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Modelization with a graph
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Back to the museum
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Where is the fire ?

To locate the fire, we need more detectors.
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|dentifying where is the fire

In each room, the set of detectors in the neighborhood is unique.
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Modelization with a graph

Identifying code C = subset of vertices which is
e dominating : Yu € V,N[u]N C # 0,
e separating : Yu,v € V,N[u]n C # N[v]Nn C.

VNC|a|b]c]|d

a C d 1 o|le]-]-
b 2 i I I e

3 - |le| o] -

4 = - | o] e

5 o|eo| o] -

6 = o | o
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Facts about identifying codes

e Introduced in 1998 by Karpvosky, Chakrabarty and Levitin

e Existence < no twins in the graph:

Xl ’ Twins: N[u] = NJ[v]
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Facts about identifying codes

e Introduced in 1998 by Karpvosky, Chakrabarty and Levitin

e Existence < no twins in the graph:
u
:Xl Twins: N[u] = NJ[v]
v

Given a twin-free graph G, what is the size 7'°(G) of
minimum identifying code ?
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A difficult question...

IDENTIFYING CODE : Given a twin-free graph G and an integer
k, is there an identifying code of size k in G?

Proposition Charon, Hudry, Lobstein, 2001 |

IDENTIFYING CODE is NP-complete. ]
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Outline

1. Bounds and extremal graphs
2. Study in restricted classes of graphs

3. Variation of the definition
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Bounds and extremal graphs
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Bounds

log(|V| +1) <7°(6) < |V| -1

e Karpovsky, Chakrabarty, Levitin in | e Bertrand and Gravier, Moncel
1998. in 2001.

e Tight example: e Tight example:

e Complete characterization by Mon- | @ Complete characterization?
cel in 2006.
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Some tight examples and a conjecture

Stars
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Some tight examples and a conjecture

Stars Complete graphs minus maximal matching

Conjecture Charbit, Charon, Cohen, Hudry, Lobstein, 2008

These are the only graphs with v/° = |V| — 1.
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Characterization of graphs with 4°(G) = |V| -1
(1) Star Kin,

96

(1) Kie
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Characterization of graphs with 4°(G) = |V| -1

(1)
()
(3) Join of several graphs in (2) and/or with some K3's,
(4) A graph in (2) or (3) with a universal vertex.

Theorem Foucaud, Guerrini, Kovse, Naserasr, P., Valicov, 2011]

Let G be a connected twin-free graph.

7P(6)=|VI-1 & Gin(1),(2),(3) or (4)
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|deas of the proof

Theorem Foucaud, Guerrini, Kovse, Naserasr, P., Valicov, 2011]

7P(6)=|V| -1 & Gin(1),(2),(3) or (4)

< By induction
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|deas of the proof

Theorem Foucaud, Guerrini, Kovse, Naserasr, P., Valicov, 2011]

7P(6)=|V| -1 & Gin(1),(2),(3) or (4)

< By induction
= Let G be a minimal counter-example.
e Thereis u e V s.t. G — u extremal.
e By minimality, G — v is in (1), (2), (3) or (4).
e We can construct an identifying code of size |V| — 2 of G,
contradiction.
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Ideas of the proof - one small case

Example: G —u= P4

~ Oc
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Ideas of the proof - one small case

Example: G —u= P4
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In each case, there is an identifying code of size 3.
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Consequence

Corollary

If v'P(G) = |V| — 1, G has maximum degree A > |V/| — 2. ]
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Consequence

Corollary

If v'P(G) = |V| — 1, G has maximum degree A > |V/| — 2. ]

Upper bound with the maximum degree A?

Conjecture Foucaud, Klasing, Kosowski, Raspaud, 2012]

V2(6) < v~ A 1 o).
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Similar results

Characterization of graphs for which the only IC is the whole
vertex set for:

e Infinite non oriented graphs

e Finite digraphs (Foucaud, Naserasr, P., 2012)

e Infinite oriented graphs (Foucaud, Naserasr, P., 2012)
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Similar results

Characterization of graphs for which the only IC is the whole
vertex set for:
e Infinite non oriented graphs
— In this class, every vertex has infinite degree.
— Consequence for finite graphs: 7/°(G) < |V| — e|(\£|5)'

e Finite digraphs (Foucaud, Naserasr, P., 2012)
— No oriented cycle.

e Infinite oriented graphs (Foucaud, Naserasr, P., 2012)
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Part |l

Study in a restricted class of graphs:

Line graphs
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|dentifying code in line graphs

G L(G)
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|dentifying code in line graphs

G L(G)

Edge identifying code — 4===p Identifying code
() = v"P(L(G))

(o}ye] o—0 —
> > D
Pendant edges Twins
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Still difficult

EDGE-IDCODE : Given G pendant-free and k, v6'°P(G) < k ?

Theorem Foucaud, Gravier, Naserasr, P., Valicov, 2012]

EDGE-IDCODE is NP-complete even for planar subcubic bipar-
tite graphs with large girth.

Reduction from PLANAR (< 3,3)-SAT.
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EDGE-IDCODE : Given G pendant-free and k, v6'°P(G) < k ?

Theorem Foucaud, Gravier, Naserasr, P., Valicov, 2012]

EDGE-IDCODE is NP-complete even for planar subcubic bipar-
tite graphs with large girth.

Reduction from PLANAR (< 3,3)-SAT.

Corollary

IDENTIFYING CODE is NP-complete even for perfect planar 3-
colorable line graphs with maximum degree 4.
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Bounds using the number of vertices

Proposition Foucaud, Gravier, Naserasr, P., Valicov, 2012]

%!V(GN <~FP(G) <2|v(G)| -3
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Bounds using the number of vertices

Proposition Foucaud, Gravier, Naserasr, P., Valicov, 2012]

%!V(GN <~FP(G) <2|v(G)| -3

e Lower Bound: a code must cover ~ half of vertices.
— Tight for hypercubes.

e Upper Bound: a minimal code is 2-degenerate.
— Tight only for Kj.
— Infinite family with vE'P(G) = 2|V(G)| - 6:
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Bounds using the number of vertices

Proposition Foucaud, Gravier, Naserasr, P., Valicov, 2012]

%!V(GN <~FP(G) <2|v(G)| -3

Corollary

EDGE-IDCODE has a polynomial 4-approximation. ]

e Best polynomial approximation for identifying codes in

log(| V).
(Laifenbeld, Trachtenberg, Berger-Wolf, 2006 and Gravier, Klasing,
Moncel, 2008)
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Bounds using the number of edges

Proposition Foucaud, Gravier, Naserasr, P., Valicov, 2012]

2{ E(G)] <~FP(6) < [E(G) -1

e Upper Bound: from identifying code

e Lower Bound: using the lower bound for vertices

— Tight for:
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Bounds using the number of edges

Proposition Foucaud, Gravier, Naserasr, P., Valicov, 2012]

2{ E(G)] <~FP(6) < [E(G) -1

Corollary

If G is a line graph, 4'P(G) > 0(/|V])
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Conclusion for line graphs

e Class of graph for which v'°(G) > ©(\/|V]).

e Defined by forbidden induced subgraphs:

L& IP R m <P

e |s the lower bound still true with less restrictions? For other
classes defined by forbidden induced subgraphs?
— False for claw-free graphs.
— True for interval graphs.
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Part I11

A variation of identifying code:

Identifying colorings of graphs
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Some variations

e Locating-dominating codes
e Resolving sets

e (r,< {)-identifying codes

e Weak and light codes

e Tolerant identifying codes

e Watching systems

e Discriminating codes

e Adaptative identifying codes

e Locating colorings
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e Weak and light codes
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e Discrim |dentifying coloring
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Identification with colors

Identifying codes

>

(Proper) graph colorings

>

—e
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Identification with colors

Identifying codes (Proper) graph colorings

> >
N

’ Identifying coIorings‘
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Similar colorings

e Vertex-distinguishing edge-colorings (Harary & Plantholt, 1985)

e Adjacent vertex-distinguishing edge-colorings (Zhang, Liu, Wang,
2002)

e Vertex-distinguishing total colorings (Zhang, Chen, Li, Yao, Lu,
Wang, 2005)
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|dentifying coloring

e Vertex coloring c: V — N

e Vertex identified by the colors in the neighborhood: ¢(N[x])

Global

{1,2} {1,2,3,4} {2,4}

00
@—(G—@
1,23} {23} {234

c(N[x]) # c(N[y]) for all x,y

Local

{1,2} {1,2,3} {1,2}

{1,2,3} {2,3} {1,2,3}

c(N[x]) # c(N[y]) for xy € E
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Definition of locally identifying coloring

A locally identifying coloring (lid-coloring) of G is a coloring c s.t.,
for each edge xy:

e c(x) # c(y) (proper coloring)
o if N[x] # Nly], ¢(N[x]) # c(N[y])

{1,2} {1,2,3} {1,2}

{1,2,3} {2,3} {1,2,3}

® \/id(G) : min. number of colors in a lid-coloring of G.
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Link with chromatic number
e A lid-coloring is a proper coloring: xjid = X.

e No upper bound with y.
— complete graph K subdivided twice: yjqg =k, x =3

29/42



Link with chromatic number
e A lid-coloring is a proper coloring: xjiq > X-

e No upper bound with y.
— complete graph K subdivided twice: yjqg =k, x =3

29/42



Link with chromatic number
e A lid-coloring is a proper coloring: xjiq > X-

e No upper bound with y.
— complete graph K subdivided twice: yjqg =k, x =3

29/42



Link with chromatic number

e A lid-coloring is a proper coloring: xjiq > X-
e No upper bound with y.
— complete graph K subdivided twice: yjqg =k, x =3

e Not monotone: XIid(P5) < XIid(P4)

@ @ @ )
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X/id 1S not monotone at all

=5 < k= xia(G—u)

Xiid(G)



Study in perfect graphs

Perfect

L(bipartite)

=

ree

Chordal

Interval

|ii|
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Study in perfect graphs

Perfect
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Bipartite | 7

Interval
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Bipartite graphs: the path

Ontn0n0o000,0,0
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Bipartite graphs: the path

1,2 1,2,3 2,34 13,4 1,24 1,23 234 3,4

Xiid(Px) < 4
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Bipartite graphs are 4-lid-colorable
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Bipartite graphs are 4-lid-colorable

If G is bipartite, Xlid(G) <4,
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Bipartite graphs

General bounds: 3 < yi4(B) < 4.
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Bipartite graphs

General bounds: 3 < yi4(B) < 4.

Xiid(B) = 4:

In general... 3-LID-COLORING is NP-complete in bipartite graphs
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Link with 2-coloring of hypergraph
Try to color a bipartite graph with 3 colors.
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Link with 2-coloring of hypergraph

@ 1,3
1,2

1,2,3
© 1,3

1,2

3-lid-coloring in bipartite graph < 2-coloring in hypergraph
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Link with 2-coloring of hypergraph

1,2,3
1,2,3
1,2,3

1,2,3

3-lid-coloring in bipartite graph < 2-coloring in hypergraph

— 3-LiD-COLORING in bipartite graph is NP-complete.
— Polynomial in bipartite planar graphs with maximum degree 3.
— k-regular bipartite graphs are 3 lid-colorable if kK > 4.
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Perfect graphs

Perfect
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L(bipartite)

Interval

Bipartite| 4 < 2w

36/42



Perfect graphs

Perfect

O

L(bipartite)

Permutation

Cograph Chordal

< 2w Bipartite | < 2w
| Interval Split | k-trees |

< 2w < 2w < 2w
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Perfect graphs

Perfect | ?
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Perfect graphs are not anymore perfect

S S3

S

e 51, Sy, S3 stable set of size k.
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Perfect graphs are not anymore perfect

Perfect matching

4
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Perfect graphs are not anymore perfect

Perfect matching

Complement of
perfect matching
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Perfect graphs are not anymore perfect

Perfect matching

Complement of
perfect matching

e 51, Sy, S3 stable set of size k.
e All vertices in S, must have different colors.
® Xid = k, w=3.
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Perfect graphs - a conjecture

Perfect | Not bounded by w

O

Permutation L(bipartite)
Cograph Chordal |?
< 2w Bipartite | < 2w
| Interval Split | k-trees |
< 2w < 2w < 2w

I Trees IS 2w
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Perfect graphs - a conjecture

Perfect | Not bounded by w

N

Permutation L(bipartite)
Cograph Chordal |?
< 2w Bipartite | < 2w
| Interval Split | k-trees |
< 2w < 2w < 2w

I Trees IS 2w

Conjecture Esperet, Gravier, Montassier, Ochem, P., 2012]

Any chordal graph G has a lid-coloring with 2w(G) colors. ]
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A good method for coloring
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A good method for coloring
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A good method for coloring
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e QOuterplanar graphs: L; = union of paths, 5 colors
— 4 x5 =20 colors

e Planar graphs: L; = outerplanar, 20 colors and 16 more colors
— 4 x 20 x 16 = 1280 colors (Gongalves, P., Pinlou, 2012)

e Same idea for Ki-minor free graphs (Gongalves, P., Pinlou, 2012)
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Perspectives on identifying colorings

e Solve conjecture on chordal graphs.

e Better bound on planar graphs.

Worst example
8 colors
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Perspectives on identifying colorings

Solve conjecture on chordal graphs.

Better bound on planar graphs.

Worst example
8 colors

Tight bound with maximum degree: yig < 72

Global version
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Final conclusion and perspectives

e Bounds and extremal graphs
— Conjecture Foucaud, Klasing, Kosowski, Raspaud

e Study in restricted classes of graphs
— Other classes with 7/'P(G) > ©(/]V])?
— Study in king grid, Sierpiniski graphs, interval graphs
— Is IDENTIFYING CODE polynomial for interval graphs ?

e Variations
— Open questions on identifying colorings
— Two other variations: weak and light codes, tolerant
identifying codes
— Generalization to hypergraph ?
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