
Encore un outil de découverte de correspondances entre
schémas XML ?

Fabien Duchateau, Remi Coletta, Zohra Bellahsene

LIRMM

Univ. Montpellier 2

34392 Montpellier - France

firstname.name@lirmm.fr

Renee J. Miller

Univ. of Toronto

40 St. George Street

Toronto ON M5S 2E4, Canada

miller@cs.toronto.edu

Abstract
In this paper, we present YAM, a schema matcher factory. YAM (Yet Another

Matcher) is not (yet) another schema matching system as it enables the generation
of a la carte schema matchers according to user requirements. These requirements
include a preference for recall or precision and a training data set (a set of expert
correspondences or a domain of interest). YAM uses a knowledge base that includes
a (possibly large) set of similarity measures and classifiers. Based on the user require-
ments, YAM learns how to best apply these tools (similarity measures and classifiers)
in concert to achieve the best matching quality. In our demonstration, we will let
users apply YAM to build the best schema matcher for different user requirements.
We will demonstrate the generation of a dedicated schema matcher for a given set of
user requirements.
Keywords: schema matching, data integration, machine learning, classifier, user
requirements.

Dans cet article, nous présentons YAM (pour Yet Another Matcher), une fabrique
d’outils de mise en correspondance de schémas. YAM n’est pas un autre outil de
découverte de correspondances mais plutôt un générateur d’ outils de découverte de
correspondances en fonction des besoins de l’utilisateur. Ces besoins incluent notam-
ment une préference entre précision et rappel ainsi que des données d’entrainement
(un ensemble de correspodances données par un expert ou un domaine d’intérêt).
YAM utilise une base de connaissances qui contient un ensemble (potentiellement
grand) de mesures de similarité et de classifieurs. D’après les besoins de l’utilisateur,
YAM apprend appliquer ces outils (mesures de similarité et classifieurs) afin d’obtenir
la meilleure qualité possible. Dans cette démonstration, les utilisateurs appliqueront
YAM avec différents besoins pour produire le meilleur outil de découverte de schémas.
Mots-clés: intégration de données, outil de découverte de schémas, mise en corre-
spondance de schémas, apprentissage, classifieur.

1



1 Overview of YAM

YAM (Yet Another Matcher) is a meta-matching tool, which generates a dedicated
schema matcher, i.e., a schema matcher which is best suited, in terms of quality, for a
given schema matching scenario and according to user inputs. The motivations leading to
our work are:
• There is no schema matching tool which performs best for all matching scenarios.

Although matching tools enable the user to tune some parameters (strategies, weights,
thresholds, etc.), the algorithm used by the matching tool stays the same, for instance,
COMA++’s aggregation function [1] or Similarity Flooding’s graph propagation algorithm
[4]. eTuner [2] automatically tunes schema matching tools by tuning the input parameters
used by the matcher. Specifically, eTuner finds the best parameter settings for a given
matching algorithm. On the contrary, YAM is able to produce the best schema matcher
for a given scenario. Each generated schema matcher may use a different algorithm (an
aggregation function, Bayes network, decision tree, etc.) and different similarity measures.
• YAM uses some user input(s), but of a different form. Specifically, YAM can use an

(optional) preference between precision and recall, and some expert correspondences (that
is, a small number of correct matches). This small amount of input enables the use of
supervised learning to create a dedicated schema matcher. YAM is able to convert user
time spent to give preferences into better quality results. Indeed, most schema matching
tools focus on a better precision, but this is not the best choice in terms of post-matching
effort, i.e., the quantity of work required by an expert to correct discovered correspon-
dences. Technically speaking, it is easier for the expert to validate (or not) a discovered
correspondence than to manually browse two large schemas for new correspondences that
the tool may have missed.

Figure 1: YAM Architecture

1.1 Architecture

Figure 1 depicts the YAM architecture. YAM has two phases: a learning phase that
produces a dedicated schema matcher and a matching phase in which the dedicated matcher
is used over new input schemas. The learning process can use a preference for precision
and recall tradeoff and some expert correspondences (from a domain of interest, or for
the schemas to be matched). The Knowledge Base (KB) stores a set of classifiers, a
set of similarity measures, and pairs of schemas which have already been matched (with

2



correspondences). Thanks to these inputs and the KB, the learning process is able to
generate a dedicated schema matcher. This step is described with more details in Section
1.2. Note that using the whole content of the KB enables learning of a robust schema
matcher, i.e., a default matcher that provides the best average results. This robust schema
matcher is useful when YAM must directly work as a generic schema matcher, i.e., when the
user has not provided any inputs. The second phase performs the matching. It requires
as input the schemas to be matched, and the dedicated schema matcher that has been
previously generated. It outputs a list of discovered correspondences between the schemas.
The current version of YAM includes 20 classifiers from the Weka library1 and 30 similarity
measures, including all the measures from the Second String project2. YAM is able to parse
edge-labeled trees (a simple abstraction that can be used for XML schemas, web interfaces,
etc.) and the knowledge base contains a large set of real schemas from various domains
(betting, hotel booking, dating, etc.) gathered from the web [3]. The current KB contains
more than 250 schemas, among which 200 pairs have already been matched.

1.2 Learning Process

Similarly to machine learning classifiers, a matching tool classifies each pair of schema
elements (or correspondence), by labelling them either as relevant or irrelevant. In YAM,
we train a large set of classifiers on schemas which have already been matched, i.e. training
schemas. Two errors can occur while training: discovering an irrelevant correspondence
(a.k.a. false positive) and missing a relevant correspondence (a.k.a. false negative). The
first error decreases precision while the second one decreases recall. Classifiers usually
assign the same weight for both errors. But it is possible to promote one of them. Thus,
YAM also takes as input a user preference for either recall or precision. It is able to
generate a schema matcher that favors this preference.

Among the 20 classifiers that have been learned, the final step consists of selecting the
best one. To fulfill this goal, a cross-validation is applied against the training schemas. The
classifier which manages to discover, between the training schemas, most of these expert
correspondences and the fewest irrelevant correspondences is selected as the dedicated
schema matcher.

2 Demonstration Scenarios

In this demo, we show the capability of our tool for generating a dedicated schema matcher,
according to user inputs. We have used 10 scenarios from various domains (hotel booking,
currency, courses, etc.). We run our experiments 30 times to limit impact of randomness
during learning.

1http://www.cs.waikato.ac.nz/∼ml/weka
2http://secondstring.sourceforge.net

3



Without input. Let us imagine that we would like to match two hotel booking web-
forms. A user selects the schemas to be matched by clicking on the add schemas button. In
this first case, (s)he does not want to give more input and (s)he clicks the learn and match
button both to generate a schema matcher and to use it to match the schemas. As the
user did not give any expert correspondences, YAM uses the whole KB to learn the most
robust schema matcher, which is based on C4.5, a decision tree. First, this robust schema
matcher is displayed in the bottom left part of YAM’s interface. Then, the discovered
correspondences are shown in the right part of YAM using lines between schema elements.
The robust schema matcher achieves an average 58% f-measure on the 10 scenarios.

Promoting recall. Suppose the user thinks the recall is too low. That is, (s)he feels
the matcher has missed some correspondences. (S)he adjusts the precision / recall slide
to promote recall and restarts the learning and matching process. After that the matcher
promoting recall, based on NNge, a nearest-neighbor-like classifier, has been generated, it
discovers more relevant correspondences (13% increase for recall). Promoting recall slightly
decreases precision, but average f-measure reaches 62%.

Training with similar schemas. Now, let us imagine that the user has some sim-
ilar schemas than the ones to be matched, for instance other schemas dealing with hotel
booking, currency, courses, etc. domains. (S)he decides to train on those similar scenarios
instead of the whole KB by clicking the choose training scenarios button. (S)he then se-
lects the similar scenarios and runs the learning and matching. Another schema matcher
has been generated, based on JRip, a propositional rule learner. This matcher achieves an
average 66% f-measure. Thus, training the matchers on similar schemas can improve the
results.

Providing expert feedback. As the user is not satisfied with these results, (s)he
finally provides expert feedback as input. Thus, (s)he selects some discovered correspon-
dences (5% in our experiments, which represents at most 2 correspondences to provide),
and validates them by clicking the validate button. These validated correspondences (along
with the schemas) are then added to the KB, and are also automatically added to the input
expert correspondences panel. The user then clicks the learn and match button. With this
new input3, YAM generates the dedicated schema matcher, Bayes Network in this case,
in 630 seconds. Since it does not need to focus on the input expert correspondences, this
matcher enables an f-measure improvement up to 89%.

Table 1 sums up the results and provides a comparison with other reputed matching
tools, COMA++ and Similarity Flooding (SF). We notice that YAM robust (without user
input) achieves similar results than those of COMA++ and SF. However, when user spends
some time to provide inputs, YAM is able to strongly improve the matching quality.

3If there is not enough input expert correspondences to train correctly, YAM adds some randomly
training schemas from the KB.

4



Table 1: Average results of the different matchers on the 10 scenarios

precision recall f-measure
YAM-robust 52% 65% 58%
YAM-recall 51% 78% 62%
YAM-similar 55% 81% 66%
YAM-feedback 88% 90% 89%
COMA++ 74% 45% 56%
Similarity Flooding 64% 54% 58%

3 Conclusion

In this paper, we have presented YAM, a factory of schema matchers. The main con-
tributions of our work are: (i) implementation of the first tool capable of producing a
dedicated schema matcher, and (ii) impact of various user inputs on the quality. By
means of demonstration, we will show how YAM generates different schema matchers ac-
cording to user requirements. More information (scenarios and demo) can be found at
http://www.lirmm.fr/∼duchatea/yam.

References

[1] D. Aumueller, H. H. Do, S. Massmann, and E. Rahm. Schema and ontology matching
with coma++. In ACM SIGMOD Conference, Demo paper, pages 906–908, 2005.

[2] E. Y. Lee, M. Sayyadian, A. Doan, and A. Rosenthal. etuner: Tuning schema matching
software using synthetic scenarios. volume 16, pages 97–122, 2007.

[3] A. Marie and A. Gal. Boosting schema matchers. In CooPIS, 2008.

[4] S. Melnik, H. G. Molina, and E. Rahm. Similarity flooding: A versatile graph matching
algorithm and its application to schema matching. In Proc. of the ICDE, 2002.

5


