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Abstract. This paper presents an approach to automatically extract
entities and relationships from textual documents. The main goal is to
populate a knowledge base that hosts this structured information about
domain entities. The extracted entities and their expected relationships
are veri�ed using two evidence based techniques: classi�cation and link-
ing. This last process also enables the linking of our knowledge base to
other sources which are part of the Linked Open Data cloud. We demon-
strate the bene�t of our approach through series of experiments with
real-world datasets.
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1 Introduction

The Web, which includes databases, catalogs and all textual documents, is a
wealthy and a primary source of information. Thus, there is a need for exploit-
ing this tremendous growth of the amount of online information as a source
of structured knowledge [22]. Unfortunately, computers are not able to inter-
pret this information due to a lack of semantics. However, the emergence of
knowledge bases such as DBpedia and Freebase3 in the Linked Open Data cloud
(LOD), nowadays contain billions of facts expressed as RDF triples represent-
ing instances of relations between entities [4]. Researchers from various domains
are increasingly interested in making their data available as part of the LOD,
because a proper semantic integration of this data enables advanced semantic
services. Examples of such services include exploratory search, supporting so-
phisticated and semantically rich queries, interoperability, question answering,
etc. Converting the unstructured information, mainly the textual documents, to
semantic models is therefore crucial to reach the expected Web of Data [15]. For
instance, one of the most widely spread data representation used in the cultural
heritage domain is MARC and its alternative forms. However, the Functional

3 The complete list of interconnected bases can be found at http://linkeddata.org/
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Requirements for Bibliographic Records (FRBR) model has gained much atten-
tion during the last decade as an underlying and much needed semantic data
model for the cultural heritage data [20]. In this context, one of the most signi�-
cant challenge deals with the extraction of semantic information hidden in
plain documents [6, 14, 8]. Indeed, the textual documents are interesting because
they may contain information that is otherwise missing or incomplete in the
existing knowledge bases in the LOD cloud. Sentences in the documents include
named entities which are connected with a speci�c type of relationship, e.g.Mar-
tin Scorsese directed the movie The Departed. Besides, the interconnection of

the LOD data sources brings bene�t for sharing and inferring knowledge [12].
Thus, extracting related entities from documents is not su�cient, and they need
to be connected to the LOD cloud.

In this paper, we propose to tackle these two challenges. Our approach,
KIEV4 �rst extracts examples for a given relationship from textual documents.
Indeed, some relationships are rarely encompassed in the structured data sources,
but they can be found in textual documents (such as the Web). Mining these
relationships with a pattern-based technique involves the discovery of a large
amount of examples. Thus, a veri�cation of these examples is performed at two
levels: (i) the type of relationship is checked with a machine learning approach
and (ii) the extracted entities are matched to LOD for both veri�cation and in-
tegration purposes. In addition to these challenges, our approach KIEV should
perform reasonably well in terms of e�ciency at the Web scale since every page
is a potential source of examples and good patterns. As a summary, the contri-
butions of this paper are the following:
� We designed a generic approach for extracting semantic relationships from
a large text corpora which integrates a veri�cation process;

� These relationships are �ltered and veri�ed with a classi�cation technique
and an entity matching process. In addition, the link from our generated
entity to its corresponding LOD entity enables the connection and possible
reasoning over all interconnected knowledges bases;

� Finally, we have conducted experiments with real-world datasets (about
movies and sports) to evaluate the quality and the robustness of our ap-
proach.

The rest of this paper is organized as follows. Section 2 introduces the for-
malization of our problem and provides an overview of KIEV. Section 3 covers
the �rst part of our approach, the discovery of examples by using patterns, while
Section 4 and 5 focus on the evidence-based veri�cation of these examples. The
related work is described in Section 6. Our experiments are detailed in Section 7.
Finally, we conclude in Section 8.

2 Overview of our Approach

Our goal can be seen as the creation of a knowledge base of entities

and relationships. Simply assuming the existence of a repository of domain

4 KIEV � Knowledge and Information Extraction with Veri�cation
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entities would limit our approach. Rather, we extract entities from the textual
documents, and as a consequence, our approach should also work with entities
which have been previously identi�ed (i.e., from a repository). A relationship

is de�ned as a triple <entity1, type-of-relationship, entity2>. As an example,
considering the 2006 �The Departed� movie directed by Martin Scorsese as a
remake of the Andrew Lau's �Infernal A�airs� from 2002, the example would be
represented as <�Infernal A�airs�, hasImitation, �The Departed�>.
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Fig. 1. Overview of our Approach.

Figure 1 depicts the global overview of KIEV. Given a type of relationship,
KIEV requires a collection of documents and a few training examples (verifying
the types of relationship) to bootstrap a possible in�nite loop. The �rst step
consists of discovering examples from the textual collection (see Section 3).
It is based on semantic tagging which combines Named Entity Recognition and
Part of Speech tagging, and it generates many examples for the concepts con-
tained in a sentence. Thus, a veri�cation of the relevance for these examples is
performed with two other processes. The former checks if the extracted entities
are e�ectively related with the type of relationship using a machine learning

classi�er (see Section 4). The latter process links both extracted entities

of an example to their corresponding entities on the LOD cloud (see Section 5).
Once an example is veri�ed, it can be used as a training example to improve
the classi�er, but also to reinforce the con�dence score of a pattern during the
discovery process.
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3 Discovering Examples

The core idea of our approach is to process the input as a stream of documents
and to iteratively update our semantic knowledge base of entities. In this section,
we describe the �rst part of our approach � discovering examples. An example for
a given type of relationship is composed of two entities (e.g., for imitation type
of relationship, an example is <�Infernal A�airs�, �The Departed�>). Figure 2
provides the big picture of the example discovery work�ow, whose goal is to
generate a set of examples. Each process in the work�ow of discovering examples
is presented below.

Martin 
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 e1 VBZ {based, parody...} IN e2 
…

Patterns

Fig. 2. Work�ow of Processes for Discovering Examples

3.1 Stream Processing

Stream processor (SP) accepts as an input documents in textual form. The �rst
task the SP performs is to pre-process the input. For example, this task may
involve cleaning the html documents for tags, removing headers from emails,
etc . At this point, we are interested in only obtaining text regardless of the
quality. Each document d ∈ D is segmented into a list of sentences such that
d = {Si | i = 1 . . . N} where N is the number of sentences. A sentence Si is
discarded if Si−1 and Si+1 contain no entities. This is because Si may contain
a personal pronoun referring to the previous sentence, e.g. �Martin Scorsese

is an American �lm director. He is the creator of Taxi Driver.�. Additionally,
the sentences are �ltered out to eliminate those that were likely to be noisy
(broken and invalid sentences) and not useful for example discovery (e.g., non-
English sentences, sentences missing verb, sentences with only uppercase letters
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or only with lowercase letters, sentences without capital letters, etc.). The next
step deals with the semantic tagging of the selected sentences with semantic
information, namely named entity recognition (NER) and part-of-speech (POS)
tags.

3.2 Semantic Tagging

For each sentence s ∈ Si, named entity recognition is performed to detect the set
of entities E (person, location, organization, dates, etc.). Consider a document
containing the following sentence: Infernal A�airs was followed by a 2006 Amer-
ican remake by Martin Scorsese entitled The Departed. From this sentence, two
concepts are detected and one person. Traditionally, NER is focused around the
detection of common entities such as people, organization or geographic location.
However, the recognition of domain speci�c entities poses a particular challenge
because the NER tools usually require training examples for the types of entities
to recognize. In our context of textual documents from the Web, providing such
examples is not possible.

To avoid missing entities, a POStagger is �rst applied on all sentences. Our
assumption is that entities are POStagged as �noun�. Thus, we consider that all
nouns in the sentences are entities. A NER tool can con�rm some of these
entities. Although this assumption implies the identi�cation of many incorrect
entities, the next steps are in charge of discarding those irrelevant entities. The
output of the semantic tagger is a set of semantically and structurally tagged
sentences, from which we can extract frequent terms.

3.3 Frequent Terms Collection

Terms that appear frequently in the same sentence with a pair of entities are
likely to be highly relevant to the pair of entities. For example, in the
sentence �Martin Scorsese's movie The Departed is based on Internal A�airs�,
frequent terms are movie and based on because they appear frequently together
with the entities in the sentence.

In order to collect these frequent terms, all possible word n-grams are �rst
identi�ed in the sentence s. The top thousand most common words on the Web5

are excluded and cannot be part of frequent terms. Then, the sentence s is
splitted into a set of words. A list of n-grams is constructed out of this list. After
the list of n-grams has been obtained, we look up Wordnet lexical database to
obtain the list Φ of semantically related words. These words are grouped into
unordered sets (synsets). Stopwords (e.g., �the�, �a�, �but� etc.) are removed and
stemming is performed. The following Wordnet relations are used:

� synonymy (e.g., �writer� and �novelist�), words that denote the same concept
and are interchangeable in many contexts.

� hyponym, a word whose semantics are included within that of another word6,
e.g., �The Departed is a movie�.

5 This list is available from Microsoft Web N-gram Service: http://bit.ly/bFKSxz
6 This is similar to is-a relationship
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Since the synsets obtained from Wordnet have a shared information content,
i.e., hierarchy of is-a concepts, this list of semantically similar words can be larger
than desired. Thus, to control the level of granularity of this list of concepts, we
employ the Resnik similarity to prune those that are below a given threshold [16].
This similarity measure is applied between the segmented n-grams and each of
the synsets in Φ. For example, the distance between �novel� and �book� is 0.29.

These frequent terms are generated for di�erent objectives such as the clas-
si�cation of examples through features, but also to generate the examples as
explained in the next part.

3.4 Example and Pattern Generator

Having obtained the lists of named entities and frequent terms, a set of can-
didate examples is built. One of our goals is to populate a knowledge base
that can serve as a repository of distinct entities. First, a set of unique pair of
entities Θ is constructed such that Θ = {(ei, ej)|ei 6= ej , ei ∈ E , ej ∈ E}. At �rst
glance, it appears that we generate overly many examples and this most likely
leads to a fair number of false positives. But we will show in section 4 that our
classi�cation approach e�ectively discards these irrelevant examples. Our basic
assumption with generating so many examples is to reduce the likelihood of low
recall.

At this time, we can generate patterns based on the information from
the frequent terms collector. That is, we mask the named entities (e.g. �Infernal
A�airs� ⇒ e1, �The Departed� ⇒ e2). The idea is to obtain entity and word
independent patterns, as shown in the Figure 2. At the end of each iteration,
a list of patterns is generated from the candidate examples. If the pattern had
been generated before, its statistics are updated from the current iteration. For
patterns {p1, . . . , pn}, we compute the pattern similarity using the Levenshtein
distance and those above a given threshold are merged into a set of patterns Pp.
By now, we know the amount of patterns generated in this iteration (Pi). We
note the list Xp of examples that support this pattern. The patterns generated
at iteration i are ranked according to the following scoring function:

score(p) =
α occ(p)

i + β
|Pp|
|Pi| + γ

|Xp|
|X|

α+ β + γ

where occ(p) is the number of iterations this pattern has been discovered out
of total number of iterations i. X denotes the number of total examples in the
system. The scores are normalized in the range [0, 1]. The patterns generated
during this iteration will be used to discover new examples in the next iteration.
These patterns will also be used as features during the classi�cation process.

As previously explained, all of the examples discovered so far may not be
correct. In the next section, we will show how a classi�er e�ectively discards
false positives.
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4 Classi�cation

The �rst part of the veri�cation is to check that the candidate entities (repre-
sented with a label) are related with a type of relationship. Indeed, a sentence
may contain di�erent entities and the discovery process generates in that case
incorrect examples, mainly because of the pattern-based matching. The clas-
si�cation aims at discarding these incorrect examples without prior knowledge
about the two entities. To ful�ll this goal, the veri�cation process can be seen as
a classi�cation problem [13]. Given a set of features (properties), the idea is
to �nd the correct class for a given example (extracted from a sentence). Each
class represents a type of relationship (e.g., imitation, adaptation). For instance,
the example (James Cameron, Avatar) should be classi�ed in the class creato-
rOf. A speci�c class named unknown relationship is added as a garbage class to
collect all incorrect examples or those that cannot be classi�ed in another class.
To select the correct class for an example, a classi�er is trained using training
examples, i.e., examples for which the correct class is already known. Although
the training process depends on the type of classi�er (e.g., decision tree, Bayes
network), it mainly consists of minimizing the misclassi�cation rate when clas-
sifying the training examples according to the values of their features [13]. To
compute these values, each training example is used as a query over the docu-
ment collection and all sentences containing the two entities of the example are
analyzed given the following features: the frequency and the presence of any fre-
quent terms (e.g., parody), the length and structure of the best-ranked pattern
which generated the example (see Section 3.4), the average spamscore of the
documents from which the pattern is extracted [7]. Note that this paper does
not aim at designing a new classi�er, but we rather use existing ones from the
Weka environment [9]. More formally, an example x ∈ X is de�ned by a set of
features F . We note the set of training examples T , with T ⊆ X . Each example
can be assigned a class c ∈ C. Given a (type of) classi�er Γ , we formulate the
training as a process to obtain an instance γ of this classi�er as follows:

Γ (T ,F , C)→ γ

The advantage of building a generic classi�er rather than many binary classi�ers
(for each type of relationship) is that the former enables the veri�cation of dif-
ferent types of relationships. Consider a query for �imitation�, we could obtain
the pair of entities <�Infernal A�airs�, �The Departed�> and <�The Departed�,
Martin Scorsese�>. With a binary classi�er for �imitation�, we would only keep
the �rst example. With a generic classi�er, we would store both examples (clas-
si�ed in di�erent classes). When an instance of a classi�er which best minimizes
the misclassi�cation rate is trained, we can use this instance γ for assigning
classes to the unclassi�ed examples:

γ(X ,F , C)→ <(x1, c1), (x2, c1), (x3, c4), . . . , (xk, cn)>

In our context, we cannot assume that the user provides many initial train-
ing data. A set of 5 to 10 examples for each class is realistic. However, some
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classi�ers are robust with a few training examples while other classi�ers achieve
better results with more training data. Two problems arise from these remarks:
the former is about selecting which examples should be added as training data
while the latter deals with the choice of the classi�er for each iteration. Let us
discuss the choice of the training data �rst. To improve the robustness of the
classi�er, one has to train it with more data. To add new examples as training
data, we have to select them among the sets of discovered examples from the
previous iterations. We propose two strategies to achieve this goal. The �rst one
(linking based) consists in selecting all examples that have been veri�ed (with
the classi�cation step and the linking process) during any previous iterations.
The second strategy (frequency based) is based on a frequency constraint: all ex-
amples which have been discovered in half of the previous iterations are added as
training data during the current iteration. We believe that this selection of train-
ing data could be investigated further, e.g., when combining the two described
strategies.

As for the selection of the classi�er, the idea is the following: with the
selected training examples, we generate instances of di�erent types of classi�ers
(decision trees such as J48 or NBTree, instance-based such as KStar or IBk,
rule-based such as NNge or JRip, etc.). We perform cross-validation against the
set of training examples for each instance of a classi�er, and we compute the
misclassi�cation rate for each of them. The instance of classi�er which achieves
the minimal misclassi�cation rate is selected to classify the examples discovered
at this iteration. Such a strategy enables us to ensure that the best classi�er is
used for each iteration, but it also brings more �exibility to our approach.

We will show the impact of the training data and the type of classi�ers in
Section 7. The result of the classi�er is a set of pairs, each of them composed of
an example and its veri�ed relationship class. The next step is to check whether
the two extracted entities have a corresponding LOD entity.

5 Entity Linking

Entity Linking is the task of discovering local entity's correspondence in another
data source [19]. The interest in linking entities is increasing rapidly due to the
LOD movement. Note that linking does not imply coreference resolution is per-
formed, but linking partially solves the coreference resolution problem. For ex-
ample, the local entities �Martin Scorcese� and �Scorcese� are both linked to the
same DBpedia entity Martin_Scorsese. The kind of linking we are performing
here di�ers from structure-based linking as we only have labels at our dis-
posal. The core of the idea is to match the entity against existing general

purpose semantic knowledge bases such as DBpedia or Freebase to obtain
corresponding LOD entities. Namely, we build various queries by decomposing
the initial label and we query in the descriptive text attributes of knowledge
bases (i.e., common.topic.article for Freebase, dbpedia-owl:abstract for DBpedia,
etc.). In most cases, several candidate entities are returned and the task deals
with automatically selecting the correct one. To ful�ll this goal, the intuition is
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based on the hypothesis that the document about entity e and the descriptive
text of LOD entity l should be fairly similar. Linking is performed for each entity
of each document. That means that each document where e is mentioned serves
as a context for disambiguation and matching against LOD knowledge bases.
We note ξ the vector of terms in e's document, while Λ represents the vector of
terms of l. Terms in both documents are treated using bag-of-words method and
both the context of e and the descriptive text of l are represented as a point in
an n-dimensional term space. The cosine similarity score between the vectors ξ
and Λ is calculated as follows:

sim(ξ,Λ) =

n∑
i=1

ξi ×Λi√
n∑

i=1

(ξi)2 ×
√

n∑
i=1

(Λi)2

where n is the size of the vocabulary. The terms in both vectors are based on
classical tf/idf scores while the vocabulary is created out of the whole document
collection. The top ranked entities are chosen as candidates for further com-
parison. This last comparison is performed on labels (and optionally �redirects�
property) of the two entities to ensure a reasonable similarity in the label of e
and one of the labels of l (e.g. �rdfs:label� and �dbpedia-owl:wikiPageRedirects�
for DBpedia). This comparison is necessary because even though the similar-
ity function returns a su�ciently high cosine similarity score, the labels should
also be lexically similar. At this stage, the three well-known similarity measures
are applied (Jaro Winkler, Monge Elkan and Scaled Levenshtein) as described
in [19]. The top linked LOD entity is stored and is considered as a candidate
until the end of the iteration. At the end of an iteration, all veri�ed relationships
(both by the classi�cation and the linking) are converted into triples: for each
entity, some triples express the link to LOD, the di�erent labels and other pos-
sible attributes. One triple represents the relationship between the two entities
and the type of relationship. Thus, the knowledge base is populated iteratively
and can run continuously.

6 Related Work

In the �eld of knowledge extraction, various works have been proposed to dis-
cover relationships for speci�c domains [22]. For instance, Snowball associates
companies to the cities where their headquarter is located [1] while DIPRE
focuses on books and authors [5]. To increase the quality and the consistency
of generated facts, systems may either be based on general ontologies such as
Yago [14] or on logical rules associated with a SAT solver [18]. The last trend
in this domain deals with Open Information Extraction, in which the large
scale aspect of the Web is taken into account [8]. However, none of these works
clearly aim at building a semantic knowledge base, thus there is no linking with
the LOD cloud.
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DBpedia is one of the �rst initiative to automatically extract structured
content from Wikipedia [4]. It relies on the infoboxes provided by the knowledge-
sharing community. Since, many companies and organizations have added their
own knowledge base to the LOD cloud, from generic ontologies such asYago and
Freebase to specialized bases such asMusicBrainz or LinkedMDB [10]. The
process for converting unstructured or semi-structured data sources into facts
is called Tripli�cation7. For instance, Triplify has been designed to extract
triples from Relational databases and expose them on LOD [2] while Catriple
builds a store of triples from Wikipedia categories [11]. Similarly to most of these
approaches, we generate triples and store them in our knowledge base.

In the Information Retrieval domain, researchers have studied the discovery
of the corresponding LOD entities for a given task, such as in the TREC chal-

lenge [3]. Due to the large scale application and the uncertainty of the results,
a ranking of the most probable entities which correspond to the query (usually
with target categories) is computed [21, 17]. The linking to LOD for disambigua-
tion and enrichment has also been studied for any bag of words [12] as well as
for FRBR entities [19]. In our context, the entities are extracted from textual
documents and usually represented with a label. The surrounding context of
the label in the sentence is the main information available for discovering the
corresponding LOD entity.

7 Experimental Evaluation

To assess the e�ectiveness of our approach, we have conducted a number of
experiments which are presented below.

7.1 Experimental settings

Our document collection is the English subset of the ClueWeb09 dataset8

which consists of 500 million documents. This dataset is used by several tracks
of the TREC conference [3]. For semantic tagging, several text processing tools
have been used, including OpenNLP9 (for tokenization and sentence splitting),
the StanfordNLP10(for POS tagging). For classi�cation, six classi�ers of di�er-
ent types were applied, namely the classic Naïve Bayes, the rule-based (NNge,
DecisionTable), tree-based (J48, RandomForest) and lazy (KStar). These clas-
si�ers are included in the Weka software [9]. As for linking, we have used the
DBpedia11 dataset version 3.7 which contains 3,550,567 triples. Apache Lucene
was employed for the backend indexing. Running KIEV for one type of rela-
tion on a subset of the collection took roughly 20 minutes.

7 http://triplify.org/Challenge/
8 http://lemurproject.org/clueweb09/
9 http://opennlp.apache.org/

10 http://nlp.stanford.edu/
11 http://wiki.dbpedia.org/Downloads37
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(a) Before Veri�cation
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(b) With Classi�cation and Linking
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(c) Linking only
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(d) Classi�cation only

Fig. 3. Quality Results for the Remakes Dataset

7.2 Quality of Discovery Process

In this experiment, we focus on the movie dataset (remakes). Examples of rela-
tionships of interest include imitation, adaptation and creator. The ground truth
for this dataset was obtained from the IMDb12 movie database. This ground
truth contained 545 entries out of the total 1052 remake pairs. For the remain-
ing 507 we could not �nd suitable documents in our collection. The reason for
this is twofold. First, a number of movies were in non-English language. Sec-
ond, a signi�cant number of movies were created before the Information Age,
i.e., those produced earlier than 1970s. Additionally, some examples were only
mentioned in a few documents.

Figure 3 demonstrates the results of our experiments with or without the

evidence-based veri�cations. The quality is presented in terms of well-known
information retrieval measures - recall, precision and F-measure. Extracted ex-
amples are ranked and thus presented by top-k. In our context, the recall (at
top-k) is the fraction of extracted correct examples (at top-k) out of the total
number of correct examples (at top-k), while the precision (at top-k) is the num-
ber of extracted correct examples (at top-k) out of the total number of extracted
examples (at top-k). F-measure is the harmonic mean of precision and recall.

12 http://imdb.com
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We �rst notice that before the veri�cation process, the precision score is quite
low (≈39%) at top-1. This is because the discovery process extracts quite a lot
of incorrect examples (false positives). As we increase the top-k, the recall also
increases and eventually peaks at 87% at top-10. This trend illustrates that our
approach achieves fairly high recall value but at the expense of precision. We
tackle this issue with our veri�cation techniques, i.e., classi�cation and linking.
To show the bene�t of both veri�cation steps, the individual results of these
steps are depicted in Figure 3(c) and 3(d). The recall value for both classi�ca-
tion only and linking only is very similar to the values before veri�cation, thus
con�rming that the individual veri�cation do not discard many correct relation-
ships. And the precision values for both steps, which are lower than the precision
score after veri�cation at any iteration, indicate that classi�cation and linking
do not discard the same incorrect examples. Thus, they enable a higher precision
when they are combined.

Figure 3(b) illustrates that the veri�cation process is e�ective to discard
incorrect examples (precision score reaching ≈85% at top-1). However, a few
correct relations were also discarded (a ≈6% decrease of recall at top-1), mainly
due to the missing of a link to LOD of one of the entities. Furthermore, this
phenomenon involves changes in the ranking of the extracted examples. Correct
relationships can be promoted to a higher top, thus increasing the recall value
of the highest top (e.g., at top-5). Finally, the bene�t of the veri�cation process
clearly appears at top-10, since the plots have a close recall value (≈87%) but
the veri�cation discarded half of the incorrect examples (50% precision).

7.3 Impact of the Training Data

The example discovery process feeds the classi�er with new training data for
the subsequent iteration. In this experiment, we have studied the impact of
the selection of this training data by comparing the two strategies described in
Section 4.

Frequency based strategy. The frequency based strategy accounts for the
frequency of a given example being discovered in all iterations. Initially, the user
provides a set of 20 training examples (5 per relation type). If a given example is
discovered repeatedly on each iteration, the intuition behind this strategy is that
this example is most likely valuable and is promoted as a training example in
the next iteration. Figure 4 illustrates the impact of the training data at the i-th
iteration. On the y axis, we have the number of training examples that is used
by our classi�ers. On the right y2 axis, we have the harmonic mean F-measure
obtained by the best performing classi�er at the i-th iteration. The best perform-
ing classi�er is the one with the highest F-measure during the classi�cation with
10-fold cross-validation against the training data. Note that from one iteration
to the other, the best performing classi�er may be di�erent because the set of
training data evolves. For example, KStar was selected as the best classi�er for
the �rst iteration, but J48 performed better in the second iteration.
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Fig. 4. Impact of Training Examples with Frequency based Strategy

On the plot, 85 examples discovered during the �rst iteration are selected
for training for the second iteration. However, 20 of them are incorrect, i.e.
false positives (shown as a black bar). Both the number of correct and incorrect
examples increases as we move towards the 5-th iteration, eventually reaching
312 and 165 examples respectively for correct and incorrect examples. The high
number of examples can be explained as follows. The frequency based strategy
promotes as training data examples which appear at least 50% of the time in
the previous iterations. Thus the number of added examples can potentially
grow high. Yet, the F-measure obtained on the remakes dataset does not su�er
much from the presence of incorrect examples (stable around 89% after the 3-rd
iteration).

Linking based strategy. The linking based strategy provides a harder con-
straint than the frequency based strategy when selecting the training data. In-
deed, the candidate examples have to be veri�ed both by the classi�cation and
by the linking process. Let us study the impact of this strategy over the quality
of results by analyzing Figure 5. It presents the F-measure value achieved by the
best generated classi�er and the evolution of the number of training examples
for �ve iterations.

The �rst remark about this plot deals with the F-measure scores, which are
higher than those of the frequency based strategy from iterations 1 to 5. An-
other interesting phenomenon with this strategy is that the number of examples
selected as training data (y axis) is lower than the one of the frequency based
strategy. Indeed, the linking based strategy requires that both entities of an ex-
ample are linked to LOD. Thus, this number is dramatically reduced, i.e., 200
in linking based strategy versus 312 in the frequency-based strategy at the �fth
iteration. Finally, the number of incorrect examples is much lower in the linking
based strategy too.
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Fig. 5. Impact of Training Examples with Linking based Strategy

These remarks about the total number of correct examples together with the
higher F-measure value are clear indicators that the linking based strategy is
quality oriented while the frequency based strategy is performance oriented (sim-
ple and fast computation). The latter strategy is more appropriate for quickly
generating training examples.

7.4 Comparative Evaluation

Finally, the evaluation of KIEV would not be complete without a comparison

with similar knowledge extraction systems. Two systems, Prospera and
NELL, are publicly available along with their dataset about sports. The results
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of these systems over the sport dataset are reported in [6, 14]. To be fair in this
evaluation, we have used the same set of training examples, and we also validated
1000 random types of relationship, as explained in the experiments reported
in [6, 14]. This means that similarly to Prospera and NELL, our precision is an
estimation, due to the amount of relationships to be validated.

Figure 6 summarizes the comparison between the three systems in terms
of estimated precision. We notice that the average precision of the three sys-
tems is the same (around 0.91). However, the total number of facts discovered
by KIEV (71, 921) is 36 times higher than NELL (2, 112) and 1.3 times higher
than Prospera (57, 070). As a consequence, KIEV outperforms both baselines.
Prospera provides slightly better quality results than our approach on the Ath-
letePlaysForTeam relationship. However, several factors have an in�uence on the
precision results between Prospera, NELL and KIEV. First, Prospera is able to
use seeds and counter seeds while we only rely on positive examples. On the
other side, Prospera includes a rule-based reasoner combined with the YAGO
ontology and KIEV mainly uses the LOD cloud for veri�cation purposes. Yet,
the combination of POS-tagged patterns and NER techniques supported by the
two veri�cation steps achieves outstanding precision values.

8 Conclusion

We have presented our novel approach KIEV for populating a knowledge

base with entities and relationships. Our approach enables the analysis of a
large amount of documents to extract examples (of entities) with their expected
type of relationships after each iteration. A veri�cation step ensures an accept-
able quality for these extracted relationships by discarding irrelevant examples
(classi�cation) and by discovering the corresponding LOD entities (entity link-
ing). Experiments performed on di�erent datasets con�rm the signi�cant bene�t
of the veri�cation step, thus enabling our approach to run continuously and to
use new examples as training data to strengthen both the produced classi�er
and consequently the veri�cation process.

The outcome of this work provides several interesting perspectives. First, we
plan to run more experiments to analyze the impact of parameters (e.g.,
selection of the training data, number of iterations on the long term). We could
associate a con�dence score (based on provenance, number of patterns, num-
ber of occurrences, etc.) to each discovered relationship to rank them and help
discarding the incorrect ones. Another objective is to study the architecture
and implementation of the knowledge base in terms of infrastructure and
support for RESTful and SPARQL queries. When our knowledge base will be
publicly available, we plan to integrate user feedback to address the poten-
tially contradictory cases between the two veri�cation steps (classi�cation and
linking). Then, an extension could be proposed to discover any type of rela-

tionship, from an ontology for instance, by automatically de�ning the features
and the training examples.
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