vertices.
→ Tight for hypercubes.

• Upper Bound: a minimal code is 2-degenerate.
→ Tight only for K4.
→ Infinite family with γEID(G ) = 2|V (G )| − 6:

· · ·
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Bounds using the number of vertices

1

2
|V (G )| ≤ γEID(G ) ≤ 2|V (G )| − 3

Proposition Foucaud, Gravier, Naserasr, P., Valicov, 2012

Edge-IDCode has a polynomial 4-approximation.

Corollary

• Best polynomial approximation for identifying codes in
log(|V |).
(Laifenbeld, Trachtenberg, Berger-Wolf, 2006 and Gravier, Klasing,

Moncel, 2008)
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Bounds using the number of edges

3

2
√

2

√
|E (G )| ≤ γEID(G ) ≤ |E (G )| − 1

Proposition Foucaud, Gravier, Naserasr, P., Valicov, 2012

• Upper Bound: from identifying code

• Lower Bound: using the lower bound for vertices

→ Tight for:

1 1 1· · ·
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Bounds using the number of edges

3

2
√

2

√
|E (G )| ≤ γEID(G ) ≤ |E (G )| − 1

Proposition Foucaud, Gravier, Naserasr, P., Valicov, 2012

If G is a line graph, γID(G ) ≥ Θ(
√
|V |)

Corollary

21/42



Conclusion for line graphs

• Class of graph for which γID(G ) ≥ Θ(
√
|V |).

• Defined by forbidden induced subgraphs:

• Is the lower bound still true with less restrictions? For other
classes defined by forbidden induced subgraphs?

→ False for claw-free graphs.
→ True for interval graphs.

22/42



Part III

A variation of identifying code:

Identifying colorings of graphs

23/42



Some variations

• Locating-dominating codes

• Resolving sets

• (r ,≤ `)-identifying codes

• Weak and light codes

• Tolerant identifying codes

• Watching systems

• Discriminating codes

• Adaptative identifying codes

• Locating colorings

• ...

One more:
Identifying coloring
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Identification with colors

Identifying codes (Proper) graph colorings

Identifying colorings
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Identification with colors

Identifying codes (Proper) graph colorings

Identifying colorings
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Similar colorings

• Vertex-distinguishing edge-colorings (Harary & Plantholt, 1985)

• Adjacent vertex-distinguishing edge-colorings (Zhang, Liu, Wang,

2002)

• Vertex-distinguishing total colorings (Zhang, Chen, Li, Yao, Lu,

Wang, 2005)

26/42



Identifying coloring

• Vertex coloring c : V → N
• Vertex identified by the colors in the neighborhood: c(N[x ])

Global

2 23

21 4

{1, 2, 3} {2, 3} {2, 3, 4}

{1, 2} {1, 2, 3, 4} {2, 4}

c(N[x ]) 6= c(N[y ]) for all x ,y

Local

2 23

21 1

{1, 2, 3} {2, 3} {1, 2, 3}

{1, 2} {1, 2, 3} {1, 2}

c(N[x ]) 6= c(N[y ]) for xy ∈ E

27/42



Definition of locally identifying coloring

A locally identifying coloring (lid-coloring) of G is a coloring c s.t.,
for each edge xy :

• c(x) 6= c(y) (proper coloring)

• if N[x ] 6= N[y ], c(N[x ]) 6= c(N[y ])

2 23

21 1

{1, 2, 3} {2, 3} {1, 2, 3}

{1, 2} {1, 2, 3} {1, 2}

• χlid(G ) : min. number of colors in a lid-coloring of G .

28/42



Link with chromatic number

• A lid-coloring is a proper coloring: χlid ≥ χ.

• No upper bound with χ.
→ complete graph Kk subdivided twice: χlid = k , χ = 3

1

1

2

3

• Not monotone: χlid(P5) ≤ χlid(P4)
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χlid is not monotone at all

u

χlid(G ) = 5� k = χlid(G − u)
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Study in perfect graphs

Perfect

Chordal

Permutation L(bipartite)

Cograph

Tree

Tree

k-treeSplit

Bipartite

Bipartite ?

Interval
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Bipartite graphs: the path

1 2 3 4 1 2 3 4

1, 2 1, 2, 3 2, 3, 4 1, 3, 4 1, 2, 4 1, 2, 3 2, 3, 4 3, 4

χlid(Pk) ≤ 4
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Bipartite graphs are 4-lid-colorable

L0

L1

L2

L3

L4

1

2

3

4

1

→

→

→

→

→

{1, 2}

{1, 2, 3}

{2, 3, 4} or {2, 3}

{1, 3, 4} or {3, 4}

{1, 4}

If G is bipartite, χlid(G ) ≤ 4.
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Bipartite graphs

General bounds: 3 ≤ χlid(B) ≤ 4.

χlid(B) = 3: χlid(B) = 4:

← ? →

In general... 3-Lid-Coloring is NP-complete in bipartite graphs
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Link with 2-coloring of hypergraph
Try to color a bipartite graph with 3 colors.

1, 2, 3

1, 2

1, 3

1, 2

1, 2

1, 3

1, 2, 3

1, 2, 3

1, 2, 3

E

D

C

B

A

2

2

3

1

1

1

1
2

3
E

D

C B

A

3-lid-coloring in bipartite graph ⇔ 2-coloring in hypergraph

→ 3-Lid-Coloring in bipartite graph is NP-complete.

→ Polynomial in bipartite planar graphs with maximum degree 3.

→ k-regular bipartite graphs are 3 lid-colorable if k ≥ 4.
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Perfect graphs

Perfect

Chordal

Permutation L(bipartite)

Cograph

Trees

k-treesSplit

Bipartite

Interval

Trees 4 ≤ 2ω

≤ 2ω

Bipartite 4 ≤ 2ω

≤ 2ω

k-trees

≤ 2ω

SplitInterval

Cograph

≤ 2ω

≤ 2ω

≤ 2ω

Perfect ?
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Perfect graphs are not anymore perfect

S2

S1 S3

1

Perfect matching

Complement of
perfect matching

• S1, S2, S3 stable set of size k.

• All vertices in S2 must have different colors.

• χlid ≥ k , ω = 3.
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Perfect graphs - a conjecture

Perfect
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Permutation L(bipartite)
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k-trees
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Cograph
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Perfect

Chordal

Not bounded by ω

?

Any chordal graph G has a lid-coloring with 2ω(G ) colors.

Conjecture Esperet, Gravier, Montassier, Ochem, P., 2012
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A good method for coloring

1

2

3

4

1

2

L1

L2

L3

L4

L5

• Outerplanar graphs: Li = union of paths, 5 colors
→ 4× 5 = 20 colors

• Planar graphs: Li = outerplanar, 20 colors and 16 more colors
→ 4× 20× 16 = 1280 colors (Gonçalves, P., Pinlou, 2012)

• Same idea for Kk -minor free graphs (Gonçalves, P., Pinlou, 2012)
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Perspectives on identifying colorings

• Solve conjecture on chordal graphs.

• Better bound on planar graphs.

Worst example
8 colors

• Tight bound with maximum degree: χlid ≤ ?∆2

• Global version
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Final conclusion and perspectives

• Bounds and extremal graphs
→ Conjecture Foucaud, Klasing, Kosowski, Raspaud

• Study in restricted classes of graphs
→ Other classes with γID(G ) ≥ Θ(

√
|V |)?

→ Study in king grid, Sierpiński graphs, interval graphs
→ Is Identifying Code polynomial for interval graphs ?

• Variations
→ Open questions on identifying colorings
→ Two other variations: weak and light codes, tolerant
identifying codes
→ Generalization to hypergraph ?
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