
UNIVERSITÉ MONTPELLIER II
— SCIENCES ET TECHNIQUES DU LANGUEDOC —

THÈSE

pour obtenir le grade de
Docteur de l’Université Montpellier II

DISCIPLINE : INFORMATIQUE

Spécialité Doctorale : Informatique
Ecole Doctorale : Information, Structure, Systèmes

présentée et soutenue publiquement par

Fabien Duchateau (Candidat)
le 20 Novembre 2009

Towards a Generic Approach for Schema
Matcher Selection: Leveraging User Pre- and
Post-match Effort for Improving Quality and

Time Performance

JURY

Bernd AMANN, Professeur, Université Paris 6, .Rapporteur
Jérôme EUZENAT, Directeur de Recherche, INRIA Rhône-Alpes,Rapporteur
Angela BONIFATI, Chercheuse, CNR, Italy, . Examinatrice
Rémi COLETTA, Maître de Conférence, Université Montpellier II, Examinateur
Thérèse LIBOUREL, Professeure, Université Montpellier II, . Examinatrice
Zohra BELLAHSÈNE, Professeure, Université Montpellier II, Directrice de Thèse

Abstract

Towards a Generic Approach for Schema Matcher Selection: Leveraging User
Pre- and Post-match Effort for Improving Quality and Time Performance

Interoperability between applications or bridges between data sources are required to
allow optimal information exchanges. Yet, some processes needed to bring this integra-
tion cannot be fully automatized due to their complexity. One of these processes is called
matching and it has now been studied for years. It aims at discovering semantic corre-
spondences between data sources elements and is still largely performed manually. Thus,
deploying large data sharing systems requires the (semi-)automatization of this matching
process.

Many schema matching tools were designed to discover mappings between schemas.
However, some of these tools intend to fulfill matching tasks with specific criteria, like
a large scale scenario or the discovery of complex mappings. And contrary to ontology
alignment research field, there is no common platform to evaluate them. The abundance
of schema matching tools, added to the two previously mentioned issues, does not facil-
itate the choice, by an user, of the most appropriate tool to match a given scenario. In
this dissertation, our first contribution deals with a benchmark, XBenchMatch, to evaluate
schema matching tools. It consists of several schema matching scenarios, which features
one or more criteria. Besides, we have designed new measures to evaluate the quality of
integrated schemas and the user post-match effort.

This study and analysis of existing matching tools enables a better understanding of
the matching process. Without external resources, most matching tools are mainly not
able to detect a mapping between elements with totally dissimilar labels. On the contrary,
they cannot infirm a mapping between elements with similar labels. Our second contribu-
tion, BMatch, is a matching tool which includes a structural similarity measure and it aims
at solving these issues by only using the schema structure. Terminological measures en-
able the discovery of mappings whose schema elements share similar labels. Conversely,
structural measures, based on cosine measure, detects mappings when schema elements
have the same neighbourhood. BMatch’s second aspect aims at improving the time per-
formance by using an indexing structure, the B-tree, to accelerate the schema matching
process. We empirically demonstrate the benefits and the limits of our approach.

Like most schema matching tools, BMatch uses an aggregation function to combine
similarity values, thus implying several drawbacks in terms of quality and performance.
Tuning the parameters is another burden for the user. To tackle these issues, MatchPlanner
introduces a new method to combine similarity measures by relying on decision trees. As
decision trees can be learned, parameters are automatically tuned and similarity measures
are only computed when necessary. We show that our approach provides an increase in
terms of matching quality and better time performance with regards to other matching

tools. We also present the possibility to let users choose a preference between precision
and recall.

Even with tuning capabilities, schema matching tools are still not generic enough to
provide acceptable quality results for most schema matching scenarios. We finally extend
MatchPlanner by proposing a factory of schema matchers, named YAM (for Yet Another
Matcher). This tool brings more flexibility since it generates an ’a la carte’ matcher for a
given schema matching scenario. Indeed, schema matchers can be seen as machine learn-
ing classifiers since they classify pairs of schema elements either as relevant or irrelevant.
Thus, the best matcher in terms of matching quality is built and selected from a set of
different classifiers. We also show impact on the quality when user provides some inputs,
namely a list of expert mappings and a preference between precision and recall.

Keywords: data integration, data interoperability, XML schema, schema matching,
schema mapping, classifier, benchmark, similarity measure.

Résumé

Une Approche Générique pour la Sélection d’Outils de Découverte de Correspondances
entre Schémas

L’interopérabilité entre applications et les passerelles entre différentes sources de don-
nées sont devenues des enjeux cruciaux pour permettre des échanges d’informations op-
timaux. Cependant, certains processus nécessaires à cette intégration ne peuvent pas être
complétement automatisés à cause de leur complexité. L’un de ces processus, la mise
en correspondance de schémas, est maintenant étudié depuis de nombreuses années. Il
s’attaque au problème de la découverte de correspondances sémantiques entre éléments
de différentes sources de données, mais il reste encore principalement effectué de manière
manuelle. Par conséquent, le déploiement de larges systèmes de partage d’informations
ne sera possible qu’en (semi-)automatisant ce processus de mise en correspondance.

De nombreux outils de mise en correspondance de schémas ont été développés ces
dernières décennies afin de découvrir automatiquement des mappings entre éléments de
schémas. Cependant, ces outils accomplissent généralement des tâches de mise en cor-
respondance pour des critères spécifiques, comme un scénario à large échelle ou la décou-
verte de mappings complexes. Contrairement à la recherche sur l’alignement d’ontologies,
il n’existe aucune plate-forme commune pour évaluer ces outils. Aussi la profusion
d’outils de découverte de correspondances entre schémas, combinée aux deux problèmes
évoqués précedemment, ne facilite pas, pour une utilisatrice, le choix d’un outil le plus ap-
proprié pour découvrir des correspondances entre schémas. La première contribution de
cette thèse consiste à proposer un outil d’évaluation, appelé XBenchMatch, pour mesurer
les performances (en terme de qualité et de temps) des outils de découverte de corre-
spondances entre schémas. Un corpus comprenant une dizaine de scénarios de mise en
correspondance sont fournis avec XBenchMatch, chacun d’entre eux représentant un ou
plusieurs critères relatif au processus de mise en correspondance de schémas. Nous avons
également conçu et implémenté de nouvelles mesures pour évaluer la qualité des schémas
intégrés et le post-effort de l’utilisateur.

Cette étude des outils existants a permis une meilleure compréhension du processus
de mise en correspondance de schémas. Le premier constat est que sans ressources ex-
ternes telles que des dictionnaires ou des ontologies, ces outils ne sont généralement pas
capables de découvrir des correspondances entre éléments possédant des étiquettes très
différentes. Inversement, l’utilisation de ressources ne permet que rarement la découverte
de correspondances entre éléments dont les étiquettes se ressemblent. Notre seconde con-
tribution, BMatch, est un outil de découverte de correspondances entre schémas qui inclut
une mesure de similarité structurelle afin de contrer ces problèmes. Nous démontrons en-
suite de manière empirique les avantages et limites de notre approche. En effet, comme
la plupart des outils de découverte de correspondances entre schémas, BMatch utilise une
moyenne pondérée pour combiner plusieurs valeurs de similarité, ce qui implique une
baisse de qualité et d’efficacité. De plus, la configuration des divers paramètres est une

autre difficulté pour l’utilisatrice.

Pour remédier à ces problèmes, notre outil MatchPlanner introduit une nouvelle méth-
ode pour combiner des mesures de similarité au moyen d’arbres de décisions. Comme ces
arbres peuvent être appris par apprentissage, les paramètres sont automatiquement config-
urés et les mesures de similarité ne sont pas systématiquement appliquées. Nous montrons
ainsi que notre approche améliore la qualité de découverte de correspondances entre sché-
mas et les performances en terme de temps d’exécution par rapport aux outils existants.
Enfin, nous laissons la possibilité à l’utilisatrice de spécifier sa préférence entre précision
et rappel.

Bien qu’équipés de configuration automatique de leurs paramètres, les outils de mise
en correspondances de schémas ne sont pas encore suffisamment génériques pour obtenir
des résultats qualitatifs acceptables pour une majorité de scénarios. C’est pourquoi nous
avons étendu MatchPlanner en proposant une “fabrique d’outils” de découverte de corre-
spondances entre schémas, nommée YAM (pour Yet Another Matcher). Cet outil apporte
plus de flexibilité car il génère des outils de mise en correspondances à la carte pour un
scénario donné. En effet, ces outils peuvent être considérés comme des classifieurs en
apprentissage automatique, puisqu’ils classent des paires d’éléments de schémas comme
étant pertinentes ou non en tant que mappings. Ainsi, le meilleur outil de mise en cor-
respondance est construit et sélectionné parmi un large ensemble de classifieurs. Nous
mesurons aussi l’impact sur la qualité lorsque l’utilisatrice fournit à l’outil des mappings
experts ou lorsqu’elle indique une préférence entre précision et rappel.

Mot-clés: intégration de données, schéma XML, mise en correspondance de schémas,
classification automatique, benchmark, mesure de similarité.

Acknowledgements

I extend my sincere gratitude and appreciation to many people who made this Ph.D. thesis
possible. First of all, I want to express my gratitude to my family and friends for their en-
couragement during all these years. Their support to pursue this goal has been enormous.

I wish to thank my supervisor Zohra Bellahsène for being my mentor in research. Her
consistant confidence in me to publish research has propelled me to where I stand today.

I would like to thank all my thesis jury members. Special thanks to Bernd Amann and
Jérôme Euzenat for their valuable comments and remarks as reviewers of the dissertation.
I am indebted to Angela Bonifati, Rémi Coletta and Thérèse Libourel for taking out time
from their hectic schedules, to act as examiners for my work.

I owe a lot of thanks to Thérèse Libourel for her support as teaching supervisor. I am
also very grateful to Rémi Coletta for his help for programming and his experience about
machine learning. And I would like to acknowledge Ela Hunt, Renée J. Miller, Mark
Roantree and Mathieu Roche for their valuable feedback and their contributions as co-
authors of several papers.

Special thanks to my friends and colleagues at LIRMM and from other laboratories for
their informal discussions and support.

Finally, this Ph.D. would not have been possible without support from University Mont-
pellier II and Ministry of Higher Education and Research of France.

Montpellier, November 2009

Fabien Duchateau

i

ii

Contents

1 Introduction 1
1.1 Schema Matching, Integration and Mediation 1

1.1.1 What is Schema Matching ? . 1
1.1.2 What is Integration ? . 3

1.2 Motivations . 5
1.3 Objectives of the Dissertation . 6
1.4 Contributions . 7
1.5 Outline of the Dissertation . 8

2 Preliminaries 9
2.1 Schema Matching . 9

2.1.1 Definitions . 9
2.1.2 Metrics . 15

2.2 Machine Learning and Classification . 21
2.2.1 Definitions . 21
2.2.2 Classifiers Categories . 22

3 Related Work 25
3.1 Benchmarks for Matching Tools . 25

3.1.1 Ontology Benchmarks . 25
3.1.2 Schema Matching Benchmarks 26

3.2 Schema Matching Tools . 27
3.2.1 TRANSCM . 27
3.2.2 DIKE . 27
3.2.3 PROMPT/Anchor-PROMPT . 27
3.2.4 CUPID . 28
3.2.5 Clio . 28
3.2.6 AUTOMATCH/AUTOPLEX . 28
3.2.7 LSD/Glue . 29
3.2.8 Similarity Flooding/Rondo . 29
3.2.9 COMA/COMA++ . 30
3.2.10 PROTOPLASM . 30
3.2.11 S-MATCH/S-MATCH++ . 31
3.2.12 Smiljanic et al . 31
3.2.13 eTuner . 31
3.2.14 Porsche . 31

iii

3.2.15 ASID . 32
3.2.16 Schema Matcher Ensembles . 32
3.2.17 SMB . 32
3.2.18 Classification of Schema Matching Approaches 32

3.3 Concluding Related Work Section . 33

4 Designing a Benchmark for the Assessment of Schema Matching Tools 34
4.1 Preliminaries . 36

4.1.1 Schema Matching Dataset . 36
4.1.2 Rooted Directed Acyclic Graphs 36

4.2 Overview of XBenchMatch . 36
4.2.1 Desiderata . 36
4.2.2 XBenchMatch Architecture . 37
4.2.3 Methodology . 39

4.3 Classification of Schema Matching Datasets 39
4.4 Quality Metrics . 41

4.4.1 Post-match Effort Metric . 41
4.4.2 Quality of Integrated Schema 47

4.5 Experiments Report . 50
4.5.1 Quality Evaluation . 50
4.5.2 Performance Evaluation . 57
4.5.3 Concluding the Experiments Report 57

4.6 Conclusion . 58

5 BMatch: a Structural Context-based Tool Enhanced by an Indexing Struc-
ture to Accelerate Schema Matching 59
5.1 Preliminaries . 60

5.1.1 Terminological Measures . 60
5.1.2 An Indexing Structure: the B-tree 61

5.2 BMatch: Semantic Aspect . 62
5.2.1 Semantic Motivations . 63
5.2.2 Element Context . 65
5.2.3 Semantic Match Algorithm . 66
5.2.4 Semantic Parameters . 68

5.3 BMatch: Performance Aspect . 69
5.3.1 Principle of our Matching Algorithm 69

5.4 Experiments . 72
5.4.1 Matching Quality . 73
5.4.2 Time Performance Aspect . 80
5.4.3 Discussion . 83

5.5 BMatch versus Other Tools . 84
5.5.1 COMA++ . 84
5.5.2 Similarity Flooding . 84
5.5.3 Similarity Evaluation on Tree-structured Data 84
5.5.4 Porsche . 85
5.5.5 An Approach for Large Schemas 85

iv

5.6 Conclusion . 85

6 MatchPlanner: Learning Self-tuned Plans for Matching XML Schemas 87
6.1 Motivations . 88

6.1.1 Running Example . 88
6.1.2 Shortcomings of Traditional Matching Tools 89

6.2 A Decision Tree to Combine similarity measures 91
6.2.1 Modelling the Problem with Decision Trees 91
6.2.2 Matching with Decision Trees 92
6.2.3 Advantages of Using a Decision Tree 93

6.3 Learning Appropriate Decision Trees . 94
6.3.1 Learning a Decision Tree in the Schema Matching Context 94
6.3.2 A Concrete Learning Example 95
6.3.3 Tuning Precision and Recall . 96

6.4 MatchPlanner versus Other Tools . 97
6.4.1 COMA++ . 97
6.4.2 Similarity Flooding . 97
6.4.3 SMB . 98
6.4.4 AUTOMATCH / AUTOPLEX 98
6.4.5 LSD / Glue . 98
6.4.6 Machine Learning Works . 98
6.4.7 eTuner . 98

6.5 Implementation . 99
6.6 Experiments . 99

6.6.1 Experiments Protocol . 100
6.6.2 Quality Aspect . 101
6.6.3 Performance Aspect . 103
6.6.4 Promoting Recall . 104
6.6.5 Robustness of our Approach . 105
6.6.6 Discussion . 106

6.7 Conclusion . 107

7 YAM: a Schema Matcher Factory 110
7.1 Preliminaries . 112

7.1.1 Definitions . 112
7.1.2 Running Example . 112

7.2 Overview of YAM . 112
7.2.1 Motivations . 113
7.2.2 YAM Architecture . 114

7.3 Learning a Dedicated Matcher . 115
7.3.1 Matcher Training . 115
7.3.2 Selecting a Dedicated Matcher 116
7.3.3 YAM versus Other Approaches 117

7.4 Experiments . 117
7.4.1 Comparing generated matchers 118
7.4.2 Impact of the Training Scenarios 119

v

7.4.3 Precision vs. Recall Preference 120
7.4.4 Impact of Expert mappings . 121
7.4.5 Comparing with Other Matching Tools 123
7.4.6 Discussion . 126

7.5 Conclusion . 126

8 Conclusions and Perspectives 128
8.1 Main Contributions . 128
8.2 Remaining Issues and Near Future Work 129

8.2.1 Extending to Ontologies . 129
8.2.2 Discovering Complex Mappings 130
8.2.3 Improving Time Performance 130

8.3 Long-term Perspectives . 131
8.3.1 Connecting Large Scale Networks 131
8.3.2 Integrating Multimedia Sources 131
8.3.3 Uncertainty . 132

vi

List of Figures

1.1 Architecture of data integration systems 3
1.2 Schema Matching, Materialisation and Mediation Examples 4
1.3 Successive improvements of our matching tools 7

2.1 Two hotel booking webforms . 10
2.2 Two hotel booking schemas . 11
2.3 Two hotel booking XML schemas . 12
2.4 Expert mappings between the 2 hotel webforms 14
2.5 Merging the 2 hotel schemas into an integrated schema 14
2.6 Mappings discovered by two schema matching tools on the hotel booking

webforms . 19
2.7 An example of a ROC curve whose AUC = 0.72 21
2.8 An example of decision tree (J48) . 23
2.9 An example of Bayes network . 23
2.10 An example of rules-based classifier (NNge) 24

3.1 Classification of schema matching approaches 33

4.1 Screenshot of XBenchMatch main interface 38
4.2 Architecture of XBenchMatch . 38
4.3 Example of a plot used to present results 39
4.4 Mappings between two hotel booking schemas 43
4.5 Two examples of integrated schemas . 47
4.6 Matching quality obtained for the betting dataset 51
4.7 Matching quality obtained for the biology dataset 52
4.8 Matching quality obtained for the currency dataset 52
4.9 Matching quality obtained for the finance dataset 53
4.10 Matching quality obtained for the order dataset 53
4.11 Matching quality obtained for the person dataset 54
4.12 Matching quality obtained for the sms dataset 54
4.13 Matching quality obtained for the travel dataset 55
4.14 Matching quality obtained for the univ-courses dataset 55
4.15 Matching quality obtained for the univ-dept dataset 56

5.1 Example of a b-tree of order 5 . 62
5.2 Small example of polysemia problem 63
5.3 The two university scenario schemas . 64
5.4 Step 1: b-tree after parsing first schema 70

vii

5.5 Step 2: b-tree after analyzing token CS from element CS Dept U.S. 70
5.6 Step 3: b-tree after analyzing token Dept from element CS Dept U.S. . . . 71
5.7 Step 4: b-tree after analyzing token U.S. from element CS Dept U.S. . . . 72
5.8 Step 5: b-tree after analyzing token Undergrad from element Undergrad

Courses . 73
5.9 Step 6: b-tree after analyzing token Courses from element Undergrad

Courses . 74
5.10 Precision obtained by the matching tools in the five scenarios 80
5.11 Recall obtained by the matching tools in the five scenarios 81
5.12 F-measure obtained by the matching tools in the five scenarios 82
5.13 Matching time with XCBL schemas depending on the number of elements 82
5.14 Matching time with OASIS schemas depending on the number of schemas 83

6.1 Search forms of dating websites . 89
6.2 Examples of decision tree . 92
6.3 Learned decision trees for the dating web forms 96
6.4 MatchPlanner Architecture . 100
6.5 MatchPlanner and SMB average scores for 15 web forms scenarios 102
6.6 Precision obtained by the matching tools on the 7 scenarios 103
6.7 Recall obtained by the matching tools on the 7 scenarios 104
6.8 F-measure (β = 1) obtained by the matching tools on the 7 scenarios . . . 105
6.9 F-measure (β = 2) obtained by the matching tools on the 7 scenarios . . . 106
6.10 Time performance for matching each scenario 107
6.11 Impact on the quality when promoting recall 108
6.12 Decision trees (J48, NBTree) achieve good quality results w.r.t. other

classifiers . 109

7.1 Extract of the dedicated matcher . 112
7.2 Mappings discovered using the dedicated matcher 113
7.3 YAM architecture . 114
7.4 Average scores of each matcher over 200 scenarios 119
7.5 Number of selections as dedicated matcher 120
7.6 Average f-measure when varying number of training scenarios 121
7.7 Quality of various matchers when tuning weight of false negatives 122
7.8 F-measure of various matchers when tuning the input expert mappings . . 123
7.9 Precision, recall and f-measure achieved by the three matching tools on

10 scenarios . 124
7.10 Number of user interactions needed to obtain a 100% f-measure 125

viii

List of Tables

2.1 Contingency table at the base of evaluation measures. 17
2.2 Understanding AUC values . 21

4.1 Datasets classification according to their properties 41
4.2 Datasets classification according to schema matching features 41
4.3 Time performance on the different datasets. 57

5.1 Features of the different scenarios . 73
5.2 Varying the replacement threshold . 75
5.3 Varying the number of levels . 76
5.4 Varying the strategies . 77
5.5 Correspondences discovered with BMatch for university scenario 78
5.6 Correspondences discovered with COMA++ for university scenario . . . 79
5.7 Correspondences discovered with SF for university scenario 79
5.8 Characterization of schema sets . 81
5.9 Time performance of COMA++, Similarity Flooding and BMatch on the

different scenarios . 83

6.1 Summary of quality results: MatchPlanner achieves the highest average
f-measure . 104

7.1 Number of training scenarios chosen by YAM for each classifier 120

ix

Chapter 1

Introduction

Information is nowadays disseminated throughout numerous data sources. However, such
data sources own different data structures in different formats. In distributed environ-
ments, including World Wide Web and the emerging Semantic Web, interoperability
among applications which exploits these data sources critically depends on the ability
to map between them [108]. Unfortunately, automated data integration, and more pre-
cisely matching between schemas, is still largely done by hand, in a labor-intensive and
error-prone process. As a consequence, semantic integration issues have become a key
bottleneck in the deployment of a wide variety of information management applications.
The high cost of this bottleneck has motivated lots of research to design approaches for
semi-automatically discovering schema mappings.

This dissertation studies how to help users select an appropriate schema matching tool
(i) by comparing existing tools and understanding how they behave in different scenar-
ios and (ii) by proposing an approach which automatically produces a schema matcher
according to user requirements.

1.1 Schema Matching, Integration and Mediation
Data integration is still a challenging issue [97] since it facilitates automatic building of
mashups, schema integration for datawarehouses, generation of new knowledge, etc. As
we argue that users should be able to access a set of data sources using their own se-
mantic descriptions, data integration, and more precisely schema matching, should be
an automatic and flexible process for which user intervention is mostly reduced. In lit-
erature [33, 116], several variations of schema matching problem have been researched
like ontology matching, ontology alignment, schema reconciliation, mapping discovery,
representation matching, or semantic correspondences discovery.

1.1.1 What is Schema Matching ?
Schema matching can be defined as the process of finding similarities between two schemas
[82, 88, 98]. These similarities, called mappings, can then be used for query answering,
web service composition, data transformation, etc. [104]. Schema matching process is

1

generally divided into three steps. The former is named pre-match. User might inter-
vene to provide resources, to set up parameters, etc. Similarly, the tool can pre-process
some calculations. Then, the matching step occurs, during which mappings are discov-
ered. The final step, called post-match, mainly consists of a manual (in)validation of the
discovered mappings. Let us describe these three steps with more details.

Pre-Match Phase

This phase normally includes providing of external resources, configuration of various
parameters and some pre-processing.

• External resources. Matching tools can use some external resources, like ontolo-
gies (domain specific), thesauri or dictionaries (for example Wordnet) [65]. Users
can also provide expert correspondences, which are useful for matching tools based
on machine learning techniques which require training data [34, 102].

• Tuning. A matching tool often includes some weights or thresholds to be manually
tuned, or other processing like schema reduction [40, 52, 112]. This step may be
optional or compulsory, but these parameters have a strong impact on other criteria.
For instance, reducing the number of similarity metrics to be computed improves
time performance but it can degrade matching quality.

• Pre-processing. Most tools have an automatic processing, at least to convert input
schemas into their internal data structure. Other tasks may include a training phase
for tools based on machine learning techniques [36].

This pre-matching step involves more work at the beginning. However, this effort is
often rewarded since it positively affects final matching quality.

Matching Phase

At the core of the matching step, schema matching tools mainly have a matching algo-
rithm and similarity metrics [15]. The main idea is to apply similarity metrics against
pairs of schema elements to produce similarity values. The matching algorithm then uses
these similarity values to deduce a set of mappings. This step is very specific to each
matching tool, thus refer to section 3.2 about existing schema matching approaches. User
can sometimes interact with the tool during the matching process to disambiguate several
candidate mappings or answer some questions [136]. At the end of this step, a set of
mappings is shown to the user.

Post-Match Phase

During post-match phase, users mainly check discovered mappings. They can (in)validate
them thanks to state-of-the-art GUI [8, 24, 76]. This phase is very costly in terms of
manual effort, thus schema matching tools should focus on reducing this cost. Whatever
application these mappings have been discovered for, they can also be reused as input of a
next matching process [86, 8], especially for tools based on machine learning techniques
[34, 36, 87].

2

1.1.2 What is Integration ?
Integration process relies on mapping discovery [11]. Integration (or merging) of different
source schemas can be defined as the gathering of all concepts from the source schemas
into an integrated schema, based on the mappings. It is divided into two approaches: (i)
materialised and (ii) virtual. Figures 1.1(a) and 1.1(b) respectively depict architectures of
both approaches. Note that there exist a combined approach between virtualisation and
materialisation, in which part of the data is materialised so that queries related to these
data are optimised.

(a) Materialised (datawarehouse) (b) Virtual (mediation)

Figure 1.1: Architecture of data integration systems

In a materialised approach, data are also extracted, cleansed and added in the dataware-
house [111]. The resulting integrating schema is then used to answer queries since data is
now centralised in one storage site. Datawarehouses have been in domains such as bank-
ing or business, because they enable a quick decision making from generated statistics
on the datawarehouse. Advantages of materialisation is the availability of data and the
fast query answering. However, its main drawback deals with data freshness. As source
schemas and their data still evolve, data stored in the datawarehouse is not up-to-date
anymore. Thus, this requires solutions to update integrated schema along with instances

3

(a) Mappings between two source
schemas

(b) A materi-
alised schema
based on map-
pings

(c) A mediated schema

Figure 1.2: Schema Matching, Materialisation and Mediation Examples

without running the whole integration process once more.

On the contrary, a virtual approach involves the building of a mediated schema, but
data is still stored in the source schemas [79, 6, 12]. Mappings have to be discovered be-
tween the mediated schema and the source schemas. Based on these mappings, wrappers
enable the transformation of queries sent to the mediated schema into individual queries
for each source schema. There are two main ways to specify mappings between the me-
diated schema and the data sources, and both are based on view mechanisms. The ïňĄrst
approach, Global as View or GAV [91], relies on deïňĄning the mediated schema as a set
of views over the schema of the data sources. The main advantage of this approach lies in
the fact that the process of rewriting queries on the mediated schema is more straightfor-
ward. However, integration of new data sources is hard since the mediated schema must
be updated accordingly. The second approach for specifying mappings, called Local as
View or LAV, implies to describe data source schemas as views over the mediated schema.
The main drawback of this approach [71] deals with the rewriting of a query in terms of
views A popular example of mediated schema is given by multiple web interface query
systems [116, 74, 136]. Let us imagine that an user is looking for flight tickets, (s)he will
not fill in all web interfaces of each airplane company ! There exists mediation systems,
which takes as input user requirements (date of departure and arrival, departure and ar-
rival cities, etc.), and they will automatically query all airplane websites. Then, results are
aggregated and ranked according to user preferences before displaying them.

The three processes, schema matching, materialisation and mediation are summed up
by figure 1.2. Although much research has been performed over years, data integration is
still a challenging research field due to unsolved issues. We describe these motivations in
the next section.

4

1.2 Motivations
With the strong increase of available information and interesting possibilities offered by
data integration applications [28], many matching tools emerged from the research com-
munity. Due to the complexity of the matching problem [126, 139], most of them are
dedicated to solve a specific challenge:

• Heterogeneity of data sources. As they have been designed by different people us-
ing various formats and structures, data sources are strongly heterogeneous. How-
ever, for data interoperability [108], one requires to understand the meaning of a
data source. If available, a schema provided with it enables the knowledge of its
semantic.
For instance, many semantic applications on the Internet aggregate values from
other data sources. GeoNames1 is a multilingual geographical database which stores
8 millions locations. It aims at providing geographic information (latitude, longi-
tude, height, etc.) but also population of inhabited places or links to Wikipedia
webpages2. Lots of web services were designed to answer queries like closest cities
or weather forecast for a given postcode. As shown on their data sources webpage3,
information originates from hundreds of websites, thus encompassing a strong het-
erogeneity in terms of language, data structures and formats.

• Large scale refers to two issues: matching a large number of data sources and
matching two large data sources [32, 119]. These challenges are currently more
and more explored as information grows at an exponential rate.
A good example of such application is given by multi-agent systems. These agents
cooperate in order to achieve tasks whose difficulty cannot be solved by a single
agent. For instance, online trading or disaster management systems require im-
mediate responses [121], although they hold lots of information. Agents have to
quickly discover mappings both to be able to communicate between them and to
process data sources.

• Pay-as-you-go systems are platforms to make data sources co-exist at first, and to
integrate them more closely later [61]. Basic functionalities are applied to all data
sources, e.g. keyword search. When more sophisticated functionalities are required,
then user will spend time to integrate more deeply data sources by checking and val-
idating the results of data integration tools. Contrary to traditional data integration
systems, dataspaces do not require as much setup time for configuration. Some
challenges [70] proposed by these systems include (i) user preferences for preci-
sion and completeness, especially when querying, (ii) management of uncertainty
and (iii) reuse of user feedback.

• Mapping maintenance. As stated by [15], “(evolution) problem arises when a
change to a database schema breaks views that are defined on it”. In other words,
mappings which are defined between several data sources may not hold anymore

1http://www.geonames.org, access in July 2009
2http://www.wikipedia.org
3http://www.geonames.org/data-sources.html, access in July 2009

5

after one or more schema changes. This is even a greater issue in large scale sce-
narios and in dynamic environments. Discovering mappings “on the fly” with fast
matching algorithms is a first solution. Models [15] have also been proposed to
trigger transformation operations on mappings when a schema change is detected.
A strong community has recently developed lots of data mashups4. A mashup is an
application which combines information from various websites. A famous example
is Google Maps API5, which enables websites to provide a visualisation of a ge-
ographical area. Integrating content of such websites heavily relies on underlying
mappings. Although web services or APIs provided by major web actors are mainly
stable and reliable, a mashup showing teas proposed by Montpellier’s coffeeshops
may be subject to frequent schema changes, thus involving mechanisms to correctly
update mappings.

• Self-tuning. Although ideally thought as an automatic process, schema match-
ing currently requires a serious effort from the user6 for tuning various parameters
[125]. The most frequent parameters are weights (e.g., of an aggregation function),
coefficients and thresholds (e.g., for mapping selection). But they also include edi-
tion of a synonyms list, selection of a match algorithm or strategy, etc. Some tools
like eTuner [80] have already been proposed to automatically tune parameters of a
given schema matching tool.
Let us imagine that an user has to match two schemas about biology proteins. This
user owns an ontology about her specific domain, like GeneOntology7 or Uniprot8.
If the matching tool chosen for this goal enables user to select an external resource,
then she should ensure that the similarity metrics which use this ontology have a
sufficient weight in the final aggregation function (since this resource is strongly re-
liable). Similarly, if another user wants to quickly match several schemas from the
web, (s)he may only apply a subset of the available similarity metrics to increase
time performance. Thus, some knowledge about these metrics is needed to keep
interesting ones for the expected purpose.

We have been motivated by these scenarios, to help users selecting a schema matching
tool according to their needs and to the challenge(s) (s)he has to fulfill.

1.3 Objectives of the Dissertation
In this dissertation, we focus on two schema matching issues: evaluation of schema
matching tools and selection of a self-tuned schema matcher.

• A benchmark for evaluating schema matching tools gives an overview about their
diversity. In other words, it assesses the capabilities of schema matching tools under

4http://www.programmableweb.com and http://www.webmashup.com, both access in July 2009
5http://code.google.com/intl/fr/apis/maps, access in August 2009
6Note that an user is rarely able to tune all parameters. An expert (in computer science, or in the domain

related to the schemas to be matched) has to intervene.
7http://www.geneontology.org
8http://www.uniprot.org

6

uniform conditions. Besides, it enables us to understand why a tool is efficient (or
not) for a given matching scenario. To reach this goal, new measures are necessary
to quantify post-match effort, i.e., the amount of manual work that the user will
provide to check and correct outputs of the schema matching tool. We have also
extracted from this experience a valuable knowledge about existing matching tools,
among which their strong points and drawbacks.

• Designers of schema matching tools mainly focus on two aspects: matching qual-
ity and time performance. The former is crucial for reducing user post-match
effort. The latter is required in dynamic environments, in which data sources are
quickly modified and schema matching has to be run again to take into account
updates. Consequently, we have first proposed a schema matching tool, BMatch,
to address these aspects. This first experience showed us that the tool lacks some
other interesting features: parameters (weights and thresholds) have to be tuned by
the user and adding new similarity metrics involves another manual reconfigura-
tion. Our second tool, MatchPlanner, has replaced BMatch by providing extra fea-
tures, namely a self-tuning capability of parameters, easy extensibility (in terms
of similarity metrics) and a user preference between precision and recall. A final
improvement led us to YAM9, which brings more extensibility (in terms of match
algorithms) and more user inputs (with expert mappings). But it mainly automa-
tises the matching process since it produces the most appropriate schema matcher
for a given scenario. These improvements are summed up by figure 1.3.

Figure 1.3: Successive improvements of our matching tools

1.4 Contributions
In this section, we explicitly describe our contributions to fulfill the above mentioned
objectives.

• Analyse existing works in schema matching. This study helped us to understand
the different issues related to schema matching.

• Design a benchmark to evaluate schema matching tools. Datasets provided with
this benchmark reflect schema matching criteria. We also propose metrics to assess
the quality of an integrated schema and user post-match effort.

9YAM is actually not a schema matching tool, rather a factory of schema matchers.

7

• Propose an approach to match a large number of schemas. We use a combination
of terminological and structural similarity measures and the matching process is
accelerated thanks to an indexing structure, the b-tree.

• Provide a framework for automatically building self-tuned plans of similarity met-
rics for the matching process. This approach is based on decision trees. It features
an extensible set of similarity metrics, due to the tuning capability, and improved
time performance thanks to the use of decision trees.

• Design a factory of schema matchers. Based on user inputs and a given schema
matching scenario, this factory produces the most appropriate schema matcher.

1.5 Outline of the Dissertation
This dissertation is organised into 8 chapters. Current chapter introduced the problem of
schema matching and its applications. Chapter 2 outlines the problem definition related to
schema matching. In chapter 3, we emphasize on state of the art in schema matching and
data integration. In Chapter 4, we proposed a benchmark for evaluating schema matching
tools. A matching tool, BMatch, is presented in Chapter 5. MatchPlanner, our framework
to automatically build self-tuned plans, is discussed in Chapter 6. And our matcher fac-
tory, named YAM, is described in Chapter 7. Conclusions and new perspectives of our
research is given in chapter 8.

8

Chapter 2

Preliminaries

In this chapter, we introduce the main notions used in the thesis. We first introduce defini-
tions about schema matching, and we discuss different metrics, both to detect similarities
between elements and to evaluate schema matching results. Finally, as some of our works
are based on machine learning techniques, we describe them in the second part of this
chapter.

2.1 Schema Matching
Schema matching is the task which consists of discovering relationships between schema
elements. In our context, we consider schemas as edge-labeled trees (a simple abstraction
that can be used for XML schemas, web interfaces, or other semi-structured or structured
data models). To illustrate these notions, we first introduce a running example. Let us
imagine that we would like to book an hotel online. To facilitate the search of an hotel
which suits our needs, querying several websites is more efficient rather than limiting the
search to only one. As most information about arrival date, country and city, are the same
whatever the website, the webforms could be automatically filled in, if elements of these
webforms were mapped. Hence we need to match these webforms, which are depicted by
figures 2.1(a) and 2.1(b).

2.1.1 Definitions
Definition 1 (Schema): A schema is a labeled unordered tree S = (ES, DS, rS, Ls) where:

• ES is a set of elements;

• rS is the root element (i.e., the only element without any parent element), with
rS ∈ Es;

• DS ⊆ ES × ES is a set of edges. These edges link schema elements, but the nature
of the link is not necessarily defined within the schema;

• LS is a countable set of labels so that eS→ ls with eS ∈ Es and ls ⊆ Ls. Indeed, one
or more labels are associated with a schema element.

9

(a) hotels valued webform (b) where to stay webform

Figure 2.1: Two hotel booking webforms

Based on this definition, both hotel webforms have been converted into schemas. Fig-
ure 2.2 depicts their representation as schema trees while figure 2.3 shows the same web-
forms as XML documents.

Definition 2 (Schema matching scenario): A schema matching scenario is a set
of schemas (typically from the same domain) that need to be matched. Note that some
schema matching scenarios may fulfill some criteria of the schema matching task. For
instance, a scenario which includes thousands of schemas reflects a large scale criterion.

The two schemas from our running example are a schema matching scenario from the
hotel booking domain.

Definition 3 (Pair): A pair of schema elements is defined as a tuple <e1, e2> where
e1 ∈ E1 and e2 ∈ E2 are schema elements.

In our running example, we have 150 pairs of schema elements (15 elements from
schema 2.2(a) by 10 elements from schema 2.2(b)). An example of such pair is (Hotel
Location, State).

Definition 4 (Similarity Metric): A similarity metric aims at detecting a (dis)similarity
between a pair, by computing a similarity value which indicates the likeness between both
elements. Let e1 be an element from schema 1, and e2 be an element from schema 2. A
similarity value computed by a similarity measure Sim for the pair <e1, e2>, is denoted
Sim(e1,e2) and it is defined by:

Sim(e1,e2)→ℜ

10

(a) hotels valued schema (b) where to stay schema

Figure 2.2: Two hotel booking schemas

There exists plenty of similarity metrics, and we describe them with more detail in
section 2.1.2. As all similarity metrics can be normalized1 [56], we use either the term
similarity measure or the term similarity metric in the rest of this thesis.

Definition 5 (Correspondence): A correspondence is a pair of schema elements as-
sociated with a similarity value. It is defined as follows, <e1, e2, Sim(e1,e2)>, where
e1 ∈ E1 and e2 ∈ E2 represent the pair and Sim(e1,e2) the similarity value of the corre-
spondence, i.e., the likeness of both schema elements. The similarity value can be com-
puted by several similarity measures, whose results have been aggregated. Note that when
the similarity value is not specified, it means that it is equal to 1.

Let us consider the pair (Hotel Location, Hotel Name) from our running example. We
can derive the following correspondences, computed by various similarity measures2:

• (Hotel Location, Hotel Name, 0.3) using the Levenshtein similarity measure,

• (Hotel Location, Hotel Name, 0.08) using the 3grams similarity measure,

• (Hotel Location, Hotel Name, 0.19) using the average of both previous measures.

Definition 6 (Mapping): A mapping is a data transformation between a source ele-
ment and a target element. It can be either discovered (semi-)automatically3 (thanks to
similarity measures) or manually (given by an expert). Thus, the mapping can be relevant
(correct) or irrelevant. The mapping also includes a function, which enables to transform

1They are often normalized in the range [0,1].
2These measures are described later in section 2.1.2.
3Some similarity measures require user intervention to tune some weights, thresholds, etc.

11

(a) hotels valued XML schema

(b) where to stay XML schema

Figure 2.3: Two hotel booking XML schemas

12

instances of the first element into instances of the second. Mappings are defined as fol-
lows, <e1,e2,Sim(e1,e2),Γ>, where e1 ∈ E1 and e2 ∈ E2 represent the pair and Sim(e1,e2)
the normalized similarity value4 between these elements. Finally, Γ is the function to
transform instances of e1 into instances of e2.

In the webforms of the running example (figure 2.1), we notice that the dates do not
have the same format. For instance, the month in the first webform is given as a full char-
acter string (March), while in the second webform, the month is represented by a number.
Thus, a mapping between these two elements should have a function to transform the
character string into the corresponding month number. The mapping could be (Check-in
date month, Date In Month, 0.8, convertMonthFromStringToInt)5. Note that this mapping
is unidirectional [8], i.e., we do not know the function to transform instances of Date In
Month into the ones of Check-in date month. One way to handle this problem is either
to create a second mapping (Date In Month, Check-in date month, 0.8, convertMonth-
FromIntToString), or to extend the mapping definition by adding a second transformation
function.

There are several open issues dealing with mappings, and we discuss some of them in
the last chapter of this thesis. However, finding the mapping function is out of the scope
of this thesis, and it mainly requires schema instances. Thus, in the rest of this thesis, we
consider mappings with an equivalence function, i.e. the first mapping element is seman-
tically equivalent to second mapping element. Several researchers consider the similarity
value to a larger extent, namely as a confidence value [124]. Indeed, this mapping value
could indicate the probability that both mapping elements match, or it could be a degree
of certainty or trust of the mapping.

Definition 7 (Expert mapping): Another common notion we refer to is the expert
mappings. As the name suggests it, it is the set of mappings provided by an expert for
a given schema matching scenario. Consequently, all these mappings have a similarity
value equal to 1. The expert mappings for the running example are shown in figure 2.4.

Definition 8 (Integrated Schema): Given a scenario containing a set of source schemas
<S1,S2, ...,Sn> and a set of mappings E between them, an integrated schema Si is a schema
which encompasses all concepts from the source schemas w.r.t. the set of mappings E.

Given the expert set of mappings shown in figure 2.4, we have designed one example
of possible integrated schema for the two hotel webforms. This schema is depicted by
figure 2.5. We have chosen to keep most elements from the largest schema (figure 2.2(a))
along with its structure. According to the expert mapping set, we notice that only one
element of the smallest schema (figure 2.2(b)) was missing, namely Hotel Name. Conse-
quently, this element has been added in the integrated schema. Its position (under the tree
root element) has been chosen because both tree roots (searchform and search) have been
matched and Hotel Name is a child of search.

4Similarly to other schema matching approaches, we normalize the similarity value of the mappings in
the range [0,1].

5The similarity value 0.8 is an arbitrary value.

13

Figure 2.4: Expert mappings between the 2 hotel webforms

We might also refer to the notion of expert integrated schema. As the name sug-
gests, this is an integrated schema which is considered as ideal by an expert. However,
there may exist, for a given scenario, several expert integrated schemas [21] according
to application domain, user requirements, etc. Thus, our expert integrated schema is a
schema whose structure and semantics have been validated by an expert.

Figure 2.5: Merging the 2 hotel schemas into an integrated schema

Definition 9 (Schema matcher): A schema matcher is an algorithm which combines
similarity measures. Given a schema matching scenario, it produces a set of mappings.
Schema matchers are often generic (or robust), so that they might provide acceptable re-
sults for most schema matching scenarios. For instance, Similarity Flooding [94] is a

14

schema matcher which combines a terminological and a structural similarity measures.

Definition 10 (Schema matching tool): A schema matching tool implements one
or more schema matchers, but it mainly adds new possibilities in terms of visualisation
and interactions with the user (to fill in a list of synonyms, validate discovered mappings,
generate an integrated schema or tune some parameters, etc.). Rondo [96] is a matching
tool based on Similarity Flooding’s algorithm [94]. It provides a graphical user interface,
which let users validate and edit the discovered mappings. Note that the difference be-
tween a schema matcher and a schema matching tool is not very important.

2.1.2 Metrics
This section gathers the main metrics used in this thesis, i.e., to detect similarities between
pairs of schema elements and also to evaluate the matching quality of a set of mappings.

Similarity Metrics

Most schema matching tools combine several similarity metrics in order to exploit all
schema properties and to increase chances of discovering relevant mappings. Indeed,
by computing correspondences between pairs, they are a basic operation in the schema
matching process. Their results are then used by the schema matcher to decide whether
the pair should be considered as a mapping or not.

These similarity metrics can be divided into three categories: (i) the measures, which
compute a similarity value between 0 (total dissimilarity) and 1 (complete similarity); (ii)
the distances, whose values are in the ℜ+ domain, with 0 meaning complete similarity
and +∞ a total dissimilarity; (iii) non-numeric metrics, which return various values, for
instance a relationship between two elements (e.g., synonym, hyperonym, etc.).

Many similarity metrics have been reported so far. Although they represent a crucial
base-component for all schema matching tools, the goal of this thesis is not to describe
all of them. Thus, we prefer presenting their main categories, but you can refer to these
surveys [56, 131, 22, 89] for more details about these metrics.

Terminological similarity metrics Terminological metrics deal with character strings.
In our context, they compare properties of schema elements, like their labels, paths or
datatypes. Before computing terminological similarities between these properties, one
first require to normalise them, i.e., process the character string to make them compa-
rable. Such processing involves tokenisation (splitting a string into words), replacing
characters (punctuation, digits, blanks, etc.), acronym expansion (mostly thanks to a list
of acronyms), etc. We will not give more details about this processing, which is com-
monly used by schema matching tools. To give an intuition about how terminological
metrics work, let us come back to the running example. They are able to discover a
high similarity value between schema elements such as (State, State). Hence they can
discover mappings between elements which share similar labels. But they would mainly
return a low similarity value between elements with very dissimilar labels, like (Hotel

15

Brand, Chain). Some frequent terminological metrics includes string equality, Jaro-
Winkler distance [134], Dice’s coefficient [131], n-grams [123], Levenshtein distance
[81], TF/IDF (Term Frequency/Inverse Document frequency) which is applied against to-
kens [120], metrics based on a similarity matrix of characters (Smith-Waterman distance
[128], NeedlemanWunsche [103], Gotoh distance [68] or Monge Elkan [101]).

Structural similarity metrics Structural metrics analyse elements both internally and
externally. By internal, we mean that the element’s properties (datatypes, constraints, etc.)
are compared with the ones of another element. Internal measures are rarely successful
to discover relevant mappings: they mainly deserve to reduce the number of candidate
pairs which are then compared with more reliable similarity metrics. Examples of internal
metrics can be found in SEMINT [83] and CUPID [88]. On the contrary, external consists
of studying an element with regards to the others, for instance its neighbours. Here is the
assumption which led to these external metrics: “if two elements from different schemas
are similar, then their neighbours might be similar as well”. Similarity Flooding [94] and
Maedche et Al [90] both introduce external metrics in their approaches. An advantage of
using such metrics is the possibility to discover all kinds of mappings. However, they are
not really efficient when the schemas to be matched have a totally different structure or
when they were designed from different points of view. Note that these measures have
widely been developed for the ontology domain, but their applications to schemas are not
clearly visible. Indeed, ontologies’ edges have a defined meaning while schemas’ edges
do not bear such definitions. Thus, it is more difficult to design external structural metrics
for the schema matching domain.

Linguistic similarity metrics Linguistic deals with the study of relations between ele-
ments labels. Three main categories of metrics Morphological metrics aims at finding
the stems of two labels to assess their similarity [56]. An example is given by classify and
classifier which share the same stem, namely class. Syntactic metrics are sensitive to
permutations or insertions of words in the labels. Following previous example, we could
find a label learning classifier system. Systems often combine these two previous metrics
known as morphosyntactic. Semantic metrics are based on external resources (dictionary,
ontology, etc.) to discover relationships such as synonymy, hyponymy, hyperonymy, etc.
Back to our example, semantic metrics could discover a hyponym relationship between
machine learning and classification. An example of semantic metric is Resnik similarity
measure [114], which is based on Wordnet dictionary [135]. Many schema matching tools
[107, 9] use such external resources. This survey about semantic data integration [35] also
presents some ideas and tools.

Model-based similarity metrics A few metrics are derived from models (denoted as
semantic in [56]), especially propositional satisfiability (SAT). The aim is to translate the
matching problem (the set of schema and its mappings) into a propositional formula and
to check it for validity. These metrics do not give acceptable results when used alone, so a
pre-processing step is often required thanks to another similarity measure. S-MATCH/S-
MATCH++ [67, 9] uses one of these models metrics. In this approach, the pre-processing
step is done thanks to an external resource (Wordnet), a common knowledge against which

16

all extended schema elements are mapped to. Then SAT techniques are able to infer rela-
tionships between these concepts. This metric returns a non-numeric similarity value. It
provides more information about the relationship which links both elements of the map-
ping. They may be used as a “debugging measure” or to validate mappings discovered by
another algorithm.

Instance-based similarity metrics Finally, some similarity metrics use data instances
to assess likeness between schema elements. They are also called extensional metrics.
There exist two types of extensional metrics: (i) the ones applied when both schema el-
ements share the same instances, and thus intersection between their sets of instances
can be computed; and (ii) the ones applied when both sets contain different instances,
and consequently a similarity between instances has to be performed. Two well-known
metrics that can be applied to compare two sets which share the same instances are Jac-
card similarity [22] and Hamming distance [73]. In case where elements do not share the
same instances, some metrics like Haussdorf distance [59] or linkage methods compute a
(dis)similarity between instances. Authors of [18] propose an algorithm to detect dupli-
cate instances and exploit them to discover mappings. In [14], a dictionary is populated
using Naive Bayesian algorithm to extract relevant instances from Relational schemas.
Then, a matching between schema elements and dictionary attributes occurs by comput-
ing a similarity value between them according to their number of common instances.
Thanks to data instances, discovering the transformation function Γ between elements of
a mapping is easier. They are also very helpful to disambiguate specific cases. Some
drawbacks of instance-based metrics are the availability of data, and the possible noise
that they contain.

Quality measures

We present three kind of metrics to evaluate the quality results of schema matching tools.
First, precision, recall, and f-measure come from the information retrieval domain and
they evaluate two sets: one provided by an expert (and which contains all correct map-
pings) while the other is the set of discovered mappings by a matching tool. Another
metric, overall, was proposed by [94] to evaluate the expert post-match effort. Finally,
ROC curves are well suited to measure the quality of a ranking list [115]. Thus, ROC
curves are interesting for comparing ranked lists of all pairs obtained with different pa-
rameters. Both metrics are based on table 2.1, which classifies the relevance of evaluated
mappings.

Relevant pairs Irrelevant pairs
Pairs evaluated as relevant by the tool6 TP (True Positive) FP (False Positive)
Pairs evaluated as irrelevant by the tool FN (False Negative) TN (True Negative)

Table 2.1: Contingency table at the base of evaluation measures.

Precision, recall and f-measure Precision, recall and f-measure [131] are well-known
measures from the information retrieval domain. These three measures return a value in

17

the range [0,1]. We illustrate them by evaluating the set of discovered mappings by two
schema matching for our running example. Note that for Similarity Flooding (SF), we
do not consider the mapping between the root elements of the schemas (a:schema with
a:schema). COMA++ has discovered 9 mappings while SF has discovered 7 mappings.
Expert mappings for this hotel booking scenario have been shown in figure 2.4. Note that
these measures do not take into account the true negatives, i.e., the pairs that the tool has
correctly considered as irrelevant.

Precision calculates the proportion of relevant mappings discovered by the tool among
all discovered mappings. Using the notations of table 2.1, the precision is given by the
formula 2.1. A 100% precision means that all mappings discovered by the tool are rele-
vant.

Precision =
T P

T P+FP
(2.1)

All mappings discovered by COMA++ and SF on the hotel booking scenario are relevant,
thus both tools achieve a 100% precision.

PrecisionCOMA++ =
9

9+0
= 100% PrecisionSF =

7
7+0

= 100%

Another typical measure is recall, which computes the proportion of relevant map-
pings discovered by the tool among all relevant mappings. The recall is given by formula
2.2. A 100% recall means that all relevant mappings have been found by the tool.

Recall =
T P

T P+FN
(2.2)

On the hotel booking scenario, COMA++ has discovered 9 relevant mappings but it misses
4 relevant ones (which are actually false negatives). Thus, it achieves a 69% recall. Simi-
larly, SF discovered 7 relevant mappings out of 13, and its recall is 54%.

RecallCOMA++ =
9

9+4
= 69% RecallSF =

7
7+6

= 54%

F-measure is a tradeoff between precision and recall and it is calculated with the
formula 2.3.

F−measure(β) =
(β 2 +1)×Precision×Recall

(β 2×Precision)+Recall
(2.3)

The β parameter of formula 2.3 regulates the respective influence of precision and recall.
It is often set to 1 to give the same weight to these two evaluation measures. F-measure
is widely used in the research field (e.g. INEX7, TREC8 or the evaluation of schema
matching tools [30]). Back to our running example, we can compute f-measures (with β

equal to 1) obtained by COMA++ (82%) and SF (70%).

F−measureCOMA++ =
2×1×0.69

1+0.69
= 82% F−measureSF =

2×1×0.54
1+0.54

= 70%

7http://xmlmining.lip6.fr
8http://trec.nist.gov

18

(a) COMA++

(b) Similarity Flooding

Figure 2.6: Mappings discovered by two schema matching tools on the hotel booking
webforms

19

Overall As the main objective of (semi-)automatic schema matching is to reduce expert
post-match effort, the overall measure (also named accuracy in [94]) has been proposed
by Melnik et al [30]. It was designed for the schema matching domain and it evaluates
the amount of work that an expert must provide to remove irrelevant discovered mappings
(false positives), and to add relevant mappings which have been missed (false negatives).
This overall metric returns values in the range [−∞,1]. The greater the overall value is, the
less post-match effort the user has to provide. Authors state that a precision below 50%
implies more effort from the user to remove extra mappings and add missing ones than to
manually do the matching, thus resulting in a negative overall value. A major drawback
of this measure deals with the fact that removing irrelevant mappings is considered as
difficult (in terms of user effort) as adding missed mappings. However, this is rarely the
case in real-world scenarios.

Overall = Recall×
(

2− 1
Precision

)
(2.4)

Given that COMA++ and SF achieved a 100% precision, their overall is the same than
their recall. Hence, this confirms that overall is more pessimistic than f-measure [30].

OverallCOMA++ = 0.69×
(

2− 1
1

)
= 69% OverallSF = 0.54×

(
2− 1

1

)
= 54%

ROC curves ROC (Receiver Operating Characteristics) curves [60] were initially used
in signal processing and later in the field of medicine to evaluate the validity of diagnostic
tests. They aim at evaluating list of classified objects based on the idea that correctly
classified objects should be at the top of the list. ROC curves show on the X-coordinate,
the rate of irrelevant mappings and on the Y-coordinate the rate of relevant ones. To build
a ROC curve, we browse the ranked list of mappings. Starting from the origin of the plot,
we add one vertical unit if the mapping is relevant, and one horizontal unit in case of an
irrelevant mapping. This process ends when all mappings of the list have been analysed.
The surface under the ROC curve, denoted AUC (Area Under the Curve), can be seen
as the effectiveness of a measure of interest. The criterion related to the surface under
the curve is equivalent to the Wilcoxon-Mann-Whitney statistical test [137]. Figure 2.7
depicts an example of a ROC curve (the red line) and its AUC (colored in grey). We
notice that the four best ranked mappings of the list are relevant (since there are four
vertical units from the origin of the plot). Then, the list contains five irrelevant mappings
(because of the five horizontal units), etc. AUC of this ROC curve is equal to 0.72.

In the case of pair ranking in statistical measures, a perfect ROC curve means that
we obtain all relevant mappings at the beginning of the list and all irrelevant mappings at
the end of the list. This situation corresponds to AUC = 1. The diagonal corresponds to
the performance of a random system, with the progress of discovering relevant mappings
being accompanied by an equivalent degradation because of the discovery of irrelevant
mappings. This situation corresponds to AUC = 0.5. If the mappings are ranked by
decreasing interest (i.e. all relevant mappings are after the irrelevant ones in the list), then
AUC = 0. Table 2.2 shows the commonly accepted interpretation of AUC values. Note
that an AUC value below 0.5 corresponds to a bad ranking. One advantage of ROC curves
is that they are resistant to imbalance (e.g. an imbalance in the number of relevant and
irrelevant mappings).

20

Figure 2.7: An example of a ROC curve whose AUC = 0.72

AUC value Interpretation
0.90 -1.00 excellent
0.80 -0.90 good
0.70 -0.80 fair
0.60 -0.70 poor

Table 2.2: Understanding AUC values

2.2 Machine Learning and Classification
This thesis uses some notions of machine learning, and more precisely classification. Ma-
chine learning is a scientific discipline which is concerned with the design of algorithms
that allow computers to learn from data [99]. Classification problem is a supervised ap-
proach, i.e., examples are provided. It consists of predicting the class of an object based
on information inherent in the objects and based on a training set of previously classified
objects. The rest of this section is divided in two parts: the former introduces some formal
definitions while the latter gives an overview about classifiers.

2.2.1 Definitions
Definition 11 (Classifier): Given a set of objects O, a set of attributes A which feature
these objects (i.e., attributes of A are characteristics of objects from O), and a set of classes
C, we define training examples T (training data) as a set such as < (oi,c j) > in which oi ∈
O and c j ∈ C. In other words, each object oi from T has been labelled to belong to a given
class c j. Based on the examples in T, a classifier φ is a function which assign a class from
C to objects in O according to their attributes. It is defined as : φ : O→C.

For instance, let us consider a spam filter based on classification. Items are emails,
whose attributes can be sender, subject, content, etc. The spam filter is in charge of

21

predicting the class of emails, i.e., spam or not spam. Training data would consist of
email which have already been labelled either as spam or not. The spam filter algorithm
first analyses similar values of attributes in the training data, so that it can deduce some
rules which indicates to which class an object belongs according to these attributes values.
Then, incoming emails can be labelled either as spam or not according to their attributes
values.

2.2.2 Classifiers Categories
As there exists hundreds of various classifiers that we cannot detail, we give an overview
of their main categories. All classifiers are available in the Weka library [66]. Note that
we have not included meta-classifiers, which are applied against classifiers. Refer to this
book for a complete documentation on classification [99].

• Decision trees [109], like J48 or NBTree, are predictive models in which leaves
represent classifications and branches stand for conjunction of attributes’ values
leading to one classification. A reduced example of decision tree is depicted by
figure 2.8. Leaf nodes are represented in a square and attributes are in a grey circle.
An object is classified according to the value(s) of its attribute, by starting at the
root of the decision tree. In this example, the first analysed attribute is LabelsSize:
if object’s value for this attribute is below or equal to 0.5, then the object is classified
as False. Otherwise, another of its attribute (LeafComparatorMeasure) is studied,
and so on until a leaf node (i.e., a class) is reached.

• Functions are commonly used in many domains, especially by schema matching
tools to aggregate the values of several similarity measures [39, 8]. Examples of
function are weighted average, linear regression, sequential minimal optimization,
perceptrons, etc.

• Lazy classifiers are mainly based on instances to determine the class of an object.
IBk and K* are examples of lazy classifiers. To determine the class of an object,
they compute a similarity function of this object with all training examples. The
chosen class is the one of the most similar training object.

• Neural networks [7] are adaptive systems that learn to perform an input/output
map from a training dataset.

• Rules-based are defined by boolean logic to express conditions over attributes, for
instance NNge or JRip. Figure 2.10 shows an example of NNge classifier. It builds
groups of nearest neighbours objects and then finds the best rule for each group.

• Bayes are probabilistic models which represent a set of variables and their proba-
bilistic independencies. Table 2.9 depicts an extract of naive Bayes classifier, for
which only a few attributes (TriGrams, Levenshtein, NeighbourhoodContext and
Prefix) are listed. The probability distribution table indicates for Levenshtein the
percentage of chances to classify an object knowing the value of the Levenshtein
attribute. Here, if Levenshtein value ranges between −∞ and 0.504386, then there
are 99.5% that the object is classified in the first class (first line) while there are
53.4% chances that it is classified in the other class (second line).

22

• Miscellaneous includes classifiers which could not be part of other categories. The
two classifiers in this category which are used in our works are VFI and HyperPipes.
The former is based on a voting system while the latter builds a hyperpipe for each
category defined by its attributes’ bounds.

Figure 2.8: An example of decision tree (J48)

Figure 2.9: An example of Bayes network

23

Figure 2.10: An example of rules-based classifier (NNge)

24

Chapter 3

Related Work

This chapter presents related work which covers the main topics of this thesis. First, we
focus on benchmarks for matching tools. Then, we detail schema matching tools that have
been designed in the last decades.

3.1 Benchmarks for Matching Tools
In this section, we study benchmarks that have been proposed in ontology and in schema
matching research fields.

3.1.1 Ontology Benchmarks
In the ontology domain, a major work for evaluating ontology matching is called OAEI,
for Ontology Alignment Evaluation Initiative [55, 126]. Since 2004, this campaign yearly
invites researchers to test their ontology matching tools against different scenarios (datasets).
They have several months to run their tool and send the produced alignments to OAEI
organisers. Results are then published and a conference enables researchers to share feed-
back. Datasets fulfill various criteria. For instance, the benchmark dataset gathers many
schemas in which information has been altered (modifications, deletions, etc.). Conse-
quently, it aims at testing how the tool reacts with these conditions. Other datasets might
be very specific like FAO1 ontologies. In such case, dictionaries are available as external
resource for the matching tools. However, only the benchmark dataset is provided with
the complete set of expert mappings. For the remaining datasets, OAEI organisers are in
charge of evaluating the results w.r.t. expert mappings. A tool, AlignAPI, can be used to
automatically compute precision, recall, f-measure and fall-out values for a given dataset.
However, this tool is mainly useful with the benchmark dataset for which expert mappings
are available. The maturity achieved by this campaign is an interesting starting point for
designing a schema matching benchmark. Besides, some schema matching tools which
are able to parse ontologies have participated in OAEI, for instance COMA++ in the 2006
campaign.

1Food and Agriculture Organization

25

3.1.2 Schema Matching Benchmarks
To the best of our knowledge, there is no complete benchmark for schema matching tools.

In [30], the authors present an evaluation of schema matching tools. They mainly
discuss the criteria required to reach this goal. And they summarise the capabilities of
each evaluated matching tool, namely Autoplex [14, 13], COMA [31], Cupid [88], LSD
[34], SemInt [82, 83] and Similarity Flooding [94]. However, as the authors explained,
it is quite difficult to evaluate the matching tools for several reasons: they are not al-
ways available as demo. Therefore, it is not possible to test them against specific sets
of schemas. Finally, schema matching is not a standardised task, thus its inputs and out-
puts can be totally different from one schema matching tool to another. For instance, one
might require specific resources to be efficient, like an ontology or a thesauri, which are
not necessarily provided with the tool or with the matching scenario. This evaluation suf-
fers from two drawbacks: by evaluating the matching tools with the scenarios provided in
their respective papers, one cannot judge efficiently on the capabilities of each matching
tool. Consequently, users do not have sufficient information to choose the schema match-
ing tool which suits their needs. Secondly, some matching tools generate an integrated
schema instead of a set of mappings, and the measures provided to evaluate a set of map-
pings are not sufficient to evaluate the quality of an integrated schema.

Another proposal for evaluating schema matching tools has been done in [139]. It
extends [30] by adding time measures and it relies on real-world schemas to compare
matching tools. Three schema matching tools (COMA, Similarity Flooding and Cupid)
were evaluated against four scenarios. Two of these scenarios are small (less than 20 el-
ements) and the two others have an average size (less than 100 elements). Most of these
scenarios have labels with low heterogeneity. Besides, their structure is not very nested (1
to 3 depth levels). Results obtained by the matching tools on four scenarios are probably
not sufficient to judge on their performance. No evaluation system has been implemented,
and results (in term of quality and time values) are not automatically computed. It is also
not extensible. Finally, quality of integrated schema produced by schema matching tools
is not evaluated.

In 2008, STBenchmark [5, 4] was proposed to evaluate mapping systems, namely the
transformation from source instances into target instances. This benchmark aims at eval-
uating both the quality of these transformations and their execution time. However, the
discovery of mappings is performed manually thanks to visual interfaces, thus generating
XSLT scripts. Benchmark scenarios, against which mapping systems are evaluated, are
gathered according to common transformations (e.g., copying, flattening, etc.). To enrich
this corpus, STBenchmark also includes scenarios and instances generators. Both gener-
ators can be tuned thanks to configuration parameters (e.g. kind of joins, nesting levels,
etc.). Finally, a simple usability model enables to quantify the number of actions (in terms
of keyboard inputs and mouse clicks) that user has to perform to design produced map-
pings. A cost value is finally returned by computing a weighted sum of all actions. Four
mapping systems (whose names have not been provided ?) have been evaluated both in
terms of quality (based on the usability model) and time performance.

26

3.2 Schema Matching Tools
Many approaches have been devoted to schema matching. In [112, 56], authors have pro-
posed a classification for matching tools, which has been later refined in [124]. These
classifications of schema matching tools are mainly based on categories of similarity met-
rics (terminological, linguistic, etc.), techniques to combine them (hybrid, composite, or
individual), levels of application (element or schema/structure), etc. Note that ontology
researchers are also prolific for designing tools [51, 58, 36, 52, 53, 129, 25, 84] to fulfill
the alignment task. However, this section only focuses on schema matching tools, which
have been sorted chronologically. Further details about other approaches, including align-
ment tools, are given in surveys [57, 112, 124, 139, 104].

3.2.1 TRANSCM
TRANSCM [98] objective is to transform instances of source schema into target schema.
It can have input schemas as DTD or OODB. Internally the schemas are converted into
labeled trees and the match process is performed node by node using a top-down manner.
TRANSCM presumes a high degree of similarity between the two schemas. It supports a
number of matchers (rules), to find mappings between schema nodes. Each rule may in
turn combine multiple match criteria, e.g. name similarity and the number of descendants.
The rules are assigned distinct priorities and applied in a fixed order. If more than one
target element is discovered as possible mapping, user interaction is required to select the
mapping. And in case no mapping is found, user is allowed to apply a new rule to find
one.

3.2.2 DIKE
DIKE [107] prototype implements a hybrid approach to automatically find synonymy, hy-
peronymy and homonym correspondences between elements of Entity-Relationship (ER)
schemas. User specific set of synonyms, hyperonyms and homonym are utilized, either
constructed by an expert or extracted from thesauri. In addition to the linguistic and syn-
tactic comparison, the main algorithm is a structural similarity measure, which performs
a pair-wise comparison of elements from the input schemas. The weight of similarity
between two elements is increased, if the algorithm finds some similarity between the
related elements of the pair of elements.

3.2.3 PROMPT/Anchor-PROMPT
Both PROMT [106] and Anchor-PROMPT [102] are devoted to match ontologies both
for discovering mappings or merging ontologies. They rely on path comparisons and
user feedback. Using a list of anchor-pairs provided by an user or discovered thanks
to terminological metrics, the tools assume that elements which compose the paths of
these anchor-pairs might also match. To assert this, all paths of different lengths (from
an anchor-pair to another one) are built and similarity scores between their elements are
computed. Based on the frequencies and positions of elements, these scores are increased,

27

and elements with the best scores are proposed to the user as mappings. Several param-
eters, especially the number of anchor-pairs and the maximum path length, have been
evaluated. In the experiments, authors only focus on precision, and there was no infor-
mation about recall evaluation. As explained by the authors, their approach do not work
efficiently when ontologies to be matched have a very different structure (e.g., one with a
flat structure and the other deeply nested). Besides, long paths also reduces the probability
to discover relevant mappings.

3.2.4 CUPID
CUPID [88] is a generic, hybrid schema matching prototype, consisting of a semantic
similarity measure and a structural one. It has been used for XML and relational schemas.
Internally, schemas are converted into trees, in which additional nodes are added to re-
solve the multiple/recursive relationships between a shared node and its parent nodes.
First, semantic similarity of pair of nodes is computed using external oracles of synonyms
and abbreviations. Then, the structural matcher is applied on the tree structures in post-
order manner. This technique gives similarity possibilities for non-leaf nodes, depending
upon the similarity of their leaves. For each pair of nodes, their linguistic and structural
similarity are aggregated into a weighted similarity value using a weighted sum. If the
weighted similarity value exceeds a threshold, the structural similarity of the leaf pair is
increased. Otherwise, it is decreased. For each source element, CUPID selects the target
element with the highest weighted similarity exceeding a given threshold as the mapping
candidate.

3.2.5 Clio
CLIO [76] is a complete schema mapping and management developed at IBM. It has com-
prehensive GUI interface and it provides matching for XML and SQL schemas. It uses a
hybrid approach, combining approximate terminological measures for element labels and
Naive Bayes learning algorithm for exploiting data instances. It facilitates in producing
transformation queries (SQL, XQuery, or XSLT) from source to target schemas, depend-
ing upon the computed mappings. Clio supports user expertise both during pre-match and
post-match phases. It is also capable of discovering nested mappings [63]. Clio has been
upgraded with new functionalities: a mapping handler in case of schema evolution [132],
a schema mapping debugging tool [3] and an interactive generator of integrated schemas
according to user requirements [20, 21]

3.2.6 AUTOMATCH/AUTOPLEX
AUTOMATCH [14] is the predecessor of AUTOPLEX [13], which uses schema instance
data and machine learning techniques to find possible mappings between two schemas.
A knowledge base, called attribute dictionary, contains attributes with a set of possible
instances and their probability. This dictionary is populated using Naive Bayesian algo-
rithm to extract relevant instances from Relational schemas fields. A first step consists of
matching each schema element to dictionary attributes, thus computing a similarity value
between them according to the number of common instances. Then, the similarity values

28

between two schema elements that match the same dictionary attribute are summed and
minimum cost maximum flow algorithm is applied to select the best mappings. The major
drawback of this work is the importance of the data instances. Although this approach
is interesting on the machine learning aspect, that matching is not as robust since it only
uses one similarity function based on a dictionary.

3.2.7 LSD/Glue
Glue [36], and its predecessor LSD [34], are based on machine learning techniques. They
have four different learners, which exploit different information of the instances. The
name learner (Whirl, a nearest-neighbor classifier) makes predictions using word fre-
quency (TF/IDF distance) on the label of the schema elements. The content learner (also
based on Whirl and TF/IDF) applies a similar strategy on the instances associated to each
schema element. A Naive Bayes classifier considers labels and attributes as a set of tokens
to perform text classification. The XML learner (based on Naive Bayes too) exploits the
structure of the schema (hierarchy, constraints, etc.). Finally, a meta-learner, based on
stacking, is applied to return a linear weighted combination of the four learners. First, the
user must give some mappings between the schemas that require to be matched. These
mappings are then used for training the learners, and their combination resulting from the
meta-learner is performed against the input schemas to discover the rest of the mappings.

Authors of Glue do not detail how many mappings should be given by the user. We
shown in chapter 7.4.2 that some classifiers require many training scenarios (and thus
mappings) to be efficient. Besides, Glue uses classifiers on the same similarity measures.
The meta-learner is a linear regression function, with its drawbacks in terms of quality
and extensibility, as explained in chapter 6.1.2.

LSD has been further utilized in corpus-based matching [87], which creates a corpus
of existing schemas and their mappings. In this work, input schemas are first compared to
schemas in the corpus before being compared to each other. Another extension based on
LSD is IMAP [29]. Here, the authors enhance LSD to find 1 : 1 and n : m mappings among
relational schemas. It provides a new set of machine-learning based matchers for specific
types of complex mappings (e.g., name is a concatenation of firstname and lastname).
It also provides information about the prediction criteria for a discovered mapping, thus
helping users to understand the reasoning which leads to this discovery.

3.2.8 Similarity Flooding/Rondo
Similarity Flooding (SF) [94] and Rondo [95] can be used with Relational, RDF and XML
schemas. These schemas are initially converted into labeled graphs and SF approach uses
fix-point computation to determine mappings between graph nodes. The algorithm has
been implemented as a hybrid matcher, in combination with a terminological similarity
measure based on string comparisons. First, the prototype does an initial element-level
terminological matching, and then feeds the computed correspondences to the structural
similarity measure for the propagation process. This structural measure states that two
nodes from different schemas are considered similar if their adjacent neighbours are sim-
ilar. When similar elements are discovered, their similarity increases and it impacts ad-
jacent elements by propagation. This process runs until there is no longer similarity in-

29

creasing. Like most schema matchers, Similarity Flooding generates mappings for pairs
of elements having a similarity value above a certain threshold. In a modular architec-
ture, the components of SF, such as schema converters, the terminological and structural
measures, and filters, are available as high-level operators and can be flexibly combined
within a script for a tailored match operation. One of the main drawback of Similarity
Flooding is the matching quality. But this weak point is compensated by an acceptable
time performance.

3.2.9 COMA/COMA++
As described in [31, 8, 32], COMA++ is a hybrid matching tool that incorporates many
independent similarity measures. It can process Relational, XML, RDF schemas as well
as ontologies. Different strategies, e.g. reuse-oriented matching or fragment-based match-
ing, can be included, offering different results. When loading a schema, COMA++ trans-
forms it into a rooted directed acyclic graph. Specifically, the two schemas are loaded
from the repository and the user selects required similarity measures from a library. For
linguistic matching, it also utilises user-defined synonym and abbreviation tables. For
each measure, each element from the source schema is attributed a similarity value be-
tween 0 (no similarity) and 1 (total similarity) with each element of the target schema,
resulting in a cube of similarity values. The final step involves combining the similarity
values given by each similarity measure by means of aggregation operators like max, min,
average, etc. Finally, COMA++ displays all mapping possibilities whose similarity value
is above a defined threshold and the user checks and validates their accuracy. COMA++
supports a number of other features like merging, saving and aggregating match results of
two schemas.

The shortcoming of COMA++ is the time required, both for adding files into the repos-
itory and matching schemas. In a large scale context, spending several minutes with those
operations can entail performance degradation and the other drawback is that it does not
support direct matching of many schemas. Thus, an extension of COMA++ for match-
ing large schemas has been proposed in [113]. First, the algorithm divides the schema
into subschemas, and user may validate this choice. If not sufficient, in terms of size,
subschemas can be divided into fragments. Then, each fragment from the source schema
is mapped to target schema fragments in order to find interfragment correspondences.
Next, these fragment correspondences are merged to compute the schema level corre-
spondences. Consequently, the tool is not able to directly process large schemas. There is
no quality evaluation of this prototype.

3.2.10 PROTOPLASM
PROTOPLASM [17] aims at providing a flexible and a customizable framework for com-
bining different similarity measures. CUPID and Similarity Flooding algorithms are cur-
rently used as its base matchers. SQL and XML schemas, internally converted into graphs,
can be used as inputs of this system. PROTOPLASM supports various operators for com-
puting, aggregating, and filtering similarity matrices. Using a script language, it allows
enough flexibility for defining and customizing the workflow of the match operators. Most

30

functionalities of PROTOPLASM have been implemented through a GUI in BizTalk Map-
per [16].

3.2.11 S-MATCH/S-MATCH++
S-MATCH/S-MATCH++ [67, 9] first converts tree-like structures into graphs, and it ex-
tends their different concepts thanks to propositional description logic language. Wordnet
and other semantic measures are then used to link these concepts to common world knowl-
edge. Finally, SAT solvers infer various relationships between the concepts. Contrary to
most matching tools, S-MATCH++ does not return a similarity value with discovered
mappings, but rather a relationship between pairs of elements (equivalence, less/more
general, etc.). At present it uses 13 element-level similarity measures, among which 5 are
terminological, 2 analyse Wordnet senses and the 6 others compare textual descriptions
of Wordnet senses. Although optimized versions of S-MATCH have been proposed, its
heavy dependence on SAT solvers and external resources decreases its time efficiency.

3.2.12 Smiljanic et al
Smiljanic et al.’s work [127] shows how personal schema for querying, can be efficiently
matched and mapped to a large repository of related XML schemas. The method identi-
fies fragments with in each schema of the repository, which will best match to the input
personal schema, thus minimizing the target search space. The prototype implementa-
tion, called Bellflower, uses k-means data mining algorithm as the clustering algorithm.
The authors also demonstrate that this work can be implemented as an intermediate phase
with in the framework of existing matching systems. The technique does produce efficient
system (in time performance) but with some reduction in quality.

3.2.13 eTuner
eTuner [80] is not a schema matching tool, but it aims at automatically tuning them. It
proceeds as follows: from a given schema, it derives many schemas which are semanti-
cally equivalent. The mappings between the initial schema and its derivations are stored.
Then, a given matching tool (e.g., COMA++ or Similarity Flooding) is applied against
the schemas and the results is compared with the stored set of mappings. This process
is repeated until an optimal parameters configuration of the matching tool is found, i.e.,
the mappings discovered by the matching tool are mostly similar to those stored. eTuner
strongly relies on the capabilities of the matching tools that it tunes.

3.2.14 Porsche
Porsche [119] utilizes tree mining technique to cluster and holistically match and merge
large number of schemas (represented as trees). It gives approximate mappings and gener-
ates an integrated schema with mappings from source schemas to this integrated schema.
It has been devised to cater the quality as well as the performance element for large scale
scenarios using domain specific linguistic matching (domain specific synonym and abbre-
viation oracles). It works in three steps. First, in the pre-mapping part, schema trees are

31

input to the system as a stream of XML and calculate the scope and node number for each
of the nodes in the input schema trees. Other statistics like each schema size, maximum
depth and node parent are also calculated. A listing of nodes and a list of distinct labels
for each tree is constructed. Next, a linguistic matcher identifies semantically distinct
node labels in the labels list. The user can set the level of similarity of labels as (i) Label
String Equivalence, (ii) Label Token Set Equivalence (abbreviation table) and (iii) Label
Synonym Token Set Equivalence (synonym table). Then, Porsche derives the meaning
for each individual token and combines these meanings to form a label concept. Finally,
similar labels are clustered together. Since each input node remains attached to the its
label object, this intuitively forms similar label nodes clusters within a certain schema.

3.2.15 ASID
ASID [19] is a 2-step schema matching tool. Reliable matchers (Jaro, TF/IDF applied to
descriptions) generate a first set of mappings, which is proposed to the user. Then, all
non-matched pairs are matched with less credible matchers (Naive Bayes classifier and
TF/IDF both applied to data instances). This approach is not enough flexible since there
are only four matchers, which are always applied in the same order. Besides, the matchers
are combined with an average function.

3.2.16 Schema Matcher Ensembles
In [92], the authors propose a model for expressing uncertainty in the schema matching
process. A Naive Bayes heuristic, which combines three matchers (term, composition and
precedence), is used to discover mappings. Given a similarity degree, the Naive Bayes
heuristic tries to classify a new pair of schema elements either as correct or incorrect. The
matcher independence assumption limits the performance of the approach.

3.2.17 SMB
In [93], the authors propose a machine learning approach, SMB. It uses the Boosting algo-
rithm to classify the similarity measures, divided into first line and second line matchers.
The Boosting algorithm consists in iterating weak classifiers over the training set while re-
adjusting the importance of elements in this training set. An advantage of this algorithm
is the important weight given to misclassified pairs. Although this approach makes use
of several similarity measures, it mainly combine a similarity measure (first line matcher)
with a decision maker (second line matcher). The main drawback deals with the Boost-
ing machine learning technique. Although it gives acceptable results, we demonstrate in
chapter 7.4 that several classifiers might give poor results with some scenarios. Thus, only
relying on one classifier is risky.

3.2.18 Classification of Schema Matching Approaches
To summarize this section, we propose a classification of these schema matching ap-
proaches. Other types of classification are available in [112, 56, 124, 116]. Figure 3.1

32

depicts the different techniques and similarity measures used by schema matching ap-
proaches. All approaches use terminological similarity measures (not shown on the fig-
ure), and many of them are based on structural and/or linguistics similarity measures.
Other approaches use machine learning techniques, mainly applied to schema instances.
Finally, there exist cross-disciplinary approaches which rely on constraints or datamining
for example. A tuning approach (like eTuner) aims at automatically configuring param-
eters of a schema matching approach to improve its quality results. Approaches colored
in magenta (BMatch, MatchPlanner and YAM) are presented in the next chapters of this
thesis.

Figure 3.1: Classification of schema matching approaches

3.3 Concluding Related Work Section
To conclude this section, we notice that there is a lack of benchmark for evaluating schema
matching tools. On the contrary, there are so many schema matching tools that it is dif-
ficult to judge correctly on their capabilities and results. Thus, in the next chapter, we
present a benchmark to evaluate them.

33

Chapter 4

Designing a Benchmark for the
Assessment of Schema Matching Tools

As described in the previous chapter 3.2, the schema matching community has been very
prolific in producing tools during the last decades. Many surveys [112, 139, 56, 124,
105] reflect this interest and their authors propose various classifications of matching ap-
proaches according to their features. Each schema matching tool has been designed to
satisfy one or more schema matching task. For instance, some tools are dedicated to large
scale scenarios, i.e., to match a large number of input schemas. Others may be devoted
to discover complex mappings. In papers related to a schema matching approach, there
is often an experiment section which demonstrates the benefit or gain, mostly in terms
of matching quality or time performance, of the proposed approach. Sometimes, authors
have also compared their work with existing tools, thus showing how their approach may
(or not) perform better than others. Yet, this is not a sufficient evaluation for several rea-
sons. First, the schema matching scenarios against which approaches are evaluated are not
clearly defined. In other words, authors do not always detail enough the schema matching
scenarios used during experiments and the tasks they may fulfill. Besides, experiments
cannot be reproduced with ease. As a result, it is difficult for an end-user to choose a
matching tools which covers his/her needs. Finally, we should admit that researchers will
rarely publish a paper in which the proposed approach does not obtain at least acceptable
results. Thus, it is still possible to discard the scenarios for which the proposed approach
does not behave well.

That is why we believe a benchmark for the schema matching community is necessary.
We should be able to evaluate our tools in the same environment and with the same sce-
narios. In information retrieval community, authors of the Lowell report [69] clearly calls
for the design of a test collection. Thalia [72], INEX [62] and TREC [10] were therefore
proposed. Ontology alignment researchers have designed OAEI (Ontology Alignment
Evaluation Initiative) [55, 126]. Every year since 2004, an evaluation campaign of ontol-
ogy alignment tools is performed. Conversely, there is currently no common evaluation
platform for our research field. Although some attempts of evaluation have been proposed,
they cannot be considered as complete benchmarks yet. In [30], the authors present an
evaluation of schema matching tools. However, by evaluating the schema matching tools
with the scenarios provided in their respective papers, one cannot objectively compare and

34

judge on the capabilities of each matching tool. Another proposal for evaluating schema
matching tools has been done in [139]. It extends the work of [30] by adding time mea-
sures and it relies on real-world schemas to evaluate the matching tools. However, the
evaluation system has not been implemented and does not automatically compute quality
and time results. Finally, STBenchmark [5, 4] was proposed to evaluate the relationship
of the mappings (i.e., the transformations of source instances into target instances), but it
does not deal with mapping discovery.

Based on these works, and due to the growing number of available schema matching
tools, we propose in this chapter XBenchMatch, a tool for the assessment of schema
matching tools. Similarly to other works, we have gathered various schema matching
datasets against which schema matching tools can be evaluated. Indeed, a user should
have an appropriate platform to compare these tools according to his/her needs. These
needs can reflect two points of views: (i) from a schema properties perspective and (ii)
from a schema matching task perspective. Thus, we have organised our schema matching
datasets according to these two classifications. We have also noticed that existing works
lack several quality metrics. As the schema matching process aims at reducing manual
effort of a user, it seems necessary to measure how a tool can reduce the post-match ef-
fort. The overall metric [94, 30] evaluates this effort, but it considers that removing an
irrelevant discovered mapping requires as much effort as adding a missed mapping. Thus,
we propose a new measure which tackles this issue. Finally, most schema matching tools
generate an integrated schema. However, there does not exist any measure to evaluate
the quality of this integrated schema. We therefore present several metrics which assess
the likeness of an integrated schema w.r.t. an expert one, both on the structure and on
elements presence.

Here we outline the main contributions of our work:

• We describe the foundations of a benchmark for schema matching tools. More
precisely, we give a methodology on how to evaluate them with the provided schema
matching datasets. A tool, XBenchMatch, has been implemented to generate quality
results and time performance for a schema matching tool.

• We have classified schema matching datasets according to schema properties and
schema matching task perspectives. This facilitates the choice of a schema matching
tool for a user.

• We have extended the notion of quality for schema matching. We propose a new
metric to measure the post-match effort, and several metrics to assess the quality of
an integrated schema.

The rest of the chapter is organised as follows: first, we give some definitions and
preliminaries in section 4.1. In section 4.2, we present an overview of XBenchMatch.
Section 4.3 describes the datasets and their classification. Section 4.4 covers the new
measures we have designed for evaluating mappings and integrated schemas. We report
in section 4.5 the results of two schema matching tools by using XBenchMatch. Finally,
we conclude and outline future work in section 4.6.

35

4.1 Preliminaries
Here we introduce two notions that are used in the chapter: schema matching dataset
and rooted directed acyclic graph.

4.1.1 Schema Matching Dataset
Definition 12 (Schema matching dataset): A schema matching dataset is composed of
a schema matching scenario, the set of expert mappings (between the schemas of the
scenario) and/or the integrated expert schema along with expert mappings (between the
integrated schema and each schema of the scenario).

Such datasets [55], also called testbeds or test collections [10, 72], are used by most
evaluation tools as an oracle, against which they can evaluate and compare different ap-
proaches or tools. In our context, the schema matching datasets are presented in section
4.3.

4.1.2 Rooted Directed Acyclic Graphs
A metric proposed in this chapter uses a rooted Directed Acyclic Graphs (rDAG) for eval-
uating the schema structure. Schemas can be seen as rDAG since their definition, given in
chapter 2.1, is very similar to the rDAG definition.

Definition 13 (Rooted directed acyclic graph): A rDAG is a triple <V,E,r > where:

• V is a set of elements, noted V =< e0,e1, ...,en >;

• E is a set of edges between elements, with E ⊆ V × V ;

• r is the root element of the rDAG.

A property of the rDAG deals with the path. In a rDAG, all elements can be reached
from the root element.

Definition 14 (Path): Given a rDAG =< V,E,e0 >, ∀ element e ∈ V , ∃ a path
P(e0,e) =< e0,ei, ...,e j,e >.

4.2 Overview of XBenchMatch
In this section, we first describe the desiderata for a schema matching benchmark. Then,
we present the architecture of our XBenchMatch tool.

4.2.1 Desiderata
The schema matching benchmark needs to have the following properties in order to be
complete and efficient:

36

• Extensible, the benchmark is able to evolve according to research progress. This
extensibility gathers three points : (i) future schema matching tools could be bench-
marked, hence XBenchMatch deals with well-formed XML schemas; (ii) new eval-
uation metrics could be added to measure the matching quality or time performance;
and (iii) users should easily add new schema matching datasets.

• Portable. The benchmark should be OS-independent, since the matching tools
might run on different OS. This requirement is fulfilled by using Java programming
language.

• Simple since end-users and schema matching experts are both targeted by this
benchmark. Besides, from the experiment results computed by the benchmark,
they should be able to decide between several matching tools the most suitable
for a given scenario.

• Generic, it should work with most of the available matching tools. Thus, we have
divided the benchmark into datasets, each of them reflecting one or several specific
schema matching issues. For instance, tools which are able to match a large number
of schemas can be tested against a large scale scenario. Dividing the benchmark
into datasets enables us to facilitate the understanding of the results. Besides, it
does not constrain the benchmark to the common capabilities of the tools. Indeed,
if some matching tools can only match two schemas at the same time, this does not
prevent other tools to be tested against large number of schemas.

All these requirements should be met to provide an acceptable schema matching
benchmark. From these desiderata, we have designed XBenchMatch architecture.

4.2.2 XBenchMatch Architecture
To evaluate and compare schema matching tools, we have implemented XBenchMatch.
A screenshot of the main interface of our tool is shown in figure 4.1. Its architecture is
depicted by figure 4.2 and it relies on two main components: extensibility process and
evaluation process.

The former deals with extensibility of the tool. It takes a dataset as input, and the
extension process applies some checking (i.e., the schemas are well-formed, or the expert
mappings have elements which exist in the schemas, etc.). If the dataset is validated by
the extension process, then it is added into the knowledge base (KB). This KB stores all
information about datasets and evaluation metrics. Consequently, it interacts with the two
main components.

The latter component, the evaluation process, takes as input the results of a schema
matching tool. Indeed, we assume that the schema matching tool to be evaluated per-
formed matching against a schema matching scenario from our benchmark. This scenario
is not necessarily chosen at random, since scenarios included in our benchmark reflect
one or more schema matching issue (see section 4.3). Thus, the evaluated matching
tool produces either a set of mappings (between the schemas of the scenario) or an in-
tegrated schema along with its associated mappings (between the integrated schema and
the schemas of the scenario). These inputs are used by the evaluation process, which

37

Figure 4.1: Screenshot of XBenchMatch main interface

Figure 4.2: Architecture of XBenchMatch

38

Figure 4.3: Example of a plot used to present results

compares them to the expert dataset with the corresponding scenario. It outputs quality
and time performance results of the matching tool for the given scenario. These results
are computed by the metrics described in section 4.4 and they are presented to the user
with plots such as figure 4.3.

4.2.3 Methodology
Before using XBenchMatch, the user has to generate an integrated schema and/or a set
of mappings for each dataset (included in our benchmark) with the matching tool(s) (s)he
would like to evaluate. Recall that datasets contain a schema matching scenario and the
expert integrated schema and/or expert set of mappings. Thus, the idea is compare the
output produced by a matching tool against those expert ones.

Let us give an example. A user would like to know if her matching tool performs
well, in terms of quality, when matching large schemas. She chooses in our benchmark a
dataset with large schemas (see section 4.3). Then, she applies her matching tool against
the schemas of the chosen dataset, which produces a set of mappings. As she wants to
evaluate the quality of this set of mappings, she uses it as input for XBenchMatch. Our
benchmark compares the set of mappings produced by the matching tool against the expert
set of mappings provided with the dataset. Several quality metrics (see section 4.4) are
computed to assess the quality of the set of mappings. The user can finally deduce if her
matching tool is suitable for matching large schemas (see section 4.5). Similarly, the same
methodology can be applied for evaluating integrated schemas.

4.3 Classification of Schema Matching Datasets
To evaluate schema matching tools, our benchmark includes various schema matching
datasets. We first describe the datasets. For all of them, the expert set of mappings and
the expert integrated schema have been manually expertised. Then, we propose two clas-
sifications of these datasets, according to (i) datasets properties and (ii) schema matching

39

features.

Here are available datasets in our benchmark:

• Person dataset contains two small-sized schemas describing a person.

• Order dataset deals with business. The first schema is drawn from the XCBL
collection1, and it owns about 850 elements. The second schema also describes an
order but it is smaller with only 20 elements. This dataset reflects the possibility for
matching a large schema with a smaller one.

• University courses dataset. Its two schemas have been taken from Thalia col-
lection presented in [72]. Each schema has about 20 nodes and they describe the
courses offered by some worldwide universities.

• Biology dataset. The two large schemas come from different collections which are
protein domain oriented, namely Uniprot2 and GeneCards 3.

• Currency and sms datasets are popular web services which can be found at http://www.seekda.com

• Travel dataset includes two schemas that have been extracted from airfare web
forms [1].

• University department dataset describes university departments and it has been
widely used in the literature [46, 37]. These two small schemas have very hetero-
geneous labels.

• Betting and finance datasets each contain two webforms, extracted from various
websites by the authors of [93].

According to their descriptions, it is clear that these datasets either have different
criteria or fulfills various schema matching tasks. Thus, we propose two classifications
for the benchmark datasets. The former deals with the properties of datasets and they
are summed up in table 4.1. Label heterogeneity is computed thanks to terminological
similarity measures applied to the expert set of mappings. If these measures are able to
discover most of the mappings, this means that the labels have a very low heterogeneity.
Conversely, if terminological measures only discovers a few mappings, then the labels are
strongly heterogeneous. Domain specific means that the vocabulary is uncommon and it
cannot be found in general dictionaries like Wordnet [135].

The latter classification represents the features of schema matching process, as shown
in table 4.2. Other schema matching features could have been added, for instance use of
external resources (e.g., domain ontology), complex mappings, use of instances, evolution
of schemas, etc. But they would require corresponding schema matching datasets.

Using these classifications in our benchmark enables a better understanding of the
matching tools’ successes and failures.

1www.xcbl.org
2http://www.ebi.uniprot.org/support/docs/uniprot.xsd
3http://www.geneontology.org/GO.downloads.ontology.shtml

40

Label heterogeneity Domain Size Structure
Low (or Average High Specific Small Average Large Flat Nested Very nested

normalised) (<10) (10-100) (>100) (3<depth<7) (depth>7)
Betting x x x
Biology x x x x
Currency x x x
Finance x x x x
Order x x x
Person x x x
Sms x x x
Travel x x x
Univ. courses x x x
Univ. dept x x x

Table 4.1: Datasets classification according to their properties

Large scale Web Integrated
Large schemas Numerous schemas schemas schema

Betting x x
Biology x x
Currency x x
Finance x x
Order x x
Person x
Sms x x
Travel x x
Univ. courses x
Univ. dept x

Table 4.2: Datasets classification according to schema matching features

4.4 Quality Metrics
The schema matching community evaluates the results produced by its tools thanks to
common metrics, namely precision, recall and f-measure (presented in chapter 2.1.2).
However, the aim of schema matching is to avoid a manual, labour and error-prone process
by automatising mapping discovery. The post-match effort, which consists of checking
these discovered mappings, should be reduced at most. Yet, there is currently no metric
which computes this effort, except for overall which is not sufficiently realistic to reflect
this effort. Thus, we first propose in this section a new metric for computing post-match
effort. Similarly, our research field lacks some metrics which evaluate the quality of an
integrated schema. Indeed, some schema matching tools produce an integrated schema
(with the set of mappings between this integrated schema and input schemas). To the best
of our knowledge, there is only a few metrics [27] in charge of assessing the quality of this
integrated schema. Consequently, we present different metrics to reach this goal. They
mainly check the structure and content (in terms of elements) of the integrated schema
w.r.t. an expert integrated schema.

4.4.1 Post-match Effort Metric
As matching process mainly aims at helping users saving both time and resources, it
is interesting to measure the gain of using a matching tool. A possible solution is to
compute the post-match effort, i.e., the amount of work that the user must provide to
check the mappings that have been discovered by the tool. The overall measure [94] was

41

specifically designed to fulfill this goal. However, it entails a major drawback since it
considers that validating discovered mappings requires as much effort as searching for
missed ones. This is the reason why we have designed another post-match metric.

Intuition

A set of discovered mappings, provided by a matching tool, has two issues, namely (i)
irrelevant discovered mappings and (ii) missing (relevant) mappings. Users first have
to check each mapping from the set, either to validate or remove it. Then, they have
to browse the schemas and discover the missing mappings. Thus, we propose to evaluate
this user post-match effort by counting the number of user interactions to reach a 100%
f-measure, i.e., to correct the two previously mentioned issues. A user interaction is an
(in)validation of one pair of schema elements (either from the set of discovered mappings
or between the schemas).

We first introduce three assumptions which underlie our metric:

• worst case, which means that all pairs of schema elements, which have not already
been matched, must be (in)validated.

• uniformity, i.e., missed mappings are discovered with the same frequency.

• only mappings 1:1 are taken into account. The metric can be applied with 1:n map-
pings (represented by several 1:1 mappings), but we do not consider more complex
mappings (namely n:m).

Now, let us introduce an example. Figure 4.4(a) depicts a set of mappings discovered
by a matching tool between two hotel booking schemas. The expert set of mappings
is shown by figure 4.4(b). We notice that one discovered mapping is irrelevant: (Hotel
Location, Hotel Name). Consequently, it has to be invalidated. Besides, the matching tool
has missed two mappings, namely (Hotel Brand:, Chain) and (Rooms Needed:, Number
of Rooms). These two mappings have to be searched among the pairs that have not been
matched.

Counting the Number of User Interactions

The number of user interactions is a positive number which represents the number of user
interactions to obtain a 100% f-measure from a set of discovered mappings. It consists of
three steps which are described below.

Given two schemas S` and SL of respective size |S`| and |SL|, with |S`| ≤ |SL| (i.e., SL
is a larger schema than S`). Their expert set of mappings E contains |E| mappings. A
matching tool applied against these schemas has discovered a set of mappings M, which
contains |M|mappings. Among these discovered mappings, |R| of them are relevant, with
0≤ |R| ≤ |M|.
|S`|, |SL|, |E|, |M|and|R| are the five inputs required to compute the number of user

interactions. In our example, we have the following values:

• |S`|= 14, the number of elements in the smallest schema4.

4We do not count the root element tagged with <a:schema ...>.

42

(a) discovered by a matching tool

(b) given by an expert

Figure 4.4: Mappings between two hotel booking schemas

43

• |SL|= 19, the number of elements in the largest schema4.

• |E|= 13, the number of expert mappings shown in figure 4.4(b).

• |M|= 12, the number of mappings discovered by the matching tool, shown in figure
4.4(a).

• |R| = 11, the number of relevant (correct) mappings discovered by the matching
tool.

Step 1: checking of all discovered mappings. This step is very easy to compute. A
user has to check each mapping from the set of discovered mappings, and (in)validate it.
Thus, this requires a number of interactions equal to the number of discovered mappings
in the set, |M| in our case. We call this metric e f f ortprec since it is directly impacted by
precision. Indeed, a high precision reduces the number of user interactions since there is
less irrelevant mappings which have been discovered. Note that at the end of this step,
precision is equal to 100%.

e f f ortprec = |M| (4.1)

In our example, there are 12 discovered mappings, thus e f f ortprec = 12. It means that the
number of user interactions during this step is equal to 12, among which 11 validations
and 1 invalidation for the irrelevant mapping.

Step 2: manual discovery of missed mappings. The second step deals with the
manual discovery of all missing mappings. At the end of this step, recall reaches 100%,
and f-measure too. We assume that all pairs which have not been invalidated yet must
be analyzed by the user. As we consider only 1:1 and 1:n mappings, elements that have
already been matched are not checked anymore. The main idea is to check every not-
matched element from the smallest schema against all not-matched elements from the
largest schema.

Due to the uniformity assumption, we manually discover a missing mapping with
the same frequency. This frequency is computed by dividing the number of not-matched
elements in the smallest schema by the number of missing mappings, as shown by formula
4.2. Thanks to 1:1 mappings assumption, the number of relevant mappings |R| is equal to
the number of correctly matched elements in each schema.

f req =
|S`|− |R|
|M|− |R|

(4.2)

Back to our example, f req = 14−11
12−11 = 3 means that the user will manually find a

missing mapping for every three not-matched elements from the smallest schema.
Since we now know the frequency, we can compute the number of interactions using a

sum function. We call this metric e f f ortrec since it is affected by recall. The higher recall
you achieved, the less interactions you require during this step. |SL| − |R| denotes the
number of not-matched elements from the largest schema. i

f req represents the discovery
of a missing mapping (when it reaches 1). Finally, we also uniformly remove the pairs

44

which may have been already invalidated during step 1, by computing |M|−|R||S`|−|R| . Thus, we
obtain this formula 4.3:

e f f ortrec =
|S`|−|R|

∑
i=1

(|SL|− |R|− (
i

f req
)− (
|M|− |R|
|S`|− |R|

)) (4.3)

We now detail for our example successive iterations of this sum function, which vary
from 1 to 3.

• e f f ortrec(i = 1), 19−11− 1
3 −

1
3 = 7

1
3

• e f f ortrec(i = 2), 19−11− 2
3 −

1
3 = 7

• e f f ortrec(i = 3), 19−11− 3
3 −

1
3 = 6

2
3

Thus, the second step to discover all missing mappings requires e f f ortrec = 7
1
3 +7+6

2
3 =

21 user interactions.

Finally, to compute the number of user interactions between two schemas S1 and S2,
noted nui, we need to sum the values of the two steps, thus resulting in formula 4.4. If the
set of mappings is empty, then using a matching tool was useless and the number of user
interactions is equal to the number of pairs between the schemas.

nui(S1,S2) =

|S1|× |S2| i f |M|= 0

e f f ortprec + e f f ortrec otherwise
(4.4)

In our example, user needs a number of user interactions nui = 12+21 = 33 to correct
the set of mappings produced by the tool.

Computing Post-match Effort

The number of user interactions is not sufficient to measure the benefit of using a match-
ing tool. Thus, the post-match effort that we propose is a normalisation of this number
of user interactions. Then, we explain how to generalise the post-match effort when there
are more than two schemas.

Normalisation. From the number of user interactions, we can normalise the post-
match effort value into [0,1]. It is given by formula 4.5. Indeed, we know the number of
possible pairs (|S`|×|SL|). Checking all these pairs means that the user performs a manual
matching, nui = |S`| × |SL| and pme = 100%. We can also compute the percentage of
automation of the matching process thanks to a matching tool. This formula, noted hsr,
for human spared resources, is given by 4.6.

pme(S1,S2) =
nui(S1,S2)
|S1|× |S2|

(4.5)

45

hsr(S1,S2) = 1− nui(S1,S2)
|S1|× |S2|

= 1− pme(S1,S2) (4.6)

If a matching tool achieves a 20% post-match effort, this means that the user has to
perform a 20% manual matching for removing and adding mappings, w.r.t. a complete
(100%) manual matching. Consequently, we can deduce that the matching tool managed
to automatise 80% of the matching process.

In our dating example, the post-match effort is equal to pme = 33
14×19 ' 12% and hu-

man spared resources is equal to hsr = 1− 0.12 ' 88%. The matching tool has spared
88% resources of the user, who still has to manually perform 12% of the matching process.

Generalisation. As schema matching scenarios may contain more than two schemas,
we need to generalise the post-match effort formula. Let us consider that a schema match-
ing scenario contains n schemas such as a set < S1,S2, ...,Sn >. The generalised post-
match effort, noted pmegen, is given by formula 4.7. It is the sum of all numbers of user
interactions in all possible couples of schemas, divided by the sum of all numbers of pairs
in all possible couples of schemas.

pmegen =
∑

i=n
i=1 ∑

j=n
j=i+1 nui(Si,S j)

∑
i=n
i=1 ∑

j=n
j=i+1 |Si|× |S j|

(4.7)

Discussion

We now discuss several points about the post-match metric.

Our metric does not take into account the fact that some schema matching tools [94, 8]
returns the top-K mappings for a given element. By proposing several mappings, the
discovery of missing mappings is made easier when the correct mapping appears in the
top-K.

Note that without the 1:1 mapping assumption (i.e, in case of n:m mappings), formula
of the number of user interactions is reduced to nui(S1,S2) = |S1|× |S2|. Indeed, as com-
plex mappings can be found, all elements from one schema have to be compared with all
elements from the other schema. However, many schema matching tools do not produce
such complex mappings. At best, they represent 1:n complex mappings using two or more
1:1 mappings.

We also notice that post-match effort cannot be equal to 0%, although f-measure is
100%. Indeed, user must at least (in)validate all discovered mappings, thus requiring
some user interactions. Then, (s)he also has to check if no mapping has been forgotten by
analysing every not-matched element from input schemas. This is realistic since we never
know in advance the number of correct mappings.

During second step of the post-match effort, f-measure has the same value distribution
for all matching tools (since precision equals 100% and only recall can be improved). This
facilitates comparison between matching tools for a given dataset.

46

(a) produced by a matching tool (b) given by an expert

Figure 4.5: Two examples of integrated schemas

4.4.2 Quality of Integrated Schema
As matching tools can also generate an integrated schema, we have designed several met-
rics to assess their quality. In [27], authors define two measures for integrated schema
w.r.t. data sources. Completeness represents the percentage of concepts present in the
data sources and which are covered by the integrated schema. On the contrary, minimal-
ity checks that no redundancy concept appears in the integrated schema. We extend these
metrics w.r.t. an expert integrated schema. Then, we complete them by another metric that
evaluates the structure of integrated schema. These three metrics are finally aggregated
to evaluate the schema proximity of two schemas. To illustrate the schema proximity
metric, we use the integrated schemas depicted by figures 4.5(a) and 4.5(b). Note that
a set of mappings is provided with the integrated schema. Indeed, let us imagine two
elements noted X in a schema and Y in another one, and which both represent the same
concept. To build an integrated schema, a schema matching tool only selects and keeps
one of them. Two mappings are derived between each element from the source schemas
to the selected element in the integrated schema. Thus, with the set of mappings, we are
able to check if the matching tool has discovered that X and Y match, although the ele-
ment in the integrated schema it produces is different from the one in the expert integrated
schema.

Completeness and Minimality

In our context, we have an integrated schema produced by a matching tool, named Sitool ,
and an expert integrated schema Siexp. Recall that this expert integrated schema is ideal.
|Siexp| stands for the number of elements in schema Siexp. Thus, completeness, given by
formula 4.8, represents the proportion of elements in the tool integrated schema which are
common with the expert integrated schema. Minimality is computed thanks to formula
4.9, and it is the percentage of extra elements in the tool integrated schema w.r.t. expert
integrated schema. Both metrics are in the range [0,1], with a 1 value meaning that the tool
integrated schema is totally complete (respectively minimal) related to expert integrated
schema.

47

comp(Sitool,Siexp) =
|Sitool ∩Siexp|
|Siexp|

(4.8)

min(Sitool,Siexp) = 1−
|Sitool|− |Sitool ∩Siexp|

|Siexp|
(4.9)

Let us compute completeness and minimality for the schemas shown in figure 4.5.
As the number of common elements between the expert and tool integrated schemas is 6,
then completeness is equal to comp(Sitool,Siexp) = 6

7 . Indeed, we notice that the integrated
schema produced by the matching tool lacks one element (G) according to the expert in-
tegrated schema. Similarly, we compute minimality, which gives us min(Sitool,Siexp) =
1− 8−6

7 = 5
7 . The tool integrated schema is not minimal since two elements (X and Z)

have been added w.r.t. the expert integrated schema.

As stated by Kesh [78], these metrics are crucial to produce a more efficient schema,
i.e. that reduces query execution time. However, they do not measure the quality of the
structure of the produced integrated schema. We believe that the structure of an integrated
schema produced by a schema matching tool may also decrease schema efficiency if it
is badly built. Besides, an integrated schema that mostly keeps semantics of the source
schemas has a better understanding for an end-user.

Structurality

Structurality denotes “the qualities of the structure an object possesses”5. To evaluate the
structurality of a tool integrated schema w.r.t. an expert integrated schema, we check that
each element owns the same ancestors.

The first step consists of converting the schemas into rooted directed acyclic graphs
(DAG), which have been described in section 4.1. Consequently, integrated schemas Siexp
and Sitool are respectively transformed into rDAGexp and rDAGtool .

Secondly, for each element ei from rDAGexp (except for the root), we build the two
paths from the roots e0 of both rDAGs. These paths are noted Pexp(e0,ei) and Ptool(e0,ei).
We also remove from these paths element ei. For sake of clarity, we respectively write
Pexp and Ptool instead of Pexp(e0,ei) and Ptool(e0,ei). Note that if element ei has not been
included in rDAGtool , then Ptool = /0. From these two paths, we can compute the struc-
turality of element ei using formula 4.10. Intuition behind this formula is that element ei
in both integrated schemas shares the maximum number of common ancestors, and that
no extra ancestor have been added in the tool integrated schema. Besides, an α parameter
enables users to give a greater impact to the common ancestors to the detriment of extra
ancestors. As the number of ancestors in Ptool might be large and involve a negative value,
we constrain this measure to return a value between 0 and 1 thanks to a max function.

structElem(ei) = max
(

0,
α|Pexp∩Ptool|− (|Ptool|− |Pexp∩Ptool|)

α|Pexp|

)
(4.10)

5http://en.wiktionary.org/wiki/structurality (July 2009)

48

Back to our example, we can compute the structurality of each (non-root) element
from rDAGexp, with a weight for α set to 2:

• for B: Pexp = A and Ptool = A. Thus, structElem(B) = max(0, 2×1−(1−1)
2×1) = 1.

• for D: Pexp = A and Ptool = A. Thus, structElem(D) = max(0, 2×1−(1−1)
2×1) = 1.

• for E: Pexp = A,D and Ptool = A,D. Thus, structElem(E) = max(0, 2×2−(2−2)
2×2) = 1.

• for G: Pexp = A,D and Ptool = /0. Thus, structElem(G) = max(0, 2×0−(0−0)
2×2) = 0.

• for C: Pexp = A,B and Ptool = A,D. Thus, structElem(C) = max(0, 2×1−(2−1)
2×2) = 1

4 .

• for F: Pexp = A,D and Ptool = A. Thus, structElem(F) = max(0, 2×1−(1−1)
2×2) = 1

2 .

Finally, structurality of a tool integrated schema Sitool w.r.t. an expert integrated
schema Siexp is given by formula 4.11. It is the sum of all element structuralities (ex-
cept for the root element noted e0) divided by this number of elements.

struct(Sitool,Siexp) = ∑
i=n
i=1 structElem(ei)

n−1
(4.11)

In our example, structurality of the tool integrated schema is therefore the sum of all

element structuralities. Thus, we obtain struct(Sitool,Siexp) = 1+1+1+0+ 1
4 + 1

2
6 = 0.625.

Schema proximity

The schema proximity, which computes the similarity between two integrated schemas,
is a weighted average of previous measures, namely completeness, minimality and struc-
turality. Three parameters (α , β and γ) enables users to give more weight to any of these
measures. By default, these parameters are tuned to 1 so that the three measures have the
same impact. Formula 4.12 shows how to compute schema proximity. It computes values
in the range [0,1].

prox(Sitool,Siexp) =
αcomp(Sitool,Siexp)+βmin(Sitool,Siexp)+ γstruct(Sitool,Siexp)

α +β + γ
(4.12)

In our example, the schema proximity between tool and expert integrated schemas is
equal to prox(Sitool,Siexp) = 0.86+0.71+0.625

3 = 0.73 with all parameters set to 1. Thus, the
quality of the tool integrated schema is equal to 73% w.r.t. the expert integrated schema.

Discussion

We now discuss some issues dealing with the proposed schema proximity metric.

Contrary to [42], our structurality metric does not rely on discovering common sub-
trees. We mainly check for common ancestors for each element and do not penalise some

49

elements. For instance, child elements whose parent element is different are not included
in a subtree, and they are taken in account as single elements (not part of a subtree) when
measuring the schema quality . With our structurality metric, we avoid this problem since
each element with its ancestors is individually checked.

We have decided to exclude the root element from the metric, because it already has
a strong weight due to its position. If the root element of the tool integrated schema is
the same than the one in the expert integrated schema, then all elements (present in both
schemas) which are compared already have a common element (the root). Conversely, if
the root elements of both integrated schemas are different, then comparing all elements
involves a decreased structurality due to the different root elements. Therefore, there was
no need to consider this root element.

In XBenchMatch architecture, we explain that an integrated schema is provided with
mappings between the source schemas and the integrated schema, namely for checking
that a matching tool has discovered and added correct elements in the integrated schema.
If needed, it is also possible to compute the quality of this set of mappings w.r.t. an expert
set, by using common metrics (precision, recall and f-measure) and our post-match effort
metric described in section 4.4.1.

However, schema proximity metric does not take into account user requirements and
other constraints. For instance, user might not want a complete integrated schema since
(s)he will query only a subset of the schema. Or the minimality could not be respected
because application domain requires some redundancies. In another way, some hardware
constraints may also impact integrated schemas.

4.5 Experiments Report
In this section, we present the evaluation results of the following matching tools: COMA++
[8, 32] and Similarity Flooding (SF) [94, 95]. These tools have been described in the
previous chapter (see section 3.2). We notice that it is hard to find available schema
matchers to evaluate. All experiments were run on a 3.0 Ghz laptop with 2G RAM under
Ubuntu Hardy. We first discuss the matching quality (for mappings and then for integrated
schemas) of the tools for each datasets from our benchmark. Then, we evaluate their time
performance. Finally, we outline some conclusions about these experiments.

4.5.1 Quality Evaluation
We report results by datasets. In the mapping quality plots, overall values have been
limited to 0 instead of -∞. One should consider a negative overall value as not significant
as it was explained in [94]. HSR denotes our measure Human Spared Resources (which is
the reverse of post-match effort, see section 4.4.1). We conclude this section by a general
discussion about the results.

50

Betting dataset

Figures 4.6(a) and 4.6(b) depict the quality for the betting dataset, which features flat
schemas from the web. COMA++ obtain the highest precision but it discovers less rel-
evant mappings than SF. Both tools manage to spare around 40% of user resources. We
also note that SF’s overall is negative, although it was able to discover half of the relevant
mappings. For the integrated schema, COMA++ successfully encompasses all concepts
(100% completeness) while SF produces the same structure than the expert (100% struc-
turality). SF generates the most similar integrated schema w.r.t. the expert one (schema
proximity equal to 92%).

(a) Mapping Quality (b) Integrated Schema Quality

Figure 4.6: Matching quality obtained for the betting dataset

Biology dataset

With this large scale and domain-specific dataset, we notice on figure 4.7(a) that the
matching tools have poorly performed for discovering mappings (less than 10% f-measure).
Using a matching tool enables user to spare some resources (HSR around 5%). These
mitigated results might be explained by the fact that no external resource was provided.
However, as shown by figure 4.7(b), the tools were able to build integrated schemas with
acceptable completeness (superior to 80%) but many redundancies (minimality inferior to
40%) and different structures (58% and 41% structuralities).

Currency dataset

Figures 4.8(a) and 4.8(b) depict quality obtained for currency, a nested average-sized
dataset. COMA++ clearly discovered more relevant mappings than SF (respective f-
measure of 60% and 33%). Yet, SF manages to build a more similar integrated schema
(83% schema proximity against 62% for COMA++). Although both tools have a 100%
completeness, COMA++ avoids more redundancies while SF respects more the schema
structure.

51

(a) Mapping Quality (b) Integrated Schema Quality

Figure 4.7: Matching quality obtained for the biology dataset

(a) Mapping Quality (b) Integrated Schema Quality

Figure 4.8: Matching quality obtained for the currency dataset

Finance dataset

The finance dataset comes from the web and it owns a specific vocabulary. On figure
4.9(a), we notice that COMA++ and SF only discovers a few relevant mappings (re-
spectively 18% and 45%), probably because of the specific vocabulary of finance. But
COMA++ achieves a 100% precision. Figure 4.9(b) indicates that both tools produced an
integrated schema which is similar at 80% with the expert one.

Order dataset

This experiment deals with large schemas whose labels are normalised. Similarly to the
other large scale scenario, tools does not perform well for this order dataset (f-measures
less than 30%), as depicted by figure 4.10(a). The normalised labels of the schema ele-
ments might explain why their precisions are so low. Although they discover 30% to 40%
of the relevant mappings, their overall values are negatives. However, our HSR measure
indicates shows that using COMA++ and SF enable the sparing of respectively 11% and
16% human resources. As for quality of the integrated schema (figure 4.10(b)), both tools
achieves a schema proximity above 70%.

52

(a) Mapping Quality (b) Integrated Schema Quality

Figure 4.9: Matching quality obtained for the finance dataset

(a) Mapping Quality (b) Integrated Schema Quality

Figure 4.10: Matching quality obtained for the order dataset

Person dataset

Figures 4.11(a) and 4.11(b) depict quality for the person dataset. With these small schemas
featuring low heterogeneity in their labels, COMA++ achieves 86% precision and recall.
SF only discovers relevant mappings (100% precision), but it finds roughly half of them
(57% recall). On the integrated schema plot, we notice that both generated schemas are
complete and the tools achieve a 80% schema proximity.

Sms dataset

The sms dataset does not feature specific criteria like large schemas or domain specificity,
but it is a web service. Yet, figure 4.12(a) depicts a low quality for discovering mappings
(f-measures below 30%). This is probably due to the numerous similar tokens shared by
the labels. As they missed many relevant mappings, the integrated schemas produced by
the tools have a minimality around 50%, as shown on figure 4.12(b). SF obtains better
completeness and structurality than COMA++.

53

(a) Mapping Quality (b) Integrated Schema Quality

Figure 4.11: Matching quality obtained for the person dataset

(a) Mapping Quality (b) Integrated Schema Quality

Figure 4.12: Matching quality obtained for the sms dataset

Travel dataset

Figures 4.13(a) and 4.13(b) depict the quality for travel, a dataset whose schemas come
from web forms. We notice that COMA++ does not discover any mapping (and con-
sequently, it does not generate an integrated schema). Maybe the threshold applied to
computed similarity values are too high for this scenario. On the contrary, SF achieves a
67% f-measure, thus sparing half of human resources (HSR equal to 52%). It also gen-
erates an integrated schema quite similar to the expert one (schema proximity equal to
87%).

Univ-courses dataset

Figure 4.14(a) depicts the mapping quality of the univ-courses dataset, which contains
flat and average-sized schemas. COMA++ obtains a high precision (100%) and it slightly
achieves a better f-measure than SF (70% against 60%). We also notice that this small
10% difference involves a large gap with the overall (more than 30%). On the contrary,
our HSR evaluates a close post-match effort (74% and 79% of human spared resources).
SF, which has a lower f-measure, yet achieves a better HSR because it achieves higher
recall with acceptable precision (recall has a greater impact on HSR). On figure 4.14(b),

54

(a) Mapping Quality (b) Integrated Schema Quality

Figure 4.13: Matching quality obtained for the travel dataset

it appears that both tools produces an acceptable integrated schema w.r.t. the expert one
(schema proximity equal to 94% for COMA++ and 83% for SF). Notably, COMA++
achieves a 100% completeness and 100% structurality.

(a) Mapping Quality (b) Integrated Schema Quality

Figure 4.14: Matching quality obtained for the univ-courses dataset

Univ-dept dataset

This univ-dept dataset provides schemas with high heterogeneity and the results of the
tools are shown on figures 4.15(a) and 4.15(b). COMA++’s diversity in terms of similarity
measures seems more efficient than SF’s propagation mechanism for mapping discovery
(respectively 71% against 57% f-measure). For the integrated schemas, both matching
tools achieve acceptable completeness and structurality (all above 90%), but they have
more difficulties to respect the minimality constraint.

Discussion about the quality

We conclude this section by underlining some general points about these experiments. Let
us first discuss several points about the mapping quality:

55

(a) Mapping Quality (b) Integrated Schema Quality

Figure 4.15: Matching quality obtained for the univ-dept dataset

• Both schema matching tools achieve the same matching quality for discovering
mappings (average f-measure of 43%). However, COMA++ strongly favours pre-
cision (66%) to the detriment of recall (36%). SF obtains more balanced results
between these measures (50% precision and 41% recall). Average HSR is close for
both matching tools (35% for COMA++ and 39% for SF).

• We notice that all matching tools only discover a few relevant mappings for large
scale datasets (order and biology). Thus, the large scale challenge is far from being
solved.

• Our HSR measure is more optimistic than overall. When precision is below 50%,
overall values are negative. Yet, it does not mean that using the tool was a lack of
time. HSR is somehow more correlated to recall than to precision. With a high
precision and an average recall, HSR does not reach high values. This is due to
the fact that a low recall implies more costly post-match effort from the user than
precision does. Thus, HSR is a more balanced metric than overall, and probably
more realistic as well.

• Evaluated tools mainly favour precision to the detriment of recall. Besides, this
choice strongly impacts post-match effort. Indeed, given a schema matching sce-
nario, it could be smarter to promote recall, for instance with large schemas.

Next, we draw some conclusions about the quality of integrated schemas:

• Average completeness (for all tools and all datasets) is equal to 91%. On the con-
trary, average minimality is 58% and average structurality reaches 68%. Similarity
Flooding provides a better quality for the integrated schema that it builds (79%
average schema proximity against 67% for COMA++)

• If a relevant mapping is missed by a matching tool, then both elements of this missed
mapping are added in the integrated schema. Structurality only takes into account
one of these elements (the one which is in the expert integrated schema). The other
is ignored, but it also penalizes minimality. This explains why structurality and
completeness have high values even when mapping quality measures return low
values.

56

• Schema proximity is also quite high, simply because it averages completeness and
structurality values which are already high. For instance, when a few relevant map-
pings are discovered (order or biology datasets), many elements are added into in-
tegrated schema, thus ensuring a high completeness but a low minimality. Due to
the missed mappings, lots of elements have to be added into the integrated schema,
and the easiest way is to keep the same structure that can be found in the source
schemas.

4.5.2 Performance Evaluation
This section covers the time performance of the matching tools for discovering mappings
and presenting them to the user. Note that we did not include the time for generating the
integrated schema, but this process only took a few seconds for both matching tools. For
COMA++, we measured the time spent by the tool to convert schemas and store them in
the database. Indeed, other matching tools also have to do this process.

Table 4.3 presents the time performance of COMA++ and Similarity Flooding for all
datasets. There is no doubt that SF is faster than COMA++, whatever the dataset be-
ing matched. SF requires a few seconds for matching the largest schemas. Although
COMA++ can quickly discover mappings for small schemas, it needs more time (less
than one minute) to match average and large schemas. This difference is mainly due to
the number of similarity measures computed by both matching tools: SF only applies one
similarity measure between all pairs of schema elements, and then the propagation mech-
anism consists of updating values between edges of a graph. On the contrary, COMA++
builds a matrix for all pairs of schema elements and its 17 similarity measures, which is
more costly. We note that COMA++ owns a complementary approach for matching large
schemas [113] but we did not test it.

COMA++ Similarity Flooding
Betting ≤ 1 s ≤ 1 s
Biology 44 s 4 s
Currency 5 s ≤ 1 s
Finance ≤ 1 s ≤ 1 s
Order 43 s 2 s
Person ≤ 1 s ≤ 1 s
Sms 19 s 2 s
Travel ≤ 1 s ≤ 1 s
Univ. courses ≤ 1 s ≤ 1 s
Univ. dept ≤ 1 s ≤ 1 s

Table 4.3: Time performance on the different datasets.

4.5.3 Concluding the Experiments Report
We finally discuss the results of these experiments. Dealing with mapping discovery, we
mainly notice that COMA++ provides a better precision (less irrelevant mappings discov-
ered) while SF achieves a higher recall (more relevant mappings discovered). COMA++
is more appropriate with web interfaces datasets (except for travel). It is difficult to con-
clude anything for the large scale since both matching tools perform well in one of the

57

two datasets (biology and order). However, as SF does not degrade time performance, it
might be a better choice. On the two datasets with normalised labels (order and person), it
seems more suitable to use SF. COMA++ does not obtain a high precision in these cases,
since most labels share similar tokens. The schema structure (nesting) does not help to
judge on the choice of a matching tool. However, we could assume that SF, which is based
on neighbour affinity rules, performs better with a non-flat structure. For generating an
integrated schema or when time performance are crucial, SF is a better choice.

Although classification of the datasets enables us to draw some conclusions about the
tools, it is still difficult to interpret results because of the complexity of schema matching.
Yet, it appears that a tool may be suitable for a given dataset, but totally useless for another
one. Thus, new schema matching tools should bring more flexibility in terms of match
algorithms.

4.6 Conclusion
In this chapter, we have presented a benchmark for evaluating schema matching tools.
New measures for assessing mappings and integrated schema quality have been proposed.
A collection of datasets, which tackle one or more specific schema matching issues, en-
ables users to test their schema matchers according to their requirements. Thus, XBench-
Match can produce an improved objective comparison. We have finally evaluated two
schema matching tools, COMA++ and Similarity Flooding. The resulting report indi-
cates that Similarity Flooding generates better integrated schemas. On most datasets,
COMA++ discovers less irrelevant mappings (better precision), but Similarity Flooding
discovers more relevant ones (better recall). COMA++ also degrades time performance
with large schemas. This tool clearly helps users to select a matching tool which suits
their requirements. But it also shows that a new generation of schema matching tools is
required, providing both flexibility and automation.

As future work, we should add more datasets to our benchmark, which fulfill other
criteria like complex mappings, evolution or based on instances. We should also let the
opportunity to use common external resources, for instance by providing a domain ontol-
ogy. Besides, we intend to quantify pre-match effort. Indeed, some tools may require tun-
ing of parameters, selection of various options, etc. Measuring the pre-match effort would
enable users to tune the tools and study the impact on the output, namely the matching
quality and time performance.

From this experience about existing matching tools, we have devised several initial
requirements for designing a schema matching tool. First, we cannot dissociate match-
ing quality and time performance. Our tool should either limit the number of similarity
measures, or own a mechanism for accelerating the matching process. On the other way,
it should still ensure an acceptable matching quality. The idea to combine terminological
measures with another based on the schema structure seems appropriate to avoid use of
external resources. The next chapter describes our first matching tool with more details.

58

Chapter 5

BMatch: a Structural Context-based
Tool Enhanced by an Indexing
Structure to Accelerate Schema
Matching

As described in chapter 3.2, semi-automatic matching tools are strongly based on termi-
nological similarity measures. Although they achieve acceptable quality results, they face
some problems due to this heavy use of terminological measures. Besides, matching a
large number of schemas still suffers from low time performance. Most semi-automatic
matching tools mainly compute various similarities between all pairs of schema elements
to finally keep the ones with a similarity above a certain threshold. Comparing all these
pairs of schema elements is a time consuming process. Thus, such tools are not appropri-
ate for matching a large number of schemas. Yet, a dynamic environment involving large
sets of schemas is required in many domain areas, like B2B or company’s information
systems [40]. Nowadays matching tools should provide a tradeoff between quality and
time performance.

In this chapter, we present a matching tool, named BMatch, to tackle previously men-
tioned issues. BMatch stands for Btree Matching. For the semantic aspect, our approach
relies on the schema structure to extract semantic. Pairs of schema elements are first anal-
ysed using terminological similarity measures. Neighbour elements of both elements of
the pair are then compared with a structural similarity measure. All values computed by
these similarity measures are finally aggregated into a global one, to determine if the pair
should be kept as a mapping.

Like most matching tools [88, 8, 94, 130, 40], this semantic aspect does not provide
good time performance since we compare each pair from one schema with each pair from
the others. Thus, the second aspect of our approach aims at improving the performance
by using an indexing structure to accelerate the schema matching process. The b-tree
structure was chosen to achieve this goal, as it has been designed to efficiently search and
find an index among a large quantity of data. Indeed, we assume that two similar element
labels share at least a common token, so instead of parsing the whole schema, we just
search for tokens indexed in the b-tree. Thus, experiments with large sets of schema show

59

that our approach is scalable.

Our main contributions are:

• We designed the BMatch approach to discover correspondences between two or
more schemas. This method is generic: it is not language dependent and it does
not rely on dictionaries or ontologies. It is also quite flexible thanks to various
parameters.

• For the semantic aspect, we introduce the notion of context for a schema element.
And a formula enables us to extract this context from the schema for a given el-
ement. Our approach is based on both terminological measures and a structural
measure using this context.

• An indexing structure for storing and retrieving elements provides good time per-
formance by clustering label tokens.

• An experiment section allows assessment of the results provided by BMatch on
both aspects: matching quality and time performance. Experiments with real-world
schemas widely used in the schema matching literature show acceptable match-
ing quality. Another bunch of experiments over a large set of B2B schemas also
shows good time performance with regards to other matching tools, thus confirm-
ing BMatch capability for large scale scenarios.

The rest of this chapter is structured as follows: first, we give the main definitions in
section 5.1 In section 5.2, the semantic aspect of our approach is detailed; and section 5.3
covers its time performance aspect; in section 5.4, we present the results of our experi-
ments; a comparison with similar works is given in section 5.5. Finally, we conclude and
outline some future work in section 5.6.

5.1 Preliminaries
BMatch’s semantic part relies on two terminological similarity measures, 3-grams and
Levenshtein. Its performance aspect is based on an indexing structure, the b-tree. This
section presents these main notions.

5.1.1 Terminological Measures
To calculate the similarity between two schema elements, there exist many measures
which are often cited in the literature [56, 22, 89] and presented briefly in chapter 2.1.2.
Here we describe the two terminological measures used in the BMatch semantic aspect.
Both measures compute a value in [0, 1], with the 0 value denoting dissimilarity and 1
denoting total similarity.

N-grams

An n-gram [123] is a similarity measure dealing with subsequences of n items from a
given string. n-grams are used in various areas of statistical natural language processing

60

to calculate the number of n consecutive characters in different strings. In general, n value
ranges from 2 to 5 and is often set at 3 [85, 77]. The tri-gram similarity value between
two strings c1 and c2 is computed by formula 5.1:

Tri(c1,c2) =
1

1+ |tr(c1)|+ |tr(c2)|−2×|tr(c1)∩ tr(c2)|
(5.1)

For example, consider the two character strings dept and department. Using tri-
grams, we build the two sets {dep,ept} and {dep,epa, par,art,rtm, tme,men,ent}. The
number of common occurrences in these sets is 1. By applying the formula 5.1 on those
sets, we obtain a similarity between dept and department:

Tri(dept,department) =
1

1+2+8− (2×1)
=

1
9

(5.2)

Levenshtein distance

The Levenshtein distance [81] between two strings is given by the minimum number of
operations needed to transform one source string into the target string, where an operation
is an insertion, deletion, or substitution of a single character. The Levenshtein distance
is the measure where all operation costs are set to 1. The Levenshtein similarity mea-
sure, noted LevSim, is the formula 5.3, which uses the Levenshtein distance, noted L. It
processes a similarity value between two strings c1 and c2:

LevSim(c1,c2) = max{0,
min{|c1|, |c2|}−L(c1,c2)

min{|c1|, |c2|}
} (5.3)

Following is a simple example for illustrating the formula 5.3 to obtain the Leven-
shtein similarity value between dept and department:

LevSim(dept,department) = max{0,
min{4,10}−6

min{4,10}
}= 0 (5.4)

5.1.2 An Indexing Structure: the B-tree
In our approach, the b-tree is used to accelerate the matching process. As described in
[23], b-trees have many features. A b-tree is composed of nodes, with each of them
having a list of indexes. A b-tree of order M means that each node can have up to M
children nodes and contain a maximum of M-1 indexes. Another feature is that the b-tree
is balanced, meaning that all the leaf nodes1 are at the same level. This enables both a
fast insertion and a fast retrieval since a search algorithm in a b-tree of n nodes only visits
1+logMn nodes to retrieve an index. This balancing involves some extra processing when
adding new indexes into the b-tree, however its impact is limited when the b-tree order is
high.

1A leaf node is a node without any children.

61

The b-tree is a structure widely used in databases due to its efficient capabilities of
retrieving information. As schema matchers need to quickly access and retrieve a lot of
data when matching, an indexing structure such as b-tree could improve the performance.
The b-tree has been preferred to the b+tree (which is commonly used in database sys-
tems) since we do not need the costly delete operation. Besides, the b+tree mainly stores
information in its leaf nodes, which are all linked together. During searches, indexes in
the non-leaf nodes are only used to locate the good leaf node which contains the searched
label. Thus, the b-tree seems more efficient than the b+tree because it stores less indexes
and it is able to find an index quicker.

Figure 5.12 depicts an example of b-tree of order 5. Thus, each node can have up
to 5 children nodes, and they contain at most 4 indexes. For instance, the root node is
composed of 2 indexes: 23 and 71. Let us imagine we are looking for the value 50. The
search starts at the root node, by its first index, 23. As 50 is superior to 23, we then
compare it with the next index, 71. This time, 50 is inferior, so the search goes on with
the left child node of the 71 index. In this new node, the first index is 34, so we go on
with the next one, 44, which is also inferior to 50. Finally, the third index, 56, is superior
to 50. Similarly, we should go on the search with the left child node of this 56 index. But
it does not exist since the current node is a leaf. This means the search was a failure, the
b-tree does not contain index 50.

Figure 5.1: Example of a b-tree of order 5

5.2 BMatch: Semantic Aspect
In the context of a large amount of information, performing the matching with similarity
measures which use external resources or are based on instances might be a costly process.
Besides, an external resource might be inappropriate for matching a given domain: it can
be either too general (e.g. Wordnet) or too specific (e.g. an ontology). Thus, our approach
is generic and it favours measures which directly rely on the schemas and do not require
too much processing. It combines three semantic similarity measures: two of them are
terminological and the other is based on the structure. All of these measures are combined

2GNU Free Documentation License picture from http://es.wikipedia.org/wiki/Archivo:B-
tree_example.svg

62

with different thresholds to produce a set of correspondences. In the rest of this section,
we first give some motivations for the choice of similarity measures. We describe some
important notions of our approach, the terminological measures and the context. Then,
BMatch semantic aspect is explained in detail. Finally, more precision is given about the
parameters.

5.2.1 Semantic Motivations
In this section, we explain the motivations underlying our work, especially why we have
chosen to combine both terminological and structural approaches.

• Terminological measures are not sufficient, for example:

– author and writer are totally dissimilar labels. Terminological measures are
not able to discover any relationship between those labels.

– mouse (computer device) and mouse (animal) lead to a polysemia problem. It
seems that we do not encounter such matching scenarios too often, due to the
strong difference of their domains (IT and animals). Yet, in many schemas,
several similar labels can be found. Figure 5.2 depicts such cases. Two ex-
tracts of bank schemas are represented, and both contains an element labelled
Sum. However, one of these labels refers to a debt while the other refers to
a credit. Although terminological measures would mainly return high simi-
larity value between them, no mapping should be discovered for these Sum
elements.

Figure 5.2: Small example of polysemia problem

• Structural measures also have some drawbacks:

– propagating the benefit of irrelevant discovered correspondences to the neigh-
bour elements increases the discovery of more irrelevant correspondences.

– they are not very efficient with small schemas.

Example of schema matching: Consider the two following schemas used in [37]. They
represent the organization in universities from different countries and have been widely
used in the literature. In the rest of the paper, we will refer to these schemas as the uni-
versity scenario. For these schemas, the set of mappings given by an expert is {(CS Dept
Australia, CS Dept U.S.), (Courses, Undergrad Courses), (Courses, Grad Courses), (Staff,

63

���������	
�����

��	�
�
 �����

����������������������������

����	���
�������

����	���
�����

��

(a) Organization of an Australian university (b) Organization of a US university

Figure 5.3: The two university scenario schemas

People), (Academic Staff, Faculty), (Technical Staff, Staff), (Lecturer, Assistant Professor),
(Senior Lecturer, Associate Professor), (Professor, Professor)}.

Let’s imagine that we try to determine a similarity between Courses and GradCourses.
Using terminological measures, namely 3-grams and Levenshtein distance, we discover
a high similarity between these labels. StringMatching denotes the average between
3-grams and Levenshtein distance values and it represents the similarity obtained by ter-
minological measures. All these measures have been defined in section 5.1.1.

• 3grams(Courses, GradCourses) = 0.2

• Lev(Courses, GradCourses) = 0.42

⇒ StringMatching(Courses, GradCourses) = 0.31

Now if we consider the elements Academic Staff and Faculty, the terminological mea-
sures are not useful for discovering a match between these labels, since the labels are
totally dissimilar, implying a StringMatching value of 0.002. However, the structural
measure enables us to match the labels with a similarity value of 0.37. They are based
on the notion of context, which represents, for a given element, its semantically most
important neighbours. And the contexts of two elements are compared using the cosine
measure. This structural measure thus reveals semantic relationships. A detailed expla-
nation of the context and the cosine measure is given in section 5.2.3.

• StringMatching(Academic Staff, Faculty) = 0.002

• Context(Academic Staff) = Academic Staff, Lecturer, Senior Lecturer, Professor

• Context(Faculty) = Faculty, Assistant Professor, Associate Professor, Professor

⇒ CosineMeasure(Context(Academic Staff), Context(Faculty)) = 0.37

In our approach, we thus combine both terminological and structural measures to
avoid the previously described problems. Our approach is able to match a large num-
ber of schemas without the need of external resources. However, we ensure an acceptable
matching quality regarding the existing matching tools (see section 5.4.1).

64

5.2.2 Element Context
A specific feature of our approach is to consider the neighbour elements. We have called
this notion the context, which represents, given a current element nc, the elements de-
noted ni in its neighbourhood. In fact, all elements in the schema may be considered in
the neighbourhood of nc. However, it is quite obvious that the closest elements ni are
semantically closer to the element nc. Given this assumption, we calculate the weight
of each element ni according to the element nc, which evaluates how semantically close
the context element ni is to the element nc. First we calculate ∆ d, which represents the
difference between the nc level and the ni level:

∆d = |lev(nc)− lev(ni)| (5.5)

where lev(n) is the depth of element n from the root. Then we can calculate the weight
denoted ω(nc,ni) between the elements nc and ni:

ω(nc,ni) =

ω1(nc,ni), i f Anc(nc,ni) or Desc(nc,ni)

ω2(nc,ni), otherwise
(5.6)

where Anc(n,m) (resp. Desc(n,m)) is a boolean function indicating whether element
n is an ancestor (resp. descendant) of element m. This weight formula is divided into two
cases, according to the relationship between the two related elements. If n is an ancestor
or a descendant of m, the formula 5.7 is applied. Otherwise we apply formula 5.8. The
idea behind this weight formula is based on the fact that the closer two elements are in the
tree, the more similar their meaning is.

ω1(nc,ni) = 1+
K

∆d + |lev(nc)− lev(na)|+ |lev(ni)− lev(na)|
(5.7)

ω2(nc,ni) = 1+
K

2× (|lev(nc)− lev(na)|+ |lev(ni)− lev(na)|)
(5.8)

where na represents the lowest common ancestor to nc and ni, and K is a parameter to
allow some flexibility with the context. This is described in more detail in section 5.2.4.
The value of this weight is in the interval]1,2] for K = 1. Note that this formula, for a
given element n, gives the same weight to all descendants and ancestors of this element n
which are at the same level.

Example: Let us consider the element Academic Staff from schema 5.3(a). We look
for the importance of Staff for the element Academic Staff. As Staff is an ancestor of
Academic Staff, we apply formula 5.7. ∆d, the difference between their levels in the tree
hierarchy, is equal to 1. Their lowest common ancestor is Staff, and the difference in level

65

between this common ancestor with itself is 0, while it is equal to 1 with the element
Academic Staff, thus giving us the following result:

ω(AcademicSta f f ,Sta f f) = 1+
1

1+1+0
= 1.5 (5.9)

Now we compute the weight of the element Courses with regards to Academic Staff.
They have no ancestor or descendant relationship, so formula 5.8 is applied. Their lowest
common ancestor is the root element, namely CS Dept Australia. Academic Staff is 2
levels away from the common ancestor, and Courses is 1 level away from it. The weight
of Courses for the element Academic Staff gives:

ω(AcademicSta f f ,Courses) = 1+
1

2× (2+1)
= 1.17 (5.10)

We can then generalize to obtain the following set of pairs (neighbour, associated
weight), also called context vector, which represents the context of the element Academic
Staff. {(CS Dept Australia, 1.25), (Courses, 1.17), (Staff, 1.5), (Technical Staff, 1.25),
(Lecturer, 1.5), (Senior Lecturer, 1.5), (Professor, 1.5) } Note that some parameters (de-
scribed later in this section) have an impact on the context.

5.2.3 Semantic Match Algorithm
The semantic aspect of BMatch is based on two steps: first we replace terms in the context
vectors when they have close character strings. This step uses the Levenshtein distance
and 3-gram metrics (see section 5.1.1). Secondly, we calculate the cosine measure be-
tween two vectors to determine if their context is close or not.

Step one: terminological measures to replace terms.

The following describes in detail the first part of the semantic aspect. The two schemas
are traversed in preorder traversal and all elements are compared one by one with the
Levenshtein distance and the 3-grams. Both measures are processed and, according to the
adopted strategy3, the highest one or the average is kept. The obtained value is denoted
SM for String Measure. If SM is above a certain threshold, which is defined by an ex-
pert, then some replacements occur. The threshold will be discussed in section 5.4. We
decided to replace the term with the greater number of characters by the term with the
smaller number of characters. Indeed, we consider that the smaller sized term is more
general than the larger sized one. This assumption can be checked easily since some
terms may be written in singular or plural. After this first step, we finally obtain the initial
schemas that have possibly been modified with character string replacements.

We have also noted polysemia or synonymy problems. The typical polysemous exam-
ple is mouse, which can represent both an animal and a computer device. In those cases,

3The maximum and average strategies are reported to be a good tradeoff in the literature

66

the string replacement obviously occurs but has no effect since the terms are similar. On
the contrary, two synonyms are mainly detected as dissimilar by terminological measures.
However, the second part of our algorithm, by using the context, enables us to avoid these
two problems.

Step two: cosine measure applied to context vectors.

In the second part of our algorithm, the schemas - in which some string replacements may
have occurred by means of step 1 - are traversed again. And the context vector of a current
element is extracted in each schema. The neighbour elements composing this vector may
be ancestors, descendants, siblings or further elements of the current element, but each of
them has a weight, illustrating the importance of this neighbour with regards to the current
element. The two context vectors are compared using the cosine measure, in which we
include the element weight. Indeed, when counting the number of occurrences of a term,
we multiply this number by its weight. This processing enables us to calculate CM, the
cosine measure between two context vectors, and thus also the similarity between the two
elements related to these contexts.

The cosine measure [133] is widely used in Information Retrieval. The cosine measure
between the two context vectors, denoted CM, is given by the following formula:

CM(v1,v2) =
v1 · v2√

(v1 · v1)(v2 · v2)
(5.11)

CM value is in the interval [0,1]. A result close to 1 indicates that the vectors tend to
be in the same direction, and a value close to 0 denotes total dissimilarity between the two
vectors.

Example: During step 2, the following replacement occurred: Faculty ↔ Academic
Staff. Now consider the two current elements Staff and People respectively from schemas
5.3(a) and 5.3(b). Their respective and limited4 context vectors, composed of pairs of a
neighbour element and its associated weight, are {(CS Dept Australia, 1.5), (Faculty, 1.5),
(Technical Staff, 1.5) } and {(CS Dept U.S., 1.5), (Faculty, 1.5), (Staff, 1.5) }. As the only
common term between the two vectors is Faculty with a weight of 1.5, the cosine measure
between those context vectors is 0.44.

The context enables to discover or disambiguate a correspondence between pairs with
polysemous or synonymous element’s labels. It also enables the discovery of correspon-
dences which share other kind of relationships than equivalence. In the previous example,
Staff is a “subclassOf” of People while in section 5.2.1, Academic Staff is a synonym of
Faculty. Note that our approach is not able to discover the kind of relationship between
the correspondence’s elements, but only the correspondence.

4To clarify the example, the context has been voluntarily limited in terms of number of neighbours
thanks to the parameters

67

Finally, we obtain two similarity measures, SM and CM, with the first one based on
terminological algorithms while the second takes the context into account. Here again, a
strategy must be adopted to decide how to aggregate those similarity measures. In our ap-
proach, the maximum and average were chosen because they generally give better results
in experiments than other formulas in which one of the measures is favoured. At the end
of the process, BMatch returns a set of correspondences whose similarity value is above
a threshold given by an expert.

5.2.4 Semantic Parameters
Like most matchers, our approach includes some parameters. Although this may be seen
as a drawback, since a domain expert is often required to tune them, this is offset by the
fact that our application is generic and works with no dictionary regardless of the domain
or language.

• NB_LEVELS: this parameter is used to know the number of levels, both up and
down in the hierarchy, to search in order to find the context elements.

• MIN_WEIGHT: combined with NB_LEVELS, it represents the minimum weight to
be accepted as a context element. This is quite useful to avoid having many cousin
elements (that do not have a significant importance) included in the context.

• REPLACE_THRESHOLD: this threshold is the minimum value to be reached to make
any replacement between two terms.

• SIM_THRESHOLD: this threshold is the minimal value to be reached to accept a
similarity between two schema elements based on terminological measures.

• K: this coefficient used in formula 5.6 allows more flexibility. Indeed, it represents
the importance we give to the context when measuring similarities.

Given that the number of parameters is important, such an application needs to be
tuned correctly to give acceptable results. In 5.4, several experiments show the flexibil-
ity of BMatch by testing different configurations. This enabled us to set some of the
parameters at default values. Besides, we note that some tools like eTuner [80] aim at
automatically tuning matching tools.

This section describes the semantic aspect of BMatch, based on the combination of
terminological and structural measures. However, this semantic aspect is hampered by the
same drawback as the other matchers, i.e. low time performance. This is due to the large
number of possibilities, i.e. each element from one schema is tested with each element of
another schema. The next section presents an indexing structure to accelerate the schema
matching process by reducing the search space.

68

5.3 BMatch: Performance Aspect
The first part of this section introduces the b-tree, an indexing structure already used in
databases for accelerating the query response time. Then we explain how this structure is
integrated with the semantic part to improve the performance.

In our approach, we use the b-tree as the main structure to locate correspondences
and create correspondences between schemas. The advantage of searching for correspon-
dences using the b-tree approach is that b-trees have indexes that significantly accelerate
this process. For example, if you consider the schemas 5.3(a) and 5.3(b), they have 8 and
9 elements respectively, implying 72 matching possibilities with an algorithm that tries
all combinations. And those schemas are small examples, but in some domains, schemas
may contain up to 6000 elements. By indexing in a b-tree, we are able to reduce this
number of matching possibilities, thus providing better time performance.

5.3.1 Principle of our Matching Algorithm
Contrary to most other matching tools, BMatch does not compute the similarity values of
each pair of elements. Instead, we assume that mapping’s elements can share a similar
token. Consequently, only the pairs whose elements share similar tokens in their labels
are taken into account for the computation of similarity value. To fulfill this goal, a b-tree,
whose indexes represent string tokens, is built and enriched as we parse new schemas.
Each index references all schema element’s labels that contain it. For example, after
parsing schemas 5.3(a) and 5.3(b), the Courses index would hold three labels: Courses
from schema 5.3(a), Grad Courses and Undergrad Courses from schema 5.3(b). Note
that the labels Grad Courses and Undergrad Courses are also respectively stored under
the Grad and the Undergrad indexes.
For each input schema, the same algorithm is applied: the schema is parsed element by
element following a preorder traversal. This enables us to compute the context vector of
each element. The label is split into tokens. We then fetch each of those tokens in the
b-tree, resulting in two possibilities:

• no token is found, so we just add it in the b-tree with a reference to the label.

• or the token already exists in the b-tree, and then we try to find semantic similarities
between the current label and those referenced by the existing token. We assume
that in most cases, similar labels have a common token (and, if not, they may be
discovered with the context similarity).

Let us illustrate the use of the b-tree with our approach. Figure 5.4 depicts the first
step, i.e when the first schema (shown by figure 5.3(a)) is entirely parsed into the b-tree.
There is no search of correspondence at this step since the b-tree was initially empty and
all added elements belong to the same schema. Each b-tree node contains a token as
index (given in capital letters), and the labels of the schema elements which include this
token. For example, the node indexed STAFF stores information about the Staff token,
and two schema elements have a label which is (at least) composed of this token, namely
Academic Staff and Technical Staff.

69

Figure 5.4: Step 1: b-tree after parsing first schema

Next step consists of matching the second schema, depicted by figure 5.3(b). All
elements from this schema are matched against the b-tree, i.e, the algorithm searches a
correspondence inside the b-tree for each of them. The first parsed schema element is
the root element, labeled CS Dept U.S., which becomes the current element. This label is
composed of three tokens (CS, Dept and U.S.). The first token (CS) is first searched inside
the b-tree. As tokens are b-tree indexes, the search is fast. Here the first index of the b-tree
root node appears to be COURSES, which is alphabetically inferior to CS. Next index is
DEPT, which is alphabetically superior to CS. Thus, we go on to the left node of this
DEPT index. In this new node, the first element is CS, thus we have found the token in
the b-tree. This CS index already holds another label, CS Dept Australia. Thus, similarity
values (SM and CM) are computed between this label and CS Dept U.S.. Finally, the
current label CS Dept U.S. is added under the index CS, since it contains the token. At the
end of this step, we have computed one similarity value for the current element and the
b-tree looks like figure 5.5.

Figure 5.5: Step 2: b-tree after analyzing token CS from element CS Dept U.S.

The second token of our current element CS Dept U.S. is Dept. Similarly, we search
a b-tree index for this Dept token. The search starts on the first index (COURSES) of

70

the b-tree root node. As Dept is alphabetically superior to COURSES, we go on with the
second index of the root node, and we find DEPT. The only label under this DEPT index
is CS Dept Australia. The similarity value of the pair (CS Dept U.S., CS Dept Australia)
has already been computed. However, we add the current label CS Dept U.S. under the
index DEPT, thus resulting in the b-tree depicted by figure 5.6.

Figure 5.6: Step 3: b-tree after analyzing token Dept from element CS Dept U.S.

Finally, we analyse the last token of the current label, U.S.. We start the search at
the COURSES index, then we go on with the DEPT index, and we compare the token
with the last index of the root node, PROFESSOR. U.S. is again alphabetically superior to
PROFESSOR, thus the search go down to the right node of the PROFESSOR index. In this
new node, U.S. is alphabetically superior to the three indexes, namely SENIOR, STAFF
and TECHNICAL. However, there is no more node to the rightest index TECHNICAL.
This means that the search failed, and we have to add a new index in the b-tree for this
U.S. token. It should be indexed after TECHNICAL, but this node is full. Thus, its middle
index (STAFF) is put in the parent node (which is the b-tree root node). Indexes to its
left (SENIOR) are put in a new left child node of index STAFF while indexes to its right
(UNDERGRAD and U.S.) are put in a new right child node of index STAFF. However,
this change also impact the root node, which appears to be full too. Similarly, it needs
to be split into several nodes. Its middle index (DEPT) is elected to create a new root
node, and the rest of the indexes are respectively put in two new children nodes. When
the root node is full and a new index should be added into it, the b-tree has a new level.
Our b-tree now reaches a 3-depth level. Label CS Dept U.S. is obviously added under the
new U.S. index. All these changes are shown in figure 5.7. Analysis of the first schema
element CS Dept U.S. is finished, and we only computed 1 similarity value (with element
CS Dept Australia) for this element. Note that BMatch includes a parameter to compare
an element with all distinct labels in the b-tree, especially in case of search failure. If it
was set to true, 8 similarity values would have been computed for element CS Dept U.S..

Let us go on our example with the second element of schema 5.3(b), labelled Under-
grad Courses. We first search a b-tree index for the Undergrad token. The search starts
at the root node, with DEPT index. As Undergrad is superior and there is no more index
in the root node, the search goes on to the right child node under DEPT. Indexes PRO-
FESSOR and STAFF are both inferior to Undergrad, and we go to the third level. Token

71

Figure 5.7: Step 4: b-tree after analyzing token U.S. from element CS Dept U.S.

Undergrad is superior to index TECHNICAL, but it is inferior to the next one, U.S.. Thus,
the search should go on to the left node of this U.S. index, but it does not exist since the
b-tree is only 3-level depth. This means that the search failed, and an UNDERGRAD in-
dex is created with a reference to the current label, Undergrad Courses. Thus, the b-tree
looks like the one depicted by figure 5.8.

The second token of the current label is Courses. Once more, we search the b-tree
for a similar index, starting at the first index of the root node, DEPT. As it is superior to
Courses, the left child node of index DEPT is then analyzed. Its first index is COURSES,
so the search succeeded. One label holds under this index, Courses. Thus, we compute the
similarity values (SM and CM) between Undergrad Courses and Courses. A reference to
the current label is added under index COURSES to obtain the b-tree depicted by figure
5.9. In this case, we also computed 1 similarity value instead of 8 if all elements from the
other schema would have been taken into account.

Then, this process goes on until all elements of schema 5.3(b) have been parsed.

5.4 Experiments
As our matching tool deals with both quality and performance aspects, this section is or-
ganized in two parts. The first one shows that BMatch provides an acceptable quality
of matching regarding the existing matching tools. The second part deals with the time
performance. For this purpose, large schemas are matched to evaluate the benefit of the
b-tree. These experiments were performed on a 2 Ghz Pentium 4 laptop running Ubuntu
7.04 and Windows XP, with 2 Gb RAM. Java Virtual Machine 1.5 is the current version
required to launch our prototype.

72

Figure 5.8: Step 5: b-tree after analyzing token Undergrad from element Undergrad
Courses

To evaluate our matching tool, we have chosen five real-world scenarios, each com-
posed of two schemas. These are widely used in the literature. The first one describes a
person, the second is related to university from [37], the third one on business order ex-
tracted from OAGIS5 and XCBL6. Finally, currency and sms are popular web services7.
Their main features are given in table 5.1.

Person University Order Currency SMS
Number of elements (S1/S2) 11/10 8/9 20/844 12/35 46/64
Avg number of elements 11 9 432 24 55
Max depth (S1/S2) 4/4 4/4 3/3 3/3 4/4
Number of mappings 5 9 10 6 20

Table 5.1: Features of the different scenarios

5.4.1 Matching Quality
Here, we first show the impact of various parameters on the quality results. Then, we
compare BMatch’s quality results with those obtained by two other matching tools.

5http://www.oagi.org
6http://www.xcbl.org
7http://www.seekda.com

73

Figure 5.9: Step 6: b-tree after analyzing token Courses from element Undergrad Courses

Parameter tuning

BMatch is a flexible matching tool with parameters. Such an application needs to be tested
to set some parameters or help the end-user to tune them properly. BMatch ranks all pairs
differently according to the parameter tuning. Thus, we have used ROC curves to evaluate
its matching quality on several scenarios while some parameters are tuned. The advantage
of using ROC curves in this case is that the similarity threshold (i.e. the limit above which
a matching is considered relevant) is not another crucial parameter to be tuned. Indeed, it
is set at 0 to obtain all pairs ranked by similarity values. Besides, as our tool is dedicated
to match numerous and/or large schemas, resulting in a huge set of discovered mappings,
ROC curves enable us to show that our approach promotes a good ranking of the rele-
vant mappings. Only three parameters have been tested: the replacement threshold, the
two strategies and the number of levels to select the context. The other parameters (K and
minimum weight) have a lower impact in the matching process. The AUC is calculated for
several values of the three studied parameters, for each scenario (university, person, order,
currency and sms). For sake of clarity, all ROC curves of these experiments are stored at
this URL: http://www.lirmm.fr/∼duchatea/projects/BMatch/appendixCourbesROC.pdf.

Note that in the strategy table (figure 5.4), the first strategy represents a combination of
CM (context measure) and SM (terminological measure). The second strategy is that ap-
plied between the terminological measures (Levenshtein distance and 3-grams). And avg
means the average while max stands for the maximum. Thus, avg−max means that we
calculated the average between CM and SM, and that we selected the maximum between
Levenshtein distance and 3-grams. The default parameters are as follows: the replacement
threshold is set at 0.2, the number of levels at 2 and the default strategy is avg−max. This
means that when we vary the replacement threshold, the strategy is avg−max and the

74

Scenario Replacement Threshold AUC Interpretation
0.1 0.80 good

University 0.2 0.80 good
0.3 0.68 poor
0.1 0.88 good

Person 0.2 0.86 good
0.3 0.85 good
0.1 0.71 fair

Order 0.2 0.81 good
0.3 0.85 good
0.1 0.87 good

Currency 0.2 0.88 good
0.3 0.89 good
0.1 0.73 fair

Sms 0.2 0.74 fair
0.3 0.74 fair

Table 5.2: Varying the replacement threshold

number of levels is 2.

Table 5.2 shows the AUC obtained when varying the replacement threshold for the
five scenarios. We first note that the replacement threshold should not be too high. This
is due to the terminological measures used, which often return values around 0.15 for
terminologically close labels. In the person scenario, the results are mostly good regard-
less of parameter tuning. A low replacement threshold seems best suited in this person
scenario, although increasing it does not have a significant impact on the quality. On the
contrary, the order and currency scenarios have normalized labels which contain many
similar tokens. Thus, increasing the replacement threshold provides a better quality in
this case.

Table 5.3 shows the AUC obtained when varying the number of levels for all scenarios.
The university and person scenarios confirm that the context should not include too many
elements that are too far in the hierarchy. On the contrary, a small context is not sufficient
to obtain the best quality. In the order and currency scenarios, the schema depth is small
(3). Thus, varying the number of levels above 2 has no impact. Note that a context limited
to 2 levels is a good heuristic.

Table 5.4 shows the AUC obtained when varying the strategies for the five scenarios.
In the university and person scenarios, it appears that the avg−max strategy is the most
appropriate since it is the only one that provides a good AUC. The order scenario offers
different results: the avg−max strategy is not the best one, even if it provides a matching
quality above 0.8. This is probably due to the max used to combine the terminological
measures (this also applies for max−max strategy whose AUC is lower too): as the labels
contain many similar tokens, this max strategy involves more irrelevant replacements,
which tends to decrease the overall matching quality. The good results obtained with the
currency scenario are due to the four relevant correspondences (out of six) which are very

75

Scenario NB Levels AUC Interpretation
1 0.72 fair

University 2 0.80 good
3 0.71 fair
1 0.82 good

Person 2 0.86 good
3 0.82 good
1 0.81 good

Order 2 0.81 good
3 0.81 good
1 0.88 good

Currency 2 0.88 good
3 0.88 good
1 0.73 fair

Sms 2 0.74 fair
3 0.74 fair

Table 5.3: Varying the number of levels

similar. Regardless the used strategy, these labels are always ranked in the top-ten of the
list.

Discussion on parameters

All matching tools have their own parameters, and some tools like eTuner [80] help an
user to automatically tune them. Otherwise, the user must manually tune the parameters
on small samples of schemas. First, some of BMatch parameters depend on the domain
application, and the way schemas have been designed. For instance, the replacement
threshold might sometimes be tuned to a low value, so some replacements may occur.
In other cases, where schema labels share many similar tokens, it needs to be set at a
high value to avoid wrong replacements. Yet, those experiments enable us to scale this
parameter between 0.1 to 0.3, which can be warranted by the values returned by the
terminological measures. For the number of levels, a too small or too large context can
decrease the quality. However, this parameter offers good results when it is set at 2. As for
the strategies, the experiments clearly show that avg−max is an acceptable tradeoff. This
strategy provided a good AUC in each of this five scenarios. We also note that whatever
the parameter tuning, our application is not able to obtain better than fair results for the
sms scenario. Indeed, several relevant correspondences were ranked in the middle of the
correspondences list, and neither the measures nor the tuning seem efficient to discover
them with a higher similarity value.

This study of BMatch parameters led to the following configuration to compare our
tool with other matching tools: the strategy is set at avg−max, the replacement threshold
at 0.2 and the number of levels is 2.

76

Scenario Strategies AUC Interpretation
avg - avg 0.67 poor

University avg - max 0.80 good
max - avg 0.67 poor
max - max 0.71 fair
avg - avg 0.81 good

Person avg - max 0.86 good
max - avg 0.75 fair
max - max 0.75 fair
avg - avg 0.86 good

Order avg - max 0.81 good
max - avg 0.85 good
max - max 0.82 good
avg - avg 0.90 excellent

Currency avg - max 0.88 good
max - avg 0.88 good
max - max 0.89 good
avg - avg 0.74 fair

Sms avg - max 0.74 fair
max - avg 0.74 fair
max - max 0.71 fair

Table 5.4: Varying the strategies

77

Comparison with other Matching Tools

In this part, the quality of BMatch is compared with two matching tools known to provide
an acceptable matching quality: COMA++ and Similarity Flooding (SF).

As a brief reminder, COMA++ [8] uses 17 similarity measures to build a matrix which
gathers similarity values for every pair of elements. From this matrix, the similarity val-
ues are aggregated by means of different operators to finally extract correspondences.
Conversely, SF [94] builds a graph between input schemas and it discovers some initial
correspondences with a terminological measure. These correspondences are then refined
thanks to a propagation mechanism based on neighbouring affinity. Both matching tools
are described with more details in chapter 3.2.

As COMA++ and SF do not rank all matching pairs by relevance order, the ROC
curves cannot be used. Thus, we analysed the set of correspondences returned by the
matching tools to compute the precision, recall, and F-measure. We first focus on our run-
ning scenario which describes two universities. BMatch’s correspondences for this sce-
nario are shown in table 5.5. Our application was tuned with the following configuration:
the adopted strategy is avg−max, the replacement threshold is 0.2, the similarity thresh-
old is 0.15. The number of levels in the context is limited to 2, K and the minimum_weight
are respectively set at 1 and 1.5. For COMA++, all its strategies have been tried and the
best results are shown in the following table 5.6. Similarity Flooding’s correspondences
are listed in table 5.7. Both matching tools are responsible for their thresholds. Note that
in these three tables, a + in the relevance column indicates that the correspondence is
relevant.

Element from Element from Similarity Relevance
schema 1 schema 2 value
Professor Professor 0.58 +
Courses Grad Courses 0.32 +

CS Dept Australia CS Dept U.S. 0.26 +
CS Dept Australia People 0.25

Courses Undergrad Courses 0.17 +
Staff People 0.16 +

Academic Staff Faculty 0.15 +
Technical Staff Staff 0.15 +

Table 5.5: Correspondences discovered with BMatch for university scenario

In table 5.5, the fourth correspondence between CS Dept Australia and People is irrel-
evant. However, the relevant matches are also noted on line 3 and 6. BMatch is currently
not able to determine if one of the correspondences should be removed or not. Indeed,
some complex correspondences can be discovered, for instance the label Courses with
both Grad Courses and Undergrad Courses on line 2 and 5. Applying a strategy to detect
complex correspondences and remove irrelevant ones is the focus of ongoing research.
Similarity Flooding also discovers an irrelevant correspondence.

After this detailed example for the university scenario, we give the results in terms

78

Element from Element from Similarity Relevance
schema 1 schema 2 value
Professor Professor 0.54 +

Technical Staff Staff 0.53 +
CS Dept Australia CS Dept U.S. 0.52 +

Courses Grad Courses 0.50 +
Courses Undergrad Courses 0.50 +

Table 5.6: Correspondences discovered with COMA++ for university scenario

Element from Element from Similarity Relevance
schema 1 schema 2 value
Professor Professor 1.0 +

Staff Staff 1.0
CS Dept Australia CS Dept U.S. 1.0 +

Courses Grad Courses 1.0 +
Faculty Academic Staff 1.0 +

Table 5.7: Correspondences discovered with SF for university scenario

of precision, recall and F-measure for all scenarios. Figure 5.10 depicts the precision
obtained by the matching tools for the five scenarios. COMA++ is a tool that favours
the precision, and achieves a score higher than 70% in three scenarios (university, person
and currency). However, we also note that COMA++ obtains the lowest score for the
order scenario. BMatch achieves the best precision for two scenarios (order and sms),
but the experiments also show that in the other cases, the difference between BMatch and
COMA++ precisions is not very significant (10% at most). Although Similarity Flooding
scores a 100% precision for the person scenario, it obtains a low precision for the others,
thus discovering many irrelevant correspondences.

Figure 5.11 depicts the recall for the five scenarios. We first note that the matching
tools do not discover many relevant correspondences for the order and sms scenarios (re-
call less than 40%). BMatch performs best in four scenarios, but it misses many relevant
correspondences for the person scenario (recall equals 32%). This poor recall is mainly
due to the numerous tokens in the person schemas and the parameters configuration: with
a replacement threshold set at 0.2 and a similarity threshold set at 0.15, our approach
missed many relevant correspondences because terminological measures did not return
values which reach these thresholds. We have seen in 5.4.1 that BMatch obtains better
results when tuned differently. We have also demonstrated in [45] that BMatch is able to
obtain 100% recall for the university scenario when its parameters are tuned in an optimal
configuration. COMA++ is the only matching tool to obtain a recall above 80% for the
person scenario. However, in three scenarios, its recall is at least 15% worse than that of
BMatch. Similarity Flooding obtains the lowest recall in four scenarios.

F-measure, the tradeoff between precision and recall, is given in figure 5.12. Due
to its previous results, Similarity Flooding achieves the lowest F-measure for most sce-
narios, except for a 73% F-measure for person. BMatch obtains the best F-measure for
four scenarios and it outperforms COMA++ by almost 10%. However, both BMatch and

79

Figure 5.10: Precision obtained by the matching tools in the five scenarios

COMA++ did not perform well with order scenario.

5.4.2 Time Performance Aspect
A matching tool that ensures good performance is required in large scale scenarios, or on
the Internet where numerous data sources are available. Since the matching tools which
are dedicated to large scale scenarios are not available, we compare our BMatch appli-
cation with a BMatch version without any indexing structure. In this case, the matching
algorithm computes similarity values for every pair of schema elements by traversing the
schema trees in preorder. By focusing on performance, we mainly mean the time spent
to match a large number of schemas. The element context is limited to its direct parent
and its children elements. Although this constraint could be removed, it was shown in
the quality experiments (see section 5.4.1) that the context should not include too many
further elements which could have a negative impact on the quality. BMatch parameters
do not have a significant impact on the performance aspect.

Table 5.8 shows the different features of the sets of schemas we used in our ex-
periments. Two large scale scenarios are presented: the first one involves more than a
thousand average sized schemas about business-to-business e-commerce taken from the
XCBL8 standards. In the second case, we deal with OASIS9 schemas which are also
business domain related. Note that it is very hard to evaluate the obtained quality when
matching large and numerous schemas, because an expert must first manually match them.
An example of matching quality with this kind of schema is shown by the order scenario
in the previous section.

8http://www.xcbl.org
9http://www.oagi.org

80

Figure 5.11: Recall obtained by the matching tools in the five scenarios

XCBL set OASIS set
Average number of 21 2 065
elements per schema
Largest / smallest 426 / 3 6 134 / 26
schema size
Maximum depth 7 21

Table 5.8: Characterization of schema sets

XCBL Scenario

Here we compare the time performance of BMatch and BMatch without the indexing
structure (thus limited to the semantic part) on a large set of average schemas. The results
are illustrated by the graph depicted in figure 5.13. We can see that the version without
indexing structure is efficient when there is not a large number of elements (less than
1600). This is due to the fact that the b-tree requires some maintenance cost to keep the
tree balanced. BMatch enhanced with indexing provides good performance with a larger
number of elements, since two thousand schemas are matched in 220 seconds.

OASIS Scenario

In this scenario, we are interested in matching 430 large schemas, with an average of
2000 elements. The graph depicted in figure 5.14 shows that the version without indexing
structure is not suited for large schemas. On the contrary, BMatch is able to match a high
number of large schemas in 60 seconds. The graph also shows that BMatch is quite linear.
Indeed, it has also been tested for 900 schemas, and BMatch needs around 130 seconds to
perform the matching.

81

Figure 5.12: F-measure obtained by the matching tools in the five scenarios

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 1000 1200 1400 1600 1800 2000

tim
e

in
 s

ec
on

ds

number of nodes

BMatch
Without index

Figure 5.13: Matching time with XCBL schemas depending on the number of elements

Comparison with other Matching Tools

Now we compare the time performance of the three matching tools for the five scenarios.
The time includes both the parsing of the input schemas and the matching process.

Table 5.9 depicts the matching performance of each matching tool for each scenario.
All matchers are able to match small schemas (university and order) in less than one sec-
ond. However, with larger schemas (order, sms), COMA++ and Similarity Flooding are
less efficient. On the other hand, BMatch still ensures good performance while providing
the best matching quality (see section 5.4.1). These matching tools use several methods
to store information: COMA++ extracts information from the schemas and stores them in
a MySQL database. Then, this information is loaded into memory, in directed graphs [8].
The matching matrix, which stores similarities between pairs of elements, is not efficient
when the number of pairs is very important. In a large scale context, spending several
minutes with those operations can entail performance degradation. Its other drawback

82

 0

 20

 40

 60

 80

 100

 120

 140

 160

 100 150 200 250 300 350 400 450

tim
e

in
 s

ec
on

ds

number of schemas

BMatch
Without index

Figure 5.14: Matching time with OASIS schemas depending on the number of schemas

Person University Order Currency Sms
Average Number of Elements 11 9 432 24 55
COMA++ ≤ 1 s ≤ 1 s 43 s 5 s 19 s
SF ≤ 1 s ≤ 1 s 2 s 1 s 2 s
BMatch ≤ 1 s ≤ 1 s ≤ 1 s ≤ 1 s ≤ 1 s

Table 5.9: Time performance of COMA++, Similarity Flooding and BMatch on the dif-
ferent scenarios

is that it does not support direct matching of many schemas. Similarity Flooding stores
information in a graph, and then the propagation process runs, and it requires 1 or 2 sec-
onds to perform according to the schemas size. Although we store information in another
structure, the b-tree, SF’s time performance are quite similar with that of BMatch.

5.4.3 Discussion
In this section, we conducted some experiments to demonstrate both the quality and time
performance of BMatch. We first tuned some parameters to show their influence on the
results and to set some of them. Then our matching tool is compared with COMA++ and
Similarity Flooding, and we have shown that BMatch provides an acceptable matching
quality: in four scenarios out of five, BMatch obtains the highest F-measure. BMatch also
performed well in the performance aspect: even with scenarios involving large schemas,
there is no impact on BMatch performance, contrary to COMA++ and Similarity Flood-
ing. We also proved the efficiency of the b-tree indexing structure. Indeed, it enables
matching of 430 schemas in 50 seconds, while the BMatch version without indexing
structure requires 160 seconds. Thus, BMatch is suitable for a large scale scenario.

83

5.5 BMatch versus Other Tools
In this section, we only present the main differences between BMatch and other ap-
proaches, namely COMA++ and Similarity Flooding, against which BMatch has been
compared to, an approach which evaluates the similarity between two trees, and two ap-
proaches for large scale scenario. Note that the matching tools are described with more
details in chapter 3.2.

5.5.1 COMA++
By computing 17 similarity measures and aggregating their results in different ways,
COMA++ [8] mainly provides a good matching quality. Thus, COMA++ is more com-
plete than BMatch, and it also holds a synonym list filled in by an expert. The shortcoming
of COMA++ is the time required, both for adding files into the repository and matching
schemas. All information are stored inside a MySQL database, and loaded when neces-
sary into a directed graphs. Besides, building the matrix for all pairs and all similarity
measures is a time consuming process. In a large scale context, spending several minutes
with those operations can entail performance degradation. The other drawback is that it
does not support direct matching of many schemas. On the contrary, BMatch is designed
for a large scale scenario while COMA++ mainly focuses on the matching quality.

5.5.2 Similarity Flooding
Similarity Flooding [94] is a tool which also relies on terminological and structural mea-
sures. BMatch uses a similar structural rule, which states that two elements from different
schemas are similar if most of their neighbours are similar. But BMatch is a combina-
tion of terminological and structural measures while Similarity Flooding uses only one
terminological measure as an initial step, and then the structural aspect to refine the initial
correspondences’s values. Our experiment results show that Similarity Flooding does not
give good results when labels from the same schema are quite similar. Indeed, this implies
the discovery of many initial irrelevant correspondences which further negatively impacts
the propagation mechanism. With small schemas, the propagation process is not very
efficient too. Like BMatch, SF only computes a few similarity values, and its time perfor-
mance are acceptable since it requires a few seconds to match large schemas. However, it
can only match two schemas at a time.

5.5.3 Similarity Evaluation on Tree-structured Data
BMatch’s structural measure uses the notion of context, which is actually a tree. The
context of pair elements are compared to determine if elements could have a structural
similarity. Similarly, authors of [138] propose an approach to evaluate tree similarity. It
is based on an approximate numerical multidimensional vector, which stores the structure
and information of the trees. We do not require such methods to compute the similarity
between two element contexts, which would impact the time performance. Indeed, we
have demonstrated in the experiments section (see 5.4.1) that our approach requires a
limited context (2 or 3 levels of descendants and ancestors are sufficient), implying a

84

comparison between small subtrees. Besides, the authors show in [138] that they require
around 0.1 second to determine the proximity between small trees. Thus, with schemas
containing thousands of elements, it would take several seconds to compute the proximity
of the contexts for each pair.

5.5.4 Porsche
A recent approach, named Porsche [119], deals with large scale scenarios. It presents a ro-
bust mapping method that creates an integrated schema tree from a large set of input XML
schemas (converted to trees). Contrary to BMatch and most schema matching tools, it de-
fines mappings between the source schemas and the integrated schema. It first clusters the
nodes based on linguistic label similarity. Then, tree mining techniques applied on node
ranks are calculated during depth-first traversal. This minimizes the target search space
and improves time performance, thus making the algorithm suitable for large scale data
sharing. Porsche’s data structure is very efficient, it enables the matching of thousands of
nodes in a few seconds. Its quality is mainly evaluated by comparing the minimality and
integrity of the integrated schema.

5.5.5 An Approach for Large Schemas
This work [113] is based on the COMA++ tool [8]. First, the algorithm divides the schema
into subschemas, and user may validate this choice. If not sufficient, in terms of size, sub-
schemas can be divided into fragments. Then, each fragment from the source schema
is mapped to target schema fragments in order to find interfragment correspondences.
Next, these fragment correspondences are merged to compute the schema level correspon-
dences. Thus, the tool is not able to directly process large schemas. Another issue related
to this approach [113] is the fragmentation criteria of large schemas. Besides, splitting
the schema can lead to a loss of context for a given element, increasing the difficulty to
match it. There is no matching quality evaluation of this prototype.

5.6 Conclusion
In this chapter, we have presented the BMatch approach which was designed for improv-
ing both the quality of correspondences and time performance of the schema matching
process. This approach is very appropriate for large scale contexts where a large number
of data sources may be integrated. Our approach deals with both the semantic aspect by
relying on terminological and structural measures and the performance aspect by using
an indexing structure, i.e. the b-tree. Moreover, our method is generic: it is not language
dependent and it does not rely on dictionaries or ontologies. It is also quite flexible with
different parameters. Besides, lots of schemas do not contain information such as data
types, annotations, etc, and our context measure is useful to match such schemas since it
only exploits their structure. The results of our experiments are very enlightening. They
show that our method is scalable and provides good time performance thanks to the ben-
efit provided by the index structure. And BMatch ensures a matching quality as good as
other matching tools on several real-world scenarios.

85

However, several issues can be reported. First, the parameters sometimes need to
be tuned so that BMatch provides acceptable results. As explained in the experiments
(section 5.4), better quality results are obtained when changing the default parameters.
Most matching tools also includes several parameters, and some tools like eTuner enable
the automatic tuning of such parameters. But we intend to remove or at least decrease the
weight of this burden for the user.

Like COMA++ and other matching tools, the aggregation function, which combines
terminological and structural measures, has some drawbacks. Although they are limited
in our approach due to the few similarity measures used, we notice that either the termi-
nological or the structural measures might have a too strong impact. For instance, with
similar labels, the structural measure must return a very low similarity value so that the ag-
gregated similarity value is below the global threshold. Furthermore, this global threshold
applied to the aggregated similarity value does not take into account the value distribution
of each similarity measure. The complex match, although out of the scope of this thesis,
is another issue. When the same schema element is matched with two others, how to
decide whether one of the two correspondences is irrelevant or if both correspondences
actually form a complex match. Using data instances along with the schemas could help
to disambiguate such cases.

Finally, the assumption which enables the use of the b-tree can negatively impact the
quality. For instance, if an element label shares a common token with another one, and
the similarity value of this pair is sufficiently high (superior to the threshold), then there
is no search for correspondence inside the whole b-tree. However, it is not excluded that
in the b-tree, another element, whose label does not share a common token (and thus has
not been analyzed), could be the relevant element to match with. In this case, we can miss
a correspondence because of the b-tree.

Implementing BMatch brought a good insight about the schema matching problem.
Although less complete, in terms of functionalities and available similarity measures, than
COMA++ for instance, our tool achieved comparable quality results. Thus, we believe
that some similarity measures are not efficient enough or useful for matching certain sce-
narios. On the contrary, the poor results obtained by all matching tools on some scenarios
raise some questions: are their similarity measure sufficiently various to discover more
correspondences ? Does the aggregation function used by COMA++ and BMatch require
more tuning or does it need to be replaced by another methods for combining similarity
measures ? Experiments with the three matching tools also showed that they mainly pro-
mote precision to the detriment of recall. All these points are further discussed in the next
chapter, which introduces a novel algorithm to combine and select similarity measures.

86

Chapter 6

MatchPlanner: Learning Self-tuned
Plans for Matching XML Schemas

Like other matching tools, BMatch suffers from several drawbacks for the schema match-
ing task. First, our tool is less complete than others, both in terms of functionalities and
similarity measures. As a consequence, the quality results might be disappointing with
some schema matching scenarios, and the possibilities to improve them are limited to
the tuning. An aggregation function is used to combine similarity measures. However,
aggregation functions entail several drawbacks: (i) computing all similarity measures for
each pair of schema elements decreases time performance, (ii) too many related similarity
measures can have a strong impact on the matching quality and finally (iii) adding new
similarity measures mainly involves to update the aggregation function. Besides, although
every similarity measure has its own value distribution, the threshold is rarely specific to
each similarity measure but rather global. Schema matching tools also focus on making
their systems extensible and customisable to a specific domain, but tuning the parameters
to fulfill this goal is not an easy task for the user. Indeed, it has recently been pointed
out [80, 125] that the main issue is how to select the most suitable similarity measures to
execute for a given domain and how to adjust the multiple parameters (e.g., thresholds,
weights, etc.).

In this chapter, we present MatchPlanner, a novel method for planning similarity mea-
sures. It is designed to avoid the previously mentioned drawbacks. Indeed, our approach
makes use of a decision tree to plan similarity measures and it is able to learn new decision
trees. As a first consequence of using the decision tree, MatchPlanner is more efficient,
in terms of scalability, than aggregation-based tools: its complexity is bounded by the
height of the decision tree. Thus, only a subset of similarity measures is computed during
matching process. Human-scalability is also taken into account, because we focus on re-
call instead of precision, thus reducing the user post-match effort. Besides, our approach
is user-friendly: a decision tree is easily readable and understandable since it is based on
logic. The learning phase is a self-tuning process, which automatically sets up parameters
(weights, thresholds). Consequently, adding new similarity measures does not require any
manual tuning. Finally, our approach improves the matching quality for two reasons: for
a given domain, only the most suitable similarity measures are used. This greatly reduces
the bias which occurs when too many similar similarity measures are computed. And the

87

decision tree promotes local thresholds for each similarity measure, instead of applying a
global one at the end of the matching.

Contributions. We designed a self-tuning and efficient method for the schema match-
ing problem. The main interesting features of our approach are:

• Introducing the notion of planning in the schema matching process by using a deci-
sion tree.

• Learning new decision trees which are self-tuned for a given schema matching sce-
nario thanks to machine learning techniques.

• A tool has been designed based on the planning and learning approach.

• Experiments demonstrate that our tool provides good performance and quality of
mappings w.r.t. the main schema matching tools.

Outline. The rest of the chapter is organised as follows. Section 6.1 introduces our
running example and the drawbacks of traditional matching tools. Section 6.2 focuses on
the decision tree to combine similarity measures. Section 6.5 contains an overview of our
prototype. The results of experiments for showing the effectiveness of our approach are
presented in section 6.6. Finally, we conclude in section 6.7.

6.1 Motivations
In this section, we first introduce our running example, dealing with dating websites.
Then, we describe the shortcomings of traditional schema matching tools. In the rest of
the chapter, we focus on schema matching. However, our approach is easily adaptable,
for instance to ontology alignment. For this purpose, one would require an appropriate
parser for ontologies, and also to add specific similarity measures which fully exploits
their knowledge, for example, subsumption or semantic relationships.

6.1.1 Running Example
Let us imagine that someone would like to find a date. To optimise the chances of discov-
ering a suitable date, it seems smarter to use a web service which automatically queries
several dating websites, thus requiring the matching of web forms from the dating domain.
Figures 6.1(a) and 6.1(b) respectively depict examples of dating forms. A set of expert
mappings between the two dating forms can be {(I am, I am), (Seeking a, Seeking a), (age
from, age), (Country, Country), (Photos only, With pictures only), (Online now, Online
only)}. Although the first mappings can be easily discovered, for instance thanks to ter-
minological similarity measures, the last ones seem to be harder cases. The label Online
only shares a common token with both Online now and Photos only. And the synonyms
photos and pictures could be detected either by dictionary-based or neighbouring-affinity
similarity measures.

88

(a) absolute agency (b) dream dating

Figure 6.1: Search forms of dating websites

6.1.2 Shortcomings of Traditional Matching Tools
Most matching tools use multiple similarity measures, which are then aggregated to im-
prove matching accuracy and making matching systems extensible and customisable to a
particular domain. Thus, the aggregation function is an important component of a match-
ing tool. However, as pointed out in [80, 125], the main issues are how to select and
combine the most suitable similarity measures to execute for a given domain and how to
adjust the multiple knobs (e.g., threshold, performance, quality, etc.). Three other impor-
tant issues can be added: setting local thresholds for similarity measures instead of global
ones, tuning the parameters and the tradeoff between precision and recall.

Aggregation Functions

Lots of similarity measures have been proposed in the context of schema matching [112].
And none of these similarity measures outperforms all the others on all existing bench-
marks. Therefore, most matching tools [8, 45, 39] aggregate the results obtained by sev-
eral similarity measures to improve the quality of discovered mappings. However, the
aggregation function entails major drawbacks on three aspects.

Performance. A first drawback is the application of poorly-performing similarity
measures, involving a costly time and resource consumption. Indeed, let us consider
matching two schemas with n and m elements thanks to a matcher which uses k similarity
measures. Then n×m× k similarities will be computed and aggregated. Yet, there are
many cases for which applying the k similarity measures is not necessary. In our running
example depicted by figure 6.1, computing a terminological similarity measure between
the labels (I am, I am) returns a high similarity value. And there is no need to compute
another terminological similarity measure on these labels since they are identical. As for
the labels (age from, age), a reliable similarity measure, based on a dictionary for instance,
would result in a very low similarity value since no relationship between the two elements
can be inferred. But this similarity measure could detect a synonym relationship between
photos and pictures. Thus, some techniques can either be appropriate in some cases or

89

they can give misleading results. Applying all similarity measures between every pair
of elements involves a costly time and resource consumption.

Quality. The aggregation function may negatively influence the mapping quality.
First, it might give more weight to closely-related similarity measures: using several ter-
minological techniques between the polysemous labels mouse and mouse leads to a high
similarity value, in spite of other techniques, like context-based, which could have iden-
tified that one label represents a computer device and the other an animal. Besides, the
quality due to the aggregation does not necessarily increase when the number of similarity
measures grows. Matching mouse and mouse with one or two terminological algorithms
already results in a high similarity value. Thus using more terminological algorithms
would not have an interesting impact.

Extensibility. The aggregation function often requires manual tuning (thresholds,
weights, etc.) in the way of combining the similarity measures. This does not make
it really extensible w.r.t. new similarity measures contributions. For instance, if a new
similarity measure is considered as reliable for a specific domain (based on an ontology
for example), how would it be aggregated easily by an expert ?

The Threshold Applied to the similarity measures

To decide whether a pair of schema elements should be considered as a mapping, a global
similarity value is first computed by aggregating the similarity values of several similarity
measures. Then, this global similarity value is compared with a global threshold. Yet
the value distribution is very different from a similarity measure to another. Thus, the
matching tool should have one specific threshold for each similarity measure.

Too Many Parameters

The user often has to manually tune the matching tool: edit a list of synonyms, set up
some thresholds or weights, etc. eTuner [80] has been designed to automatically tune
schema matching tools: a given matching tool (e.g., COMA++ [8] or Similarity Flooding
[94]) is applied against a set of expert mappings in several configurations until an optimal
one is discovered. However, eTuner heavily relies on the capabilities of the matching tool,
especially for the available similarity measures and its aggregation function. This tuning
phase should be automatic as much as possible while it should let a sufficient flexibility
to the tool.

Recall vs Precision

A recent panel at the XSym workshop included a discussion of the recall versus precision
tradeoff for matching tools [64]. Matching tools like COMA++ focus on a better preci-
sion, but this does not seem to be the best choice for an end-user in terms of post-effort:
consider two schemas containing 100 elements each, there is potentially 10,000 pairs
of schema elements, and the number of relevant mappings is 24. Let us assume a first
matcher discovers 16 mappings and it achieves 75% precision, it means that 12 mappings
are relevant (recall equal to 50%) and 4 have to be discarded. Then, the expert would have
to manually find the 12 missing mappings among 7744 pairs (88×88). On the contrary,
another matcher returns a set of 40 mappings, and it achieves a 75% recall. This means

90

that 18 discovered mappings are relevant (precision is equal to 45%), and the expert inval-
idates 22 irrelevant ones. But (s)he only has 6 missing mappings to manually find among
6724 pairs (82× 82). Thus, favouring the recall seems a most appropriate choice. And
note that technically speaking, it is easier to validate (or not) a discovered mapping than to
manually browse two large schemas for finding new ones. The overall metric (also known
as accuracy), proposed in [94], was designed to illustrate this post-match effort. However,
it does not differentiate mapping elimination from mapping insertion.

6.2 A Decision Tree to Combine similarity measures
Algorithm of traditional matching tools is an aggregation function (weighted sum, av-
erage, etc.), which combines the similarity values computed by different similarity mea-
sures. As it suffers from several drawbacks (see section 6.1), our idea consists in replacing
the aggregation function by a decision tree. Indeed, a schema matcher can be viewed as
a classifier [99], notably a decision tree. Given the set of possible correspondences, a
matcher labels each pair as either relevant or irrelevant. Using a decision tree enables the
improving of both quality and performance, because only the most appropriate similar-
ity measures are computed for a given pair of schema elements. Besides, each similarity
measure has its own thresholds. We first explain the notion of decision tree, illustrated by
an example, and give its interesting features for the matching context.

6.2.1 Modelling the Problem with Decision Trees
The idea is to determine and apply, for a matching scenario, the most suitable matching
techniques, by means of a decision tree [109]. Decision trees are predictive models in
which leaves represent classifications and branches stand for conjunction of features lead-
ing to one classification. In our context, a decision tree is a tree whose internal nodes
represent the similarity measures, and the edges stand for conditions on the result of the
similarity measure. Thus, the decision tree contains plans (i.e., ordered sequences) of
similarity measures. All leaf nodes in the tree are either true or false, indicating if there is
a mapping or not. We use well-known similarity measures from Second String [122], i.e.,
Levenshtein, trigrams, Jaro-Winkler, etc. We added the structural measure from BMatch,
an annotation-based similarity measure, a restriction similarity measure and a dictionary-
based [135] technique.

The similarity value computed by a similarity measure must satisfy the condition (con-
tinuous or discrete) on the edges to access a next node. Thus, when matching two schema
elements with our decision tree, the first similarity measure, at the root node, is computed
and returns a similarity value. According to this value, the edge for which its condition is
satisfied leads to the next tree node. This process will iterate until a leaf node is reached,
indicating whether the two elements should match or not. The final similarity value be-
tween two elements is the last one which has been computed, since we consider that the
previous similarity values have only been computed to find the most appropriate similarity
measure.

91

6.2.2 Matching with Decision Trees

(a) quality-based (b) performance-based

Figure 6.2: Examples of decision tree

Figure 6.2 illustrates two examples of decision trees. The first one (6.2(a)) focuses
on the quality, because it includes some costly similarity measures (context, dictionary).
The tree depicted by figure 6.2(b) aims at quickly discovering some mappings, by using
mainly terminological similarity measures. Now, let us illustrate how the matching occurs
using a decision tree. We want to match three pairs of elements from the dating web forms
with the quality-based decision tree (figure 6.2(a)):

• (Online now, With pictures only) is first matched by equality which returns 0, then
the label sum size is computed (value of 28), followed by the 3-grams algorithm.
The similarity value obtained with 3-grams is low (0.08), implying the dictionary
technique to be finally used to discover no relationship between the labels.

• on the contrary, (Online now, Online only) is matched using equality (similarity
value equals to 0), then label sum size (which returns 21), and finally 3-grams which
provides a sufficient similarity value (0.59) to stop the process.

• finally, the pair (I am, I am) owns the same labels, implying the equality algorithm
to return 1. The context similarity measure must then be computed to determine if
there is a mapping or not.

Thus, only 9 similarity measures have been computed (4 for (Online now, With pic-
tures only), 3 for (Online now, Online only) and 2 for (I am, I am)) instead of 18 (if all
distinct similarity measures from the decision tree would have been used). In traditional
matching tools based on an aggregation function, all similarity measures would have been
applied for each pair of elements.

92

6.2.3 Advantages of Using a Decision Tree
This section describes the advantages of using a decision tree in the schema matching
context:

• First of all, decision trees are simple to understand or interpret. If a given situation is
observable in a model, then the explanation for the condition is easily explained by
boolean logic. An example to illustrate this assumption is shown in figure 6.2(a): if
two labels are the same, the equality similarity measure returns 1.0 and the context
similarity measure is then computed. Indeed, there is no meaning computing more
terminological similarity measures like 3-grams or Levenshtein.

• The decision trees are able to handle both numerical and categorical data. This
feature is crucial since some similarity measures returns either a number (3-grams,
Levenshtein, etc.) or categories (dictionnary-based technique). Other techniques
are usually specialised in analysing datasets that have only one type of variable.
For example, relation rules can be only used with nominal variables while neural
networks can be used only with numerical variables.

• Matching quality does not decrease because of the decision tree. On the contrary,
it tends to improve since many related similarity measures (for example termino-
logical, or dictionnary-based, etc.) cannot have a very strong impact on a similarity
value. For instance, using several terminological algorithms (3-grams, Levenshtein,
Jaro, etc.) for matching very similar labels (e.g., power and tower) has as much
weight as another similarity measure which would discriminate the labels. Simi-
larly, different similarity measures may be applied against each schema element.

• Another advantage is the threshold, which is specific for each similarity measure.
Besides, the decision tree enables to consider several cases because a node does
not have a limited number of children. Here is an example with three cases: if a
similarity value is less than 0.3, then we consider there is no mapping. If it above
0.7, we consider there is a mapping. And between 0.3 and 0.7, another similarity
measure is computed.

• Finally, extra-processing due to the decision tree does not have a significant impact
on the performance. It handles large data in a short time. Besides, in the schema
matching context, we show in section 6.6 that it improves performance by applying
only a subset of the similarity measures. Indeed, the complexity of the matching
process in the worst case depends on the maximum height of the decision tree.
We can add the fact that the time-costly similarity measures, like the dictionary
similarity measure in decision tree 6.2(a), might appear at the bottom of the tree:
they are only computed if necessary, as illustrated by the example with the pair
(Online now, With pictures only).

However, a decision tree may work fine for a given domain, but it can be completely
inappropriate for another one. This weakness is also true for traditional approaches with
an aggregation function, for which the various weights might not ensure an acceptable
matching quality. In the present work, we have extended MatchPlanner by designing
automatically new decision trees thanks to machine learning techniques. Next section
describes our approach for learning decision trees.

93

6.3 Learning Appropriate Decision Trees
More and more schemas which have already been matched are available. Similarly, ex-
pert feedback, namely (in)validation of discovered mappings, is easily catchable thanks
to state-of-the-art GUI, and can be stored for future usage. For these reasons, machine
learning techniques can be used to automatically build decision trees [109].

In the machine learning field, decision trees are considered as (one type of) classifiers
[99]. The classification problem consists of predicting the class of an object from a set of
its attributes. For instance, we notice that today the sky is blue and there is no wind (at-
tributes), thus the weather (object) should be sunny (class). Classifiers aim at minimising
the misclassification rate, i.e., it tends to correctly classify a maximum of objects accord-
ing to their attributes. The main idea consists of selecting the attributes which correctly
classify a maximum of objects, and then focusing on harder cases which correctly classify
a few objects.

In the rest of this section, we first describe how decision tree algorithm are used in
the schema matching context. This is then illustrated by an example. Finally, the issue of
tuning precision and recall is discussed.

6.3.1 Learning a Decision Tree in the Schema Matching Context
In the context of schema matching, an object is a pair of schema elements and its class
represents its validity in terms of mapping relevance. The similarity measures and their
output, with some pair properties (for instance the size of the labels), are the attributes
of this pair. As training data, we use mappings that have been (in)validated, as well as
schemas that hold these mappings1.

Algorithm to build a decision tree, shown in algorithm 1, is briefly described step by
step. It takes as input a list of pairs with their validity, and it outputs a decision tree. From
this inputs, the learning process computes, for all pairs of the training data, the similarity
value for each similarity measure. The similarity measure which correctly classifies a
maximum of pairs (thus minimizing the misclassification rate), is selected to create a
node in the decision tree. Each subset of pairs are grouped according to their validity. If
all pairs in a group have the same validity or all similarity measures have been tried, the
group is labelled with the validity value. Else, we apply recursion on the group with the
similarity measures which have not been used.

Several advantages entail the learning of decision trees: first, tuning the parameters is
automatic, thus reducing this burden for the user. As a consequence, adding new similarity
measures is an easy task, our approach is therefore extensible. Finally, machine learning
algorithms can be tuned to promote either recall or precision. The next subsection is a
detailed learning example of a decision tree.

1Schemas are needed since some similarity measures require the schema to compute the similarity value
between elements. For instance, our structural similarity measure included in [46] needs the neighbour
elements of a pair to compute its similarity value.

94

Algorithm 1: Learning a decision tree from training data

Data : training data (all pairs with their validity)
Result : a decision tree
C← all pairs with their validity
foreach similarity measure m do

compute the misclassification rate of m for pairs of C

mbest ← m which achieved the minimum misclassification rate
create a decision node n that splits on mbest
recur the subsets of C obtained by splitting on mbest and add those nodes as children
of node n

6.3.2 A Concrete Learning Example
Back to our dating example: our user finally discovered the exact set of mappings given in
section 6.1.1 and is able to easily search for dates on the two websites. Now, let us imag-
ine that the user would like to search on a third dating website. To match this new web
form, decision trees shown in section 6.2.1 could be reused again. But it would be smarter
to learn a decision tree which is specific to the dating domain, since we already have two
schemas with their mappings. An example of such learned decision tree is shown by figure
6.3(a), in which we can see how the similarity measures were planned. First, the decision
tree algorithm has selected some similarity measures (TokenFelligiSunter, ScaledLeven-
stein, MongeElkan) which enable the discarding of irrelevant pairs of elements. More
precisely, TokenFelligiSunter discards the pairs whose similarity value is below or equal
to 1.419195. Then, pairs that are not discarded are evaluated by ScaledLevenstein, which
discards those with similarity below or equal 0.320833. And the same process applies for
MongeElkan. Next, Level2MongeElkan splits the pairs in two cases, those that should be
evaluated using SmithWaterman and those that should be evaluated using Jaro. These last
two similarity measures complete the matching by selecting the relevant pairs of elements.

The first comment about this learned decision tree deals with its size. Although our
library contains more than 30 similarity measures, only 6 were used here. Besides, for
each pair of elements that is matched with this decision tree, we only need to compute 5
similarity measures at most (when the pair reaches the leaf nodes under SmithWaterman
and Jaro). This shows that our approach is efficient to improve time performance since it
only computes a subset of the similarity measures contained in the tree.

Surprisingly, although half of the mappings have the same labels (see section 6.1.1 for
details), the equality similarity measure does not appear in the tree. The reason for this
is that this similarity measure does not correctly classify enough pairs of elements: if it
was at the root of the tree, it could correctly discover 3 mappings (which have the same
labels) as relevant, but it would not be able to assert anything for the other pairs and thus
would rely on the next similarity measure. On the contrary, TokenFelligiSunter can detect
and discard many irrelevant pairs of elements whose similarity value is below 1.419195.

Note that this learned decision tree is not necessarily the best one. Indeed, when cross-
validating it, i.e., when using the decision tree on the training data, one should expect to
discover the expert set of mappings given in section 6.1.1. In this case, we achieve a 100%

95

TokenFelligiSunter

F

<= 1.419195

ScaledLevenstein

> 1.419195

F

<= 0.320833

MongeElkan

> 0.320833

F

<= 0.427273

Level2MongeElkan

> 0.427273

SmithWaterman

<= 0.683333

Jaro

> 0.683333

F

<= 5.5

T

> 5.5

F

<= 0.444865

T

> 0.444865

(a) without tuning

TokenFelligiSunter

F

<= 1.419195

ScaledLevenstein

> 1.419195

F

<= 0.320833

MongeElkan

> 0.320833

NeighborhoodContext

<= 0.427273

Level2MongeElkan

> 0.427273

F

<= 0.147254

T

> 0.147254

SmithWaterman

<= 0.683333

Jaro

> 0.683333

F

<= 5.5

T

> 5.5

F

<= 0.444865

T

> 0.444865

(b) with tuning in favour of recall

Figure 6.3: Learned decision trees for the dating web forms

precision, namely all discovered mappings are relevant. However, the 84% recall shows
that we missed one relevant mapping, (Photos only, With pictures only). As the similarity
value of this mapping is very low when using terminological similarity measures, it could
have only been discovered thanks to a dictionary-based or neighbouring affinity similarity
measure, which might detect the pictures and photos synonyms. However, this similarity
measure does not significantly minimise the misclassification rate (it might detect a missed
relevant mapping, but it can discover irrelevant ones too) thus it was not integrated in the
decision tree. This issue is discussed with more details in the next section.

6.3.3 Tuning Precision and Recall
Machine learning algorithms usually assign the same penalty to false positive (i.e., an
irrelevant mapping that has been discovered) and to false negative (i.e., a relevant mapping
that has been missed). To increase recall on a given dataset, we assign a greater penalty to
false positives. As machine learning algorithms aim at minimising the misclassification
rate, false negatives are consequently favoured to the detriment of false positives. Thus,
we should obtain a better recall for a given dataset. Conversely, it is also possible to favour
precision by assigning a greater penalty to false negatives.

To illustrate this tuning, let us return to our dating example. The previous learned
decision was not able to achieve a 100% recall because it misses one mapping. By as-
signing a greater penalty to false positives, we are able to learn a decision tree, depicted
by figure 6.3(b). It enables the discovering of all relevant mappings, including (Photos
only, With pictures only) thanks to a neighbour affinity similarity measure. Thanks to this
new tree, we also deduce that MongeElkan was the similarity measure which mistakenly
discarded the missing relevant mapping. However, this tuning also negatively impacts pre-
cision (75%) since we discovered irrelevant mappings, probably due to the low threshold
(0.147254) for the NeighborhoodContext similarity measure.

96

Please note that this tuning step can be easily automated without expert intervention:
once a decision tree has been learned with some training data, we can cross-validate it,
i.e., match the training data with the learned decision tree. By computing the resulting
precision and recall (since we know the set of expert mappings of the training data), we
are able to check if this decision tree provides a good matching quality. Else, it is possible
to learn a new decision tree with a greater penalty either to false positives (to increase
recall) or to false negatives (to increase precision). Thus, our approach is able to provide
a tradeoff between precision and recall or to favour one of them.

6.4 MatchPlanner versus Other Tools
In this section, we compare our approach with other schema matching tools. We have
limited the comparison with the tools against which we have empirically evaluated our
approach, and the ones related to machine learning (refer to these surveys [56, 112, 124]).
The main difference between our approach and other schema matching tools deals with
the algorithm which combines similarity measures. MatchPlanner’s decision tree provides
several advantages over traditional algorithms: selection of the most appropriate similar-
ity measures for a given schema matching scenario, application of different subsets of
available similarity measures on various parts of the schemas to be matched, and the ca-
pability to promote either precision or recall. This is mainly of overview of the differences
between MatchPlanner and existing approaches. More details are given in chapter 3.2.

6.4.1 COMA++
COMA/COMA++ [31, 8] builds a matrix for each pair of schema elements and each sim-
ilarity measure. The computed similarity values are then aggregated to provide a global
similarity value for each pair. Although low weights can be set in the aggregation function
for similarity measures that are not relevant, COMA++ still computes all of them. Our ap-
proach enables us to only compute a subset of available similarity measures for each pair,
thus improving time performance. Besides, this aggregation function makes integration
of new similarity measures more difficult.

6.4.2 Similarity Flooding
Similarity Flooding [94] initially computes some correspondences thanks to a termino-
logical similarity measure, and refines them with a graph propagation mechanism. This
process ensures good time performance. However, like COMA++, Similarity Flooding
applies the same similarity measures to all pairs, and in the same order, while Match-
Planner builds plans of measures. When several elements share the same neighbouring
structure, Similarity Flooding is not able to disambiguate the correct mappings from ir-
relevant ones. Besides, with small schemas, the propagation cannot have a strong impact,
thus only relying on the single terminological measure to discover mappings.

97

6.4.3 SMB
In [93], the authors use the Boosting algorithm to classify the similarity measures, divided
into first line and second line matchers. Although this approach makes use of several sim-
ilarity measures, it mainly combine one similarity measure (first line matcher) with one
decision maker (second line matcher), while we combine plenty of similarity measures
(the decision tree being the decision maker). Besides, the decision tree enables to plan the
sequence of similarity measures to be computed, thus improving time performance.

6.4.4 AUTOMATCH / AUTOPLEX
AUTOMATCH [14] is the predecessor of AUTOPLEX [13] and it also relies on machine
learning (Naive Bayesian algorithm). The major drawback of this work is the importance
of the data instances for populating the knowledge base. Although this approach is inter-
esting on the machine learning aspect, that matching is not as robust since it only uses one
similarity measure based on a dictionary. Yet, we have noticed during our experiments
that such measures were rarely selected by our decision tree since they do not enable
to correctly classify many pairs of schema elements. And applying them on real-world
schemas often resulted in bad results since element labels were different from the names
available in the dictionary. Finally, computing a similarity value according to the number
of common instances might sometimes not be efficient, for instance when matching data
from two fusionning companies.

6.4.5 LSD / Glue
In [34], the authors proposed a full machine learning based approach called LSD. GLUE[36]
is the extended version of LSD, which creates ontology and taxonomy mappings using
machine learning techniques. In this approach, most of the computational effort is spent
on the classifiers discovery. As a difference, our approach enables the reuse of any exist-
ing similarity measures and it focuses on combining them.

6.4.6 Machine Learning Works
Decision trees have also been used in ontology matching for discovering hidden mappings
among entities [54]. Their approach is based on learning rules for matching terms in
Wordnet. In another work [53], decision trees have been used for learning parameters
for semi-automatic ontology alignment method. This approach aims at optimising the
process of ontology alignment and supporting the user in creating the training examples.
However, the decision trees were not used for classifying the most appropriate similarity
measures.

6.4.7 eTuner
Another work, eTuner [80], aims at automatically tuning schema matching tools. It pro-
ceeds as follows: a given matching tool (e.g., COMA++ or Similarity Flooding) is applied
against a set of expert mappings until an optimal configuration of its parameters is found.
Thus, eTuner heavily relies on the input matching tools and their capabilities. On the

98

contrary, MatchPlanner aims at learning the best combination of a subset of similarity
measures (not matching tools). Moreover, it is able to self-tune important features like the
preference between precision and recall.

6.5 Implementation
Our approach has been implemented in Java as a prototype named MatchPlanner. Its ar-
chitecture is depicted by figure 6.4. MatchPlanner is composed of two main components:
the matcher and the learner.

Let us first describe the matcher component. Input of the matching process consists of
a set of schemas to be matched and a learned decision tree, which is composed of similar-
ity measures. We use well-known similarity measures from [122], and we add some extra
similarity measures (our structural measure from BMatch) or based on dictionaries [135].
A decision tree also features a tradeoff between precision and recall, as discussed in sec-
tion 6.3.3. Note that our tool is provided with several decision trees, among which some
have been manually designed while others have been generated using machine learning
techniques. Once every pair of schema elements has been matched with a decision tree
(see section 6.2), MatchPlanner outputs a list of mappings, which can be optionally vali-
dated or rejected by an expert. These (in)validated mappings can be used by the learner
component.

The second component is the learner and it is in charge of generating new decision
trees (see section 6.3). The knowledge base (KB) stores schemas, similarity measures and
(in)validated mappings. The learning process uses as input a subset of these mappings
and the schemas. Machine learning algorithm to learn decision trees is based on the free
implementation of C4.5 [110], known as J48 and available in the Weka library [66]. We
have chosen C4.5/J48 algorithm because it ensures other good properties: a high classifi-
cation score, which results in a good quality, and it minimises the height of the generated
decision tree, implying better performance. It is able to combine both continuous and
discrete attributes. All the thresholds, weights, and other parameters are automatically set
up during this training phase, thus reducing the number of parameters to be tuned by an
expert. However, other decision trees algorithms (NBtree, FT, ADT, etc.) could have been
considered. Learned decision trees can then be used by the matcher component.

MatchPlanner can also simply be used as a benchmark for testing similarity measures:
by generating a decision tree which can only include the similarity measures which need to
be tested, it is possible to show the effectiveness of each similarity measure since useless
ones will be pruned during the learning process. And it will place emphasis on their use
(for instance, detecting if a similarity measure is mainly used to discard irrelevant pairs,
or to determine the relevance of specific mappings, or if it is only appropriate for a given
domain, etc.).

6.6 Experiments
In this section, we demonstrate the benefit of MatchPlanner decision tree when com-
pared to other schema matching tools, reputed to provide an acceptable matching quality:
COMA++[8], Similarity Flooding[94] and SMB[93]. To the best of our knowledge, the

99

Figure 6.4: MatchPlanner Architecture

two first tools are the only ones available for experiments while the authors of SMB,
which is based on machine learning techniques too, shared their results. These tools are
described with more details in section 3.2. We first present the experiments protocol, then
we evaluate and compare the matching tools w.r.t the quality aspect, which is crucial in
schema matching. Next, we show that MatchPlanner ensures good time performance, an
important aspect when dealing with large and / or numerous schemas. We also demon-
strate its capability to enhance recall. At last, we have run experiments to evaluate its
robustness.

6.6.1 Experiments Protocol
Scenarios. In this section, a scenario is composed of two schemas (mainly from the same
domain) which are to be matched. For instance, the running example depicted by figure
6.1 is a scenario from the dating domain. COMA++ and Similarity Flooding, which can
only match two schemas at a time, have been tested against 7 scenarios:

• book and university have been widely used in the literature [45, 37]. Both are
available in XBenchMatch benchmark [42].

• thalia [72] is another benchmark with 40 schemas describing the courses offered
by some universities.

• travel are schemas extracted from airfare web forms [1].

• person schemas describes people. However, they have been manually designed for
the schema matching evaluation, and are available in XBenchMatch too.

100

• currency and sms are popular web services which can be found at http://www.seekda.com.

On the contrary, SMB takes as input ontologies. Thus, to evaluate our approach w.r.t. this
tool, we use web form scenarios proposed in [93], which are similar to our (simplified)
running example. Consequently, each web form scenario is composed of two schemas (or
web forms). They deal with various domains, from betting to e-commerce. The average
schema size for those scenarios is 17 elements.

Learning. MatchPlanner decision trees have been specifically learned for each sce-
nario. For the web form scenarios, we used for consistency the same protocol as SMB,
i.e., 60 web form scenarios as training data to generate a decision tree, which is then
used to match a web form scenario among the remaining ones. For the 7 other scenarios
(for comparing with COMA++ and Similarity Flooding), training data consisted of 20
scenarios. Results for MatchPlanner are the average scores obtained after 40 runs.

Miscellaneous. Experiments were run on a 2.0 Ghz CPU with 2 Go of RAM com-
puter, running Java 1.6.0_07.

6.6.2 Quality Aspect
We first evaluate MatchPlanner’s matching quality with SMB, then with COMA++ and
Similarity Flooding. As other matching tools does not offer the possibility to tune prefer-
ence between recall and precision, we did not tune this parameter for MatchPlanner.

Comparing matching quality with SMB. On the 176 scenarios from [93], which are
represented as ontologies with RDF format, we successfully converted 70 of them into
XML. Using the same training protocol than SMB (60 training scenarios), MatchPlanner
obtains an average 74% f-measure for these 70 scenarios. The authors of SMB sent us
their results for 40 scenarios among the 176. They achieve an average 72% f-measure on
these 40 scenarios.

To evaluate both tools on the same basis, we kept the common scenarios between the
70 ones that we managed to convert and the 40 ones for which we got SMB results, thus
leading to 15 common scenarios. Figure 6.5 depicts the average scores obtained by the
two matching tools for these 15 scenarios. We notice that SMB achieves a slightly better
f-measure than MatchPlanner (73% against 71%). But our approach discovers more rele-
vant mappings (recall equal to 83%). Thus, as we consider that promoting recall reduces
post-match effort for the user, we notice that MatchPlanner obtains a higher weighted
f-measure, labelled f-measure(2). SMB’s weighted f-measure does not vary since the pre-
cision and recall values are very close. Both tools have a f-measure variance of 0.03,
which shows their robustness since there is no high dispersion of the values from the
average.

Comparing matching quality with COMA++ and Similarity Flooding. The first
figure 6.6 illustrates the precision obtained by the matching tools for each scenario. On 5
scenarios, COMA++ achieves the best precision. However, it is also the only tool which
is not able to discover any match for one of the scenarios (travel). Similarity Flooding
obtains twice the best precision, but it achieves the lowest score on the 5 others scenarios.
Although MatchPlanner does not emphasise the precision, it is ranked second in terms of
precision for all scenarios.

The next figure 6.7 depicts the recall obtained by the tree matching tools for each
scenario. For the 7 scenarios, MatchPlanner obtains the highest recall (mostly above

101

Figure 6.5: MatchPlanner and SMB average scores for 15 web forms scenarios

60%), and it discovers all the relevant mappings for 3 scenarios. We remind the reader that
our tool favours the recall since we believe that a high recall reduces the post-match effort
of the user. Leaning towards recall is possible thanks to the numerical conditions on the
edges of the decision trees: they have sufficiently low thresholds to get several matches,
and these results are refined when going down in the tree or when a categorical similarity
measure is encountered. Both Similarity Flooding and COMA++ mainly achieve a lower
recall (less than 60%), which indicates that an expert would provide more effort while
browsing the input schemas to manually discover the lacking mappings.

Figure 6.8 depicts the f-measure that each matching tool experimented on the 7 sce-
narios. Our tool performs best on 6 scenarios, while COMA++ is better on the person
scenario. We notice that COMA++ might give poor results in 2 cases (book and travel).
Similarity Flooding obtains the lowest f-measure in 4 scenarios. The terminological sim-
ilarity measures combined with a propagation process may not reveal flexible enough to
achieve better results, even with average-sized schemas (thalia and currency). And we
note that the web-based scenarios (travel, currency, sms) are more difficult to match
than the others: the f-measure of the matching tools slightly decreases for these scenarios,
probably due to their strong heterogeneity.

In the f-measure formula, the β parameter, which indicates importance of recall over
precision, is mainly tuned to 1, thus showing that both measures are equally important.
However, we do not believe that recall and precision should be given the same weight.
Let us give an example with the sms scenario, composed of two schemas with 45 and 64
elements: there are 20 relevant mappings between the schemas among 2880 possibilities
(45×64, assuming that we are only considering 1:1 mappings). MatchPlanner discovered
10 relevant mappings and 12 irrelevant ones. Thus, during the post-match effort, the
expert first has to manually remove the irrelevant mappings. This step mainly consists in
validating or not the discovered mappings, which can be done quickly. Then (s)he has
to find the 10 other relevant mappings among 1878 possibilities (35× 54− 12). With
COMA++, which discovered 4 relevant mappings and 3 irrelevant ones, the expert would

102

Figure 6.6: Precision obtained by the matching tools on the 7 scenarios

have to manually find 16 forgotten mappings among 2457 possibilities (41×60−3). As
for Similarity Flooding, it discovered 2 relevant mappings and 4 irrelevant ones, thus
implying the expert to manually find the 18 forgotten mappings among 2662 possibilities
(43× 62− 4). Based on this assumption, the recall should be given more weight. In
addition to the usual f-measure (for which β is set to 1), we also give results for a weighted
f-measure for which recall is given twice more importance than precision (thus β is set to
2).

Figure 6.9 depicts the f-measure for which we give more weight to recall. On this
figure, we notice that MatchPlanner obtains the best weighted f-measure in all scenar-
ios. However, its f-measure slightly decreases for 2 scenarios (university and thalia) in
which the precision is higher than the recall. But it improves for scenarios like travel,
person, currency. By tuning the f-measure, Similarity Flooding mainly do not vary its
results. This tool is quite balanced enough between precision and recall. On the contrary,
COMA++, which favours the precision, has a lower f-measure in most scenarios. When
evaluating the result of the matching w.r.t. the post-match effort, MatchPlanner is the tool
which reduces most the expert effort.

Table 6.1 shows a summary of the quality results obtained by COMA++, Similarity
Flooding and MatchPlanner. COMA++ achieves the best average precision. However,
both COMA++ and SF obtain an average recall below 50% while MatchPlanner discov-
ered 81% of all relevant mappings. Finally, COMA++ and SF have an average f-measure
slightly above 50%. On the contrary, our tool achieves an acceptable 74% f-measure.

6.6.3 Performance Aspect
SMB time performance. We were not able to get the code for SMB to run experiments,
however the authors did provide their results to us. According to the SMB authors, the
learning and matching process of their approach takes several hours. On the contrary,
MatchPlanner requires an average of 108 seconds both to learn a decision tree (over 60

103

Figure 6.7: Recall obtained by the matching tools on the 7 scenarios

Average Precision Average Recall Average F-measure
COMA++ 74 41 51
Similarity Flooding 63 49 53
MatchPlanner 71 81 74

Table 6.1: Summary of quality results: MatchPlanner achieves the highest average f-
measure

training web forms scenarios) and to match another web form scenario. Due to the large
number of training data, the learning phase is quite time-consuming. We show in the next
paragraph that training on a few data drastically reduces time performance.

Comparing time performance with COMA++ and Similarity Flooding. Figure
6.10 depicts the average time required to match each scenario. MatchPlanner’s time per-
formance also includes the learning time. For the scenarios with small schemas (less than
20 elements), the three matching tools performed the matching in a few seconds (less than
3 seconds). With larger schemas (currency and sms, whose schemas contains more than
50 elements), Similarity Flooding still performs well (less than 6 seconds). MatchPlanner
needs 2 more seconds to match the schemas of the sms scenario. COMA++ is the slowest
matching tool in most cases and it takes nearly 20 seconds to match the sms scenario.
Although MatchPlanner has more similarity measures in its library than COMA++, it ob-
tains a better time performance for the sms scenario due to its decision tree, which is able
to compute a subset of the similarity measures to match every pair of elements.

6.6.4 Promoting Recall
As described in section 6.3.3, our tool is able to let users choose a preference between
precision or recall. Similarly to most schema matching tools, MatchPlanner promotes
by default precision. We thus study the impact on the quality when promoting recall,

104

Figure 6.8: F-measure (β = 1) obtained by the matching tools on the 7 scenarios

i.e., when we set a greater penalty to false positives. When it is set to 1, it means that
both precision and recall have the same importance (this is the default value). For these
experiments, we have computed the average results of 150 scenarios for various penalty
values. Training data consisted of 20 scenarios. Impact of randomness was limited since
we launch 40 runs for each scenario and penalty value. According to the schema size (and
their sets of relevant mappings), there is no significant impact when tuning the penalty of
false positives above 5.

Figure 6.11 depicts the various metrics (precision, recall and f-measure) when tuning
the penalty of false negatives. Without any tuning (weight set to 1), MatchPlanner clearly
promotes precision (68% against 42% recall) and it achieves a 51% f-measure. When giv-
ing twice more importance to recall, precision and recall achieves the same score (around
58%). Thus, recall has indeed increased, meaning that MatchPlanner was able to discover
more relevant mappings. However, this improvement was performed to the detriment of
precision. Besides, f-measure now reaches 58%. Similarly, with bigger penalties, we no-
tice that recall still slightly increases (up to 65%) while precision decreases. However,
f-measure does not vary and is always equal to 58%. These experiments show how it is
possible to take into account an important user preference. Note that precision can be
promoted in a similar way by setting a greater penalty to false negatives.

6.6.5 Robustness of our Approach
We finally compare decision trees to other classifiers (from the Weka library [66]) to
demonstrate their robustness in terms of matching quality. Figure 6.12 depicts the average
quality results (precision, recall and f-measure) obtained by different classifiers on more
than 6000 runs (for which a schema matching scenario and parameters were randomly
chosen). Classifiers are ranked from left to right by decreasing f-measure. We notice
that decision trees (J48 and its alternative J48graft, NBTree and FT) achieve an average

105

Figure 6.9: F-measure (β = 2) obtained by the matching tools on the 7 scenarios

f-measure between 60% and 65%, and they perform better than most classifiers. Con-
versely, classifiers based on aggregation functions (SLog and VP) have a lower f-measure
(respectively 57% and 35%).

Some classifiers like NNge and IB1/IBk, based on examples, obtain the best average
f-measures (around 70%). However, these classifiers, like aggregation functions, are time-
consuming matchers, since they do not enable to select a subset of similarity measures for
a given schema matching scenario.

6.6.6 Discussion
In these experiments, Similarity Flooding is the fastest matching tool, probably because
it only computes one terminological similarity measure. However, these results are mit-
igated by the mapping quality: Similarity Flooding obtains the lowest f-measure for 4
scenarios. We also point out that Similarity Flooding similarity measure is not efficient
from the quality point of view with heterogeneous schemas. On the contrary, COMA++
computes 17 similarity measures for each pair of schema elements. Thus, its time per-
formance strongly decreases w.r.t the number of schema elements. Besides, its good pre-
cision is obtained to the detriment of the recall. Thus, COMA++ does not achieve the
best f-measure in most scenarios. SMB is the closest work to our approach since it uses a
machine learning algorithm. For almost similar results in terms of f-measure, MatchPlan-
ner is faster than SMB. And our approach clearly focuses on recall instead of precision.
Gathering advantages of both approaches could be an interesting ongoing work. Match-
Planner can be seen as a tradeoff between time performance and quality: although we
do not compute all the similarity measures from our library due to the decision tree, the
matching quality is mainly better than the one produced by the other matching tools. And
it enables us to spare some resources, reducing the time to execute the matching process.
Promoting either precision or recall is an innovative capability that MatchPlanner is the
first to provide. We have demonstrated that recall could indeed be improved up to 25%.

106

Figure 6.10: Time performance for matching each scenario

Finally, our approach based on decision trees has shown robustness in terms of matching
quality w.r.t. other classifiers.

6.7 Conclusion
In this chapter, we have presented a self-tuned and efficient approach for schema match-
ing. Unlike other mathing approaches which try to aggregate a given set of similarity
measures, our approach makes use of a decision tree to combine the most appropriate
similarity measures. The first advantage of using the decision tree is performance im-
provement of schema matching process since we do not compute all similarity measures
for a given pair of schema elements: only a subset of these similarity measures is used
for matching from a large library of similarity measures. By relying on machine learning
techniques, we are also able to plan the most appropriate similarity measures for a given
scenario, thus providing more flexibility, automatically tuning most parameters and im-
proving matching quality. To the best of our knowledge, MatchPlanner is also the first
tool capable of letting users choose a preference between precision and recall.

Our approach has been implemented and we run several experiments to demonstrate
the benefit of the decision tree. Dealing with quality aspect, MatchPlanner outperforms
schema matching tools based on aggregation function while it provides similar quality
with SMB, another machine learning based tool. It obtains an acceptable time perfor-
mance w.r.t. other tools, although learning on large training data require several minutes.
Experiments about the preference between precision and recall have shown that we are
able to improve recall up to 25%. We also demonstrate the robustness of the decision tree
w.r.t. other classifiers.

We have noticed that the decision trees do not obtain good results in all schema match-
ing scenarios. This can result either from the lack of appropriate training scenarios or

107

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5

va
lu

e
in

 p
er

ce
nt

weight of false positives

precision
recall

f-measure

Figure 6.11: Impact on the quality when promoting recall

similarity measures, or because of the decision tree algorithm. However, decision trees
are only one classifier among many others (e.g., Bayes networks, rule-based classifiers,
etc.) and they could be replaced to increase schema matching quality. Another improve-
ment deals with the parameters. Indeed, the number of training scenarios has an influence
during the learning process. Thus, we plan to study impact of this parameter. As a broader
insight, we believe that schema matching community needs to build generic tools, which
takes into account the various features of classifiers in order to select the most appropriate
for a given schema matching scenario.

In the next chapter, we extend MatchPlanner to design a meta-approach, i.e., a factory
of schema matchers. Contrary to traditional matching tools, this novel work does not
generate a list of mappings between a set of schemas. Rather, it produces a schema
matcher which is appropriate to match this set of schemas. Besides, it aims at showing
impact of various parameters.

108

Precision

Recall

F−measure

 0%

 20%

 40%

 60%

 80%

 100%

NNge IBk IB1 J48graft J48 NBTree JRip MLP FT SLog VFI BayNet ADT DecTable SMODecStump CR VP HP 0R

V
al

u
es

Figure 6.12: Decision trees (J48, NBTree) achieve good quality results w.r.t. other classi-
fiers

109

Chapter 7

YAM: a Schema Matcher Factory

The diversity of schema matching tools hints at the inherent complexity of this problem.
Different tools are designed to overcome different types of schema heterogeneity includ-
ing differences in design methodologies, differences in naming conventions, and differ-
ences in the level of specificity of schemas, among many other types of heterogeneity.
Furthermore, different matchers may be designed to help with very different integration
tasks. Some are designed to help in automatically matching web service interfaces for
the purpose of wrapping and composing web services. Others are designed for matching
large, complex legacy schema to facilitate federated querying. As explained in [125, 100],
the proliferation of schema matchers and the proliferation of new (often domain-specific)
similarity measures used within these matchers has left data integration practitioners with
the very perplexing task of trying to decide which matcher to use for the schemas and
tasks they need to solve.

Most matching tools are semi-automatic meaning that to perform well, an expert must
tune some (matcher-specific) parameters (thresholds, weights, etc.). Often this tuning
can be a difficult task as the meaning of these parameters and their effect on matching
quality can only be seen through trial-and-error. Lee et al. [80] have shown how im-
portant (and difficult) tuning is, and that without tuning most matchers perform poorly.
To overcome this, they proposed eTuner, a supervised learning approach for tuning these
matching knobs. However, a user must still commit to one single matcher and then tune
that matcher to their specific domain (i.e., set of training schemas with their correct map-
pings). If the user makes a poor choice of matcher to begin with, for example, by choosing
a matcher that does not consider structural schema similarity when this is important in the
domain, eTuner cannot help. Furthermore, knowing beforehand whether semantic simi-
larity or structural similarity or syntactic similarity (or some combination of these) will
be most important in a domain is not an easy task.

In this chapter, we propose YAM, which is actually not Yet Another Matcher. Rather
YAM is the first schema matcher generator designed to produce a tailor-made matcher
based on user requirements. In YAM, we also use a supervised learning approach. The
novelty of YAM is that unlike eTuner or any other schema matcher, YAM performs learn-
ing over a large set of matchers and a large set of similarity measures. Over this large
search space, using a small amount of training data, YAM is able to produce a “dedi-

110

cated” or tailor-made matcher. The matchers YAM considers are classifiers (the basis of
most matchers). YAM uses a large library of classifiers and similarity measures, and is
extensible in both dimensions. In particular, new similarity measures custom-made for
new domains or new integration tasks, can easily be added to YAM.

Schema matchers (often implicitly) are designed with one or a few matching tasks in
mind. A matcher designed for automated web service composition may use very stringent
criteria in determining a mapping, that is, it may only produce a mapping if it is close to
100% confident of the correspondence’s accuracy. In other words, such a matcher is using
precision as its performance measure. In contrast, a matcher designed for federating large
legacy schema may produce all mappings that look likely, even if they are not certain.
Such a matcher may favor recall, over precision, because the human effort in “rejecting”
a bad mapping is much less than the effort needed to search through large schemas and
find a missing one. This difference can make a tremendous difference in the usefulness
of a matcher for a given task. In YAM, we let a user specify a preference for precision or
recall, and we produce a dedicated matcher that best meets the users needs. YAM is the
first tool that permits the tuning of this very important performance trade-off.

Like previous supervised-learning approaches to schema matching [34, 93, 36], YAM
requires a knowledge-base containing training data in the form of pairs of schemas with
their (correct) mappings. Unlike most matchers, YAM can also take as input a subset of
correct mappings over the new schemas a user wishes to match. Such “expert mappings”
are often available. For example, in matching legacy schemas, the correct mapping for
some keys of central tables may be known to a user. YAM does not require such knowl-
edge, but can use it, if available, to produce a better dedicated matcher.

Contributions. The main interesting features of our approach are:

• YAM is the first matcher factory capable of generating a dedicated matcher for a
given scenario and according to user inputs. In the experiments, we show YAM has
generated, for 200 schema matching scenarios, different dedicated matchers (i.e.,
they are based on different algorithms such as decision trees, rules, aggregation
functions, etc.).

• Our approach integrates a user preference between precision or recall during the
generation process. We demonstrate the impact of such preference on the matching
quality.

• YAM is also able to use correct mappings when provided by an user. Indeed, most
matchers do not need to focus on these provided mappings during generation of the
dedicated matcher. Thus, we observe a strong increase of the matching quality.

• We finally evaluate our work with traditional matching tools. YAM achieves com-
parable results in terms of matching quality.

Outline. The rest of this chapter is organised as follows. Section 7.1 introduces some
definitions and a running example. Section 7.2 gives an overview of our approach while
section 7.3 contains the details. The results of experiments for showing the effectiveness
of our approach are presented in section 7.4. Finally, we conclude in section 7.5.

111

7.1 Preliminaries
In this section, we define a “dedicated schema matcher” and we illustrate this notion with
a running example. Then, we describe our schema corpus.

7.1.1 Definitions
Definition 15 (Dedicated schema matcher): A dedicated matcher is the most appropriate
matcher for a given schema matching scenario. Algorithm and parameters (thresholds,
weights, etc.) are automatically selected to produce the best results according to some
inputs (training scenarios, precision or recall preference, input expert mappings).

7.1.2 Running Example
Let us come back to our hotel booking scenario, depicted by figures 2.1(a) and 2.1(b) from
chapter 2.1. To match these schemas, YAM first produces several schema matchers. Then,
it selects among them the dedicated one. Figure 7.1 depicts an extract of the dedicated
matcher for this hotel booking scenario. This schema matcher is based on the Bayes Net
classifier. Each similarity measure is associated with a probabilistic distribution table. For
instance, if the Levenshtein measure returns a similarity value between−∞ and 0.504386,
there is a 99.5% chance that the current pair of schema elements is not relevant. Using
this dedicated matcher against the hotel booking scenario, we were able to discover the set
of mappings shown in figure 7.2. We notice that 12 out of the 13 relevant mappings have
been discovered. Two irrelevant mappings have also been found, namely (Hotel Location,
Hotel Name) and (Children:, Chain).

Figure 7.1: Extract of the dedicated matcher

7.2 Overview of YAM
YAM (Yet Another Matcher) is a matcher factory tool, which generates a dedicated schema
matcher according to user preferences and some expert mappings.

112

Figure 7.2: Mappings discovered using the dedicated matcher

7.2.1 Motivations
The motivation for our work is the following:

• There is no schema matching tool which performs best for all matching scenar-
ios. Although matching tools enable the user to tune some parameters (strategies,
weights, thresholds, etc.), the same algorithm, for instance, COMA++’s aggrega-
tion function [8], is always used independently of the schema matching scenario.
eTuner [80] automatically tunes schema matching tools by tuning the input parame-
ters used by the matcher. Thus, it mainly depends on their capabilities since it finds
the best parameters configuration. Specifically, eTuner fined the best parameter set-
tings for a given matching algorithm. On the contrary, YAM is able to produce the
dedicated schema matcher for a given scenario. Each generated schema matcher has
its own features, among which a different algorithm (aggregation functions, Bayes
network, decision trees, etc.). This is the adaptable feature of our approach.

• User intervention is always required, at least to check the discovered mappings. In
other systems, users are also asked to edit synonyms list, reduce schema size [39],
or tune various parameters. In the same spirit, YAM uses some user inputs, but
of a different form. Specifically, YAM can optionally use a preference between
precision and recall, and some expert mappings (that is, a small number of correct
mappings). This small amount of input enables the use of supervised learning to
create a dedicated schema matcher. YAM is able to convert user time spent to
give preferences into better quality results. Indeed, most schema matching tools
focus on a better precision, but this does not seem to be the best choice in terms
of post-matching effort, i.e., the quantity of work required by an expert to correct
discovered mappings. Technically speaking, it is easier for the expert to validate
(or not) a discovered mapping than to manually browse two large schemas for new
mappings that the tool may have missed.

113

• Some matching tools are said to be extensible, for example to add new similarity
measures. However, this extensibility is constrained by some parameters, which
need to be manually updated (for instance, adjusting thresholds, re-weighting val-
ues, etc.). Thanks to machine learning techniques and according to user inputs,
YAM automatically learns how to combine similarity measures into a classifier to
produce the dedicated schema matcher. Thus, our approach is extensible in terms
of similarity measures, but also in terms of classifiers.

Now let us discover what is inside our factory of schema matchers.

7.2.2 YAM Architecture
To the best of our knowledge, our approach is the first to propose a factory of schema
matchers. The intuition which led to our work is as follows: the algorithms which combine
similarity measures provide different results according to a given schema matching sce-
nario. Thus, YAM aims at generating for a schema matching scenario a dedicated schema
matcher. For this purpose, YAM uses machine learning techniques during pre-match
phase. It can be applied to match pairs of edge-labeled trees (a simple abstraction that can
be used for XML schemas, web interfaces, Jason data types, or other semi-structured or
structured data models).

Figure 7.3: YAM architecture

Figure 7.3 depicts YAM’s architecture. Circles represent inputs or outputs (for the
system) and the rectangles stand for processes. Note that a dashed circle means that this
input is optional. YAM only requires one input, the set of schemas to be matched (i.e.,

114

a schema matching scenario). However, the user can also provide additional inputs, i.e.,
user preferences, similar schemas and/or expert mappings. The preference consists of a
precision and recall tradeoff. Expert mappings (between the schemas to be matched) and
similar schemas (which share some features with the schemas to be matched, for instance
the same domain) are used by the matcher generator to produce a better dedicated matcher.
YAM is composed of two main components: the learner is in charge of generating one
tuned schema matcher for each classifier in the KB (see section 7.3.1 for more details).
This component interacts with the Knowledge Base (KB). This KB stores previously gen-
erated matchers, a set of classifiers, a set of similarity measures, training data, and expert
mappings which have already been given or validated. Next step is the selection of the
dedicated schema matcher among all those generated by the learner. The selector adopts
a strategy according to user inputs to choose this dedicated schema matcher, which is
then stored in the KB (see section 7.3.2 for more details). The dedicated schema matcher
can obviously be used for matching the input schemas, thus producing a list of discovered
mappings between the schemas. Note that the matching process is specific to the classifier
that will be used and is not detailed in this thesis.

The current version of YAM includes 20 classifiers from the Weka library [66] and
30 similarity measures, including all the terminological measures from the Second String
project1, and some structural and semantic measures. YAM’s knowledge base contains
a large set of 200 schemas from various domains (betting, hotel booking, dating, etc.)
gathered from the web.

7.3 Learning a Dedicated Matcher
In this section, we describe YAM’s approach for learning a matcher (which we call a ded-
icated matcher) for a given matching scenario. Any schema matcher can be viewed as
a classifier [99]. Given the set of possible correspondences (the set of pairs of elements
in the schemas), a matcher labels each pair as either relevant or irrelevant. Of course, a
matcher may use any algorithm to compute its result – classification, clustering, an aggre-
gation over similarity measures, or any number of ad hoc methods including techniques
like blocking to improve its efficiency.

In YAM, we use an extensible library of classifiers (in our experiments including the
20 classifiers from the Weka library [66]) and train them using an extensible library of
similarity measures. (in our experiments including all the measures from the popular Sec-
ond String project). The classifiers include decision trees (J48, NBTree, etc.), aggregator
functions (SimpleLogistic), lazy classifiers (IBk, K*, etc.), rules-based (NNge, JRip, etc.)
and Bayes Networks.

The generation of a dedicated matcher can be split into two steps: (i) training of
matchers, and (ii) final matcher selection.

7.3.1 Matcher Training
YAM trains each matcher using its knowledge base of training data and expert mappings
(if available). We begin our explanation with an example.

1http://secondstring.sourceforge.net

115

Example: Let us consider the pair (searchform, search) from our running example.
We computed the similarity values of this pair with each similarity measure in our li-
brary. For our example, let us assume we have three similarity measures: AffineGap =
14.0, NeedlemanWunsch = −4.0, JaroWinkler = 0.92. From these values, a matcher must
predict if the pair is relevant or not.

To classify a pair as relevant or not, a classifier must be trained. YAM offers two
training possibilities: either the user has provided some expert mappings, with their rele-
vance, or YAM uses mappings stored in a knowledge-base (KB). Note that if the user has
not provided a sufficient number of mappings, YAM will extract some more from the KB.
When the user has not provided any expert mappings, the matcher is learned from the KB,
i.e., YAM will use a matcher that provides the best average results on the KB.

During training, all the thresholds, weights, and other parameters of the matcher are
automatically set. Although each matcher performs differently, we briefly sum up how
they work. First, they select the similarity measures which provides a maximum of cor-
rectly classified mappings. Then, the similarity measures that might solve harder cases
are taken into account.

Example: If the user has provided the following expert mappings (* City:, City) and
(State:, State), terminological measures like JaroWinkler or Levenshtein will be first con-
sidered by the machine learning algorithms. Indeed, they enable a correct classification
of both pairs.

In general, these algorithms aim at reducing the misclassification rate. Two errors can
occur while training: classifying an irrelevant mapping as relevant (a.k.a. a false positive
or extra incorrect mapping) and classifying a relevant mapping as irrelevant (a.k.a. a
false negative or a missed correct mapping). The first error decreases precision while the
second one decreases recall. Many algorithms assign the same penalty to a false positive
(i.e., an irrelevant pair that has been discovered) and to a false negative (i.e. a relevant pair
that has been missed). To increase recall on a given dataset, we assign a greater penalty
to false positives. Thus, we should obtain a better recall for a given dataset. Note that
promoting recall (respectively precision) mainly decreases precision (respectively recall).
Our approach is able to generate matchers which respect a user specified preference for
recall or precision.

At the end of this step, YAM has generated a trained matcher for each classifier in the
KB.

7.3.2 Selecting a Dedicated Matcher
A dedicated matcher is selected according to its accuracy on the given training data (from
the KB and possible expert mappings and/or similar schemas). To fulfill this goal, we ap-
ply cross-validation process, i.e., each generated schema matcher is used to match training
data and optional user inputs (expert mappings and similar schemas). Then, we compute
the scores (precision, recall and F-measure) obtained by each schema matcher. Different
strategies can be applied to select the dedicated schema matcher:

• when expert mappings/similar schemas are provided, the schema matcher which
achieves the best F-measure on these expert mappings/similar schemas is selected
as the dedicated one.

116

• when recall (resp. precision) is promoted, the schema matcher which achieves the
best recall (resp. precision) on the training data is selected as the dedicated one.

• without any user input, the schema matcher which achieves the best F-measure on
the training data is selected as the dedicated one.

Example: Let us imagine that the user did not provide any input and that we have
generated 3 matchers, named NNge, J48 and SMO. They respectively achieve the follow-
ing f-measure during cross-validation: 0.56, 0.72 and 0.30. Thus, J48 would be chosen
as the dedicated matcher.

7.3.3 YAM versus Other Approaches
To the best of our knowledge, YAM is the first schema matcher factory. Most schema
matching tools [8, 9, 94, 36, 14, 93] only rely on one algorithm (mainly an aggregation
function) and they produce a set of mappings, not a schema matcher. eTuner [80] aims
at automatically tuning such matching tools and consequently, it strongly relies on their
capabilities. Conversely, YAM learns a dedicated matcher for a given scenario. It is also
able to integrate important feature like user preference between recall and precision. Con-
trary to eTuner, YAM is extensible in terms of similarity measures and classifiers, thus
enhancing the possibilities of our tool. Authors of [100] have proposed to select a rele-
vant and suitable matcher for ontology matching. They have used Analytic Hierarchical
Process (AHP) to fulfill this goal. They first define characteristics of the schema matching
process divided into six categories (inputs, approach, usage, output, documentation and
costs). Users then fill in a requirements questionnaire to set priorities for each defined
characteristic. Finally, AHP is applied with these priorities and it outputs the most suit-
able matcher according to user requirements. This approach suffers from two drawbacks:
(i) there is no experiment demonstrating its effectiveness and (ii) currently there does not
exist a listing of all characteristics for all matching tools. Thus, the user would have to
manually fill in these characteristics.

7.4 Experiments
In these experiments, we first demonstrate that YAM is able to produce an effective dedi-
cated matcher. Thus, we evaluate the results of generated matchers against 200 scenarios.
Then, we measure the quality impact according to the number of training scenarios. Our
goal is to show that the amount of training data needed to produce a high performing
matcher is not onerous. Next, we study the impact of a user preference between recall
and precision. Then we consider the performance of YAM with respect to the number
of expert mappings. Finally, we compare our results with two matching tools that have
excellent matching quality, COMA++ [8] and Similarity Flooding [94]. These tools are
described in more detail in section 1.

Schema corpus. To demonstrate the effectiveness of our approach, we used several
schema matching scenarios:

• university describes university departments and it has been widely used in the lit-
erature [46, 37].

117

• thalia [72] is a benchmark describing the courses offered by some worldwide uni-
versities.

• travel are schemas extracted from airfare web forms [1].

• currency and sms are popular web services which can be found at http://www.seekda.com.

• webforms is a set of 176 schema matching scenarios, extracted from various web-
sites by the authors of [93]. They are related to different domains, from hotel book-
ing and car renting to dating and betting.

For all these scenarios, correct (relevant) mappings are available, either designed man-
ually or semi-automatically. We use these schemas, and their correct mappings, as training
data for YAM.

Protocol. Experiments were run on a 3.6 Ghz computer with 4 Go RAM under Ubuntu
7.10. Our approach is implemented in Java 1.6. In training, we used 200 runs to minimize
the impact of randomness.

7.4.1 Comparing generated matchers
We begin with a study of which matchers were selected as dedicated matchers for different
matching scenarios. This study highlights how different the performance of each match
can be on different scenarios, and therefore the importance of matching factory tool such
as YAM for selecting among these matchers to produce an effective matcher.

We have run YAM against 200 scenarios, and we measured the number of times a
given matcher is selected as the dedicated matcher. For this evaluation, we included no
expert mappings, so all matchers were simply trained with the KB. The KB contained 20
scenarios, and this process took roughly 1200 seconds to produce a dedicated matcher for
each given scenario. We first present figure 7.4, which shows the average precision, recall
and f-measure of all matchers over the 200 scenarios. The results of some schema match-
ers might seem very low, but we have explained that matchers have their own features and
they can be appropriate - or not - for a given scenario. This is a reason why YAM keeps
the dedicated schema matcher. Besides, figure 7.5 depicts the number of scenarios (out of
200) for which each matcher was selected as the dedicated matcher. Note that 2 match-
ers, VFI and BayesNet, are selected in half of the scenarios. These two matchers can be
considered as robust as they provide acceptable results in most scenarios in our KB. How-
ever, matchers like CR or ADT, which have a very low average f-measure on these 200
scenarios (5% for CR and 28% for ADT in figure 7.4), were respectively selected 3 and 10
times. This shows that dedicated matchers based on these classifiers are effective, in terms
of quality, for specific scenarios. Thus, they can provide benefits to some users. These
results support our hypothesis that schema matching tools have to be flexible. YAM, by
producing different matchers and selecting the best one for a given scenario, fulfills this
requirement.

We also note that aggregation functions, like SLog or MLP, which are commonly used
by traditional matching tools, are only selected as dedicated matchers in a few scenarios.
Thus, they do not provide optimal quality results in most schema matching scenarios.
These figures also depict some results of our MatchPlanner approach, presented in the
previous chapter. It is based on the J48 decision tree, which obtains average results here:

118

Precision

Recall

F−measure

 0%

 20%

 40%

 60%

 80%

 100%

BayNet VFI NBTree IB1 JRip NNge SLog J48 IBk J48graft MLP VP FT DecTable ADT SMO CR HP DecStump 0R

V
al

u
es

Figure 7.4: Average scores of each matcher over 200 scenarios

its average f-measure is around 40%, and it is only selected as a dedicated matcher a
few times. However, these mitigated results can be minimised with the fact that 5 other
classifiers are decision trees. Among these decision trees, we notably notice that NBTree
and ADT are respectively selected as dedicated matchers 26 and 10 times. Thus, although
J48 is not obviously the best choice, a schema matcher based on a decision tree In the next
section, showing the impact of the parameters, we only keep the 5 most robust classifiers,
namely VFI, BayesNet, NBTree, NNge and IB1.

7.4.2 Impact of the Training Scenarios
Figure 7.6 depicts the average f-measure of several matchers as we vary the number of
training scenarios. Note that the average f-measure has been computed over 40 scenarios
(randomly selected, 20 runs each). The training scenarios vary from 10 to 50. We note
that two matchers (VFI, IB1) increase their f-measure of 20% when they are generated
with more training scenarios. This can be explained by the fact that IB1 is an instance-
based classifier2, thus the more examples it has, the more accurate it becomes. Similarly,
VFI uses a voting system on intervals that it builds. Voting is also appropriate when lots of
training examples are supplied. NBTree and NNge also increases their average f-measure
from around 10% as training data is increased. On the contrary, BayesNet achieves the
same f-measure (60% to 65%) regardless of the number of training scenarios. Thus, as
expected, most matchers increase their f-measure when the number of training scenar-
ios increases. With 30 training scenarios, they already achieve an acceptable matching
quality.

Note that the number of training scenarios is not a parameter that the user must man-
age. Indeed, YAM automatically chooses the number of training scenario according to the
matchers that have to be learned. We have run more than 11,500 experiment results, from

2This classifier is named instance-based since the mappings (included in the training scenarios) are
considered as instances during learning. Our approach does not currently use schema instances.

119

 0

 10

 20

 30

 40

 50

 60

VFI BayNet NBTree NNge IB1 ADT SLog JRip MLP VP IBk CR J48graft J48 FT SMO DecTable

N
u
m

b
er

 o
f

E
le

ct
io

n
 a

s
D

ed
ic

at
ed

 M
at

ch
er

Figure 7.5: Number of selections as dedicated matcher

which we deduce the number of training scenarios for a given classifier. Table 7.1 shows
the conclusion of our empirical analysis. For instance, when learning a schema matcher
based on J48 classifier, YAM ideally chooses a number of training scenarios between 20
to 30.

Number of training scenarios Classifiers
20 and less SLog, ADT, CR
20 to 30 J48, J48graft
30 to NNge, JRip, DecTable
50 BayesNet, VP, FT
50 and VFI, IB1, IBk
more SMO, NBTree, MLP

Table 7.1: Number of training scenarios chosen by YAM for each classifier

7.4.3 Precision vs. Recall Preference
We now present another interesting feature of our tool, the possibility to choose between
promoting recall or precision, by tuning the weight for false positives. Figures 7.7(a)
and 7.7(b) respectively depicts the average recall and f-measure of five matchers for 40
scenarios, when tuning the preference between precision and recall. Without any tuning
(i.e., weight for false negatives and false positives is equal to 1), this means that we give
as much importance to recall and precision.

For 2 matchers (NBTree and NNge), the recall increases up to 20% when we tune
in favor of recall. As their f-measures does not vary, it means that this tuning has a
negative impact on the precision. However, in terms of post-match effort, promoting recall
may be a better choice depending on the integration task for which matching is being

120

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50

f-
m

ea
su

re

number of training scenarios

VFI
BayesNet

NBTree
NNge

IB1

Figure 7.6: Average f-measure when varying number of training scenarios

done. For example, let us imagine we have two schemas of 100 elements: a precision
which decreases by 20% means a user has to eliminate 20% of the irrelevant discovered
mappings. But a 20% increase in recall means (s)he has 20% less mappings to search
through among 10,000 possible pairs ! Hence, this tuning could have a tremendous effect
on the usability of the matcher for certain tasks.

For the three other matchers (BayesNet, VFI and IB1), tuning in favor of recall has
no significant effect. Note that without any tuning, only one matcher (BayesNet) has
an average recall superior to its precision. Indeed, many of the matchers in our library
promote by default precision. But when setting a weight for false negatives to 2, then
four matchers have a higher recall than precision. And with a weight for false negatives
equal to 3, five other matchers have reduced the gap between precision and recall to less
than 5%. Thus, this shows how YAM is able to take into account this very important user
preference, which directly impacts post-match (manual) effort.

7.4.4 Impact of Expert mappings
As in Glue [36], the number of expert mappings is an input (compulsory for Glue, but
optional for YAM) to the system. YAM can use these expert mappings to learn better
matchers. In this study, we measured the gain in terms of matching quality when a user
provides these mappings.

In these experiments, the training phase used 20 scenarios and expert mappings were
randomly selected. We report the size of the sets of expert mappings, providing 5% of
expert mappings means that we only give 1 or 2 mappings as input. Figure 7.8 depicts the
average f-measure (on 40 random scenarios) for different matchers.

With only 5% of the mappings given as expert mappings, NNge and IB1 are able to
increase their f-measure by 40%. The classifier NBTree also achieves an increase of 20%.
Similarly, the f-measure of these matchers still increases by as 10% of the mappings are
provided as expert mappings. On the contrary, the VFI and BayesNet matchers do not
benefit at all from this input. Note that providing some expert mappings does not require

121

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5

re
ca

ll

weight of false negatives

VFI
BayesNet

NBTree
NNge

IB1

(a) Recall

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5

f-
m

ea
su

re

weight of false negatives

VFI
BayesNet

NBTree
NNge

IB1

(b) F-measure

Figure 7.7: Quality of various matchers when tuning weight of false negatives

122

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20

f-
m

ea
su

re

percentage of provided expert correspondences

VFI
BayesNet

NBTree
NNge

IB1

Figure 7.8: F-measure of various matchers when tuning the input expert mappings

a tiresome effort from the user3. Yet, this input can improve the matching quality of most
matchers.

7.4.5 Comparing with Other Matching Tools
We now compare YAM with two matching tools known to provide an good matching
quality: COMA++ and Similarity Flooding (SF). To the best of our knowledge, these
tools are the only ones publicly available. COMA++ [8] uses 17 similarity measures to
build a matrix between pairs of elements and aggregated their similarity values. Similarity
Flooding [94] builds a graph between input schemas. Then, it discovers some initial cor-
respondences using a terminological measure. These correspondences are refined using
a structural propagation mechanism. Both matching tools are described in more detail in
chapter 3.2.

As explained in the previous section, a user does not need to choose the number of
training scenarios. YAM automatically adjusts this number according to the classifier
which is going to be trained. We have trained YAM against 50 random schemas from the
KB to generate a robust matcher for each schema matching scenario. Neither COMA++
nor Similarity Flooding can take any expert mapping as input. Hence, for this comparison,
we did not include expert mappings. Similarly, no weight for false negatives has been set
because COMA++ and Similarity Flooding do not have this capability.

Accuracy Comparison

Figures 7.9(a) and 7.9(b) depict the F-measure obtained by YAM, COMA++ and Similar-
ity Flooding on 10 scenarios (the 5 non webforms scenarios and 5 webforms from various
domain). YAM obtains the highest f-measure in 7 scenarios, and reaches 80% f-measure
in 4 scenarios. COMA++ achieves the best f-measure for currency and university scenar-
ios. SF obtains the best f-measure in one scenario (travel). In addition, COMA++ is the

3Some GUIs already exist to facilitate this task by suggesting the most probable mappings.

123

(a) Non-webforms scenarios

(b) Webform scenarios

Figure 7.9: Precision, recall and f-measure achieved by the three matching tools on 10
scenarios

only tool which does not discover any mapping for one scenario (travel). However, we
notice that YAM obtains better results on the webforms scenarios since it was trained with
webforms. With non-webforms scenarios, YAM is able to achieve acceptable results.

These results show how our matcher factory relies on the diversity of classifiers. In-
deed, the dedicated matchers that it has generated for these scenarios are based on various
classifiers (VFI, BayesNet, J48, etc.) while COMA++ and SF only rely on respectively an
aggregation function and a single graph propagation algorithm.

YAM obtains the highest average f-measure (67%) while COMA++ and SF average
f-measures are just over 50%. Thus, YAM is a more robust matching tool, specifically
because it is able to generate matchers based on various classifiers.

Post-match Effort

Most schema matching tools, including most matchers generated by YAM (without tun-
ing), mainly promote precision to the detriment of recall. However, this is not always
the best choice for a given task. The list of discovered mappings, provided by matching
tools, have two issues, namely (i) irrelevant discovered mappings and (ii) missing (rele-
vant) mappings. Users first have to check each mapping from the list, either to validate

124

or remove it. Then, they have to browse the schemas and discover the missing mappings.
Thus, we propose to evaluate this user post-match effort by counting the number of user
interactions. A user interaction is an (in)validation of one pair of schema elements (either
from the list of mappings or between the schemas).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 500 1000 1500 2000 2500

f-
m

ea
su

re

number of interactions

YAM
YAM-tuned

COMA++
SF

Figure 7.10: Number of user interactions needed to obtain a 100% f-measure

Figure 7.10 shows the importance of recall by comparing four matching tools (COMA++,
SF, YAM and YAM-tuned, which promotes recall with a weight for false negatives set to
2). It depicts user effort, in number of interactions, to reach a 100% f-measure after that
the four matching tools have discovered a list of mappings for the sms scenario. Note that
this is the worst-case situation, in which all possible pairs must be checked. For the user,
the first step of the post-match effort consists in (in)validating discovered mappings. For
instance, YAM-tuned outputs 66 mappings and thus a user would require 66 interactions
to (in)validate them. At the end of first step, all evaluated matchers have a 100% precision.
During a second step of the post-match effort, f-measure has the same value distribution
for all matchers (since only recall can be improved). This facilitates comparisons between
matchers. The second step deals with the manual discovery of all missing mappings. We
assume that all pairs which have not been invalidated yet must be analyzed by the user.
Thus, to discover the 20% mappings missed by YAM-tuned, a user requires about 1600
interactions.

Now let us study figure 7.10 in more detail. We notice that after the first step, during
which a user (in)validates discovered mappings, YAM, COMA++ and SF only increase
their f-measures by a few percent. In contrast, YAM-tuned’s f-measure increases from
32% to 80% with only 66 interactions. As a comparison, with the three other match-
ers, there are at least 1100 user interactions needed to reach this 80% f-measure. Fi-
nally, to achieve a 100% f-measure, YAM-tuned interacts 1600 times with the user while
other tools requires more than 2100 interactions. Note that these example schemas from
sms scenario still have reasonable size, but with larger schemas, the post-match effort
would require thousands of user interactions. Thus, promoting recall strongly reduces
post-match effort. In addition, it enables a user to quickly obtain an acceptable f-measure.
Contrary to other matching tools, YAM is able to take this preference for recall into ac-
count.

125

7.4.6 Discussion
These experiments support the idea that machine learning techniques are suitable for the
matching task. We have shown the impact on the matching quality when tuning several
parameters, like the number of training scenarios, the tradeoff between recall and preci-
sion and the number of input expert mappings. The first experiment would tailor YAM to
automatically adjust the number of training scenarios according to the classifier to be gen-
erated. The second study demonstrates how YAM can promote recall (or precision). And
the third study describes how users can improve the quality of their results by providing
some expert mappings. We finally compared our approach with two other matching tools
to show that YAM outperforms them in most scenarios.

Time performance. Although matching two or more schemas is not time consuming,
generating all classifiers and selecting the best one is a time consuming process (up to
several hours if the KB of training data is large). This process could be sped up by only
generating a subset of available matchers, which are the most appropriate according to
the features of the schemas to be matched and user preferences. For instance, if user
wants to promote recall, YAM can only generate matchers based on BayesNet, tuned
SMO and tuned JRip which empirically demonstrated good results for this criterion. Of
course, in practice, it is the performance of the dedicated matcher which is crucial and
the matchers produced by YAM have comparable or better time performance to other
matchers (including COMA++ and Similarity Flooding).

7.5 Conclusion
In this chapter, we have presented YAM, a factory of schema matchers. During pre-
match phase, it generates, thanks to machine learning algorithms, a dedicated matcher for
a given matching scenario. Experiments have shown that the dedicated matcher obtains
acceptable results with regards to other matching tools. Besides, the possibility to learn
matchers whose algorithm is completely different enables to efficiently match specific
scenarios.

Experiments have first confirmed that a factory of schema matchers is required. Be-
sides, we have comforted the idea that a schema matcher based on decision trees, like
MatchPlanner, obtain acceptable quality results with regards to other schema matchers.
Then, our empirical analysis enables to adjust YAM so that it automatically chooses the
number of training scenarios according to the classifier that it has to generate. Similarly
to other approaches, we enable the user to provide some initial expert mappings. As most
classifiers are able to efficiently use this input, generated matchers are better appropriate
for a given matching scenario. As a result, matching quality strongly increases, even when
providing only 1 or 2 expert mappings. Our approach is also the first work to let users
choose the promoting of either precision or recall. This choice strongly impacts the post-
match effort, when user (in)validates discovered mappings and manually browse schemas
to find missing ones. We have demonstrated that promoting recall is more appropriate to
reduce user post-match interactions.

In the future, we first plan to test more matchers. Indeed, there exists plenty of machine

126

learning classifiers among which we have only experimented a subset. We also intend
to build an integrated schema from the mappings that have been discovered. Another
ongoing work consists in reducing the learning time. To tackle this issue, we could explore
the possibility to reuse previously generated matchers, which are stored in the KB. And
we intend to use case-based reasoning techniques to select the dedicated one among them.

Another open issue deal with the selection of the dedicated matcher. Although cross-
validating the generated matchers on the training data enables an acceptable selection, we
have noticed that a schema matcher different from the dedicated one could obtain better
results. Thus, we are still trying to improve this step. One solution would consist of
statistically analysing the discovered mappings of all matchers, and extract a relevant set
of mappings. This idea is based on the fact that we already know which matcher mainly
promotes recall or precision.

Next chapter summarizes this thesis and provides insights for future works.

127

Chapter 8

Conclusions and Perspectives

This chapter concludes the thesis by first summarising its main contributions. Then, we
outline some of the remaining issues and near future work related to the approaches pro-
posed in this thesis. Finally, we highlight some perspectives in the schema matching and
data integration research field.

8.1 Main Contributions
Thanks to data integration systems, users do not have to locate data sources anymore, do
not query each of them manually and do not aggregate their results. Thus, data integra-
tion heavily relies on mappings discovery between data sources and schema matching has
been recognized for playing a fundamental role in this domain. It covers a large range
of applications, from scientific collaboration to e-commerce. In spite of numerous works
dealing with schema matching, many problems still needs to be solved. Indeed, our state
of the art in this domain revealed that some specific issues have not been investigated
deeply enough yet. We especially notice the difficulty for an end-user to select and tune
a matching tool. Our first solution is an evaluation tool with which user has to test exist-
ing matching tools against various schema matching scenarios and choose the one which
provides the best results. We then focus on an automatic approach, which enables users
to give some requirements so that it automatically generates the best schema matcher for
a given scenario.

From our investigations, it appears that a benchmark to evaluate schema matching
tools is required, similarly as in the ontology domain. It is currently difficult to judge
on the results of a matching tool. Indeed, the only experiment results available are in
the research papers presenting these tools, but the scenarios used for experiments differ
from one paper to another. A uniform basis on which all schema matching tools could
compete and demonstrate their capabilities has therefore been designed. Our benchmark
XBenchMatch features different datasets describing various schema matching features or
challenges. As schema matching tools also aim at building integrated schemas, we have
proposed different metrics to assess their quality w.r.t. an expert integrated schema. As
shown by the experiments, this tool facilitates the comparison of schema matching tool
for an end-user, and it could become a future reference for testing new approaches.

128

To achieve an automatic solution for generating a best schema matcher, we have first
experimented the design of two schema matching tools. Both tools focus on two common
issues in schema matching: matching quality and time performance. BMatch is quite sim-
ilar to existing schema matching tools. It is based on an aggregation function to combine
several similarity metrics. Furthermore, it includes an indexing structure to accelerate the
schema matching process. This first experience of schema matching tool design led us
to the conclusion that users should be able to provide preferences rather than tuning too
many meaningless parameters. These reasons have motivated the design of another ap-
proach, MatchPlanner, to take this feedback into account. Consequently, MatchPlanner
differs from traditional schema matching tools by proposing to build, thanks to decision
trees, plans of similarity metrics instead of aggregating them. Time performance improves
due to the use of a decision tree. Users are able to express their preferences related to post-
match effort (which is impacted by precision and recall). Decision trees are automatically
built and parameters values are set up during the learning process. This experience based
on machine learning techniques confirmed the fact that we could build a meta-matcher.

BMatch and MatchPlanner can be seen as a transition towards a schema matcher fac-
tory. However, they do not offer enough flexibility and automation (in terms of match
algorithms), thus still letting users choose an appropriate schema matching tool. YAM
has been presented to overcome this issue. Similarly to MatchPlanner, YAM automati-
cally tunes a schema matcher. But it goes beyond since the schema matcher’s algorithm
is not limited to decision trees, but to any classifier. This feature, combined with the self-
tuning of parameters, now provides a true extension capability for which user has nothing
to handle. User inputs have been extended to domain knowledge (expert mappings) and
we have shown that integrating users in the matching process strongly increases quality
results.

In this thesis, we have tackled several challenges of schema matching. Our main
contributions deals with (i) an evaluation tool for schema matching tools, (ii) the replacing
of a common match algorithm (aggregation function) by a decision tree which offers
more advantages and (iii) a factory of schema matchers. This last work is a totally novel
approach which mostly brings new perspectives for matcher selection, combination and
tuning. Yet, there are still many challenges to be studied in the matching domain. The last
two sections describe some of them which might be included in our work.

8.2 Remaining Issues and Near Future Work
This section covers the limitations and some possible extensions of our works.

8.2.1 Extending to Ontologies
Solutions proposed in this thesis have been designed for schemas. However, schemas and
ontologies share similarities, namely schema matching and ontology alignment. Schemas
can be seen as (very) limited ontologies. Indeed, ontologies define advanced features
(e.g., several parents for a node, relation types for edges, reasoning capability, etc.).

129

To extend our work towards ontologies, we first have to design a parser specific to this
formal representation. Internal structures of our applications (BMatch, MatchPlanner,
XBenchMatch and YAM) also have to be modified since ontologies hold much more in-
formation than schemas. For the same reason, new similarity metrics have to be integrated
(see examples in [56]) or developed to fully exploit ontology features.

Another advantage of ontology extension deals with the fast development of expert
mappings1 between ontologies, especially about biology. For instance, GeneOntology2

provides mappings with lots of external databases (EC enzymes, UniProt, InterPro, etc.).
Consequently, they can be used as datasets for testing new schema and ontology matchers.
Their frequent updates are also appropriate for an evolution scenario in which data sources
are modified.

8.2.2 Discovering Complex Mappings
All matching tools support the 1 : 1 mapping, i.e. one element from one schema is mapped
with one element of another schema. Complex mappings, involving at least two elements
from the same schema in a mapping (1 : n, n : 1, and n : m) [112], are harder to discover.
Only a few approaches tried to tackle this issue [75, 29, 116, 118]. In our work, ignor-
ing the discovery of the mapping function enables us to reduce the problem of complex
mappings to 1 : 1 mappings.

Integrating a mechanism to discover complex mappings implies a deeper analysis.
Existing approaches mostly take data instances as input of the matching process, so that
they can exploit them to find the mapping function and check the discovered complex
mapping. Other works rely on external resources like mini-taxonomies extracted from
multiple schemas [117]. An advantage of our machine learning based approaches is the
fact that they already rely on some training examples. Consequently, we could change
the 1:1 mapping constraint of our tools to enable n:m mapping discovery. Users or a
knowledge base might then provide complex mappings examples that our approaches can
learn.

8.2.3 Improving Time Performance
Although our matching tools (BMatch and MatchPlanner) each includes a mechanism for
accelerating schema matching process (respectively a b-tree and the use of decision trees),
our factory of matchers (YAM) does not ensure that the generated matcher provides better
time performance (unless if the matcher is based on a particular classifier, like a decision
tree).

A solution consists of generating, thanks to the whole library of similarity metrics,
the dedicated matcher. Once it has been selected, we can then generate the same matcher
(i.e., based on the same match algorithm or classifier) with less similarity metrics, and
compare the quality results. This should enable to remove some similarity metrics and
improve time performance.

1Note that in ontology domain, researchers rather use the term alignment instead of set of mappings.
2http://www.geneontology.org/GO.indices.shtml#map

130

8.3 Long-term Perspectives
As explained in [26], most components for a complete data integration system are in
the trigger phase and have not reached their peak of inflated expectations yet. Here, we
present some future research directions related to data integration and schema matching.

8.3.1 Connecting Large Scale Networks
Nowadays, we find many large scale networks gathering millions of people. Connect-
ing these networks is another challenge since their users edit (some of) the content, thus
adding their own semantics. For instance, social networks like Facebook3 could be con-
nected with collaborative systems to enable programmers or end users to benefit from
advantages of both networks. Similarly, information sharing could reach a new level if
social networks were linked to peer-to-peer sharing systems. Peer-to-peer Data Manage-
ment Systems (PDMS), like HepTox [2] are also devoted to integrate query answers from
independant peers.

Most of these networks did not turned into profit yet, thus their power mainly resides
in the number of users that could potentially be exploited. The most promising idea is
targeted and relevant advertisements. Consequently, extracting user interests from their
private data mostly requires natural language processing and schema matching. Uncer-
tainty (e.g., to compute information relevance, see section 8.3.3) and user involvement are
maybe keys for solving this issue. This report [26] also underlines that such large scale
networks face a multilingual issue.

8.3.2 Integrating Multimedia Sources
In the last years, multimedia content has exponentially grown. People enjoy sharing mil-
lions of pictures and videos on websites such as Flickr4 and YouTube5. To guarantee an
access to their “oeuvres”, they mainly add tags so that other users can retrieve them with
queries. For instance, in September 2009, there were more than 80 millions pictures that
have been geotagged on Flickr, i.e. their location has been precisely indicated on a map.

However, there is still a large gap between the manual and automatic processing [50].
The former includes a rich semantic, but also a strong subjectivity from users. On the
contrary, automatic semantic enrichment of multimedia sources is still very limited. Al-
though some progress enables automatic annotation, there are currently few works which
automatically summarize multimedia sources. From a query point of view, works are ori-
ented towards a query language for multimedia databases and the processing of semantic
queries.

Similarly to schema matching, this community is interested in machine learning and
relevance feedback for finding semantics. As information describing multimedia content
is mainly stored as metadata, schema matching community is involved to enable interop-
erability for these richer contents.

3http://www.facebook.com
4http://www.flickr.com
5http://www.youtube.com

131

8.3.3 Uncertainty
In [38, 125], authors underline the uncertainty issue. This uncertainty appears at three
levels: (i) mappings, (ii) data and (iii) queries. The former is crucial as there are many
mapping possibilities (especially in large scale environments), that an expert is sometimes
not able to (in)validate [38]. We think that uncertainty can express the confidence of a
mapping according to the similarity metrics (in terms of reliability and diversity), user
knowledge and match algorithm that have been used to discover it. Uncertain mappings
also allows conditional mappings, e.g., a daytime-phone can be matched to work-phone
with an average probability if person-age < 65, while it should be matched to home-phone
with a higher probability if person-age > 65.

Uncertain data have already been studied at large to repair or clean databases for ex-
ample. Although it was not considered too much important (since only a few schema
matching systems currently use data), it might be a requirement as more data are avail-
able. Besides, we think that final users, especially on the web and large scale networks,
have together a (nearly) infinite knowledge. That is the reason why they participate in
many web 2.0 applications to enrich information. Their knowledge can also be used to
manually provide some mappings or data between web services, databases, web forms,
etc. Uncertainty can be useful in such context as we do not know the expertise of final
users.

Finally, uncertain queries will bring more flexibility in terms of search thanks to fuzzy
reasoning. For instance, searching a person of average size could be interpreted by the
query system as follows: search in a semantic database like FreeBase6 for values defining
an average-sized person. In our case, FreeBase returns a link to a Wikipedia page 7 to get
these values. Then, the query can return results for people whose size is in the range given
by these values.

6http://www.freebase.com
7http://en.wikipedia.org/wiki/index.html?curid=905957#Average_height_around_the_world, access in

July 2009

132

Summary of Publications and Tools

• BMatch, a schema matching tool based on a neighbourhood similarity measure and
a B-tree indexing structure [46, 44, 43, 45].
BMatch has been designed to discover mappings between schemas. Its semantic as-
pect consists in combining both terminological and structural similarity measures.
Terminological measures enable the discovery of mappings whose schema elements
share similar labels. Conversely, structural measures, based on cosine measure, de-
tects mappings when schema elements have the same neighbourhood. BMatch’s
second aspect aims at improving the time performance by using an indexing struc-
ture, the B-tree, to accelerate the schema matching process. Indeed, we cluster
schema element’s labels which share the same tokens to reduce search space during
matching.
http://www.lirmm.fr/∼duchatea/projects/BMatch

• XBenchMatch, a benchmark to evaluate schema matching tools [42].
XBenchMatch is a benchmark involving a set of criteria for testing and evaluating
schema matching tools. We focus on the assessment of the matching tools in terms
of matching quality and time performance. We also provide a testbed involving a
large schema corpus that can be used by everyone to quickly benchmark their new
schema matching algorithms. Finally, new metrics have been proposed to evaluate
the quality of an integrated schema.
http://www.lirmm.fr/∼duchatea/XBenchMatch

• MatchPlanner, a schema matching tool based on decision trees [41].
MatchPlanner uses a decision tree to combine the most appropriate similarity mea-
sures for a given domain. As a first consequence of using the decision tree for
matching schemas, the time performance of the system is improved since the com-
plexity is bounded by the height of the tree. The second advantage deals with the
mappings quality. Indeed, for a given domain, only the most suitable similarity
measures are used. Finally, MatchPlanner is also able to learn new decision trees,
thus automatically tuning the system for providing optimal configuration for a given
matching scenario.
http://www.lirmm.fr/∼duchatea/MatchPlanner

• YAM (Yet Another Matcher), a schema matcher factory [48, 49, 47].
YAM (Yet Another Matcher) is not (yet) another schema matching system as it en-

133

ables the generation of a la carte schema matchers according to user requirements.
These requirements include a preference for recall or precision, a training data set
(schemas already matched) and provided expert mappings. YAM uses a knowledge
base that includes a (possibly large) set of similarity measures and classifiers. Based
on the user requirements, YAM learns how to best apply these tools (similarity mea-
sures and classifiers) in concert to achieve the best matching quality.
http://www.lirmm.fr/∼duchatea/yam

134

Bibliography

[1] The UIUC web integration repository. Computer Science Department, University
of Illinois at Urbana-Champaign. http://metaquerier.cs.uiuc.edu/repository, 2003.

[2] T. H. L. V. L. R. P. Y. C. A. Bonifati, E. Chang. Schema mapping and query
translation in heterogeneous p2p xml databases. In VLDB Journal, pages 47–61,
accepted for publication (2009).

[3] B. Alexe, L. Chiticariu, and W. C. Tan. Spider: a schema mapping debugger. In
VLDB, pages 1179–1182, 2006.

[4] B. Alexe, W.-C. Tan, and Y. Velegrakis. Comparing and evaluating mapping sys-
tems with stbenchmark. Proceedings of the VLDB, 1(2):1468–1471, 2008.

[5] B. Alexe, W. C. Tan, and Y. Velegrakis. STBenchmark: towards a benchmark for
mapping systems. Proceedings of the VLDB, 1(1):230–244, 2008.

[6] B. Amann, C. Beeri, I. Fundulaki, and M. Scholl. Querying xml sources using an
ontology-based mediator. In CoopIS/DOA/ODBASE, pages 429–448, 2002.

[7] J. A. Anderson. An Introduction to Neural Networks. MIT Press, Cambridge, MA,
1995.

[8] D. Aumueller, H. H. Do, S. Massmann, and E. Rahm. Schema and ontology match-
ing with COMA++. In ACM SIGMOD, pages 906–908, 2005.

[9] P. Avesani, F. Giunchiglia, and M. Yatskevich. A Large Scale Taxonomy Mapping
Evaluation. In Intl. Semantic Web Conf., pages 67–81, 2005.

[10] P. Bailey, D. Hawking, and A. Krumpholz. Toward meaningful test collections
for information integration benchmarking. In Proceedings of IIWeb 2006 (WWW
Workshop), 2006.

[11] C. Batini, M. Lenzerini, and S. B. Navathe. A Comparitive Analysis of Methodolo-
gies for Database Schema Integration. ACM Computing Surveys, 18(4):323–364,
1986.

[12] Z. Bellahsene and M. Roantree. Querying distributed data in a super-peer based
architecture. In DEXA, pages 296–305, 2004.

[13] J. Berlin and A. Motro. Automated discovery of contents for virtual databases. In
CoopIS, pages 108–122, 2001.

135

[14] J. Berlin and A. Motro. Database schema matching using machine learning with
feature selection. In CAiSE, 2002.

[15] P. A. Bernstein. Applying model management to classical meta data problems. In
CIDR, 2003.

[16] P. A. Bernstein, S. Melnik, and J. E. Churchill. Incremental schema matching. In
VLDB, 2006.

[17] P. A. Bernstein, S. Melnik, M. Petropoulos, and C. Quix. Industrial-Strength
Schema Matching. ACM SIGMOD Record, 33(4):38–43, 2004.

[18] A. Bilke and F. Naumann. Schema matching using duplicates. ICDE, 0:69–80,
2005.

[19] N. Bozovic and V. Vassalos. Two-phase schema matching in real world relational
databases. In ICDE Workshops, pages 290–296, 2008.

[20] L. Chiticariu, M. A. Hernández, P. G. Kolaitis, and L. Popa. Semi-automatic
schema integration in clio. In VLDB, pages 1326–1329, 2007.

[21] L. Chiticariu, P. G. Kolaitis, and L. Popa. Interactive generation of integrated
schemas. In SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 833–846, New York, NY, USA, 2008.
ACM.

[22] W. Cohen, P. Ravikumar, and S. Fienberg. A comparison of string distance metrics
for name-matching tasks. In In Proceedings of the IJCAI-2003, 2003.

[23] D. Comer. The ubiquitous btree. In Computing Surveys, 1979.

[24] I. F. Cruz, W. Sunna, N. Makar, and S. Bathala. A visual tool for ontology align-
ment to enable geospatial interoperability. J. Vis. Lang. Comput., 18(3):230–254,
2007.

[25] P. Cudre-Mauroux, S. Agarwal, and K. Aberer. Gridvine: An infrastructure for
peer information management. IEEE Internet Computing, 11(5):36–44, 2007.

[26] R. Cuel, A. Delteil, V. Louis, and C. Rizzi. Knowledge web technology roadmap
"the technology roadmap of the semantic web". Knowledge Web, 2004.

[27] M. da Conceição Moraes Batista and A. C. Salgado. Information quality measure-
ment in data integration schemas. In QDB, pages 61–72, 2007.

[28] M. Davis. Semantic Wave 2006 - A Guide to Billion Dollar Markets - Keynote
Address. In STC, 2006.

[29] R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P. Domingos. iMAP: Discovering
Complex Semantic Matches between Database Schemas. In ACM SIGMOD, pages
383–394, 2004.

136

[30] H. H. Do, S. Melnik, and E. Rahm. Comparison of schema matching evaluations.
In Web, Web-Services, and Database Systems Workshop, 2002.

[31] H. H. Do and E. Rahm. COMA - A System for Flexible Combination of Schema
Matching Approaches. In VLDB, pages 610–621, 2002.

[32] H. H. Do and E. Rahm. Matching large schemas: Approaches and evaluation.
Information Systems, 32(6):857–885, 2007.

[33] A. Doan. Learning to Map between Structured Representations of Data. PhD
thesis, University of Washington, 2002.

[34] A. Doan, P. Domingos, and A. Y. Halevy. Reconciling Schemas of Disparate Data
Sources - A Machine Learning Approach. In ACM SIGMOD, 2001.

[35] A. Doan and A. Y. Halevy. Semantic integration research in the database commu-
nity: A brief survey. AI Magazine, 26:83–94, 2005.

[36] A. Doan, J. Madhavan, R. Dhamankar, P. Domingos, and A. Y. Halevy. Learning
to match ontologies on the Semantic Web. VLDB J., 12(4):303–319, 2003.

[37] A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Ontology matching: A ma-
chine learning approach. In Handbook on Ontologies in Information Systems, 2004.

[38] X. L. Dong, A. Y. Halevy, and C. Yu. Data integration with uncertainty. In VLDB,
pages 687–698, 2007.

[39] C. Drumm, M. Schmitt, H. H. Do, and E. Rahm. Quickmig: automatic schema
matching for data migration projects. In CIKM, pages 107–116. ACM.

[40] C. Drumm, M. Schmitt, H.-H. Do, and E. Rahm. Quickmig: automatic schema
matching for data migration projects. In CIKM, pages 107–116. ACM, 2007.

[41] F. Duchateau, Z. Bellahsene, and R. Coletta. A flexible approach for planning
schema matching algorithms. In OTM Conferences (1), pages 249–264, 2008.

[42] F. Duchateau, Z. Bellahsene, and E. Hunt. Xbenchmatch: a benchmark for xml
schema matching tools. In VLDB, pages 1318–1321, 2007.

[43] F. Duchateau, Z. Bellahsene, M. Roantree, and M. Roche. An indexing structure
for automatic schema matching. In ICDE Workshops, pages 485–491, 2007.

[44] F. Duchateau, Z. Bellahsene, and M. Roche. Bmatch: a semantically context-based
tool enhanced by an indexing structure to accelerate schema matching. In BDA,
2007.

[45] F. Duchateau, Z. Bellahsene, and M. Roche. A context-based measure for discov-
ering approximate semantic matching between schema elements. In RCIS, pages
9–20, 2007.

137

[46] F. Duchateau, Z. Bellahsene, and M. Roche. Improving quality and performance of
schema matching in large scale. Ingénierie des Systèmes d’Information, 13(5):59–
82, 2008.

[47] F. Duchateau, R. Coletta, Z. Bellahsene, and R. J. Miller. Encore un outil de dé-
couverte de correspondances entre schémas xml? In BDA, 2009.

[48] F. Duchateau, R. Coletta, Z. Bellahsene, and R. J. Miller. (not) yet another matcher.
In CIKM, pages 1537–1540, 2009.

[49] F. Duchateau, R. Coletta, Z. Bellahsene, and R. J. Miller. Yam: a schema matcher
factory. In CIKM, pages 2079–2080, 2009.

[50] D. J. Duke, L. Hardman, A. G. Hauptmann, D. Paulus, and S. Staab, editors. Se-
mantic Multimedia, Third International Conference on Semantic and Digital Media
Technologies, SAMT 2008, Koblenz, Germany, December 3-5, 2008. Proceedings,
volume 5392 of Lecture Notes in Computer Science. Springer, 2008.

[51] M. Ehrig, P. Haase, and N. Stojanovic. Similarity for ontologies - a comprehensive
framework. In Proc. of Practical Aspects of Knowledge Management, 2004.

[52] M. Ehrig and S. Staab. QOM - Quick Ontology Mapping. In ISWC, pages 683–697,
2004.

[53] M. Ehrig, S. Staab, and Y. Sure. Bootstrapping ontology alignment methods with
apfel. In ISWC, 2005.

[54] D. W. Embley, L. Xu, and Y. Ding. Automatic Direct and Indirect Schema Map-
ping: Experiences and Lessons Learned. ACM SIGMOD Record, 33(4):14–19,
2004.

[55] J. Euzenat et al. Ontology alignment evaluation initiative,
http://oaei.ontologymatching.org.

[56] J. Euzenat et al. State of the art on ontology matching. Technical Report
KWEB/2004/D2.2.3/v1.2, Knowledge Web, 2004.

[57] J. Euzenat and P. Shvaiko. Ontology matching. Springer-Verlag, Heidelberg (DE),
2007.

[58] J. Euzenat and P. Valtchev. Similarity-Based Ontology Alignment in OWL-Lite. In
ECAI, pages 333–337, 2004.

[59] H. Federer. Geometric Measure Theory. Springer, 1969.

[60] C. Ferri, P. Flach, and J. Hernandez-Orallo. Learning decision trees using the area
under the ROC curve. In Proceedings of ICML’02, pages 139–146, 2002.

[61] M. Franklin, A. Halevy, and D. Maier. From databases to dataspaces: a new ab-
straction for information management. ACM SIGMOD Record, 34(4):27–33, 2005.

138

[62] N. Fuhr, J. Kamps, M. Lalmas, and A. Trotman, editors. Focused Access to XML
Documents, 6th International Workshop of the Initiative for the Evaluation of XML
Retrieval, volume 4862 of Lecture Notes in Computer Science. Springer, 2008.

[63] A. Fuxman, M. A. Hernández, C. T. H. Ho, R. J. Miller, P. Papotti, and L. Popa.
Nested mappings: Schema mapping reloaded. In VLDB, pages 67–78, 2006.

[64] A. Gal. The generation y of xml schema matching (panel description). In XSym,
pages 137–139, 2007.

[65] A. Gangemi, N. Guarino, C. Masolo, and A. Oltramari. Sweetening WordNet with
DOLCE. AI Magzine, 24(3):13–24, 2003.

[66] S. R. Garner. Weka: The waikato environment for knowledge analysis. In In Proc.
of the New Zealand Computer Science Research Students Conference, pages 57–64,
1995.

[67] F. Giunchiglia, P. Shvaiko, and M. Yatskevich. S-Match: an Algorithm and an
Implementation of Semantic Matching. In European Semantic Web Symposium,
pages 61–75, 2004.

[68] O. Gotoh. An improved algorithm for matching biological sequences. Journal of
Molecular Biology, 162:705–708, 1982.

[69] J. Gray, H. Schek, M. Stonebraker, and J. Ullman. The lowell report. In Proceed-
ings of SIGMOD’03, pages 680–680, New York, NY, USA, 2003. ACM.

[70] A. Halevy, M. Franklin, and D. Maier. Principles of dataspace systems. In PODS
’06: Proceedings of the twenty-fifth ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, pages 1–9, New York, NY, USA, 2006. ACM.

[71] A. Y. Halevy. Answering queries using views: A survey. The VLDB Journal,
10(4):270–294, 2001.

[72] J. Hammer, M. Stonebraker, , and O. Topsakal. Thalia: Test harness for the assess-
ment of legacy information integration approaches. In Proceedings of ICDE, pages
485–486, 2005.

[73] R. W. Hamming. Error detecting and error correcting codes. Bell System Tech. J.,
29:147–160, 1950.

[74] B. He and K. C.-C. Chang. Statistical schema matching across web query inter-
faces. In SIGMOD Conference, pages 217–228, 2003.

[75] B. He, K. C.-C. Chang, and J. Han. Discovering complex matchings across web
query interfaces: a correlation mining approach. In ACM KDD, pages 148–157,
2004.

[76] M. A. Hernandez, R. J. Miller, and L. M. Haas. Clio: A semi-automatic tool for
schema mapping (software demonstration). In ACM SIGMOD, 2002.

139

[77] H. Kefi. Ontologies et aide à l’utilisateur pour l’interrogation de sources multiples
et hétérogènes. PhD thesis, Université de Paris 11, 2006.

[78] S. Kesh. Evaluating the quality of entity relationship models. In Information and
Software Technology, volume 37, pages 681–689, 1995.

[79] K. Lee, J. Min, and K. Park. A design and implementation of xml-based mediation
framework (xmf) for integration of internet information resources. In HICSS ’02:
Proceedings of the 35th Annual Hawaii International Conference on System Sci-
ences (HICSS’02)-Volume 7, page 202, Washington, DC, USA, 2002. IEEE Com-
puter Society.

[80] Y. Lee, M. Sayyadian, A. Doan, and A. Rosenthal. etuner: tuning schema matching
software using synthetic scenarios. VLDB J., 16(1):97–122, 2007.

[81] V. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady, 10:707, 1966.

[82] C. Li and C. Clifton. Semantic integration in heterogeneous databases using neural
networks., booktitle = VLDB, year = 1994,.

[83] W.-S. Li and C. Clifton. Semint: a tool for identifying attribute correspondences in
heterogeneous databases using neural networks. Data Knowl. Eng., 33(1):49–84,
2000.

[84] Y. Li, Z. A. Bandar, and D. McLean. An approach for measuring semantic sim-
ilarity between words using multiple information sources. IEEE Transactions on
Knowledge and Data Engineering, 15(4):871–882, 2003.

[85] D. Lin. An information-theoretic definition of similarity. In Proc. 15th Interna-
tional Conf. on Machine Learning, pages 296–304. Morgan Kaufmann, 1998.

[86] J. Lu, S. Wang, and J. Wang. An Experiment on the Matching and Reuse of XML
Schemas. In Intl. Conf. on Web Engineering, pages 273–284, 2005.

[87] J. Madhavan, P. A. Bernstein, A. Doan, and A. Y. Halevy. Corpus-based Schema
Matching. In Intl. Conf. on Data Engineering, pages 57–68, 2005.

[88] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schema matching with cupid.
In VLDB, pages 49–58, 2001.

[89] A. Maedche and S. Staab. Measuring similarity between ontologies. In Proc. of
EKAW, pages 251–263, 2002.

[90] A. Maedche and S. Staab. Measuring similarity between ontologies. In EKAW,
2002.

[91] I. Manolescu, D. Florescu, and D. Kossmann. Answering xml queries on heteroge-
neous data sources. In VLDB ’01: Proceedings of the 27th International Confer-
ence on Very Large Data Bases, pages 241–250, San Francisco, CA, USA, 2001.
Morgan Kaufmann Publishers Inc.

140

[92] A. Marie and A. Gal. Managing uncertainty in schema matcher ensembles. In
H. Prade and V. Subrahmanian, editors, Scalable Uncertainty Management, First
International Conference, SUM 2007, pages 60–73, Washington, DC, USA, Oct.
2007. Springer.

[93] A. Marie and A. Gal. Boosting schema matchers. In OTM ’08: Proceedings of
the OTM 2008 Confederated International Conferences, CoopIS, DOA, GADA, IS,
and ODBASE 2008. Part I on On the Move to Meaningful Internet Systems, pages
283–300, Berlin, Heidelberg, 2008. Springer-Verlag.

[94] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile graph
matching algorithm and its application to schema matching. In ICDE, pages 117–
128, 2002.

[95] S. Melnik, E. Rahm, and P. A. Bernstein. Developing metadata-intensive applica-
tions with rondo. J. of Web Semantics, I:47–74, 2003.

[96] S. Melnik, E. Rahm, and P. A. Bernstein. Rondo: A programming platform for
generic model management. In SIGMOD Conference, pages 193–204. ACM, 2003.

[97] P. D. Meo, G. Quattrone, G. Terracina, and D. Ursino. Integration of XML Schemas
at various "severity" levels. Information Systems, pages 397–434, 2006.

[98] T. Milo and S. Zohar. Using Schema Matching to Simplify Heterogeneous Data
Translation. In VLDB, pages 122–133, 1998.

[99] T. Mitchell. Machine Learning. McGraw-Hill Education (ISE Editions), October
1997.

[100] M. Mochol, A. Jentzsch, and J. Euzenat. Applying an analytic method for matching
approach selection. In P. Shvaiko, J. Euzenat, N. F. Noy, H. Stuckenschmidt, V. R.
Benjamins, and M. Uschold, editors, Ontology Matching, volume 225 of CEUR
Workshop Proceedings. CEUR-WS.org, 2006.

[101] A. E. Monge and C. Elkan. The field matching problem: Algorithms and applica-
tions. In Knowledge Discovery and Data Mining, pages 267–270, 1996.

[102] N. Natalya and M. Mark. Anchor-prompt: Using non-local context for semantic
matching. In In Proc. IJCAI 2001 workshop on ontology and information sharing,
pages 63–70, 2001.

[103] S. B. Needleman and C. D. Wunsch. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of Molecular
Biology, 48(3):443–53, 1970.

[104] N. F. Noy. Semantic integration: A survey of ontology-based approaches. ACM
SIGMOD Record, 33(4):65–70, 2004.

[105] N. F. Noy, A. Doan, and A. Y. Halevy. Semantic integration. AI Magazine, 26(1):7–
10, 2005.

141

[106] N. F. Noy and M. A. Musen. PROMPT: Algorithm and Tool for Automated Ontol-
ogy Merging and Alignment. In AAAI/IAAI, pages 450–455, 2000.

[107] L. Palopoli, G. Terracina, and D. Ursino. The System DIKE: Towards the Semi-
Automatic Synthesis of Cooperative Information Systems and Data Warehouses.
In ADBIS-DASFAA Symposium, pages 108–117, 2000.

[108] C. Parent and S. Spaccapietra. Database Integration: The Key to Data Interoper-
ability. In M. P. Papazoglou, S. Spaccapietra, and Z. Tari, editors, Advances in
Object Oriented Modeling. The MIT Press, 2000.

[109] J. R. Quinlan. Induction of decision trees. Mach. Learn., 1(1):81–106, 1987.

[110] J. R. Quinlan. Improved use of continuous attributes in c4.5. In Journal of Artificial
Intelligence Research, volume 4, pages 77–90, 1996.

[111] C. Quix, D. Kensche, and X. L. 0002. Generic schema merging. In J. Krogstie,
A. L. Opdahl, and G. Sindre, editors, CAiSE, volume 4495 of Lecture Notes in
Computer Science, pages 127–141. Springer, 2007.

[112] E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema match-
ing. VLDB Journal, 10(4):334–350, 2001.

[113] E. Rahm, H. H. Do, and S. Massmann. Matching large xml schemas. SIGMOD
Rec., 33(4):26–31, 2004.

[114] P. Resnik. Semantic similarity in a taxonomy: An information-based measure and
its application to problems of ambiguity in natural language. J. Artif. Intell. Res.
(JAIR), 11:95–130, 1999.

[115] M. Roche and Y. Kodratoff. Pruning Terminology Extracted from a Specialized
Corpus for CV Ontology Acquisition. In Proc. of onToContent’06 workshop -
OTM’06, pages 1107–1116, 2006.

[116] K. Saleem. Intégration de Schémas Large Echelle. PhD thesis, Université Mont-
pellier II - Sciences et Techniques du Languedoc, 11 2008.

[117] K. Saleem and Z. Bellahsene. Automatic extraction of structurally coherent mini-
taxonomies. In ER, 2008.

[118] K. Saleem and Z. Bellahsene. Complex schema match discovery and validation
through collaboration. In OTM Conferences (1), pages 406–413, 2009.

[119] K. Saleem, Z. Bellahsene, and E. Hunt. Porsche: Performance oriented schema
mediation. Inf. Syst., 33(7-8):637–657, 2008.

[120] G. Salton and M. McGill. Introduction to Modern Information Retrieval. McGraw-
Hill, London, U.K., 1983.

[121] N. Schurr, J. Marecki, M. Tambe, and P. Scerri. The Future of Disaster Response:
Humans Working with Multiagent Teams using DEFACTO. In AAAI Spring Sym-
posium on Homeland Security, 2005.

142

[122] Secondstring. http://secondstring.sourceforge.net/.

[123] C. Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27:379–423, 623–656, 1948.

[124] P. Shvaiko and J. Euzenat. A survey of schema-based matching approaches. Jour-
nal of Data Semantics IV, pages 146–171, 2005.

[125] P. Shvaiko and J. Euzenat. Ten challenges for ontology matching. In OTM Confer-
ences (2), pages 1164–1182, 2008.

[126] P. Shvaiko, J. Euzenat, F. Giunchiglia, and H. Stuckenschmidt, editors. Proceedings
of the 3rd International Workshop on Ontology Matching (OM-2008) collocated
with the 7th International Semantic Web Conference (ISWC-2008), volume 431 of
CEUR Workshop Proceedings. CEUR-WS.org, 2008.

[127] M. Smiljanic, M. van Keulen, and W. Jonker. Using element clustering to increase
the efficiency of xml schema matching. In Workshop Intl. Conf. on Data Engineer-
ing, page 45, 2006.

[128] T. F. Smith and M. S. Waterman. Identification of common molecular subse-
quences. Journal of Molecular Biology, 147:195–197, 1981.

[129] J. Tang, J. Li, B. Liang, X. Huang, Y. Li, and K. Wang. Using bayesian decision
for ontology mapping. Web Semant., 4(4):243–262, 2006.

[130] J. Tranier, R. Baraer, Z. Bellahsène, and M. Teisseire. Where’s charlie: Family-
based heuristics for peer-to-peer schema integration. In Proc. of IDEAS, pages
227–235, 2004.

[131] C. Van-Risbergen. Information Retrieval. 2nd edition, London, Butterworths,
1979.

[132] Y. Velegrakis, R. J. Miller, L. Popa, and J. Mylopoulos. Tomas: A system for
adapting mappings while schemas evolve. In ICDE, page 862, 2004.

[133] R. Wilkinson and P. Hingston. Using the cosine measure in a neural network for
document retrieval. In Proc of ACM SIGIR Conference, pages 202–210, 1991.

[134] W. Winkler. The state of record linkage and current research problems. In Statistics
of Income Division, Internal Revenue Service Publication R99/04, 1999.

[135] Wordnet. http://wordnet.princeton.edu, 2007.

[136] W. Wu, C. Yu, A. Doan, and W. Meng. An interactive clustering-based approach to
integrating source query interfaces on the deep web. In SIGMOD ’04: Proceedings
of the 2004 ACM SIGMOD international conference on Management of data, pages
95–106, New York, NY, USA, 2004. ACM Press.

[137] L. Yan, R. Dodier, M. Mozer, and R. Wolniewicz. Optimizing classifier perfor-
mance via an approximation to the Wilcoxon-Mann-Whitney statistic. In Proceed-
ings of ICML’03, pages 848–855, 2003.

143

[138] R. Yang, P. Kalnis, and A. K. H. Tung. Similarity evaluation on tree-structured
data. In SIGMOD, pages 754–765. ACM, 2005.

[139] M. Yatskevich. Preliminary evaluation of schema matching systems. Technical
Report DIT-03-028, Informatica e Telecomunicazioni, University of Trento, 2003.

144

