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ABSTRACT
Suggesting services or products to people is a task that should be
handled by recommendation systems due to the important increase
of information and the multitude of user criteria. In fact, when
expressing wishes for a product, a user is influenced by his/her
tastes or priorities. These influential characteristics tend to be chal-
lenging regarding their integration into recommendation systems,
because interaction between the products/services and the user
has to be captured through its preferences. Recommendation sys-
tems for neighborhood and real estate search are no exception, and
to achieve reliable recommendation, we developed an ontology
NAREO (Neighborhood And Real Estate Ontology) where environ-
ment characteristics related to user preferences are modeled with
other geo-semantic descriptions. This ontology can be enriched by
SWRL (SemanticWeb Rule Language) rules that enhance the seman-
tics of our knowledge base and allow reasoning process through
built-ins. To illustrate a use case, we provide a basic set of prede-
fined rules for the recommendation context. User preferences are
managed through SPARQL queries taking into account the result
of inferences.
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1 INTRODUCTION
With the tremendous quantity of available objects, users become
familiar with recommendation systems. These systems are even
essential on the web to discover new movies or related e-commerce
products [5]. More recently, location-based social networks have
been exploited, mainly focused on recommending places such as
restaurants and attractive areas [12, 17]. Despite this trend, search-
ing and finding an ideal accommodation, either for purchase or
for rental, is still a very tiresome task [7, 20]. And this is worse
when users do not have prior knowledge about their future city of
residence (e.g., case of job transfers). There exist many generic or
specialized websites that offer description of available real estates,
including pictures and even virtual visits. And customers usually
have a precise idea about their ideal accommodation (e.g., number
of rooms, maximum price, type of neighborhood, essential services
and transportation means): one may look for a cosy apartment in a
vibrant neighborhood with many pubs while another may prefer a
house with garden in a quiet residential area close to schools and
parks. Thus, the question is how recommendation systems need to
be adapted for neighborhood and real estate search.

When buying or renting a real estate, one takes into account
multiple criteria about the accommodation and its neighborhood.
Existing solutions, typically web applications, are not able to per-
form complex queries using a combination of preferences and pos-
sibly restrictions. Besides, only a few information are structured
(e.g., type of accommodation, number of rooms, address), and the
remaining ones (e.g., specific rooms, building level, neighborhood
ambiance, surrounding amenities) are usually - when available -
scattered into textual descriptions which cannot be easily exploited
in an automated manner. A second issue deals with the vagueness
of the neighborhood concept. As explained in Delmelle’s study [8],
the definition, borders and perception of a neighborhood tend to
be subjective, and they suffer from drastic changes over time.

https://doi.org/10.1145/3423334.3431452
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Several works were designed to tackle this recommendation chal-
lenge. A first one aims at detecting similar neighborhoods between
cities [11], which is an acceptable solution in case of job transfer,
but limited to a few large cities. Similarly, the VizLIRIS tool shows
how to detect an ideal arrival area similar to a given starting neigh-
borhood [4]. It works for a whole country (France), but it assumes
that the user perception about his starting neighborhood is consis-
tent with the quantitative numbers that describe it. HoodSquare
recommends neighborhoods by exploiting Foursquare check-ins,
advising for instance areas for education, arts, food or parks [19].
Spatial Pattern Matching is another proposition to take into ac-
count constraints in order to recommend places [13]. However,
these constraints are limited to distance between places. Finally,
South Korea researchers directly recommend, for a few cities in
their country, the most relevant neighborhood and accommodation
based on similar user profiles [18]. The modeling of an accommo-
dation (using the SEED layout –design representation for spatial
layouts–) is accurate but difficult to obtain automatically from a tex-
tual accommodation description. Authors also have defined a partial
ontology about location, however it is not available and its compo-
nents (i.e., classes, predicates, rules) are not described. In another
study [6], an ontology gathering some relevant classes (apartment,
house, price, home, etc) to describe attributes for a real estate is
presented. It is also enriched by object and data properties (hasPrice,
hasArea, etc.) that allow the establishment of semantic relationships
between classes. This ontology is suggested to study the extraction
of fuzzy information from real estate offer advertisements and not
for recommendation. However, a fragment of its taxonomy can be
embellished with our concepts for the recommendation process.
An ontology-based multi-criteria spatial decision support system
was proposed by Malczeweski [14] for the house selection. This
ontology encompasses several and relevant entities and properties
such as house, building characteristics, neighborhood quality, acces-
sibility (to public transportation, commerce, education, etc.). SWRL
rules are also adopted to i) assign the user preferences (weights)
to all the attribute concepts (e.g., accessibility to education is an
attribute) and ii) to determine a score for a house according to
the weights values. However, expressing user preferences in terms
of weights through rules is a heavy task and difficult to extend.
Moreover, the spatial reasoning process cannot be managed by the
ontology and the spatial information cannot be directly reached.
In fact, the spatial information/functions are handled through the
GIS engine (ArcGIS) and are not modeled through the ontology.
Finally, their ontology is not publicly available, thus limiting its use
by other researchers.

To the best of our knowledge, there is no complete and func-
tional ontology about neighborhood and real estate. Yet, this is a
crucial component for solving such recommendation due to the
complexity of the preferences and constraints that can be expressed
about the accommodation and its neighborhood. In this paper, we
therefore propose an ontology named NAREO (Neighborhood And
Real Estate Ontology), dedicated to neighborhood recommendation
firstly and real estate search for future work. It has been designed
with the support of researchers in social sciences, mainly to support
the description of a neighborhood. It enables reasoning based on
SWRL rules, that can be enriched if needed. It is freely available,

and we demonstrate its use in a use case for Lyon, France by de-
tailing both the data integration aspect (using Open Street Map
data and other data resources related to neighborhoods and the
transportation system) and the recommendation part (reasoning
ans SPARQL queries).

In the rest of this paper, Section 2 describes the knowledge rep-
resentation developed for NAREO ontology from the conceptual-
ization to the modeling step. We determine also in this section the
concepts (classes) taxonomy and how they are related to each other
through object properties and data properties. Then, we present
Section 3, in which the semantics of NAREO is improved thanks
to SWRL rules. These rules are included to infer some relevant
data and facts related to criterion. The ontology is enriched with
individuals and relations assertions, drawing on different resources
in order to present a use case in Section 4. It shows how SWRL rules
enhance the semantic of NAREO and describes some queries using
SPARQL language to express user preferences. The last section is
about future work.

2 ONTOLOGY-BASED KNOWLEDGE
REPRESENTATION

A shared ontology consolidates the philosophical idea that several
partial ontologies can be modeled then shared to form a global
ontology where a possible enrichment is carried out which is our
aim. Generally, in order to build an ontology three steps are to be
followed: conceptualization, formalization and modeling process.
This section covers two steps: conceptualization and modelling
aspect of NAREO. The formalization step is not considered in the
current paper because we did not formalize the concepts for this
first version of NAREO.

2.1 Conceptualization
People looking for a new estate have several preferences to choose
the right accommodation. These preferences represent characteris-
tics for the real estate, amenities around it, neighborhood, etc. Since
the neighborhood is an important feature for most users, we assume
that they will search a real estatewithin the neighborhood that satis-
fies their characteristics. These latter may gather amenities (school,
hospital, transportation, etc.) or guarantee a proximity to some
services that allow activities like leisure, shopping, etc. It could
also be related to the neighborhood ambiance or type of landscape.
Describing characteristics and conceptualizing knowledge about
neighborhood recommendation lead us to identify concepts and
relationships between them. Thus, in order to design our ontology
we need to answer questions about the characteristics:

• What are all the general characteristics that influence the
neighborhood recommendation?

• What can be the abstraction (concepts) to describe all the
characteristics?

• Which relationships (roles) allow us to highlight the seman-
tic knowledge about the preferences?

For this purpose, we analyzed preferences expressed by people
that affect the abstraction according to the different individual needs
or objectives. Parents for example, may prefer to be near schools
or kindergartens. Others require a proximity to some general food
store or supermarket. Also people without a personal vehicle reach
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Table 1: Atomic concepts

Atomic concept Interpretation

Spatial Entity Encapsulates all features from the environment that contribute to express people preferences
Geometry Each spatial entity is related to a geometry that ensures the possibility of spatial reasoning between

features from the real world
Semantic Entity Knowledge that completes the definition of other concepts
Neighborhood Entity that describes an area where a real estate may be located

Public transportation Semantics about stations that are features (sub concept of spatial entity). It is also completed by
information such as the different lines of the transportation network (bus station, subway station,
etc.)

Amenity Spatial entity coupled with one or more activities (e.g., shopping, education, health care)
Person Individuals who are about to make decision and select their future neighborhood

Real estate Accommodations (apartment, house, etc.) available for rental or purchase, that may be a potential
housing for a person

Workplace Place where a person works, which is a relevant information for filtering a recommendation based
on the distance criterion

their workplace using public transportation or by foot. Hence, the
neighborhood must be close to public transportation (subway sta-
tion, bus station, bike station, etc.) or to the workplace. Other users
may provide more general ideas about their ideal neighborhood:
type of landscape, quiet or vibrant, more or less close to a city center,
etc. They may also express priorities between these preferences. For
instance, if most people tend to favour a secure area, this criterion
may be essential for some users. From this preferences study, terms
(concepts) and relevant spatial aspect and roles (e.g., proximity)
emerge. In addition, the majority of characteristics appears to be
related to some features from a city (environment, infrastructure).
Note that the full list of concepts has been discussed with social
science researchers. Taking into account preferences to choose the
right neighborhood leads somehow to establish the spatial relation-
ships between these features, which are mainly composed of spatial
entities. Formally, this emphasizes the need for a spatial entity con-
cept that encapsulates all the required features and from where
spatial reasoning may occur. In geographic information science,
this reasoning around spatial relationships includes topological
models that describe them such as RCC8 [16] or 9-intersections [9].
Consequently, a spatial entity requires other concepts to clearly
describe spatial data like knowledge about geometries. Besides, to
enhance the flexibility and the scalability of our ontology, semantic
entity concept has to be considered. Such entity is useful to capture
other complementary concepts that help to collect a specific piece
of information about the spatial entity and reinforce our policy for
searching data. For instance, a real estate will have a category such
as apartment, house, loft, etc. These categories will be considered
as a semantic entity, since it is not a spatial information. Plus, each
category may have characteristics (e.g., garden, swimming pool,
etc.) for a house which enhance the semantic when we get to filter
data through SPARQL queries.

At first sight, the main atomic concepts to design the ontology
are summarized in Table 1. This first stage of conceptualization high-
lights the domain and scope of the NAREO ontology by defining the
general atomic concepts. In the next step, we design the ontology by
establishing the taxonomy between entities (classes/concepts) and

determining properties. These latter, may also be depicted through
taxonomies. Our ontology for neighborhood recommendation is
presented in the next section with more explanations.

2.2 Ontology modeling
Broadly speaking, an ontology is based on logical theories. More
precisely, First-Order Logic (FOL) and Description Logic (DL) [2]. In
this specific context, the classes that we must define for NAREO on-
tology are considered as concepts (DL definition) or unary predicate
(FOL definition). Likewise, the properties that depict the relation-
ships are roles (DL definition) or binary predicates (FOL definition).
The semantic web technologies provide a set of vocabularies and
languages to describe the component of an ontology with different
level of semantic expressiveness such as RDF (Resource Description
Framework), RDFS (Resource Description Framework Schema) or
OWL (Web Ontology Language). Based on DL, OWL is the most
complete language that allows a high level of expressiveness. In fact,
with OWL an ontology can be enriched with axioms and complex
definitions of concepts (classes). This complexity combines several
characteristics like adding constraint cardinalities, universality and
existentiality on properties within the definition of concepts. In our
knowledge representation of neighborhood recommendation, the
definitions of concepts and properties are not based on heavy for-
mal axioms and the ontology is not really heavyweight. However,
for future work and more relevant ontology formalization we adopt
OWL for the description. Also, technical prowess motivated us to
rather opt for an OWL description than another representation. The
ontology is illustrated here and built with Protégé1 by importing
an existing description of the spatial dimension.

The conceptualization presented above, motivates us to consider
the ontology classification. Indeed, using spatial dimension (gen-
eral classes/properties) and features characterizing a city within a
knowledge base is not a new task and some semantic descriptions
do already exist [1, 15]. Consequently, we have an upper-level on-
tology and a domain/application ontology. An upper-level ontology
is an ontology where general concepts and properties are defined
1https://protege.stanford.edu

https://protege.stanford.edu
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with a high degree of abstraction and from which other ontologies
(domain/application ontology) may be designed or extended. If an
ontology targets a specific problem we call it a domain ontology
(or an application ontology if the vocabulary is very specific to a
particular application or system).

2.2.1 Upper-ontology Level. A spatial dimension is used in several
applications or services (routing, tourism, wayfinding, etc.). Thus,
an ontology describing this dimension is independent of domain
of interest or application. That is why we consider it as an up-
per ontology. In our description, we used the OGC GeoSPARQL2
standard that represents geospatial knowledge on the semantic
web. As illustrated in Figure 1, this ontology mainly gathers three
classes and the super class is Spatial Object. This class clusters
the Feature and Geometry classes that provide the possibility to
associate a geometry (Point, LineString, etc.) to features from the
real world. The association between the two classes is handled by
the property has Geometry. Each geometry is serialized by geo-
graphic coordinates through asWKT or asGML data properties. In
order to processes spatial information and ensure spatial reasoning,
the GeoSPARQL ontology also presents spatial relations (functions)
from RCC8/9-intersections theories. This ontology is extended with
a domain/application ontology which is specific to neighborhood
recommendations.

Figure 1: GeoSPARQL standard ontology (geo: prefix for the
namespace: http://www.opengis.net/ont/geosparql)

2.2.2 Domain/application ontology. As explained, people prefer-
ences are mainly related to daily life activities and consequently
to the infrastructure and characteristics of cities (e.g., location
of amenities, services, shopping). In addition, social science re-
searchers have defined six environment variables to summarize the
characteristics of a neighborhood [3]:

• Type of building represents themost common buildings in the
neighborhood (from large housing complexes to individual
houses);

• Usage describes local activities (residential, services, etc.);
• Landscape defines the quantity of surrounding natural ele-
ments (e.g., fields, forest, urban);

• Social class denotes the degree of wealth using five levels of
value;

• Morphological position indicates the distance level of a neigh-
borhood from the city center (rural up to central);

2http://www.opengeospatial.org/standards/geosparql

• Geographical position stands for the direction towards the
city center of the closest city (eight cardinal values plus
central).

In order to capture the domain knowledge of those character-
istics, we first combine the GeoSPARQL ontology with another
taxonomy as depicted in the partial overview of our concepts or-
ganization (Figure 2). The taxonomy is inspired from the tags clas-
sification of OpenStreetMap (OSM). They are collected from wiki
pages3 where they are organized and maintained. Three principal
keys and some of their values are used in our ontology; namely,
Shop, Amenity, and Leisure. Each key is considered as a class where
their values are their sub classes. The taxonomy of the sub classes
is organized as suggested for the values classification in OSM. Since
each component of this taxonomy is related to a location from the
environment –that influences the recommendation– we add an
Environment top class above the taxonomy.

Besides, as explained in the conceptualization, the Neighbor-
hood and the Real estate concepts have to be integrated into
the ontology. Therefore, we include a Housing class that congre-
gates both of them. The Neighborhood is equivalent to a class
IRIS (a French administrative acronym for "Ilots Regroupés pour
l’Information Statistique") which refers to the census areas of a terri-
tory, or division of municipalities/districts "units". Besides, in order
to handle the spatial aspect, the class Feature from the upper-level
ontology (GeoSPARQL ontology) is extended by the concept Spa-
tial entity which is introduced in our conceptualization. Broadly
speaking, in order to process spatial data, the spatial entity gathers
all the top classes with their taxonomy listed so far, in addition to
the Workplace class.

The Semantic Entity concept is also introduced as a class into our
ontology. It deals with some metadata to complete semantics from
other classes as succinctly explained in the conceptualization. For
example, the Transport stations class which is a sub class of Amenity
– and a value for Amenity key from OSM – can be linked to a Public
Transportation (subClass of the semantic entity). It provides the
possibility to associate each station by the line (bus, subway, etc.)
which serves it. Furthermore, a class for Itinerary description is
defined as a sub class of the semantic entity, in order to represent al-
ternative paths or combination of trajectories (with different means
of transportation) to join for instance the workplace. When address-
ing a recommendation problem, we have to take into account the
person preferences to whom we suggest relevant real estates. In
this study, the preferences are considered into the SPARQL query.
However, to reach a reliable recommendation for a real estate in
future work, the ontology will evolve and the semantic user profile
will be enriched. Consequently, a class named Person is included to
ease the mapping with a user profile.

2.2.3 Properties definition. With the presented knowledge repre-
sentation, we consider also properties to add the necessarymetadata
and perform the recommendation process. In addition to the rela-
tionships from the GeoSPARQL ontology (has serialization, equals,
intersects, etc.), we developed other object and data properties to

3https://wiki.openstreetmap.org/wiki/Map_Features

http://www.opengis.net/ont/geosparql
http://www.opengeospatial.org/standards/geosparql
https://wiki.openstreetmap.org/wiki/Map_Features


Ontology-Based Approach for Neighborhood and Real Estate Recommendations LocalRec’20, November 3, 2020, Seattle, WA, USA

Figure 2: Partial overview of classes from NAREO ontology

Figure 3: Fragment of properties from NAREO ontology
(blue: object properties, green: data properties)

carry out the relationships between entities from NAREO ontol-
ogy. Figure 3 shows an overview of the properties included in the
ontology.

When expressing preferences, the distance criteria often comes
up and tends to be very important. Thus, the object property hasDis-
tance is determined between the Spatial entity and Itinerary classes.
An itinerary is also related to an IRIS (EquivalentTo:Neighborhood)
from where the distance should be calculated. This leads us to
include the property itineraryFromIRIS.

Formally, suppose we have the following assertions:
• IRIS(s) : "s" is an instance of IRIS in the knowledge base
• Workplace(k),
• Itinerary(i),
• hasDistance(k,i),
• itineraryFromIRIS(i,s)

The assumption to make through those facts is that an itinerary
"i" exists to reach the workplace "k" from the IRIS "s". Furthermore,
information about the distance are asserted by means of data prop-
erties. In fact, the itinerary can refer to a combination of trajectories
with different public transportation. Consequently, each itinerary
has a combination of different distances related to different trans-
portation. Data properties such as 𝑠𝑢𝑏𝑤𝑎𝑦_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 , 𝑏𝑢𝑠_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ,
𝑡𝑟𝑎𝑚_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 are subsumed by the 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑣𝑎𝑙𝑢𝑒 data property.
The distance value will be communicated as a time value (trajectory
duration). To clearly understand these properties and keeping in
view the facts below, we can assert additional facts about distance
related to the itinerary "i", for instance:

• 𝑠𝑢𝑏𝑤𝑎𝑦_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑖, ”15”),
• 𝑡𝑟𝑎𝑚_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑖, ”10”)

These facts means that it would take 25 minutes (15+10) to
reach the workplace "k" from the IRIS "s" while considering the
itinerary"i". The latter is a combination of two trajectories: by sub-
way and tram. The transportation system is also related to stations.
As explained through the domain ontology, each station has one or
more lines (e.g., bus or subway) from the transportation network.
The top-level object property that allows to formally consider this
fact is hasStation, from where several properties are derived such
as hasBusStation, hasTramwayStation, hasSubwayStation, etc.

To fulfill more semantics and metadata, we add other data prop-
erties such as salary, age, diploma, gender, etc. for a person de-
scription, and atmosphere, 𝑐𝑜𝑑𝑒_𝐼𝑅𝐼𝑆 , 𝑛𝑜𝑚_𝐶𝑂𝑀 , 𝑛𝑜𝑚_𝐼𝑅𝐼𝑆 , etc.
for the neighborhood description. The atmosphere data property
provides the ability to formalize general information about the
district (mostly, the environment defined by social researchers, as
explained in Section 2.2.2). Some of the properties such as nearby
or 𝑠𝑎𝑡𝑖𝑠 𝑓 𝑦_𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 are used for the reasoning process through
SWRL rules. More explanation about this reasoning mechanism
is presented in the next section. Finally, NAREO4 merges the two
main ontologies –spatial and domain / application– encompassing
a total of 306 classes, 59 object properties and 35 data properties,

4The NAREO ontology is publicly available: https://doi.org/10.5281/zenodo.3904419

https://doi.org/10.5281/zenodo.3904419
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as shown in Table 2. In addition to existing generic concepts, we
defined 228 new classes, 16 object properties and 42 new relations
(object and data properties).

Table 2: Ontology metrics for NAREO

Total Domain/application

#Class 306 228
#Object Property 59 16
#Data Property 35 26

3 SWRL RULES DEFINITION FOR NAREO
In addition to the model, our NAREO ontology is provided with a
set of rules that enable reasoning and enhance the semantics of our
knowledge base. New rules can also be added if needed.

In this context, this section lays out some rules that infer relevant
information related to preferences such as distance criterion. In fact,
in an ontology knowledge base described with OWL, we can not
infer new values for individuals while using axiomatic reasoning
(complex concepts definition). Inferences are only about new facts
between existing classes and individuals from the ontology or to
assert their types considering concepts formalization. Sometimes,
when we attempt to infer a specific fact, we need first to restrict
and calculate values about individuals and since OWL description
does not allow this mechanism, we exploit SWRL rules to infer for
instance values related to distances.

SWRL rules are defined as a conjunction of predicates forming a
head (the results of inference) and a body (the conditions to have an
inference). In our case, we design DL-safe rules which means that
every argument (individual) in the head has to be in the body in
order to maintain both consistency and decidability. We use SWRL
with an extension of the Pellet reasoner and a set of APIs (e.g., OWL)
to customize and define our own n-ary predicates named built-ins.
They can be considered as methods where the parameters are the
n-arguments associated to the predicates. The reasoning engine
(in our case Pellet) infers new values related to data properties
through these built-ins. The other predicates forming a rule are in
fact classes or object/data properties. We define here four major
DL-safe rules including built-ins to calculate distances and infer
values for a data property.

3.1 Inference for proximity criteria
The first rule, shown in SWRL Rule 1, is about proximity between
a neighborhood and a food shop. In this rule, the body is built
from an IRIS(?i) predicate with a geometry ?g1 defined by the pred-
icate hasGeometry(?i,?g1). This geometry is described by a WKT
serialization (geographic coordinates) through the data property
asWKT(?g1,?w1). The Food_shop predicate is also used in this rule
but it may be replaced by other sub classes (kindergarten, hospital,
Swimming_pool, etc.). This feature is related to geographic coor-
dinates described by ?w2 in the rule. The inference asserts that an
IRIS (?i) is not far from (nearby) a feature Food_shop(?f), if all the
conditions in the body are fulfilled. Technically, the predicate dis-
tance_criterion_food_shop which is a built-in, represents a method

with three parameters, including both location coordinates and
parameter ?d which is a boolean value. This value is fulfilled (with
the value true) if the calculated distance between the two entities
(?w1,?w2) does not exceed for example 300 m. This new fact can be
used as a filter in a SPARQL query for neighborhood recommenda-
tion.

SWRL Rule 1

I R I S ( ? i ) ^ hasGeometry ( ? i , ? g1 ) ^ asWKT ( ? g1 , ? w1 ) ^
Food_shop ( ? f ) ^ hasGeometry ( ? f , ? g2 ) ^ asWKT ( ? g2 , ? w2 ) ^
d i s t a n c e _ c r i t e r i o n _ f o o d _ s h o p ( ? d , ? w1 , ? w2 ) ^
=> nearby_food_shop ( ? i , ? f )

3.2 Inference for neighborhood atmosphere
criteria

The second rule depicted by SWRL Rule 2 deals with the atmo-
sphere and environment of a neighborhood. As in the previous
definition, this rule is about distance criteria. The objective is to
use the inference result for the next rule that determines whether a
neighborhood is animated or not. As for the previous one, the SWRL
Rule 2 is formulated with different predicates, mainly IRIS and Sus-
tenance (super class of: Pub, Bar, Restaurant, etc.). These predicates
are related to their geographic coordinates, respectively, ?w1 and
?w2. The built-in distance_criterion_sustenance is verified through
a method as for the built-in distance_criterion_food_shop and the
assumption made here for the object property nearby_sustenance(?i,
?s) is fulfilled if all the predicates are satisfied.

SWRL Rule 2

I R I S ( ? i ) ^ hasGeometry ( ? i , ? g1 ) ^ asWKT ( ? g1 , ? w1 ) ^
Sus tenance ( ? s ) ^ hasGeometry ( ? s , ? g2 ) ^ asWKT ( ? g2 , ? w2 ) ^
d i s t a n c e _ c r i t e r i o n _ s u s t e n a n c e ( ? d , ? w1 , ? w2 ) ^
=> nea rby_sus t enance ( ? i , ? s )

Next, we define SWRL Rule 3 that handles an OWL class de-
scription (𝑛𝑒𝑎𝑟𝑏𝑦_𝑠𝑢𝑠𝑡𝑒𝑛𝑎𝑛𝑐𝑒 >= 5). This rule infers the fact that
a neighborhood ?i is animated (atmosphere(?i, "true")) if there are
more than five relations (minimal cardinality restriction) that assert
a proximity of the IRIS ?i from a Sustenance (pub, bar, restaurant,
etc.).

SWRL Rule 3

I R I S ( ? i ) ^ ( nea rby_sus t enance >= 5 ) ( ? i )
=> atmosphere ( ? i , " t r u e " )

3.3 Inference for distance from workplace
The home-work distance is considered as a very important criteria
when someone is looking for a housing. Generally, this distance
is expressed with a temporal value. To deal with this criteria, we
design SWRL Rule 4 below that infers the different trajectories
forming an itinerary. The body of the rule stipulates the fact that
when we have an IRIS (?i), its geographic coordinates ?w1 are cap-
tured (the same information are collected for the workplace) from
the knowledge base. Different itineraries may be proposed to reach
the workplace. As we know, the reasoning process allows only
inferences about individuals in the knowledge base. Which leads
us to create first the instances that should describe the different
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itineraries. We set five possible itineraries between each IRIS and
the workplace. These possibilities are determined in the rule by
?iT1,...,iT5. Furthermore, to capture the association between, for
instance the workplace ?k, itinerary ?iT1, IRIS ?i, we use the rela-
tions hasDistance(?k, ?iT1) and itineraryFromIRIS(?iT1,?i). Since
SWRL does not adopt the unique name assumption, we assert that
all individuals are different into the knowledge base and we exploit
this assertion using differentFrom properties in the rule. Without
this assertion, the rule may collect one itinerary from the knowl-
edge base to fulfil the different variables representing itineraries in
the rule.

SWRL Rule 4

I R I S ( ? i ) ^ hasGeometry ( ? i , ? g1 ) ^ asWKT ( ? g1 , ? w1 ) ^
Workplace ( ? k ) ^ hasGeometry ( ? k , ? g2 ) ^ asWKT ( ? g2 , ? w2 ) ^
hasD i s t ance ( ? k , ? i T 1 ) ^ . . . ^ hasD i s t ance ( ? k , i T 5 ) ^
d i f f e r e n t F r om ( ? iT1 , ? i T 2 ) ^ d i f f e r e n t F r om ( ? iT1 , ? i T3 ) ^
. . . ^ d i f f e r e n t F r om ( ? iT4 , ? i T 5 ) ^
i t i n e r a r y F r om IR I S ( ? iT1 , ? i ) ^ . . . ^
i t i n e r a r y F r om IR I S ( ? iT5 , ? i ) ^
wo r k _ d i s t a n c e _ c r i t e r i o n ( ? w1 , ? w2 , ? dv1 , . . . ,
? dv5 , ? v1 , ? v2 , ? v3 , ? v4 . . . )
=> subway_d i s tance ( ? iT1 , ? v1 ) ^ . . . ^
t r am_d i s t ance ( ? iT5 , ? v35 ) ^ d i s t a n c e _ v a l u e ( ? iT1 , ? dv1 ) ^ . . . ^
d i s t a n c e _ v a l u e ( ? iT5 , ? dv5 )

The work_distance_criterion predicate is a built-in customized in
order to generate five optimal itineraries and it fills in the variables
?v1, ?v2,...?v5. For each itinerary we have seven distance values
that are described by seven relations. These latter are clustered
by the distance_value data property (Figure 3). Hence, each vari-
able (?v1, ?v2,...?v35) represents a temporal value for one trajectory
constituting an itinerary. When all the predicates are satisfied, the
rule infers the different temporal values for each trajectory. Plus,
for each itinerary, the built-in returns "0" as a temporal value, if
the transportation related to the data property is not adopted into
the itinerary. For example, the rule can return the assertion sub-
way_distance(?iT2, ’0’) if there is no trajectory related to a subway
for the second itinerary (?iT2).

Finally, the built-in returns also values (?dv1...?dv5) representing
the temporal distance value of an itinerary (e.g., ?𝑑𝑣1 =?𝑣1 + ...?𝑣5).
This operation simplifies querying data when users express prefer-
ences based on distance to work (see Section 4).

The semantic enhancement presented in this section can evolve
by adding other rules. For example, it is possible to infer the social
class of a neighborhood if we analyze the influential values using
several built-ins. In the next section, we present a use case to under-
stand how rules are used and how the querying process manages
inferences.

4 USE CASE
To understand how using this model can be relevant and effec-
tive, we explain here its exploitation. First, we introduce a data
enrichment process using OSM. Thereafter, we point out how using
SWRL rules is important to enhance the semantic through rea-
soning mechanism and built-ins. At the end, the model suggests
recommendations by means of SPARQL queries.

4.1 Data enrichment through NAREO
The main contribution is the NAREO ontology, but it does not
contain any instances. To be useful, it needs to be populated with
instances from the targeted area, for instance a country, a region
or a city. These instances mainly consist of spatial information
that can be easily extracted from cartographic providers such as
OpenStreetMap or Bing Maps.

In this use case, we show how to use NAREO for recommending
neighbourhoods in Lyon. Thus, we instantiate all the environment
sub classes with Lyon city information using Overpass5 API (turbo)
for OSM. More precisely, we collected data from OSM on a 10km
radius around Lyon with values for Shop, Amenity and Leisure
keys. Figure 4 shows an example of the individual "crêche Masséna"
which is an instance of the Kindergarten class. This individual has
Point5775 as a Geometry with the serialization (asWKT) "POINT
(4.8552157 45.7645912)". The same applies to all the spatial data
enrichment. However, we noticed that information about trans-
portation are not completely available in OSM. Consequently, we
collected datasets about the city transportation system (considering
Lyon city) from a French open data website 6. In addition to this
enrichment, information related to IRIS are also stored into the
knowledge base from the same website. At the end, the integration
process gathered about 86,990 instances.

Note that the ontology is enriched entirely in Java with the JENA
API7. The integration script can be easily adapted for populating
other areas, and is publicly available at https://gitlab.liris.cnrs.fr/
fduchate/nareo.

Figure 4: Example of spatial data enrichment

4.2 Reasoning process through SWRL
To clearly understand how information are inferred, we describe
an example of inferences through the rules defined in this paper
(see Section 3) considering some data and fact assertions. These
are presented in Table 3. For instance, Franprix is a Supermarket
and has Geometry Point51975 with POINT (4.867083 45.7737778) as a
serialization, is an assertion from the second row of the table. The
inferences are mainly related to recommendation criterion.

5https://overpass-turbo.eu
6https://www.data.gouv.fr
7https://jena.apache.org

https://gitlab.liris.cnrs.fr/fduchate/nareo
https://gitlab.liris.cnrs.fr/fduchate/nareo
https://overpass-turbo.eu
https://www.data.gouv.fr
https://jena.apache.org
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Table 3: Example of data assertion

Individual label Geometry asWKT Class

Casino Point51975 POINT (4.8655005 45.7711646) Supermarket
Franprix Point51581 POINT (4.867083 45.7737778) Supermarket

Boulangerie Régis Grand Point55750 POINT (4.8618856 45.7705183) Bakery
Picard Point62958 POINT (4.8618621 45.77022) Frozen_food

Provifruits Point54006 POINT (4.8660036 45.7709304) Greengrocer
Martins Boucher Point54389 POINT (4.8669555 45.7733211) Butcher

Leader Price Express Point56688 POINT (4.8628103 45.7724536) Convenience
The Brew Brothers Point50562 POINT (4.856848 45.7697452) Pub

Le Waldeck Sweet Bar Point50623 POINT (4.8583287 45.7698096) Pub
Le Select Point57491 POINT (4.8667944 45.7731651) Bar

Le Charpenne Point57512 POINT (4.8664263 45.7730669) Bar
Okawali Point61447 POINT (4.863124 45.769918) Restaurant

McDonald’s Point52337 POINT (4.8633017 45.7700648) Fast_food
Sapori di casa Point57474 POINT (4.8612948 45.7708478) Restaurant
Le Béranger Point57529 POINT (4.8609165 45.7699466) Restaurant

Le Bistrot du Potager-Stalingrad Point70582 POINT (4.8586965 45.7706483) Restaurant
Le Hoggar Point72993 POINT (4.867677 45.771059) Restaurant

692660301 (Tonkin-Sud) MultiPolygon129 MULTIPOLYGON (((4.86594583533633 45.77... IRIS

4.2.1 Proximity criteria. In the previous section, we detailed two
rules (SWRL Rule 1 and SWRL Rule 2) to infer proximity crite-
ria between an IRIS and other spatial entities (Food_shop and
Sustenance). Two built-ins were respectively defined according
to the entities in question: distance_criterion_food_shop and
distance_criterion_sustenance. When the reasoning process is ap-
plied to the set of assertions presented in Table 3, SWRL Rule 1
will infer the semantic triples summarized in Table 4. Indeed, the
whole body of the rule is fulfilled and every predicate is satisfied.
Each triple means that the IRIS named Tonkin-Sud is nearby some
Food_shop. The same applies for the SWRL Rule 2. We summarize
the inference results for the latter rule in Table 5. The inferences
about sustenance proximity help us to verify the neighborhood
atmosphere (animated or not).

Table 4: Inferences for proximity to Food shops

IRIS Inference Food_shop

692660301 (Tonkin-Sud) nearby_food_shop Casino
692660301 (Tonkin-Sud) nearby_food_shop Franprix
692660301 (Tonkin-Sud) nearby_food_shop Boulangerie Régis Grand
692660301 (Tonkin-Sud) nearby_food_shop Picard
692660301 (Tonkin-Sud) nearby_food_shop Provifruits
692660301 (Tonkin-Sud) nearby_food_shop Martins Boucher
692660301 (Tonkin-Sud) nearby_food_shop Leader Price Express

4.2.2 Neighborhood atmosphere criteria. Once we have the infer-
ence about proximity to sustenance, we can verify whether an IRIS
is animated or not, using the SWRL Rule 3 defined in Section 3. The
rule is satisfied based on the number of sustenance places nearby
the IRIS Tonkin-Sud. From the triples presented in Table 5 we can
affirm that there are more that five sustenance locations nearby
the neighborhood Tonkin-Sud. Therefore, the rule deduces the fact

Table 5: Inferences for proximity to Sustenance

IRIS Inference Sustenance

692660301 (Tonkin-Sud) nearby_sustenance The Brew Brothers
692660301 (Tonkin-Sud) nearby_sustenance Le Waldeck Sweet Bar
692660301 (Tonkin-Sud) nearby_sustenance Le Select
692660301 (Tonkin-Sud) nearby_sustenance Le Charpenne
692660301 (Tonkin-Sud) nearby_sustenance Okawali
692660301 (Tonkin-Sud) nearby_sustenance McDonald’s
692660301 (Tonkin-Sud) nearby_sustenance Sapori di casa
692660301 (Tonkin-Sud) nearby_sustenance Le Béranger
692660301 (Tonkin-Sud) nearby_sustenance Le Hoggar

that this neighborhood is animated, adding the following triple:
"692660301" "atmosphere" "true".

4.2.3 Distance from workplace criteria. In the last rule (SWRL Rule
4), we define an inference of temporal distance for each trajectory
forming one itinerary. Suppose we add these data assertions8:

• Itinerary(T1), Itinerary(T2), Itinerary(T3)
• Workplace(Nautibus), hasGeometry(Nautibus, Point9600)
• asWKT(Point9600, POINT(4.865868 45.782342))
• hasDistance(Nautibus, T1), hasDistance(Nautibus, T2)
• hasDistance(Nautibus, T3)
• itineraryFromIRIS(T1, 692660301)
• itineraryFromIRIS(T2, 692660301)
• itineraryFromIRIS(T3, 692660301)

SWRL Rule 4 will infer the following temporal distance values
for each itinerary (T1, T2, T3) by assigning the different trajectories
through several data properties:

• walking_distance(T1, 11), bus_distance(T1, 2)
• distance_value(T1, 13), train_value(T1, 0)

8Note that Nautibus is the building name of our LIRIS laboratory.
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• subway_distance(T1, 0), car_distance(T1, 0)
• tram_distance(T1, 0), Trolley_distance(T1, 0)
• walking_distance(T2, 5), tram_distance(T2, 5)
• distance_value(T2, 10), train_value(T2, 0)
• subway_distance(T2, 0), car_distance(T2, 0)
• bus_distance(T2, 0), Trolley_distance(T2, 0)
• walking_distance(T3, 19),distance_value(T3, 19)
• tram_distance(T3, 0), train_value(T3,0)
• subway_distance(T3, 0), car_distance(T3, 0)
• bus_distance(T3, 0), Trolley_distance(T3, 0)

All the inferred data are stored as an RDFmodel to allow SPARQL
queries. These queries provide the possibility to express some pref-
erences for neighborhood recommendation.

4.3 SPARQL queries for recommendation
Users preferences are the main components that lead to a rele-
vant recommendation. This section describes how the SPARQL
query language is used after the reasoning process to obtain rec-
ommendations according to distance, proximity and neighborhood
atmosphere9. The latter can be related to some semantic knowledge
that enhance the recommendation.

A. Itinerary preferences:

SPARQL Query 1 is about detecting neighborhoods (IRIS) for an
accommodation by taking into account the distance to a specific
workplace.

SPARQLQuery 1

s e l e c t ? name_IRIS ? i t i n e r a r y ? t empo r a l _ d i s t an c e
where { ? x a base : I R I S ;

base : nom_IRIS ? name_IRIS .
?w a base : Workplace ;
r d f s : l a b e l \ " Naut ibus \ " ;
base : ha sD i s t ance ? i t i n e r a r y .
? i t i n e r a r y base : I t i n e r a r y F r om IR I S ? x ;
base : d i s t a n c e _ v a l u e ? t empo r a l _ d i s t an c e .
FILTER ( ? t empo r a l _ d i s t an c e > 0 &&

? t empo r a l _ d i s t an c e <= 2 0 )
}

In this example, we suppose that a user works in a place named
"Nautibus". From this place, we capture itineraries –generated
through SWRL Rule 4 – to all IRIS. Then, for each itinerary, we
collect the temporal distance value (inferred previously) on which
a refinement is applied. This refinement is specified by the FILTER
function that allows restriction on arithmetic expressions. The re-
striction in this query claims that the temporal distance value should
not exceed 20 minutes. The minimum value restriction is considered
to avoid getting other itineraries that are not initialized through
SWRL when there are less than five possibilities to join the work-
place. Formally, this query recommends all the neighborhoods from
where we reach the Nautibus workplace in less than 20 minutes.
The semantic of this query can be enhanced by adding preferences
on transportation systems. For example, the triple, [?itinerary
base:tramway_distance ?tmprl_distance] and the restriction
[FILTER (?tmprl_distance > 0)] may be added to the query to

9For all SPARQL queries, we specify the term "base" for the prefix of NAREO IRI
(Internationalized Resource Identifier).

specify that a user prefers to take the tramway as means of trans-
portation.

B. Preferences for the proximity:

Shopping is an activity that people cannot avoid. Hence, having
conveniences not far from their future housing can be very satisfy-
ing and is a frequent query from real estate buyers. SPARQL Query
2 is proposed to compute the number of food shops classified per
category nearby in the neighborhood.

SPARQLQuery 2

s e l e c t ? name_IRIS ( count ( d i s t i n c t ? shop ) as ? count )
where { ? x a base : I R I S ;

base : nom_IRIS ? name_IRIS ;
base : nearby_food_shop ? shop .
} GROUP BY ? name_IRIS

In this query, we use aggregate functions allowed by SPARQL
(countwithGROUPBY). Information about proximity (nearby_food_shop)
have to be already inferred through SWRL Rule 1.

C. Preferences for neighborhood atmosphere:

The neighborhood atmosphere is probably one of the most im-
portant criterion. Indeed, a user may prefer a lively neighborhood
when others such as families would prefer a quiet place.

SPARQLQuery 3

s e l e c t ? name_IRIS
where { ? x a base : I R I S ;

base : nom_IRIS ? name_IRIS ;
base : atmosphere t r u e .
}

In this context, SPARQL Query 3 can be used to gather all the
neighborhoods that are animated or quiet, expressed respectively
by "true"/"false" values. To obtain more diversity in terms of atmo-
sphere or about the neighbourhood environment, new predicates
or built-ins need to be written.

D. Sustenance Typology:

One may want to know what kind of sustenance are nearby each
neighborhood. Thus, we propose SPARQL Query 4 which may help
to improve the recommendation process if we join it with neighbor-
hood atmosphere query to refine the result by adding restriction
on sustenance typology.

SPARQLQuery 4

s e l e c t ? name_IRIS ? name_sustenance ? c l a s s
where { ? x a base : I R I S ;

base : nom_IRIS ? name_IRIS ;
base : nea rby_sus t enance ? tag .
? tag r d f s : l a b e l ? name_sustenance ;
a ? c l a s s . "
FILTER ( STRSTARTS ( STR ( ? c l a s s ) , s t r ( base : ) ) )
}
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For example, SPARQL Query 5 suggests a refining recommenda-
tion considering an animated neighborhood and add a restriction
on the number of bars nearby.

SPARQLQuery 5

S e l e c t ? name_IRIS ( count ( d i s t i n c t ? tag ) as ? count )
where { ? x a base : I R I S ;

base : nom_IRIS ? name_IRIS ;
base : atmosphere t r u e ;
base : nea rby_sus t enance ? tag .
? tag r d f s : l a b e l ? name_sustenance ;
a base : Bar .
} GROUP BY ? name_IRIS
HAVING ( ? count < 4 )

The ability to express preferences through SPARQL evolves based
on the set of knowledge representation. For instance, recommenda-
tion should consider security rating of the neighborhood. Hence, it
has to be structured into the knowledge base in order to guarantee
its inclusion through SPARQL queries. More enhancement about
recommendation through our NAREO ontology are presented in
the next section.

5 CONCLUSION AND FUTUREWORK
An ontological representation for neighborhood recommendation
appears to be a helpful contribution to suggest relevant neighbor-
hoods based on user preferences. The representation has to be
generic and independent of the city where a user is searching for
a new housing. Moreover, it must support the scalability in or-
der to update the knowledge base when needed. In this paper, we
have presented the NAREO ontological model which enables the
representation and population of data related to neighborhood rec-
ommendation. This representation considers spatial data about the
environment forming a neighborhood (amenity, services, leisure,
shops). We reuse the GeoSPARQL standard ontology that eases
the spatial representation in NAREO. The taxonomy presented
gathers the main concepts related to a neighborhood and relation-
ships to semantically link stored data. SWRL rules with customized
built-ins are suggested in order to manage inferences on different
criteria such as distance to work, proximity to convenience or sus-
tenance that leads us to propose a rule to infer the atmosphere of
the neighborhoods. Characteristics about neighborhood may also
be presented through other criteria like natural elements in the
surrounding area or distance level of a neighborhood from the city
center.We did not consider these characteristics in the present study.
Adding semantics describing them would be useful in order to inte-
grate related preferences. In this proposal, preferences are managed
by means of SPARQL queries using data inferences through SWRL
rules. Functions provided by the query language are also applied to
filter values and get a relevant result for recommendation.

Our future work focuses on the evolution of NAREO by adding
concepts related to characteristics for real estates (e.g., type of
accommodation, number of rooms, presence of a fireplace or swim-
ming pool). This extension is also related to spatial data, especially if
we try to represent the layout of the housing (e.g., kitchen oriented
south, bedrooms at the second floor) and the SEED layout could
be an interesting foundation [10], in addition to spatial relations
from the Geosparql ontology. For example, the relation "within" will

capture real estates available into the recommended neighborhoods.
Then, we will add preferences about real estate (number of rooms,
orientation, etc.) considering the semantic representation in the fu-
ture version of NAREO. The latter will also take into account users
profile to propose more accurate recommendation. For example, a
neighborhood close to a school will be privileged if the user has
children. This recommendation will be handled first by defining a
semantic rules to infer the spatial relation between neighborhood
and schools. These inferred facts will be used to filter triples in
SPARQL queries.
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