
An Integrated Approach for Large-scale
Relation Extraction from the Web

Naimdjon Takhirov1, Fabien Duchateau2, Trond Aalberg1, Ingeborg Sølvberg1

1 Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
{takhirov,trondaal,ingeborg}@idi.ntnu.no

2 Université Lyon 1, LIRIS, UMR5205, Lyon, France
fduchate@liris.cnrs.fr

Abstract. Deriving knowledge from information stored in unstructured documents is a
major challenge. More specifically, binary relationships representing facts between en-
tities can be extracted to populate semantic triple stores or large knowledge bases. The
main constraint of all knowledge extraction approaches is to find a trade-off between
quality and scalability. Thus, we propose in this paper SPIDER, a novel integrated sys-
tem for extracting binary relationships at large scale. Through series of experiments, we
show the benefit of our approach, which in general, outperforms existing systems both
in terms of quality (precision and the number of discovered facts) and scalability.

Keywords: Relation Extraction, Knowledge Bases, Web Mining

1 Introduction
Information available on the Web has the potential to be a great source of structured knowl-
edge. However this potential is far from being realized. The main benefit of obtaining ex-
ploitable facts such as relationships between entities from natural language texts is that ma-
chines can automatically interpret them. The automatic processing enables advanced appli-
cations such as semantic search, question answering and various other applications and ser-
vices. The Linked Open Data (LOD) aims at making the vision of creating a large structured
database a reality. In this domain, the building of semantic knowledge bases such as DBpedia,
MusicBrainz or Geonames is (semi-)automatically performed by adding new facts which are
usually represented by triples. However, most of these triples express a simple relationship
between an entity and one of its properties, such as the birthplace of a person or the author
of a book. By mining structured and unstructured documents from the Web, one can provide
more complex relationships such as parodies. A different vision known as the web of con-
cepts shares similar objectives with LOD [12]. As a consequence, knowledge harvesting [9,
10, 14] and more generally open-domain information extraction [5] are emerging fields with
the goal of acquiring knowledge from textual content.

In this paper, we propose a relation extraction approach named SPIDER3. It aims at ad-
dressing the previously mentioned issues by integrating the most relevant techniques to gen-
erate trustworthy patterns and relationships. SPIDER is based on a perpetual process of gen-
erating patterns and examples either in supervised or unsupervised mode. The main intuition
is that generic patterns which are derived from similar sentences and which are discovered in
trustworthy documents are useful for detecting relationships in other documents. In summary,
our contributions in this paper are:

3 Semantic and Provenance-based Integration for Detecting and Extracting Relations

– Extracting relationships from a Web-scale source is a major bottleneck. To the best of our
knowledge, SPIDER is the first approach which does not require several days to perform
a single iteration.

– Contrary to most knowledge extraction tools, we tackle the problem of uniquely identify-
ing entities to extend their list of spelling forms and to facilitate the matching to LOD.

– SPIDER includes a flexible pattern definition scheme. This scheme is used to merge sim-
ilar patterns for efficiency purposes. In addition, we introduce the notion of confidence
score that controls the ranking of patterns. The confidence score evolves over time as the
system runs continuously.

– Experiments confirm the benefits of our approach w.r.t. similar tools (ReadTheWeb, Pros-
pera) in terms of quality and performance.

2 Overview

2.1 Problem Definition
The overall goal of SPIDER is to continuously generate relationships and patterns. Let us
first define a relationship. It is a triplet <e1, τ , e2> where e1 and e2 represent entities and
τ stands for a type of relationship. An entity might be represented with different labels in
natural language text, and we note le ∈ L one of the mentions for the entity e. An example
of a relationship is createdBy between the work entity The Lord of the Rings and the person
entity J.R.R. Tolkien. Note that both the entities and the type of relationship are uniquely
identified using an URI. An example denotes a pair of entities (e1, e2) which satisfies a type
of relationship.

The patterns are extracted from a collection of documents D = {d1, d2, ..., dn}. Al-
though not limited to, these documents are webpages in our context. Each document is com-
posed of sentences, which may contain mentions of the two entities. In that case, the sentence
is extracted as a candidate pattern. We note CP the set of candidate patterns given a collec-
tion of documents and a set of initial examples. Each candidate pattern is defined as a tuple
cp = {tb, e1, tm, e2, ta} with tb, tm and ta respectively standing for the text before, the text in
the middle and the text after the entities. A sentence “Bored of the Rings is a parody of Lord
of the Rings” is transformed to a corresponding candidate pattern {“”, e1, “is a parody of”,
e2, “”}.

From the set of candidate patterns CP , we derive a set P of generic patterns by applying
a strategy s. A strategy is defined as a sequence of operations s =< o1, o2, ..., ok >, each op-
eration aiming at generalizing the candidate patterns. Namely, this generalization implies the
detection of frequent terms and the POS-tagging of the other terms of the candidate patterns.
Thus, a strategy is a function such that s(CP)→ P . All generated patterns are associated to a
specific type of relationship τ . For instance, a generic pattern for the parody type is illustrated
with “{e1} is/VBZ a/DT {parody, illusion, spoof} of/IN {e2}” 4.

Finally, a pattern and an example both have a confidence score noted confp and confe
respectively. This score is based on the support, the provenance, the number of occurrences,
the number of strategies and the iteration. A pattern similarity metric indicates the proxim-
ity between two (candidate) patterns. The notion of confidence score, as well as the one for
operation, strategy, pattern similarity and (candidate) pattern, are further detailed in the next
sections.

4 VBZ=Verb, 3rd person sing. present, DT=Determiner, IN=Preposition or subordinating conjunction

{e2} is a parody of {e1}
a spoof of {e1}, entitled{e2}

….
{e2} is a short satirical novel by …

parodying {e1}

e1

e2

lord of the rings

EXTENSION DOCUMENT
EXTRACTION GENERALIZATION SELECTION

DBpedia Freebase

OpenCyc

l11
l12
...

l1m

l21
l22
...
l2n

LOTR
LotR
…

Lord_of_the_Rings
TLotR

candidate
patterns

ranked
patterns

generic
patterns

collection of documents

Simple strategy
Contextual

strategy

{e2} is/VBZ a/DT parody of/IN {e1}
….

a/DT spoof of/IN {e1}, entitled/VBD {e2}

Fig. 1. The Pattern Generation Process

2.2 Workflow

Given two labels, SPIDER generates patterns and derives to a relationship. This pattern gen-
eration capability is guaranteed by the following two processes:
− Pattern Generation is in charge of detecting candidate patterns by using examples or

provided entities and of generalizing these candidate patterns to obtain patterns for a given
type of relationship (see Figure 1).

− Example Generation exploits the previously generated patterns in order to discover new
examples which satisfy the type of relationship.
The knowledge base stores all generated examples and patterns. These examples can be

used to maintain the system continuously running, but they can be exploited from a user
perspective too.

3 Pattern Generation

The pattern generation process either requires a few examples for a given type of relationship
so that patterns for this type of relationship can be automatically generated (supervised), or
it directly tries to guess the type of relationship for two given labels (unsupervised). The
process is similar in both modes and it is composed of three main steps: extension of entities,
extraction of candidate patterns from the collection of documents and their refinement into
patterns.

3.1 Extending Entities

In a document, entities are not uniquely identified by a label but they have alternative labels
or spelling forms. Therefore, extending these entities with their alternative labels is a crucial
step and it requires the correct identification of the entity. For instance, the entity “Lord of
the Rings” can be labeled “LOTR” or “The Lord of the Rings”. To avoid missing potentially
interesting relationships, we search for these alternative forms of spelling in the documents.
Given an entity e represented by a label l, the goal is to discover its set of alternative labels
Le = {l, l1, l2, ..., ln}. The idea is to match the entity against LOD semantic knowledge bases
to obtain this list of alternative labels. Namely, we build various queries by decomposing the

initial label and we query in the aliases attributes of knowledge bases (i.e., common.topic.alias
for Freebase, wikiPageRedirects for DBpedia, etc.). In most cases, several candidate entities
are returned and the tool tries to automatically select the correct one.

The process of automatically selecting the correct entity is achieved as follows. First, an
AND query is constructed with the two labels. Clusters of documents are built representing
documents belonging to a set of specific type of entities. The n number of words around
labels are extracted and stemming performed on words. Our assumption is based on the fact
that documents mentioning the same entities tend to have similar words. Therefore, a graph
of semantically related words is built. The most important documents in the cluster are then
compared against the abstract of the automatically selected entities. Next, we extract frequent
terms from the most important documents in the result set and use these frequent words as
extensions. Note that if disambiguation is not possible, we discard the example and we do
not use it for subsequent pattern generation. The result of the extension process is a list of
alternative labels as illustrated in Figure 1.

The main issue in this step deals with the absence of the two labels in any knowledge
base, which means that the entities cannot be extended. The number of retrieved documents in
that case could not be sufficient to extract good candidate patterns. The first solution consists
of analyzing these retrieved documents to detect potential alternative spellings by applying
metrics such as tf-idf and Named Entity Recognition techniques. Another possibility is to
relax the similarity constraint when searching a label in a knowledge base. In other words,
a strict equality measure would not be applied between the label and the candidate spelling
forms from a knowledge base. Rather n-grams or Levenshtein similarity metrics with a high
threshold would be a better choice.

3.2 Extraction of Candidate Patterns

As depicted in Figure 1, the outcome of document extraction process is candidate patterns.
Given the lists of extended labels for both entities, our tool associates all alternative labels of
the first entity to all labels of the second entity (Cartesian product) to build different queries.
The documents resulting from these queries are ranked according to their relevance score.
The candidate patterns are extracted by parsing these documents and locating the sentences
with co-occurrence of both entities (defined by a maximum number of words between them,
currently 15 words). Note that we include in the candidate patterns the text before and after
the entities to obtain full sentences. The final step aims at refining the candidate patterns to
obtain patterns.

3.3 Selection of Patterns

The last issue deals with the selection or ranking of the generic patterns. Thus, a confidence
score noted confp is computed for each pattern p with Formula 1. Our intuition is to exploit
all information which allowed the discovery of the patterns and to compare a pattern with the
ones of the same type of relationship.

conf(p) =

(
αsupp + βoccp + γprovp

α+ β + γ

)
(1)

The support supp is defined as the ratio between the number of examples exp that this
pattern is able to discover and the total number of examples exτ discovered by all patterns of
the same type of relationship τ . Note that the support cannot be computed at the first iteration.

Similarly, the occurrency occp stands for the number of candidate patterns which led to
the generation of the pattern p. It is normalized by the total number of candidate patterns used
to generalize all patterns of the same type of relationship τ .

suppp =
exp
exτ

occp =
occp
occτ

The provenance provp refers to the relevance of the documents from which the candidate
patterns which generalize a given pattern have been extracted. The relevance is evaluated
given three metrics: the relevance score namely applies tf-idf on the content of the document
and its values are bounded by a maximal value which depends on the query. PageRank5 is
widely known due to the Google search engine. The PageRank scores of our collection are in
the range [0.15, 10]. Finally, SpamScore indicates the probability that a document is a spam
or not [8]. The idea is to average the scores returned by these three metrics for all documents
from which patterns have been derived. We note Dp this set of documents for the pattern p,
and dip a document of this set. The following formula computes a score in the range [0, 1] to
evaluate the average relevance of this set of documents, and thus the provenance of the pattern:

provp =

∑dip 1
3

(
relevance(dip)

max(relevance(Dp))
+

spamscore(dip)

100 +
prank(dip)

10

)
|Dp|

4 Relationship and Example Discovery

In the previous step, we have generated patterns for a given type of relationship. SPIDER aims
at discovering relationships between entities and discovering new examples.
4.1 Challenges for Exploiting Patterns
Using the generated patterns to discover knowledge from plain texts involves the addressing
of the following two challenges: pattern similarity and NER.

Pattern similarity. When analyzing sentences in a document, SPIDER needs to evaluate
the similarity between a sentence and a pattern. Thus, we have designed a pattern similarity
metric. The intuition which underlies our metric is twofold: (i) the presence of frequent terms
in the sentence is crucial while there is more flexibility for less important terms and (ii) the po-
sition of the words should be taken into account. First, the sentence is transformed (cleaning,
POS-tagging and replacing the mentions of the entities) so that both the sentence s and the
pattern p are composed of POS-tagged terms. The pattern may also include a list of frequent
terms, which is noted FT p. The idea is to compute ∆, the minimal total distance to transform
the sentence into the pattern. Thus, our metric is an adaptation of the Levenshtein distance
[7]. However, we do not compute a number of operations (delete, transform or add a term)
between two words or characters, but rather we evaluate the semantic distance between two
words. Given the ith word wip associated to the tag tip in the pattern p and the word wjs with
the tag tjs in the sentence s, we compute their semantic distance semdist(wip, w

j
s) using the

following formula:

semdist(wip, w
j
s) =


0.0 if wjs ∈ FT p
resnik(wip, w

j
s) if wjs /∈ FT p and tip = tjs

1.0 otherwise
(2)

5 http://j.mp/Clueweb09-Pagerank

Namely, the distance is equal to 0 if the word in the sentence is a frequent term. POS-
tagged terms whose tags are identical (e.g., two verbs) have a similarity obtained by applying
the Resnik distance in Wordnet [13]. Else, words with different tags have the maximal dis-
tance. The minimal total distance ∆(p, s) between a pattern p and a sentence s is computed
by the matrix algorithm of the Levenshtein distance6 using the semantic distance for all pairs
of words. The distance is normalized in the range [0, 1] with Formula 3 which assesses the
similarity pattsim.

pattsim(p, s) =
1

1 +∆(p, s)
(3)

Our metric is flexible because extra or missing words in a sentence do not significantly affect
the similarity value. Similarly, less important words are mainly compared on their nature
(POS-tag). Finally, we can select the sentences which are modeled by a pattern according to a
threshold.

NER. When a sentence in a document corresponds to a pattern, our approach needs to
identify and extract entities contained in the sentence. Thus, the NER issue is crucial as it
determines (part of) the output. Indeed, it is necessary to correctly identify the (labels of)
entities in the sentence based on a pattern. To solve this issue, we rely on the formalism of our
patterns: since they have been POS-tagged, the tags serve as a delimiter and may constraint
the candidate entities.

4.2 Discovering the Type of Relationship

Given two labels (representing an entity), the goal is to determine the possible type(s) of
relationships between these two entities. The two entities are first extended to obtain their
alternative labels (see Section 3.1). A set of documents is analyzed to extract all sentences
which contain one label of each entity, and these sentences are then compared to all patterns
stored in SPIDER’s knowledge base (see Section 4.1). If a sentence is similar to a trustable
pattern (with a sufficient confidence score), then the type of relationship corresponding to this
pattern is proposed to the user. Note that if there is no trustable pattern in the knowledge base,
the user has the possibility to provide training data to the system.

4.3 Discovering New Examples

The discovery of new examples is at the basis of the never-ending feature which enables the
feeding of the knowledge base with additional training data for generating new patterns. SPI-
DER selects in the knowledge base the patterns of a given type of relationship. It retrieves a set
of documents by querying each de-tagged pattern (or only their frequent terms). We compute
the similarity between a pattern and the sentences of the documents which include a frequent
term of this pattern. If the sentence is modeled by the pattern, then we apply the NER tech-
niques for discovering the two entities. Note that each discovered example has a confidence
score, which is computed with the same formula as in Section 3.3 for the confidence of a pat-
tern, except that supe replaces supp and it indicates the number of patterns which discovered
this example. Examples with a very low confidence are discarded while others are stored in
the knowledge base.

6 http://j.mp/Levenschtein

5 Scalability

In order to efficiently process documents, we distribute the jobs into several machines. MapRe-
duce inspired techniques have been popular to tackle such tasks. Therefore, the collection is
indexed with Hadoop enabling efficient indexing and searching. To compute statistics, SPI-
DER makes use of Pig7 which is a high level platform for analyzing a large collection of
data.

Additionally, we propose a document partition to incrementally provide results on a subset
of the collection. The general idea is that highly ranked documents should be a better source
for obtaining patterns than those with lower PageRank, SpamScore and relevance score val-
ues. The size of a partition depends on the quality of the obtained patterns and examples.
SPIDER is able to automatically tune the ideal size of a partition. Initially, the documents are
sorted by their PageRank, SpamScore and the relevance score as described above. The top k
documents are selected for analysis from the head of the ranked list of documents. For the i-th
round, the cursor is moved to the range [k, i × k] and the documents in that range are picked
out for analysis. Furthermore, when there are too few patterns discovered for two given labels
out of these initial set of documents, the partition size is subsequently adjusted to a higher
number. The combination of scores as well as the partitioning mechanism makes obtaining
the URLs of the documents and their content for a given query fast, i.e., it only requires a few
seconds. This efficiency is demonstrated in Section 7.2.

6 Related Work

Relationship extraction has been widely studied in the last decade. Supervised systems for re-
lationship extraction are mainly based on kernel methods, but they suffer from the processing
costs and the difficulty for annotating new training data. One of the earliest semi-supervised
system, DIPRE, uses a few pairs of entities for a given type of relationship as initial seeds
[3]. It searches the Web for these pairs to extract patterns representing a relationship, and use
the patterns to discover new pairs of entities. These new entities are integrated in the loop to
generate more patterns, and then find new pairs of entities. Snowball [1] enhances DIPRE
in two different directions. First, a verification step is performed so that generated pairs of
examples are checked with MITRE named entity tagger. Secondly, the patterns are more flex-
ible because they are represented as vectors of weighted terms, thus enabling the clustering of
similar patterns.

Espresso [11] is a weakly-supervised relation extraction system that also makes use of
generic patterns. The system is efficient in terms of reliability and precision. However, exper-
iments were performed on smaller datasets and it is not known how the system performs at
Web-scale.

TextRunner brought further perspective in the field of Open Information Extraction, for
which the types of relationships are not predefined [2]. A self-supervised learner is in charge of
labeling the training data as positive or negative, and a classifier is then trained. Relations are
extracted with the classifier while a redundancy-based probabilistic model assigns confidence
scores to each new examples. The system was further developed into a ReVerb framework [6]
which improves the precision-recall curve of the TextRunner.

7 http://pig.apache.org

ReadTheWeb / NELL [4] is another project that aims at continuously extracting cate-
gories (e.g., the type of an entity) and relationships from web documents and improving the
extraction step by means of learning techniques. Four components including a classifier and
two learners are in charge of deriving the facts with a confidence score. According to the
content of the online knowledge base, more iterations provide high confidence scores (almost
100%) for irrelevant relationships. Contrary to NELL, we do not assume that one document
returning a high confidence score for a given relationship is sufficient for approving this re-
lationship. In addition, NELL is mainly dedicated to the discovery of categories (95% of the
discovered facts) rather than relationships between entities.

A recent work reconciles three main issues in terms of precision, recall and performance [10].
Indeed, Prospera utilizes both pattern analysis with n-gram item sets to ensure a good recall
and rule-based reasoning to guarantee an acceptable precision. The performance aspect is
handled by partitioning and parallelizing the tasks in a distributed architecture. A restriction
of this work deals with the pattern which only covers the middle text between the two enti-
ties. This limitation affects the recall, as shown with the example “Lord Of The Rings, which
Tolkien has written”.

Contrary to the oldest systems which include hard representations of patterns, Prospera
and SPIDER includes a more flexible definition of the patterns, so that similar patterns
can be merged. In addition, the patterns are at the sentence level, which means that the texts
before, after and between the entities are considered. Our confidence score for a pattern or an
example takes into account crucial criteria such as provenance. In addition, the support and
the occurrence scores are correlated within the same type of relationship, thus the confidence
in a pattern or an example may decrease over time. To the best of our knowledge, none of
these approaches deal with the issue of identifying the alternative labels of an entity. In the
future, we plan to demonstrate the impact of these alternative labels on the recall. Finally, our
approach is scalable with document partitioning based on smart sorting using the SpamScore,
PageRank and relevance score of the documents.

7 Experimental Results

Our collection of documents is the English portion of the ClueWeb09 dataset (around 500 mil-
lion documents). For the components, we have used the contextual strategy, with the Maxent
POS-tagger provided with StandfordNLP8. The NER component is based on the OpenNLP
toolkit9. Evaluation is performed using well-known metrics such as precision (number of cor-
rect discovered results divided by the total number of discovered results). The recall can only
be estimated since we cannot manually parse the 500 million documents to check if some
results have been forgotten. However, we show that the number of correct results increases
over time.

7.1 Quality Results

In this section, we present our results in terms of quality of label extension, relationship dis-
covery and comparison with state of the art baseline knowledge extraction tools. The eval-
uation of relationship discovery depends on the quality of generated patterns and hence we
present this evaluation rather than the pattern generation itself.

8 http://nlp.stanford.edu/software/CRF-NER.shtml
9 http://opennlp.apache.org/

Relationship Discovery. We evaluate the quality obtained by SPIDER when running the
first use case (Section 4.2). Given two labels (representing entities), we search for the correct
type of relationship which links them. To fulfill this goal, we have manually designed a set of
200 relationships, available at this URL10. Note that the type of relationship associated to each
example is the most expected one, but several types of relationship are possible for the same
example. Table 1 provides a sample of examples (e.g., Obama, Hawai) and some candidate
types of relationship discovered by SPIDER (e.g., birthplace). A bolded type of relationship
indicates that it is correct for this example. A second remark about our set of relationships
deals with the complexity of some relationships (e.g., <cockatoo, tail, yellow>). The last col-
umn shows the initial confidence score computed for the candidate relationship. The quality

Example Discovered type of relationship Confidence score
birthplace 0.42

Obama, Hawai senator 0.31
president-elect 0.18
amazon 0.32

cockatoo, yellow parrot 0.31
tail 0.16
plant 0.51

eucalyptus, myrtaceae family 0.43
specie 0.27
inventor 0.60

Bartolomeo Cristofori, instrument 0.43
piano maker 0.19

Table 1. Examples of Discovered Types of Relationship and Confidence Scores

is measured in terms of precision at different top-k. Indeed, SPIDER outputs a ranked list of
relationship types according to their confidence scores. In addition, our approach is able to
run with or without training data. Thus, we have tested the system when a few training data
have been provided. Using 1 training example means that the system has randomly selected
1 correct example for bootstrapping the system. Experiments with the training data are based
on cross-validation and 5 runs reduce the impact of randomness. The manual validation of
the discovered relationships has been performed by 8 people. This manual validation includes
around 3000 invalid relationships and 600 correct ones, and it facilitates the automatic com-
putation of precision. In addition, we are able to estimate the recall, i.e. to evaluate the number
of correct types discovered during a run w.r.t. all validated types. This is an estimation because
there may exist more correct types of relationship than the ones which have been validated.
Besides, a discovered type may have a different spelling from a validated type while both have
the same meaning, thus decreasing the recall.

Figures 2(a) and 2(b) respectively depict the average precision and the average recall
for the 200 relationships by top-k and by number of provided training data. We first notice that
SPIDER achieves low quality without training data (precision from 40% at top-1 to 30% at
top-10). The estimated recall values are also quite low at top-1 because there is an average of 3
correct types of relationships for each example. The top-3 results are interesting with 5 train-
ing data: the precision is acceptable (more than 80%) while the recall value (32%) indicates
that one type of relationship out of three is correctly identified. Since our dataset contains

10 http://j.mp/apweb2013

complex relationships, this configuration is promising for bootstrapping the system. Preci-
sion strongly decreases at top-5 and top-10, mainly because each example roughly includes
3 types. However, the top-5 and top-10 recall values indicate that we discover more correct
examples. Finally, we notice that providing a few training data (5 examples) enables at least a
10% improvement both for precision and recall. This remark is important since our approach
aims at running perpetually by reusing previously discovered examples and patterns.

 0

 20

 40

 60

 80

 100

top-1 top-3 top-5 top-10

P
re

c
is

io
n

 i
n

 p
e

rc
e

n
ta

g
e

no training
1 example

5 examples

(a) Precision

 0

 20

 40

 60

 80

 100

top-1 top-3 top-5 top-10

E
s
ti
m

a
te

d
 r

e
c
a

ll
in

 p
e

rc
e

n
ta

g
e

no training
1 example

5 examples

(b) Estimated Recall

Fig. 2. Quality results according to top-k and Training Data

The quality results are subject to the complexity of the set of relationships, since we have
selected some complex ones to discover, such as <“cockatoo”, “tail”, “yellow”>. Other
problems of disambiguation occurred, for instance the example “Chelsea”, “London” mainly
returns types of relationships about accommodations because Chelsea is identified as a district
of London and not as the football team.

Baseline Comparison. A final experiment aims at comparing our system with two other
approaches, ReadTheWeb (NELL) [4] and Prospera [10], both described in Section 6. These
two approaches have been chosen as baseline because the dataset along with the results are
available online. An evaluation of these tools is described online11. Since the seed examples
are available, we have used them as training data. Table 2 summarizes the comparison be-
tween the three systems in terms of estimated precision, as explained in the experiments
reported in [4, 10]. Similarly to Prospera and ReadTheWeb, our precision is an estimation
due to the amount of relationships to validate. Namely, 1000 random types have been vali-
dated for each relationship. The average precision of the three systems is the same (around
0.91). However, the total number of facts discovered by SPIDER (71,921) is 36 times higher
than ReadTheWeb (2,112) and 1.3 times higher than Prospera (57,070), outperforming both
baselines.

Prospera provides slightly better quality results than our approach on AthletePlaysForTeam
relation. However, several factors have an influence on the precision results between Pros-
pera, ReadTheWeb and SPIDER. First, Prospera is able to use seeds and counter seeds while
we only rely on positive examples. On the other side, Prospera includes a rule-based rea-
soner combined with the YAGO ontology. Although SPIDER does not support this feature,

11 http://www.mpi-inf.mpg.de/yago-naga/prospera/

the combination of POS-tagged patterns and NER techniques achieves outstanding precision
values.

Relation RTW Prospera SPIDER
AthletePlaysForTeam 1.00 (456) 0.82 (14,685) 0.80 (15,234)
TeamWonTrophy 0.68(397) 0.94 (98) 0.96 (92)
CoachCoachesTeam 1.00 (329) 0.88 (1,013) 0.90 (1,629)
AthleteWonTrophy n/a 0.92(10) 0.94 (124)
AthletePlaysInLeague n/a 0.94 (3,920) 0.95 (4,211)
CoachCoachesInLeague n/a 0.99 (676) 0.89 (741)
TeamPlaysAgainstTeam 0.99 (1,068) 0.89 (15,170) 0.93 (15,729)
TeamPlaysInLeague n/a 0.89 (1,920) 0.95 (2,409)
TeamMate n/a 0.86 (19,578) 0.84 (31,752)

Table 2. Estimated Precision (with Number of Discovered Facts) values obtained by ReadTheWeb
(RTW), Prospera and SPIDER.

 0

 10

 20

 30

 40

 50

 60

 70

 80

200000 400000 600000 800000 1M

T
im

e
 i
n

 s
e

c
o

n
d

s

Number of documents

retrieval-time
preprocessing-time

total-time

(a) Retrieval and Preprocessing Performance

 0

 50

 100

 150

 200

 250

 300

 350

 400

1000 5000 10000 20000 50000

 0

 100000

 200000

 300000

 400000

 500000

T
im

e
 i
n

 s
e

c
o

n
d

s

N
u

m
b

e
r

o
f

(c
a

n
d

id
a

te
)

p
a

tt
e

rn
s

Number of documents

candidate patterns
patterns

total time

(b) Query Performance

Fig. 3. Performance results

7.2 Performance
Since knowledge extraction systems deal with large collections of documents, they need to
be scalable. Figure 3(a) depicts the performance of SPIDER for retrieving and preprocessing
(i.e., clean up the header, remove html tags) the documents. The total time (sum of retrieval
and preprocessing) is also indicated. Although there is no caching, the total time is not signifi-
cant for collecting and preprocessing one million documents (around 40 seconds). Note that in
real cases, a conjunctive query composed of two labels rarely returns more than 20, 000 docu-
ments. The peak for retrieval at 600, 000 documents is due to an overhead processing from the
thread manager. Increasing the number of threads above 400 leads to higher thread switching
latency while decreasing this number only reports the peak earlier during the process. This
issue could be simply solved by dispatching this task on different servers.

ReadTheWeb and Prospera expose their knowledge base but not their tools. Thus, it is not
possible to evaluate the three systems on the same hardware and the following comparison is
based on the performance described in the original research papers. It mainly aims at showing

the significant improvement of SPIDER over ReadTheWeb and Prospera, for a better average
quality. To produce the results shown in Table 2, Prospera needed more than 2 days using 10
servers with 48 GB RAM [10]. In a similar fashion, ReadTheWeb has generated an average
of 3618 facts per day during the course of 67 days using the Yahoo M45 supercomputing
cluster [4]. On the contrary, our approach performed the same experiment in a few hours.
The generation of facts for each type of relationship took between 20 to 60 minutes with
four servers equipped with 24 GB RAM. Although these values are mainly indicative, SPI-
DER is more efficient than the two other systems when dealing with dynamic and large-scale
environments.

8 Conclusion

In this paper, we have presented SPIDER, an approach to automatic extraction of binary re-
lationships from large text corpora. The main advantage of our system is to guarantee both a
better quality and a strong improvement in terms of performance over similar approaches,
thus providing new opportunities for discovering relationships at large scale. Finally, we have
demonstrated the feasibility of SPIDER at Web-scale.

References
1. E. Agichtein and L. Gravano. Snowball: Extracting relations from large plain-text collections. In

Proc. of DL, pages 85–94. ACM, 2000.
2. M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and O. Etzioni. Open information extrac-

tion from the web. In Proc. of IJCAI, pages 2670–2676. Morgan Kaufmann, 2007.
3. S. Brin. Extracting patterns and relations from the world wide web. In Proc. of WebDB, pages

172–183. Springer, 1998.
4. A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. Hruschka Jr., and T. M. Mitchell. Toward an

architecture for never-ending language learning. In Proc. of AAAI. AAAI Press, 2010.
5. O. Etzioni, M. Banko, S. Soderland, and D. S. Weld. Open information extraction from the web.

Communication of ACM, 51:68–74, December 2008.
6. A. Fader, S. Soderland, and O. Etzioni. Identifying relations for open information extraction. In

Proc. of EMNLP, pages 1535–1545. ACL, 2011.
7. V. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and Reversals. Journal

of Soviet Physics Doklady, 10:707, 1966.
8. T. R. Lynam, G. V. Cormack, and D. R. Cheriton. On-line spam filter fusion. In Proc. of SIGIR,

pages 123–130. ACM, 2006.
9. Mausam, M. Schmitz, S. Soderland, R. Bart, and O. Etzioni. Open language learning for information

extraction. In Proc. of EMNLP, pages 523–534. ACL, 2012.
10. N. Nakashole, M. Theobald, and G. Weikum. Scalable knowledge harvesting with high precision

and high recall. In Proc. of WSDM, pages 227–236. ACM, 2011.
11. P. Pantel and M. Pennacchiotti. Espresso: leveraging generic patterns for automatically harvesting

semantic relations. In Proc. of ACL, pages 113–120. ACL, 2006.
12. A. Parameswaran, H. Garcia-Molina, and A. Rajaraman. Towards the web of concepts: extracting

concepts from large datasets. VLDB Endowment, 3:566–577, September 2010.
13. P. Resnik. Semantic similarity in a taxonomy: An information-based measure and its application to

problems of ambiguity in natural language. Journal of Artificial Intelligence Research, 11:95–130,
1999.

14. N. Takhirov, F. Duchateau, and T. Aalberg. An evidence based verification approach to extract
entities and relations for knowledge base population. In Proc. of ISWC, pages 575–590. Springer,
2012.

