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Abstract. Discovering correspondences between schema elements is a
crucial task for data integration. Most schema matching tools are semi-
automatic, e.g., an expert must tune certain parameters (thresholds,
weights, etc.). They mainly use aggregation methods to combine sim-
ilarity measures. The tuning of a matcher, especially for its aggregation
function, has a strong impact on the matching quality of the resulting
correspondences, and makes it difficult to integrate a new similarity mea-
sure or to match specific domain schemas. In this paper, we present YAM
(Yet Another Matcher), a matcher factory which enables the generation
of a dedicated schema matcher for a given schema matching scenario.
For this purpose we have formulated the schema matching task as a
classification problem. Based on this machine learning framework, YAM
automatically selects and tunes the best method to combine similarity
measures (e.g., a decision tree, an aggregation function). In addition, we
describe how user inputs, such as a preference between recall or preci-
sion, can be closely integrated during the generation of the dedicated
matcher. Many experiments run against matchers generated by YAM
and traditional matching tools confirm the benefits of a matcher factory
and the significant impact of user preferences.

Keywords: schema matching, data integration, matcher factory, schema
matcher, machine learning, classification.

1 Introduction

There are a plethora of schema matching tools designed to help automate what
can be a painstaking task if done manually [3]. The diversity of tools hints at the
inherent complexity of this problem. The proliferation of schema matchers and
the proliferation of new (often domain-specific) similarity measures used within
these matchers have left data integration practitioners with the very perplexing
task of trying to decide which matcher to use for the schemas and tasks they need
to solve. Traditionally, the matcher, which combines various similarity measures,
is based on an aggregation function. Most matching tools are semi-automatic,
meaning that to perform well, an expert must tune some (matcher-specific) pa-
rameters (thresholds, weights, etc.) Often this tuning can be a difficult task as



the meaning of these parameters and their effect on matching quality can only
be seen through trial-and-error [39]. Lee et al. have shown how important (and
difficult) tuning is, and that without tuning most matchers perform poorly, thus
leading to a low quality of the data integration process [27]. To overcome this,
they proposed eTuner, a supervised learning approach for tuning these matching
knobs. However, eTuner has to be plugged into a matching tool, which requires
programming skills. A user must also still commit to one single matcher (the
matcher provided in the matching tool). Several research papers [10, 12, 18, 31]
led to the conclusion that matchers based on machine learning provide acceptable
results w.r.t. existing tools. The main idea consists of training various similarity
measures with a sample of schemas and correspondences, and applying them to
match another set of schemas. Our intuition is that machine learning can be
used at the matcher level.

Another motivation deals with the pre-match interaction with the users [38].
They usually have some preferences or minor knowledge of the schemas to be
matched, which are rarely used by the schema matchers [43]. For instance, a
quick examination of the schemas may have revealed a few correct correspon-
dences, or the user may have an external resource (dictionary, ontology) or a
dedicated similarity measure which could be exploited for a specific domain.
Schema matchers (often implicitly) are designed with one or a few matching
tasks in mind. A matcher designed for automated web service composition may
use very stringent criteria in determining a match, i.e., it may only produce a
correspondence if it is close to 100% confident of the correspondence’s accuracy.
In other words, such a matcher uses precision as its performance measure. In
contrast, a matcher designed for federating large legacy schema may produce all
correspondences that look likely, even if they are not certain. Such a matcher
may favor recall over precision, because the human effort in “rejecting” a bad cor-
respondence is much less than the effort needed to search through large schemas
and find a missing correspondence. This difference can make a tremendous dif-
ference in the usefulness of a matcher for a given task. Integrating these user
preferences or knowledge prior to the matching is a challenge for improving the
quality results of a schema matcher.

In this context, we presentYAM, which is actually notYet Another Matcher1.
Rather YAM is the first schema matcher generator designed to produce a tailor-
made matcher, based on the automatic tuning of the matcher and the optional
integration of user requirements. While schema matching tools produce corre-
spondences between schemas, YAM is a matcher factory because it produces
a dedicated schema matcher (that can be used later for discovering correspon-
dences). This means that theoretically, YAM could generate schema matchers
which are very similar to the tools COMA++ [2] or MatchPlanner [18]. Schema
matching tools only have one predefined method for combining similarity mea-
sures (e.g., a weighted average), while a schema matcher generated by YAM in-

1 The name of the tool refers to a discussion during a panel session at XSym 2007
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cludes a method selected among many available (e.g., a decision tree, a Bayesian
network, a weighted average). To fulfill this goal, YAM considers the schema
matcher as a machine learning classifier: given certain features (i.e., the similar-
ity values computed with various similarity measures), the schema matcher has
to predict the relevance of a pair of schema elements (i.e., whether this pair is a
correspondence or not). In this framework, any type of classifier can be trained
for schema matching, hence the numerous methods available for combining sim-
ilarity measures. YAM does not only select the best method for combining sim-
ilarity measures but it also automatically tunes the parameters inherent to this
method (e.g., weights, thresholds). The automatic tuning capability has been
confirmed as one of the challenges proposed in [43]. In addition, YAM integrates
user preferences or knowledge (about already matched scenarios and training
data), if available, during the generation of the schema matchers. For instance,
our approach benefits from expert correspondences provided as input, because
they are used for generating the schema matcher. In YAM, we also allow a user
to specify her/his preference for precision or recall, and we produce a dedicated
matcher that best meets the users needs. YAM is the first tool that allows the
tuning of this very important performance trade-off.

The main contributions in this paper are:

– Our approach is the first to refer to schema matching as a classification
task. Although other approaches may use classifiers as a similarity measure,
we propose to consider a schema matcher which combines various similarity
measures as a classifier.

– In addition, our work is the first matcher factory for schema matching.
Contrary to traditional matching approaches, our factory of matchers gen-
erates different matchers and selects the dedicated matcher for a given sce-
nario, i.e., the matcher which includes the most relevant similarity measures,
combined with the most appropriate method, and best tuned.

– Another contribution deals with the close integration of user prefer-
ences (e.g., preference between precision or recall, expert correspondences).

– A tool named YAM has been implemented. Its main features include self-
tuning (the method for combining similarity measures in a matcher is tailored
to the schemas to be matched) and extensibility (new similarity measures or
classifiers can be added with no need for manual tuning).

– Experiments over well-known datasets were performed to demonstrate the
significant impact of YAM at different levels: the need for a matcher
factory, the benefit of user preferences on the matching quality, and the
evaluation with other schema matching tools in terms of matching quality
and performance time.

Outline. The rest of the paper is organized as follows. Section 2 contains the
necessary background and definitions of the notions and concepts that are used
in this paper. Section 3 gives an overview of our approach while Section 4 pro-
vides the details of the learning process. The results of experiments showing the



effectiveness of our approach are presented in section 5. Related work is described
in section 6. Finally, we conclude in section 7.

2 Preliminaries

Schema matching is traditionally applied to matching pairs of edge-labeled trees
(a simple abstraction that can be used for XML2 schemas, web interfaces, JSON3

data types, or other semi-structured or structured data models). The schema
matching task can be divided into three steps. The first one is named pre-
match and is optional. Either the tool or the user can intervene, for instance
to provide resources (dictionaries, expert correspondences, etc.) or to set up pa-
rameters (tuning of weights, thresholds, etc.). Secondly, the matching process
occurs, during which correspondences are discovered. The final step, the post-
match process, mainly consists of validation of the discovered correspondences
by the user.

Definition 1 (Schema): A schema is a labeled unordered tree S = (ES,
DS, rS, label) where ES is a set of elements; rS is the root element; DS ⊆ ES

× ES is a set of edges; and label ES → Λ where Λ is a countable set of labels.

Definition 2 (Schema matching scenario): A schema matching scenario
is a set of schemas (typically from the same domain, e.g., genetics or business)
that need to be matched. A scenario may reflect one or more properties (e.g.,
domain specific, large scale schemas). An example of schema matching scenario
is composed of two hotel booking web forms, such as those depicted by Figures
1(a) and 1(b). Optionally, a schema matching scenario can include user prefer-
ences (preference for precision or recall, expert correspondences, scenarios from
the same domain, number of training data and choice of the matching strategy).
These options are detailed in Section 4.3. In the next definitions, we focus on a
scenario with two schemas S1 and S2 for clarity, but the definitions are valid for
a larger set of schemas.

Definition 3 (Dataset): A dataset is a set of schema matching scenarios.
For instance, the dataset used in the experiments of this paper is composed of
200 scenarios from various domains.

Definition 4 (Pair):A pair of schema elements is defined as a tuple <e1, e2>
where e1 ∈ E1 and e2 ∈ E2 are schema elements. For instance, a pair from the
two hotel booking schemas is <city, hotel name>.

Definition 5 (Similarity Measure): A similarity measure is a function
which computes a similarity value between a pair of schema elements <e1, e2>.

2 Extensible Markup Language (XML) (November 2015)
3 JavaScript Object Notation (JSON) (November 2015)
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(a) Web form hotels-valued (b) Web form where-
to-stay

Fig. 1. Two web forms about hotel booking

The similarity value is noted sim(e1, e2) and it indicates the likeness between
both elements. It is defined by:

sim(e1, e2)→ [0, 1]

where a zero value means total dissimilarity and a value equal to one stands
for total similarity. Note that measures computed in < can usually be converted
in the range [0, 1]. In the last decades, many similarity measures have been de-
fined [20,25,29] and are available in libraries such as Second String4.

Definition 6 (Correspondence): A correspondence is a pair of schema el-
ements which are semantically similar. It is defined as a tuple <e1, e2, k>, where
k is a confidence value (usually the average of all similarity values computed
for the pair <e1, e2>). A set of correspondences can be provided by an expert
(ground truth) or it may be produced by schema matchers. Figure 2 depicts
two sets of correspondences. The set on the left side (Figure 2(a)) is the expert
set, which includes expected correspondences. The set on the right side (Figure
2(b)) has been discovered by a schema matcher (YAM). Note that an expert
correspondence traditionally has a similarity value equal to 1. As an example,
<searchform, search, 1> is an expert correspondence.

Definition 7 (Schema matcher): A schema matcher is an algorithm or
a function which combines similarity measures (e.g., the average of similarity
values for a pair of schema elements). In addition, a matcher includes a decision

4 Second String (November 2015)
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(a) Expert set

(b) YAM’s set (using a dedicated matcher)

Fig. 2. Two sets of correspondances for the hotel booking example

step to select which pair(s) become correspondences (e.g., the decision may be a
threshold or a top-K). Given a pair <e1, e2> and its similarities values computed
for k similarity measures, we represent the combination comb and the decision
dec of a matcher as follows:

dec(comb(sim1(e1, e2), . . . , simk(e1, e2)))→ <e1, e2, k> or ∅

A few matchers also use information about other pairs (e.g., <e1, e3>) to decide
whether the pair <e1, e2> is a correspondence or not. Thus, a more generic
definition of a schema matcher M focuses on the fact that it produces a set of
correspondences between two schemas S1 and S2:

M(S1, S2)→ {<e1, e2, k>}

Definition 8 (Schema matching quality): The schema matching quality
evaluates the effectiveness of a schema matcher for a given schema matching
scenario, by comparing the correspondences discovered by this matcher for the



scenario to a ground truth. Figure 2(a) provides the ground truth between the
two web forms. Different metrics have been designed to measure the effectiveness
of a matcher. For instance, precision measures the rate between the number of
correct correspondences discovered by a matcher and the number of expected
correspondences (provided in the ground truth).

One of the main assumptions in YAM is that the schema matching process
can be seen as a binary classification algorithm. Indeed, the goal of the schema
matching process is to determine whether a pair of schema elements is a corre-
spondence or not. For instance, a matcher will have to classify the pair <city,
hotel name> either as a correct or an incorrect correspondence. Thus, YAM
views schema matchers as machine learning classifiers [34].

Definition 9 (Classifier): A classifier is an algorithm that aims at sorting
input data into different classes. In our context, two classes indicate the validity
of a pair to be considered as a correspondence: relevant and irrelevant. Different
types of classifiers are available such as decision trees or support vector machines
[23,34]. Two processes are usually associated to a classifier: training (or learning)
consists of building a classifier from a given type by exploiting training data while
using stands for the application of the trained classifier against another dataset.
To train a classifier5, training data is described with features and a class. In our
context, the set of training data τ is represented with similarity measures and
associated values and its validity v:

τ={((sim1, sim1(e1, e2)), . . . , (simk, simk(e1, e2)), v)}

Given a set of training data τ , the training for a type of classifier ω produces a
classifier c as follows:

ω(τ)→ c

When training a classifier, the main objective is to promote a given evaluation
metric, and the chosen metric for YAM is the misclassification rate. At the end of
the learning, the generated classifier efficiently combines (a subset of) similarity
measures. In our context, using a classifier is equivalent to a schema matcher,
i.e., it produces a set of schema correspondences between two input schemas:

c(S1, S2)→ {<e1, e2, k>}

Definition 10 (Matcher factory): A factory of matchers such as YAM
produces different schema matchers based on the same inputs. Each of those
matchers has its own specificity, mainly for combining similarity measures, tun-
ing internal parameters, taking a decision. In our context, these specificities
mainly relate to the types of classifiers. Given two schemas S1 and S2, a set of
training data τ , a set of type of classifiers Ω, and optional user preferences Φ,
a matcher factory generates a set of generated matchers C, i.e., one matcher for
each type of classifier.
5 We focus on supervised classification, i.e., all training data are labelled with a class.



M(S1, S2, τ, Ω, Φ)→ C where C = {c1, . . . , cn} and |Ω| = n

Definition 11 (Dedicated matcher): The motivation for generating many
classifiers within a factory comes from the fact that a given schema matcher, even
craftily tuned, may not reach the quality level of another matcher for a given
scenario [27]. Yet, no schema matcher performs well in all possible scenarios. In
addition to generating many matchers, a factory of schema matchers is also in
charge of selecting the dedicated schema matcher, i.e., the "best matcher among
all those generated". The notion of "best matcher" depends on a strategy which
encompasses three criteria: an evaluation metric, a validation dataset and a
pool of matchers. Strategies are described in more detail in Section 4.4. Broadly
speaking, given an evaluation metric µ, a set of matchers C and a validation
dataset X , the dedicated matcher Γ ∈ C is the classifier which obtains the
highest score for the evaluation metric against the validation dataset:

∀ci ∈ C, µ(Γ,X ) ≥ µ(ci,X )

This dedicated matcher Γ is then used for matching S1 and S2.

3 Overview of our approach

YAM is a self-tuning and extensible matcher factory tool, which generates a ded-
icated schema matcher according to a scenario and optional user requirements.
Broadly speaking, YAM includes a repository of training data (scenarios with ex-
pert correspondences) and a set of types of classifier. It generates tuned schema
matchers for various types of classifier, and then select the "best" one - according
to a strategy - as the dedicated matcher. This dedicated matcher can be used
for matching the input scenario. The self-tuning feature stands for the abil-
ity to produce a matcher with appropriate characteristics for a given scenario,
mainly the method for combining similarity measures (aggregation functions,
Bayes network, decision trees, etc.). The extensible feature enables users of a
matching tool to add new similarity measures. Traditional matching tools which
offer this extensibility are often restricted by the manual update of the config-
uration for both the similarity measures and the method which combines them
(e.g., adjusting thresholds, re-weighting values). However, YAM automatically
tunes these parameters and is therefore easily extensible. Finally, the integra-
tion of user requirements allows YAM to convert user time spent to specify
these requirements into better quality results, mainly by generating matchers
specifically tuned for the scenario. YAM provides these three capabilities be-
cause it is based on machine learning techniques, as described in the next part
on the architecture. The last part of the section illustrates a running example
with YAM.

3.1 Architecture of the YAM system

To the best of our knowledge, YAM is the first factory of schema matchers and
it aims at generating a dedicated schema matcher (i.e., a craftily tuned schema



matcher) for a given schema matching scenario. For this purpose, YAM uses
machine learning techniques during the pre-match phase.

Figure 3 depicts the architecture of YAM. The circles represent inputs or
outputs and the rectangles stand for processes. Note that a dotted circle means
that such an input is optional. YAM requires only one input, the set of schemas
to be matched. However, the user can also provide additional inputs, i.e., pref-
erences and/or expert correspondences (from a domain of interest, or for the
input schemas to be matched). The preferences consist of a precision and recall
trade-off and a strategy to select the dedicated matcher. In YAM, a repository
stores a set of classifiers (currently 20 from the Weka library [23]), a set of sim-
ilarity measures (mainly from the Second String project [41]), a set of training
data (200 schema matching scenarios from various domains with their expert
correspondences). The schema matcher generator is in charge of generating
one tuned matcher for each classifier in the repository according to the user in-
puts (see Sections 4.2 and 4.3). Then, the schema matcher selector applies a
strategy to choose the dedicated matcher among all the tuned matchers (see Sec-
tion 4.4). Finally, this dedicated schema matcher can be used for matching, and
specifically the input schemas for which it was tailored. This matching process
produces a list of correspondences discovered between the input schemas. Note
that the matching process is specific to the type of classifier that will be used and
it is not detailed in this paper. For instance, MatchPlanner performs the match-
ing with a decision tree [18] while SMB uses the Boosting meta-classifier [31].
Next, we explain how YAM works with a simple example based on the hotel
booking web forms.

Fig. 3. Architecture of YAM



3.2 Running an example

A user needs to match two schemas for hotel booking. The user is not an expert
in data integration, and does not have any idea about the appropriate similarity
measures or the configuration of the parameters for matching these schemas.
By using YAM, the user simply provides the two schemas as input and runs the
matching. Since no preferences have been provided, YAM has a default behaviour
and it uses random training data from its repository for learning the dedicated
matcher. First, YAM generates and tunes one schema matcher for each type
of classifier. Among these generated schema matchers, the one with the best
results on the training data is elected as the dedicated matcher. Let us imagine
that the dedicated matcher is based on a Bayes Net type of classifier. YAM can
finally use this dedicated matcher to match the schemas of the hotel booking
scenario (Figure 1). The matching phase depends on the type of classifier of
the dedicated matcher (Bayes Net). In this example, the dedicated matcher
computes the probability of a pair of schema elements being a correspondence
for each similarity measure. A global probability is finally derived to indicate
whether the pair is a correspondence or not. The set of correspondences resulting
from this matching is shown in Figure 2(b). In comparison with the ground
truth (Figure 2(a)), we notice that 8 out of the 9 correct correspondences have
been discovered. However, two irrelevant correspondences have also been found,
namely (Hotel Location, Hotel Name) and (Children:, Chain).

In this simple motivating example, we have described the main workflow of
YAM. The next section describes the learning process in detail by including
the integration of user requirements, which reduces the impact of the random
training data.

4 Learning a dedicated matcher

In this section, we describe YAM’s approach to learning a dedicated matcher
for a given matching scenario. This section is organized as follows: the first
part explains the relation between classification and schema matching. Then, we
describe the matcher factory, or how YAM generates a matcher for each classifier.
Next, we detail how user preferences are integrated during the learning process.
Finally, we focus on the strategies which aim at selecting the dedicated matcher
among all generated matchers.

4.1 Matching as a machine learning task

The machine learning classification problem consists in predicting the class of an
object from a set of its attributes [34]. Thus, any schema matcher can be viewed
as a classifier. Each pair of schema elements is considered as a machine learning
object where its attributes are the similarity values computed by a set of selected
similarity measures of these elements. Given the similarity values of a pair, a
matcher labels this pair as either relevant or irrelevant (i.e., as a correspondence



or not). Of course, a matcher may use any algorithm to compute its result –
classification, clustering, an aggregation of similarity measures, or any number
of ad hoc methods including techniques such as blocking to improve its efficiency.
In YAM, we use an extensible library of types of classifiers, among which are
decision trees (e.g., J48, NBTree), aggregation functions (e.g., SimpleLogistic),
lazy classifiers (e.g., IBk, K* ), rule-based classifiers (e.g., NNge, JRip), voting
systems or Bayes Networks. Three assumptions are required to include a type of
classifier in YAM: first, the type of classifier should support supervised learning,
i.e., all training data have to be labelled. Secondly, it has to use both numerical
and categorical features, i.e., the similarity measures may return either numerical
values or semantic values (e.g., synonym). The last assumption deals with the
discretization ability [15, 21], i.e., the type of classifier should be able to split
values for continuous features (e.g., similarity measures which return a distance
or a value in [0, 1]). The generation of a dedicated matcher can be divided into
two steps: (i) training of tuned matchers, which can be impacted by parameters
and user preferences, and (ii) selection of the dedicated matcher.

Example: Let us consider the pair (searchform, search) from our running
example. We computed the similarity values of this pair for each similarity mea-
sure in our library. For instance, let us assume we have three similarity mea-
sures: AffineGap [1], NeedlemanWunsch [36] and JaroWinkler [45]. Processing
them over the pair (searchform, search) provides the following similarity values:
AffineGap = 14.0, NeedlemanWunsch = −4.0, JaroWinkler = 0.92. From these
values, a matcher must predict whether the pair is a relevant correspondence or
not.

4.2 Training tuned matchers

In this part, we explain how to generate tuned matchers which aim at classify-
ing pairs in a class, either relevant or irrelevant. To reach this goal, classifiers
have to be trained. YAM trains each matcher using its repository of training
data and potential expert correspondences provided by the user (see Section
4.3). The training data in the repository consists of expert correspondences, i.e.,
pairs of schema elements with their relevance6. The training algorithm is specific
to each classifier [34]. However, we shall briefly sum up the main intuition: first,
an algorithm selects the similarity measures which provide a maximum of cor-
rectly classified correspondences (i.e., a minimal misclassification rate). Then,
the similarity measures that might solve harder cases are taken into account.

To illustrate the training process, we have chosen a well-known classifier,
the decision tree. In our context, a decision tree is a tree whose internal nodes
represent the similarity measures, and the edges stand for conditions applied to
the result of the similarity measure (e.g., the similarity value computed by a
measure must be greater than a value). All leaf nodes in the tree are the classes,
either a relevant correspondence or an irrelevant correspondence. Algorithm 1
6 The two schemas of a pair may be necessary to compute similarity values, for instance
with structural or contextual measures.



describes the learning of a decision tree in our context. The learning takes as
input a set of training data T and a set S containing k similarity measures. This
training data is defined as a set T = {t}, and a single training data ti ∈ T is
represented as ti = {(simi1, vi1), . . . , (simik, vik), (labeli, classi)}. The output is
a decision tree. In the initialization function buildDecisionTree, an empty decision
tree is created and the recursive function partition is called (lines 2 and 3).
The goal of this second function is to split the training data into one or more
classes, thus creating a new level in the decision tree. To fulfill this goal, the best
feature has to be selected for partitioning the training data. Note that similarity
measures are continuous features (values in the range [0, 1]) and they need to be
discretized. This discretization is a well-known problem [15,21] and it generates
cut points, e.g., conditions representing a range of values associated to a class.
For each similarity measure, the algorithm produces a set of cut points (lines
6 to 11). Each training data is then associated to one class, i.e., the training
data satisfies the condition of a given cut point (lines 12 to 19). As a result,
Pclass
sim contains the training data of the class class according to a given feature

sim. When the partitioning has been performed for all similarity measures, the
algorithm is able to select the best partition according to an evaluation metric
(line 24). Various evaluation metrics are available, such as information gain, Gini
criterion or gain ratio [46], and we rely on misclassification rate in our context.
Finally, if the partition produced by the best similarity measure only contains
one class7, then there is no more partitioning of the data and that single class
is added as a child node in the tree (line 26). If several classes are present in the
partition of the best similarity measure, then the algorithm adds each of these
classes as child nodes in the tree, and the function partition is recursively called
for each class and its training data (lines 28 to 31). Note that Algorithm 1 aims
at facilitating the understanding of the learning process, but the building of a
classifier is usually improved with heuristics such as pruning [34].

Example: Let us study an example for generating a decision tree with this
algorithm. The training data is composed of nine pairs of elements, among which
three are relevant, namely <searchform, search>, <city, city> and <brand,
chain>. Two similarity measures, Trigrams and Context, serve as attributes.
Figure 4 depicts the generation of the decision tree at the first iteration. A ma-
trix represents the classification performed by a measure, and a pair is either
classified as relevant (R) or irrelevant (I). The white background colour (respec-
tively grey) indicates that a pair is correctly (respectively incorrectly) classified.
For instance, the pair <searchform, city> has been correctly classified as an ir-
relevant correspondence by the Trigrams measure (Figure 4(a)) while it has
been incorrectly classified as a relevant correspondence by the Context measure
(Figure 4(b)). Note that each classifier is in charge of adjusting the thresholds
of each similarity measure to obtain the best classification. Given these matri-
ces, the misclassification rate ε is computed for each measure (by counting the
number of grey boxes). In this case, Trigrams has achieved the lowest misclassi-

7 Other stop conditions may be used, for instance "all training data have been correctly
classified".



Algorithm 1 Algorithm for building a decision tree
Input: set of training data T , set of similarity measures S
Output: a decision tree D
1: function buildDecisionTree(T , S)
2: D ← ∅
3: partition(T , S, D)
4: end function
5:
6: function partition(T , S, parent)
7: P ← ∅
8: for all sim ∈ S do
9: Psim ← ∅
10: Tsim ← T
11: CP ← discretize(Tsim, S)
12: for all (condition, class) ∈ CP do
13: Pclass

sim ← ∅
14: for all t ∈ Tsim do
15: if t ` condition then
16: Pclass

sim ← Pclass
sim ∪ {t}

17: Tsim ← Tsim - {t}
18: end if
19: end for
20: Psim ← Psim ∪ {Pclass

sim }
21: end for
22: P ← P ∪ {Psim}
23: end for
24: best_sim = findBestClassification(P)
25: if |Pbest_sim| = 1 then
26: addChild(parent, class)
27: else
28: for all class ∈ Pbest_sim do
29: addChild(parent, class)
30: partition(Pbest_sim, S, class)
31: end for
32: end if
33: end function

fication rate ( 29 ) and it is therefore selected to be added to the decision tree, as
shown in Figure 4(c). The variables X1 and X2 stand for the threshold values
which enable the achievement of this best classification. At the end of the first
iteration, two pairs were not correctly classified by the Trigrams measure. Thus,
a new iteration begins in order to classify these two pairs with all similarity
measures. The matrices for the second iteration are shown in Figure 5(a) and
5(b). Since the training data are now composed of two pairs at the second iter-
ation, the classifier proposes different threshold and parameter values for each
similarity measure. This time, the Context measure has correctly minimized the



(a) Trigrams: ε = 2
9

(b) Context: ε = 3
9

(c) Decision Tree

Fig. 4. Training of a decision tree at first iteration

misclassification rate and it is promoted in the decision tree, as shown in Figure
5(c). Since all the training data have been classified, the algorithm stops.

(a) Trigrams: ε = 1
2

(b) Context: ε = 0
2

(c) Decision Tree

Fig. 5. Training of a decision tree at second iteration

During the training phase, all the thresholds, weights, and other parameters
of the matcher (i.e., classifier) are automatically configured, thus providing tuned
matchers. Next, we study how user preferences are integrated during this training
phase.

4.3 Integrating user preferences

We have identified five options that the user may configure: (i) preference for
precision or recall, (ii) expert correspondences, (iii) scenarios from the
same domain (iv) number of training data and (v) strategy to select a
dedicated matcher. These options can be combined to improve the matching
quality. We should keep in mind that the user has no requirement to provide op-
tions, and specifically the training data and the strategy which are automatically
selected by YAM when necessary.

Preference for precision or recall The ability to promote either precision or
recall is the first attempt to leverage the results of the matching quality. Many



applications need such tuning. For instance, matching tools may require training
data (usually expert correspondences as in Glue [13]), and YAM could auto-
matically discover a few correct correspondences by generating a high-precision
matcher. On the other hand, a typical scenario in which a high recall is neces-
sary is a matching process followed by a manual verification. Since the validation
of a discovered correspondence is cheaper in terms of time and resources than
the search of a missing correspondence, the discovery of a maximum number of
correct correspondences is crucial and implies a high-recall matcher [17].

We have seen that classification algorithms aim at reducing the misclassifi-
cation rate. As shown in Figure 6, two errors can occur while classifying: (i) an
irrelevant correspondence is labeled as correct, i.e., a false positive (FP) or (ii)
a relevant correspondence is classified as incorrect, i.e., a false negative (FN).
Since precision corresponds to the ratio TP

TP+FP , the first error decreases the
precision value. Conversely, recall is computed with formula TP

TP+FN , thus the
second error has a negative impact on recall.

(a) Matrice with TP, FP, FN (b) Relations between TP, FP and FN

Fig. 6. Understanding the impact of FP and FN on precision and recall

To produce tuned matchers which promote either precision or recall, we pro-
pose to set a penalty for false positives or false negatives during the learning.
This means that false positives (or false negatives) have a stronger impact when
computing the misclassification rate. To increase precision (respectively recall)
on a given training dataset, we assign a greater penalty to false positives (re-
spectively false negatives). Note that promoting recall (respectively precision)
mainly decreases precision (respectively recall).

Example: Back to the first iteration of our example, but let us imagine that
we want to promote recall to avoid the misclassification of relevant correspon-
dences (see Figure 7). Therefore, a penalty - equal to 4 in this example - is set for
false negatives. Due to the false negative <brand, chain>, the misclassification
rate of the measure Trigrams drops to 5

9 and the Context measure is selected to
be added in the decision tree with its two threshold values Y1 and Y2. The three
false positives of the Context measure should be reclassified in the next iteration.
In that way, YAM is able to produce matchers which favour the preference of
the user in terms of matching quality.



(a) Trigrams: ε = 5
9

(b) Context: ε = 3
9

(c) Decision Tree

Fig. 7. Training of a decision tree at first iteration while promoting recall

Expert correspondences The training data mainly consist of correspondences
from the repository. However, the user may decide to provide expert correspon-
dences between the schemas to be matched8. The benefit for providing these
correspondences is threefold. First, expert correspondences enable a better tun-
ing for some similarity measures. For instance, structural or contextual measures
analyse the neighbouring elements in the schema for each element of the corre-
spondence in order to evaluate their similarity. Such measures are given more
weight in this case. Another benefit is specific to the constraint-based measures
which may discard candidate pairs by relying on the relevance of expert corre-
spondences. Finally, the logic for designing a schema is usually kept throughout
the whole process. An expert correspondence between the two schemas reflects
the fact that the similarity measure(s) which confirm this correspondence may
have captured (a part of) this logic. These measures can be useful for assessing
the relevance of other pairs between the same schemas. Section 5.3 includes ex-
periments showing the impact of these expert correspondences on the matching
quality.

Example: Let us illustrate this impact with our running example. The con-
sequence of providing the expert correspondence <searchform, search> can be
explained as follows. The Context measure (Figures 4(b) or 7(b)) analyses the
similarity of other pairs (e.g., <searchform, city>). Since an expert correspon-
dence is established between <searchform, search>, the context of the search-
form element is modified, and it can imply that the pair <searchform, city> is
now classified as irrelevant. This means that the Context measure can have a
lower misclassification rate and thus be promoted as the measure to be added
to the decision tree at the first iteration.

8 If the user has not provided a sufficient number of correspondences, YAM will extract
others from the repository.



Scenarios from the same domain Similarly to expert correspondences, pro-
viding scenarios from the same domain as the schemas to be matched (e.g., the
hotel booking domain) produces better tuned matchers. The main reason is the
vocabulary which is shared across the domain, thus promoting the relevant simi-
larity measures to detect correspondences . The exploitation of external resources
(e.g., domain ontology, thesaurus) for schema matching has already been stud-
ied [16, 47]. However, these external resources differ from our same-domain sce-
narios: when using external resources, a matching has to be performed between
the schemas and the external resource. On the other hand, our same-domain
scenarios are used in the same fashion as other training data in order to gener-
ate a tuned schema matcher. Besides, our approach is able to exploit external
resources when they are available with a similarity measure. For instance, YAM
already includes the Resnik similarity measure, which exploits Wordnet [40].

Example: Let us imagine that three pairs of schemas respectively include the
following correct correspondences <booking-form, search-form>, <form, form>
and <searchform, form> and that we use them as training data. Then, the
classifier selects similarity measures which facilitate the correct classification of
the pair <searchform, search>.

Number of training data The number of training data clearly has an impact
on generating the tuned matchers, both in terms of matching quality and time
performance. The common rule is that a classifier performs better when trained
with more data. Yet, there are threshold values above which a classifier can
provide stable results. To determine these threshold values for generating robust
tuned matchers, we have conducted extensive experiments described in Section
5.3. Thus, the number of training data is automatically set by YAM, but the
user can tune this value.

Strategy This last preference can be provided by the user to select the dedicated
matcher. The available strategies are detailed in the next part.

4.4 Selecting a dedicated matcher

The final step of the learning process deals with the selection of the dedicated
matcher among all tuned matchers which have been generated by YAM for a
given schema matching scenario. This selection depends on the adopted strategy,
which can be user-defined or automatically configured by YAM. The strategy is
defined as a combination of one value for each of the three following criteria:

– Choice of the quality measure: precision, recall or F-measure
– Choice of the validation dataset: the repository, the set of expert corre-

spondences or the similar scenarios (when provided)
– Pool of matchers: generate (select the dedicated matcher among the tuned

matchers generated in Section 4.2), reuse (select the dedicated matcher
among those stored in the repository), both (select the dedicated matcher
among the repository and the tuned matchers).



If the user has not manually set up a strategy, YAM applies the following
algorithm to configure the strategy:

– If a preference for precision or recall is set, this preference is the quality
measure. Otherwise, the default measure is the F-measure.

– If a set of expert correspondences or a set of similar schemas is provided,
this set becomes the validation dataset. Otherwise, YAM uses (a subset of)
the scenarios from the repository.

– The generated matchers form the pool of matchers. The reuse and both
options need to be provided by the user and they mainly aim at speeding up
the execution process by avoiding the learning of new tuned matchers.

Once the criteria of the strategy have been fixed, each matcher (from the
pool of matchers) computes their accuracy (depending on the selected measure)
by performing a cross-validation process against the validation dataset. The
matcher which obtains the best value is elected as the dedicated matcher. Note
that the dedicated matcher is finally stored in the repository, thus allowing it to
be reused for further experiments.

Example: To illustrate the impact of the strategy, let us comment Figure 8.
YAM has generated two tuned matchers (J48 and Naive Bayes) and one matcher
from a previous generation is stored in the repository (Binary SMO). Each
matcher has its own technique for combining the different similarity measures
(reflected by thresholds, weights or intern metrics such as standard deviation).
To simplify the example, the training data consist only of examples stored in the
repository. The boxes below each matcher indicate the results of cross-validation
achieved by the matcher over the training data. If the user has not provided
any strategy or preference, YAM automatically selects the matcher among those
generated with the best F-measure value (default strategy equal to <F-measure,
repository, generated>). In this case, the dedicated matcher will be Naive Bayes
(83% F-measure) to the detriment of J48. On the contrary, if the user has set a
preference for recall, the strategy is defined as <recall, repository, generated>.
Since J48 obtains a 89% recall, it is selected as the dedicated matcher. Finally,
if the strategy is <precision, repository, both>, this means that the user needs
a matcher with the best precision value among all matchers both generated and
stored in the repository. In this context, Binary SMO achieves the best precision
value (100%) and it will be elected as the dedicated matcher.

5 Experiments

This section begins with a description of the protocol. Next, we firstly demon-
strate the need for a matcher factory (self-tuning feature). Then we study the
integration of user preferences (described in Section 4.3.), and their impact on
the matching quality. Finally, we compare our results with two matching tools
that have excellent matching quality, COMA++ [2] and Similarity Flooding
(SF) [32]. These tools are described in more detail in Section 6.



Fig. 8. Results of cross-validation for different matchers

5.1 Experimental protocol

Experiments were run on a 3.6 GHz computer with 4 Go RAM under Ubuntu
11.10.

Configurations of the tools The default configuration for SF was used in
the experiments. We tested the three pre-configured strategies of COMA++
(AllContext, FilteredContext and Fragment-based in the version 2005b) and we
kept the best score among the three.

The current version of YAM is implemented in Java 1.6. Our tool includes
20 classifiers from the Weka library [23] and 30 similarity measures, including
all terminological measures [8] from the Second String project9, a contextual
9 Second String (November 2015)

http://secondstring.sourceforge.net


measure named Approxivect [19], the Resnik semantic similarity measure [40]
and a simple structural measure that compares the constraints and data types,
as described in Similarity Flooding [32]. YAM’s repository contains a large set
of 200 schema matching scenarios from various domains.

Dataset The dataset used in these experiments is composed of more than 200
schema matching scenarios, covering the following domains:

– University department describes the organization of university depart-
ments [20]. These two small schemas have very heterogeneous labels.

– Thalia courses. These 40 schemas have been taken from Thalia collec-
tion [24] and they are widely used in literature [14, 19]. Each schema has
about 20 elements and they describe the courses offered by some worldwide
universities. As explained in [44], this dataset could refer to a scenario where
users need to generate an exchange schema between various data sources.

– Travel includes 5 schemas that have been extracted from airfare web forms
[37]. In data sharing systems, partners have to choose a schema or a subset
of schema that will be used as a basis for exchanging information. This travel
dataset clearly reflects this need, since schema matching enables data sharing
partners to identify similar concepts that they are willing to share.

– Currency and sms datasets are popular web services10. Matching the schemas
extracted from web services is a recent challenge to build new applications
such as mashups or to automatically compose web services.

– Web forms are a set of 176 schemas, extracted from various websites by the
authors of [31]. They are related to different domains, from hotel booking and
car renting to dating and betting. For instance, the finance domain contains
more than ten schemas of small size. Authors of [44] state that schema
matching is often a process which evaluates the costs (in terms of resources
and money) of a project, thus indicating its feasibility. These scenarios can
be a basis for project planning, i.e., to help users decide if integrating their
data sources is worth or not.

Table 1 summarizes the features of the schema matching scenarios. The size
column indicates the average number of schema elements in the scenario. The
structure column checks how deep the schema elements are nested. We consider
a schema to be flat when it includes at most three levels, and a schema is said to
be nested with at least four levels. The last column provides information about
the number of schemas in the scenario.

For all these scenarios, the expert correspondences are available, either manu-
ally or semi-automatically designed. We use these 200 scenarios, and their correct
correspondences, both to train YAM and to demonstrate the effectiveness of the
three matching tools.

10 Free Web Services (November 2015)

http://free-web-services.com/


Average size Structure Number of
Small (<10) Average (10-100) Flat (≤3) Nested (>3) schemas

Univ. dept × × 2
Thalia courses × × × 40
Travel × × 5
Currency × × 2
Sms × × 2
Web forms × × × 176

Table 1. Schema matching scenarios according to their properties

Quality metrics To evaluate the matching quality, we use common metrics
in the literature, namely precision, recall and F-measure [3, 17, 20]. Precision
calculates the proportion of relevant correspondences extracted among those
discovered. Another typical metric is recall which computes the proportion of
relevant discovered correspondences between all relevant ones. F-measure is a
trade-off between precision and recall.

5.2 Self-tuning feature

We begin with a study of the self-tuning feature, i.e., the ability to select the
most effective schema matcher. More specifically, we justify the need for a schema
matcher factory, since our approach can adapt the method for combining similar-
ity measures to the scenario. In other words, if a traditional schema matching tool
(e.g., COMA++) performs matching for these 200 scenarios, the same method
for combining similarity measures would be used (i.e., an aggregation function
for COMA++). With YAM, we demonstrate that from one scenario to another,
the optimal method is different (i.e., the dedicated schema matcher generated
with YAM is based on different types of classifier).

Let us describe the experiment. We ran YAM against 200 scenarios, and we
measured two criteria: the number of times (out of 200) that a type of classifier
was selected as the dedicated matcher (Figure 9(a)) and the average F-measure
achieved by a type of classifier over the 200 scenarios (Figure 9(b)). For instance,
the type of classifier VFI was selected as a dedicated matcher 57 times (out of
200). This type of classifier VFI achieves over the 200 scenarios an average F-
measure equal to 59%. For this evaluation, we included no user preference, so
all matchers were trained only with the repository (20 random schema matching
scenarios) and the dedicated matcher was selected with the default strategy. This
process took roughly 1400 seconds to produce the dedicated matcher for each
given scenario. The plots are limited to the to the 14 best types of classifiers.

The first comment for Figure 9(a) is the diversity of types of classifier which
have been selected. There is not one best schema matcher for matching the 200
scenarios, but more than fourteen. This means that a matcher factory, such as
YAM, is necessary to cope with the differences in the schema matching scenar-
ios. Secondly, we note that 2 types of classifier, namely VFI (Voting Feature
Intervals) and Bay (Bayes networks), are selected in half of the 200 scenarios.
The matchers based on these types of classifiers can be considered as robust
because they provide acceptable results in most scenarios in our repository. This



trend is confirmed with the second plot (Figure 9(b)) on which VFI and Bayes
Net achieve the best average F-measure values over the 200 scenarios. Another
comment on these plots deals with the aggregation functions, represented by
SLog (Simple Logistic) and MLP. These functions, which are commonly used
by traditional matching tools, are selected as dedicated matchers in only a few
scenarios. Thus, they do not provide optimal matching quality results in most
schema matching scenarios. Finally, a good ranking in terms of F-measure does
not guarantee that the type of classifier will be selected many times. For in-
stance, the decision trees J48 and its alternative J48graft obtain an average
40% F-measure but they are selected as dedicated matchers only a few times.
Conversely, the types of classifiers CR (Conjunction Rules) and ADT (Alter-
nating Decision Tree), which achieve a very low average F-measure on these 200
scenarios (5% for CR and 28% for ADT ), were respectively selected 3 and 10
times. This shows that dedicated matchers based on these classifiers are very
effective, in terms of matching quality, for solving specific scenarios. Thus, these
results support our claim that a matcher factory such as YAM is a promising
perspective.

5.3 Impact of the integration of user preferences

In this part, we analyse the impact of three user preferences, which have been
described in Section 4.3: the number of training data, the preference between
precision or recall and the providing of expert correspondences. Note that for
these experiments, we only keep the 5 most robust classifiers (see Section 5.2),
namely VFI, BayesNet, NBTree, NNge and IB1.

Number of training data In this experiment, our goal is to show that the
amount of training data needed to produce a high performing matcher is not
onerous and that the number of training data can be automatically chosen (when
the user does not provide this input). Figure 10 depicts the average F-measure11
of five matchers as we vary the number of training scenarios. Note that the
average F-measure has been computed over 40 scenarios (randomly selected, 20
runs each). The training scenarios vary from 10 to 50. We note that two types of
classifiers (VFI, IB1 ) increase their F-measure of 20% when they are generated
with more training scenarios. This can be explained by the fact that IB1 is an
instance-based classifier12, thus the more examples it has, the more accurate it
becomes. Similarly, VFI uses a voting system on intervals that it builds. Voting
is also appropriate when numerous training examples are supplied. NBTree and
NNge also increase their average F-measure from around 10% as training data is
increased. On the contrary, BayesNet achieves the same F-measure (60% to 65%)
11 Only the F-measure plot is provided since the plots for precision and recall follow

the same trend as the F-measure.
12 This classifier is named instance-based since the correspondences (included in the

training scenarios) are considered as instances during learning. Our approach does
not currently use schema instances.



(a) Number of selections as dedicated matcher

(b) Average F-measure by type of classifier

Fig. 9. Effectiveness by type of classifier

regardless of the number of training scenarios. Thus, as expected, most matchers
increase their F-measure when the number of training scenarios increases. With
30 training scenarios, they already achieve an acceptable matching quality.

Remember that YAM automatically chooses the number of training scenario
according to the matchers that have to be learned. To select this number of
training scenarios, we conducted an extensive series of experiments. More than
11, 500 experiments resulted from the runs, and we use them to deduce the
number of training scenarios for a given classifier. Table 2 shows the conclusion
of our empirical analysis. For instance, when learning a schema matcher based on
the J48 classifier, YAM ideally chooses a number of training scenarios between
20 and 30.

In a machine learning approach, it is crucial to analyse the relationship be-
tween performance and the size of training data. Therefore, we evaluate the
performance of YAM according to the size of the training data. We have aver-
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Fig. 10. Average F-measure when varying the number of training scenarios

Table 2. Number of training scenarios for each type of classifier

Number of training scenarios Classifiers
20 and less SLog, ADT, CR
20 to 30 J48, J48graft
30 to NNge, JRip, DecTable
50 BayesNet, VP, FT
50 and VFI, IB1, IBk
more SMO, NBTree, MLP

aged the training and matching times for 2000 runs (10 runs for each of the 200
scenarios) according to different number of training data (from 5 to 50). Table
3 summarizes the results for training 20 classifiers (i.e., 20 tuned matchers), se-
lecting the dedicated matcher, and performing the matching with the dedicated
matcher. This experiment is independent from the empirical results shown in
Table 2, i.e., 20 classifiers were generated with 5 training data, 20 classifiers
were generated with 10 training data, etc. This means that the training time
(e.g., 165 seconds for 5 training data) corresponds to the training of 20 classi-
fiers. Obviously some types of classifier are quicker than others to generate a
matcher, but our main motivation is the selection of the best tuned matcher
among a large panel rather than an efficient generating process. The training
step is time-consuming but this is a fair time for learning 20 tuned matchers.
The training time seems constant according to the number of training scenarios.
The matching time is not significant (between 13 seconds and up to 128 sec-
onds). We note that the matching time slightly decreases to 110 seconds with
50 training scenarios. We believe this is due to the type of classifier which is
used: as shown in Table 2, the types of classifiers which are selected with 50 and
more training scenarios are mainly instance-based classifiers such as IB1, VFI



or IBk. In our context, the matching with such classifiers seems more efficient.
It should be remembered that the training is carried out with 20 classifiers and
30 similarity measures. If required, these numbers can be reduced to improve
performance, for instance based on the empirical results from Table 2. Still, an
automatic matching performed in around one hour is an advantage compared
to a manual matching. Besides, the current strategy for selecting the dedicated
matcher is only based on (matching) quality criteria. But we could also take into
account the training time for each type of classifier within the strategy.

Table 3. Average times according to the number of training scenarios for both training
20 tuned matchers and matching with the dedicated matcher

Number of training scenarios 5 10 20 30 40 50
Time for training (in seconds) 165 601 2227 3397 5182 6506
Time for matching (in seconds) 13 24 47 124 128 110
Total time (in seconds) 178 625 2274 3521 5310 6616

Precision vs. recall preference We now present another interesting feature
of our tool, the possibility of choosing between promoting recall or precision,
by tuning the weight for false positives or false negatives. Schema matching
tools usually favour a better precision, but we demonstrate that YAM tuned
with a preference for recall effectively allows to obtain a better recall, with no
significant impact on F-measure. In other words, the gain in terms of recall is
proportionally equivalent to the loss in terms of precision, thus the F-measure is
roughly constant. Figures 11(a) and 11(b) respectively depict the average recall
and F-measure of five matchers for 40 scenarios, when tuning the preference
between precision and recall. Without any tuning (i.e., weight for false negatives
and false positives is equal to 1), this means that we give as much importance
to recall as to precision.

For 2 matchers (NBTree and NNge), the recall increases up to 20% when we
tune in favour of recall. As their F-measures does not vary, it means that this
tuning has a negative impact on the precision. However, in terms of post-match
effort, promoting recall may be a better choice depending on the integration task
for which the matching process is being performed. For example, let us imagine
we have two schemas of 100 elements: a precision which decreases by 20% means
a user has to eliminate 20% of irrelevant discovered correspondences. But a 20%
increase of recall means that (s)he has 20% fewer correspondences to search
through among 10, 000 possible pairs ! Hence, this tuning could have a highly
significant effect on the usability of the matcher for certain tasks. Indeed, we
highlight the fact that matching tools may be disregarded because the amount
of work during pre-match effort (tuning the tool) and the amount of work dur-
ing post-match effort (manual verification of the discovered correspondences) is



sometimes not worthwhile compared to the benefit of the tool, especially if the
user cannot leverage the results towards more precision or recall.

For the three other matchers (BayesNet, VFI and IB1 ), tuning in favour
of recall has no significant effect. This does not mean that only a few types of
classifiers can promote recall. Without any tuning, only one matcher (BayesNet)
has an average recall superior to its precision. Indeed, most of the matchers in our
library promote by default precision. However, when setting a weight for false
negatives to 2, then four matchers from the library have a higher recall than
precision. And with a weight for false negatives equal to 3, five other matchers
reduced the gap between precision and recall to less than 5%. Thus, this shows
how YAM is able to take into account this very important user preference, which
directly impacts post-match (manual) effort [17].

Impact of expert correspondences As in Glue [13], the number of expert
correspondences is an input - compulsory for Glue, but optional for YAM - to the
system. YAM can use these expert correspondences to learn more appropriate
matchers. In this study, we measured the gain in terms of matching quality when
a user provides these correspondences. The training phase used 20 scenarios and
expert correspondences were randomly selected. We report the size of the sets of
expert correspondences in percentages, given that 5% of expert correspondences
usually means that we only provide 1 or 2 correspondences as input.

Figure 12 depicts the average F-measure for 40 random scenarios for the five
robust matchers. With only 5% of the correspondences given as expert corre-
spondences, NNge and IB1 are able to increase their F-measure by 40%. The
classifier NBTree also achieves an increase of 20%. Similarly, the F-measure of
these matchers still increases as 10% of the correspondences are provided as ex-
pert correspondences. On the contrary, the VFI and BayesNet matchers do not
benefit at all from this input. Note that providing some expert correspondences
does not require a tedious effort by the user13. Yet, this input can improve the
matching quality of most matchers, even with a small amount of expert cor-
respondences. Besides, YAM closely integrates these expert correspondences in
generating a better matcher, while other tools such as Glue mainly use these
correspondences as a bootstrap.

5.4 Comparing with other matching tools

In this last experiment, we compare YAM with two matching tools known to
provide a good matching quality: COMA++ and Similarity Flooding (SF).
COMA++ [2] uses 17 similarity measures to build a matrix between pairs of
elements and aggregate their similarity values. Similarity Flooding [32] builds a
graph between input schemas. Then, it discovers some initial correspondences
using a string matching measure. These correspondences are refined using a
structural propagation mechanism. Both matching tools are described in more
13 Some GUIs already exist to facilitate this task by suggesting the most probable

correspondences.
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Fig. 11. Matching quality of robust matchers when promoting recall

detail in Section 6. YAM, our factory of schema matchers, uses the default strat-
egy (<F-measure, repository, generated>) to produce the dedicated matcher.
The number of training data is automatically adjusted according to the classi-
fier which is going to be trained (using Table 2).

Figure 13(a) and 13(b) depict the F-measure obtained by YAM, COMA++
and Similarity Flooding on 10 schema matching scenarios. YAM obtains the
highest F-measure in 7 scenarios, and reaches 80% F-measure in 4 scenarios.
COMA++ achieves the best F-measure for currency and university scenarios.
SF obtains the best F-measure in one scenario (travel). Besides, COMA++ is the
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Fig. 12. F-measure of robust matchers when increasing the number of input expert
correspondences

only tool which does not discover any correspondence for one scenario (travel).
However, we notice that YAM obtains better results in the web forms scenarios
since it was mainly trained with web forms (stored in the repository). With
non-web forms scenarios, YAM is still competitive with the other tools.

We have summarized the results of this comparison in Table 4. The numbers
in this table represent an average for the 10 scenarios in terms of precision,
recall and F-measure. YAM obtains the highest average F-measure (71%) while
COMA++ and SF achieve an average F-measure around 50%. In addition, in
the bottom part of the table we present the matching quality for YAM with
user preferences. We note that the promotion of recall is effective (78% instead
of 65%) but to the detriment of precision. When YAM is trained with scenarios
from the same domain, the quality of results slightly improves (F-measure from
71% to 76%). The most significant increase in quality is due to the integration of
expert correspondences during training, which enables F-measure to reach 89%.

These experiments show how our matcher factory relies on the diversity of
classifiers. Indeed, the dedicated matchers that it has generated for these scenar-
ios are based on various classifiers (VFI, BayesNet, J48, etc.) while COMA++
and SF only rely on respectively an aggregation function and a single graph
propagation algorithm. Besides, YAM is able to integrate user preferences to
produce more efficient dedicated matchers and to improve the matching quality.

6 Related work

Much work has been done both in schema matching and ontology alignment.
One can refer to the following books and surveys [3,6,20,22,42] for more details



(a) Non-web forms scenarios

(b) Web form scenarios

Fig. 13. Precision, recall and F-measure achieved by the three matching tools on 10
scenarios

about schema and ontology matchers. All related approaches aims at performing
matching (or alignment). On the contrary, YAM is a matcher factory, which
produces a schema matcher. There is no equivalent approach to our generator
of schema matchers. In this section, we have chosen to present an overview of
the last decade of research in schema and ontology matching, which has served
as a basis to our work. Still, a deeper comparison between traditional matching
tools and our factory of matchers is difficult due to the nature of the tools.

Harmony schema matcher [35, 44] combines multiple matching algorithms
by using a vote merger. The vote merging principle is a weighted average of the
match scores provided by each match voter. A match voter provides a confidence
score for each pair of schema elements to be matched. Then, the Similarity Flood-
ing strategy [32] is applied to adjust the confidence scores based on structural
information. Thus, positive confidence scores propagate throughout the graph.



Table 4. Average matching quality of the tools: COMA++, SF and YAM (single and
tuned with 3 parameters)

Precision Recall F-measure
COMA++ 66% 38% 48%
SF 61% 43% 50%
YAM 81% 65% 71%

YAM-recall 68% 78% 73%
YAM-domain-specific-scenarios 80% 72% 76%
YAM-expert-correspondences (5%) 88% 90% 89%

An interesting feature of Harmony lies in its graphical user interface for viewing
and modifying the discovered schema correspondences through filters.

RiMOM [28] is a multiple strategy dynamic ontology matching system. Dif-
ferent matching strategies are applied to a specific type of ontology information.
Based on the features of the ontologies to be matched, RiMOM selects the best
strategy (or strategy combination) to apply. When loading the ontologies, the
tool also computes three feature factors. The underlying idea is that if two on-
tologies share similar feature factors, then the strategies that use these factors
should be given a high weight when computing similarity values. For instance,
if the label meaningful factor is low, then the Wordnet-based strategy will not be
used. Each strategy produces a set of correspondences, and all sets are finally
aggregated using a linear interpolation method. A last strategy dealing with on-
tology structure is finally performed to confirm discovered correspondences and
to deduce new ones. Contrary to other approaches, RiMOM does not rely on
machine learning techniques to select the best strategy. It is quite similar to the
AHP work (described hereafter) in selecting an appropriate matcher based on
the input’s features.

AgreementMaker [9] provides a combination strategy based on the linear
interpolation of the similarity values. The weights can be either user assigned
or evaluated through automatically-determined quality measures. The system
allows for serial and parallel composition where, respectively, the output of one
or more methods can be used as input to another one, or several methods can be
used on the same input and then combined. The originality of AgreementMaker
is the capability of manually tuning the quality of matches. Indeed, this tool
includes a comprehensive user interface supporting both advanced visualization
techniques and a control panel that drives the matching methods.

In [31], the authors propose a machine learning approach, SMB. It uses the
Boosting algorithm to classify the similarity measures, divided into first line and
second line matchers. The Boosting algorithm consists in iterating weak classi-
fiers over the training set while re-adjusting the importance of elements in this
training set. Thus, SMB automatically selects a pair of similarity measures as a
matcher by focusing on harder training data. A specific feature of this algorithm
is the important weight given to misclassified pairs during training. Although
this approach makes use of several similarity measures, it mainly combines a sim-



ilarity measure (first line matcher) with a decision maker (second line matcher).
Empirical results show that the selection of a pair does not depend on their
individual performance. Thus, only relying on one classifier is risky.

In a broader way, the STEM framework [26] identifies the most interesting
training data set which is then used to combine matching strategies and tune
several parameters such as thresholds. First, training data are generated, either
manually (i.e., an expert labels the entity pairs) or automatically (at random,
using static-active selection or active learning). Then, similarity values are com-
puted using pairs in the training data set to build a similarity matrix between
each pair and each similarity measure. Finally, the matching strategy is deduced
from this matrix thanks to supervised learned algorithm. The output is a tuned
matching strategy (how to combine similarity measures and tune their parame-
ters). The framework enables a comparative study of various similarity measures
(e.g., Trigrams, Jaccard) combined with different strategies (e.g., decision tree,
linear regression) whose parameters are either manually or automatically tuned.

The MatchPlanner approach [18] makes use of decision trees to select the
most appropriate similarity measures. This approach provides acceptable results
with regard to other matching tools. However, the decision trees are manually
built, thus requiring an expert intervention. Besides, decision trees are not always
the best classifier, as shown in Section 5.

eTuner [27] aims at automatically tuning schema matching tools. It proceeds
as follows: from a given schema, it derives many schemas which are semantically
equivalent. The correspondences between the initial schema and its derivations
are stored. Then, a given matching tool (e.g., COMA++ or Similarity Flooding)
is applied to the set of correspondences until an optimal parameters configuration
of the matching tool is found. eTuner strongly depends on the capabilities of
the matching tool, and it has to be integrated in an existing matching tool
by a programmer. Conversely, YAM learns a dedicated matcher according to a
given matching scenario. It is also able to integrate important features like user
preference between recall and precision. Contrary to eTuner, YAM is extensible
in terms of similarity measures and classifiers, thus enhancing the capabilities of
our tool.

Authors of [30] have proposed to select a relevant and suitable matcher for
ontology matching. They have used Analytic Hierarchical Process (AHP) to
fulfill this goal. They first define characteristics of the matching process divided
into six categories (inputs, approach, usage, output, documentation and costs).
Users then fill in a requirements questionnaire to set priorities for each defined
characteristic. Finally, AHP is applied with these priorities and it outputs the
most suitable matcher according to user requirements.

COMA/COMA++ [2,11] is a hybrid matching tool that incorporates many
independent similarity measures. It can process Relational, XML, RDF schemas
as well as ontologies. Internally it converts the input schemas as trees for struc-
tural matching. It provides a library of 17 element-level similarity measures. For
linguistic matching it utilizes a user defined synonym and abbreviation tables,
along with n-gram name matchers. Similarity values between each possible pair



of elements and for each similarity measure are stored in a similarity matrix.
Next, the combination of the values is performed using aggregation operators
such as max, min, average. Different strategies, e.g., reuse-oriented matching
or fragment-based matching, can be included, offering different results. For each
source element, pairs with a combined similarity value higher than a threshold
are displayed to the user for validation. COMA++ supports a number of other
features like merging, saving and aggregating match results of two schemas.

Similarity Flooding (SF) and its successor Rondo [32, 33] can be used with
Relational, RDF and XML schemas. These input data sources are initially con-
verted into labelled graphs and SF approach uses fix-point computation to de-
termine correspondences between graph nodes. The algorithm has been imple-
mented as a hybrid matcher, in combination with a terminological similarity
measure. First, the prototype does an initial element-level terminological match-
ing, and then feeds the computed candidate correspondences to the structural
similarity measure for the propagation process. This structural measure includes
a few rules, for instance one of them states that two nodes from different schemas
are considered similar if their adjacent neighbours are similar. When similar ele-
ments are discovered, their similarity increases and it impacts adjacent elements
by propagation. This process runs until there is no longer similarity increasing.
Like most schema matchers, SF generates correspondences for pairs of elements
having a similarity value above a certain threshold. The generation of an inte-
grated schema is performed using Rondo’s merge operator. Given two schemas
and their correspondences, SF converts the schemas into graphs and it renames
elements involved in a correspondence according to the priorities provided by
the users.

Glue [13], and its predecessor LSD [12], are also based on machine learning
techniques. They have four different learners, which exploit different information
from the instances. The name learner (Whirl, a nearest-neighbour classifier)
makes predictions using word frequency (TF/IDF distance) on the label of the
schema elements. The content learner (also based on Whirl and TF/IDF) applies
a similar strategy to the instances associated to each schema element. A Naive
Bayes classifier considers labels and attributes as a set of tokens for performing
text classification. The XML learner (based on Naive Bayes too) exploits the
structure of the schema (hierarchy, constraints, etc.). Finally, a meta-learner,
based on stacking, is applied to return a linear weighted combination of the four
learners.

AUTOMATCH [5] is the predecessor of AUTOPLEX [4], which uses schema
instance data and machine learning techniques to find possible correspondences
between two schemas. An attribute dictionary contains attributes with a set of
possible instances and their probability. This dictionary is populated using Naive
Bayesian algorithm to extract relevant instances from Relational schemas fields.
A first step consists of matching each schema element to dictionary attributes,
thus computing a similarity value between them according to the number of com-
mon instances. Then, the similarity values of two schema elements that match
the same dictionary attribute are summed and minimum cost maximum flow



algorithm is applied to select the best correspondences. The major drawback
of this work is the importance of the data instances. Although this approach is
interesting on the machine learning aspect, that matching is not as robust since
it only uses one similarity function based on a dictionary.

The main difference between YAM and all these matchers lies in the level of
abstraction. Theoretically, YAM could generate most of these matching tools.
This is actually the case with MatchPlanner [18]. The most relevant existing
approach to YAM is the configuration tool eTuner, since both approaches dis-
cover the best configuration of a matcher. Yet, eTuner’s capabilities are limited
compared to YAM: it has to be plugged into an existing matching tool (which
requires programming skills) and it totally depends on that matching tool, es-
pecially for the method which combines similarity measures. Thus, it does not
offer the extensibility and self-tuning features encompassed in YAM.

7 Conclusion

In this paper, we have presented YAM, the first extensible and self-tuning factory
of schema matchers. Instead of producing correspondences between schemas,
YAM generates a dedicated schema matcher for a given matching scenario. This
is made possible by formalizing the matching problem as a classification problem.
In addition, we described how to integrate user requirements into the generation
process so that the dedicated matcher fulfills the needs and preferences of the
user. Our approach is also the first work to let users choose the promotion of
either precision or recall. Experiments have shown that the dedicated matchers
generated with YAM obtain acceptable quality results with regard to reputed
matching tools. Finally, we outline here the lessons learned:

– We have demonstrated a strong need for a schema matcher factory;
– Our experiments support the idea that machine learning classifiers are suit-

able for the matching task and that the traditional aggregation functions are
not always the most efficient method for combining similarity measures;

– We have studied the impact and the benefits on the matching quality when
the user provides preferences such as the promotion of recall/precision or
input expert correspondences.

In the future, we first plan to test further classifiers. Indeed, there exist a large
number of machine learning classifiers of which we have experimented only a sub-
set. Among them, the meta-classifiers base their predictions using the results of
several classifiers and therefore offer the possibilities for improving matching
quality. In a similar fashion, we foresee the possibility to deduce some corre-
spondences between the matching results of all matchers. These highly probable
correspondences could serve as input expert correspondences to produce a smart
dedicated matcher. Finally semi-supervised learning [7] could be used to improve
the accuracy of the dedicated matcher: the intuition is to include in the training
data some unlabelled pairs from the schemas to be matched.
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