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Abstract—Multiple cartographic providers propose services 

displaying points of interests (POI) on maps. However, the 

provided POIs are often incomplete and contradictory from one 

provider to another. Previous works proposed solutions for 

detecting correspondences between spatial entities that refer to 

the same geographic object. Although one can visualize the result 

of the integration of corresponding entities, users do not have any 

information about the quality of this integration. In this paper, 

we propose a solution to visualize the uncertainty inherent to a 

spatial integration algorithm. We present an integration process 

that identifies three degrees of confidence for spatial and 

terminological integration results. A prototype has been 

implemented to present the benefits of our proposal in an use-

case scenario. This work has been realized within the framework 

of UNIMAP1 project. 
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I.  INTRODUCTION 

Location-based services (LBS) are daily used in various 
applications, and cartographic providers play an essential role 
in displaying points of interest (POI) such as restaurants, 
hotels, and tourist places. A POI can be defined as a geographic 
object that has a point geometric shape. A POI has spatial 
attributes longitude and latitude, and terminological (non-
spatial) attributes such as name and type (e.g., restaurant, 
hotel). Some providers may supply additional terminological 
attributes such as address, phone number, Web site, customers' 
ratings, etc. A provider usually represents a POI on a map with 
a specific symbol or icon. Due to lack of completeness, noisy, 
inaccurate and contradictory data, it is interesting to propose 
solutions for detecting corresponding entities (i.e., which refer 
to the same POI) from different providers. This challenge aims 
at improving the quality and the relevance of information, 
which has a significant impact in tourist applications.  

The integration of spatial information issued from different 
sources has been studied [10]. Earlier works so called "map 
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 UNIMAP: http://liris.cnrs.fr/unimap (July 2014) 

conflation" were specifically devoted to vector objects such as 
roads [23]. In the last decade, the integration problem mainly 
refers to the "entity matching" research domain, enhanced by a 
spatial aspect. The discovery of corresponding entities is 
performed either by exploiting only spatial information [26] or 
by computing and combining terminological similarities for 
selected attributes (e.g., name, type) [22]. Machine learning 
algorithms may be applied for tuning the parameters (e.g., 
weights) of a matching process [28]. When corresponding 
entities have been detected, an interesting use case aims at 
displaying a merged entity, i.e., to use a crafted algorithm to 
fusion the attributes' values of these corresponding entities. 
Such merging algorithms are not 100% confident. For instance, 
two corresponding entities may have a different location and 
the algorithm needs to determine the correct position. 
Similarly, the names or the phone numbers of two 
corresponding entities may differ, and the choice of the correct 
values relies on the merging algorithm. A merged entity may 
therefore include at different levels some uncertainties, which 
have to be presented to end-users [19]. 

In this paper, we are interested in visualizing the 
uncertainty resulting from the merging process of spatial 
entities. Our contributions can be summarized as follows: (i) 
identifying the "dimensions" which have to be taken into 
account for uncertainty, i.e., the POI type, the spatial attributes 
and the terminological (non-spatial) attributes; (ii) measuring 
the confidence level for each dimension as well as a global 
confidence score; (iii) modeling the visualization of a merged 
entity and its uncertainty; and (iv) implementing a prototype to 
demonstrate in a scenario the benefits for end-users. 

The next section describes the related work, both in spatial 
integration and visualization. Section ‎III provides a detailed 
explanation of our solution to represent and visualize various 
criteria about a merged entity.  In Section ‎IV, we demonstrate 
the benefits of our approach in a scenario, and we conclude in 
Section ‎V. 



 
 

Figure 1. Visual variables proposed by [19] 

 

 
 

Figure 2. Smiley, Filled bar with Slider, and Thermometer icons proposed 

by [19] 

 
 II. RELATED WORK 

This section covers the existing works in two domains: the 
methods for integrating spatial data and the visualization of 
uncertainty in a spatial context. 

A. Spatial Integration 

The same reality is described with a multiplicity of 
geographical information. This information growth rapidly 
over the Internet, some may be incomplete, inaccurate or 
contradictory. Integration of several sources of geographical 
information is necessary in order to update information that 
changes daily [13] or to produce a more complete and accurate 
information [8]. In [33], authors define three categories of 
imperfection that occurs when integrating several spatial data 
sources, namely (i) inaccuracy, which concerns wrong spatial 
information that do not correspond to reality, (ii) imprecision, 
which deals with spatial information that corresponds to reality 
but is not sufficiently precise and (iii) vagueness, which is 
about ambiguity of spatial information (e.g., boundaries 
heterogeneity). Geospatial integration has been widely studied 
under the term "map conflation" where two whole maps are 
integrated. Integration of maps consists in identifying the 
corresponding entities and to fuse them [6]. In [23], authors 
describe existing works in map conflation regarding their 
formats (raster and vector) and their criteria such as spatial 
data, terminological data and topological relationships between 
entities. Some works have been proposed in map conflation 
using points [24, 7, 31], lines [25, 11, 32] and polygons [1, 12, 
20].  

In [2, 26], the authors use only the spatial information 
(location) to detect the corresponding entities with a similarity 
measure based on probabilistic consideration. The probability 

that two entities are corresponding is estimated using the 
Euclidean distance between them. In order to improve the 
quality of integration, some works propose to combine 
similarity measures that use spatial information with similarity 
measures that use terminological information to identify 
correspondences. In [27], three algorithms were proposed using 
a first similarity measure to filter the entities and a second to 
detect the corresponding entities. For example, a string 
similarity measure can be applied on the name of the POI, then 
for each pair of entities that are not considered as 
corresponding, the distance between them is increased. The 
final step is to apply a similarity measure on spatial information 
with the new distances. Note that increasing the distance 
between two entities lowers the probability that they will be 
considered as corresponding entities when we apply a 
similarity measure on spatial information. A variety of 
learning-based methods including logistic regression, support 
vector machines and voted perceptron has been proposed to 
find out how to combine and tune several similarity measures 
in order to identify the corresponding entities [28]. 

The "Theory of Evidence", also called "Dempster-Shafer 
theory" [29], combines an evidence measure of different 
sources and finds a degree of belief that takes into account all 
the available evidence. That is, a belief mass represented by a 
belief function, is associated to each evidence, then the 
Dempster's rule is used to combine them. The "Theory of 
Evidence" is proposed to integrate geospatial databases [22] 
and to match geospatial entities of several LBS providers [15]. 

Kang et al. propose a visual interface to detect the 
corresponding geospatial entities based on a neighborhood 
similarity [14]. It takes two sources of entities as input, then the 
user chooses a similarity measure to apply on terminological 
information or on spatial information. Detected entities are 
considered as potentially corresponding. Then each pair of 
entities are visualized on the screen. Their shared neighborhood 
of entities are placed between them and non-shared neighbors 
on the sides. Finally, the user has to make a decision for each 
pair to be considered as corresponding or not.  

B. Spatial Uncertainty Visualization 

 [30, 18] define nine categories of uncertainty paired with 
three "components" of geographic information: space, time and 
attribute. On this basis, [30] makes an empirical study to 
characterize the kind of visual signification that is appropriate 
for representing those different categories of uncertainty. The 
authors use a set of visual variables corresponding to the visual 
variables defined by [4, 21, 17]: Location, Size, Color Hue, 
Color Value, Grain, Orientation, Shape, Color Saturation, 
Arrangement, Clarity, Resolution and Transparency. Their 
symbol sets are points and for each visual variable, three 
degrees are specified coming from high to low certainty (Fig. 
1). They add iconic/pictorial symbols to compare their 
efficiency according to abstract/geometric symbols such 
as Smiley, Filled bar with Slider, and Thermometer (Fig. 2). 
Two tests are realized to judge the suitability of different 
symbol sets for representing variation in uncertainty by 
manipulating one single visual variable for all the categories of 
certainty in all the components of geographic information or 
for one specific category of certainty (accuracy, precision, 



trustworthiness) in each component of the geographic 
information. 

III. REPRESENTING UNCERTAINTY 

This section covers our contributions for representing 
uncertainty in spatial integration. We first introduce an 
overview of our approach. Next we focus on the integration 
process, which produces confidence scores, and on uncertainty 
visualization on maps.  

A. Approach Overview 

A (semi-)automatic integration process does not achieve 
perfect results. Depending on data quality of providers, an 
integration process may have to deal with various kinds of 
uncertainty and to take decisions. In our geospatial context, the 
quality is strongly variable from one provider to another, and 
we need to take into account the uncertainty inherent to the 
process. Besides, this uncertainty should be represented, 
especially on a map. Our integration approach consists of three 
consecutive processes, namely "mediation process", 
"integration process" and "visualization process".  

 Mediation process: it is in charge of processing and 
rewriting a spatial query. For each LBS provider, the 
initial query is rewritten to comply with the schema or 
model of each provider. In addition, the mediation 
process performs a blocking process, which reduces 
the set of returned entities based on the location (within 
a radius) and the POI type specified in the query. As an 
example, let us imagine that a user is interested in 
finding the hotels in Pittsburgh. This query may be 
rewritten as "accommodations in Pittsburgh" for a first 
provider, and as "hotels in Pittsburgh, PA" for another 
provider. The output of this process is a sets of entities 
returned from each provider to the mediator that are 
ready for the integration part. Note that the mediation 
is not further discussed in this paper, since the schema 
heterogeneity of the providers has been beforehand 
manually solved and that the blocking processes are 
performed using the providers' querying systems. 

 Integration process: it aims at detecting and merging 
spatial entities which refer to the same POI 
(corresponding entities). It takes the sets obtained from 
the mediation process to produce a single set of 
entities, in which corresponding entities from different 
providers are merged into a single entity. Our 
integration process produces various confidence scores 
between the attributes of corresponding entities (see 
Section ‎III.B). The lower the uncertainty, the higher 
the confidence levels. Note that any spatial integration 
system, which takes the same inputs, could be used in 
replacement.  

 Visualization process: its main objective is the 
transformation of the confidence scores into visual 
representation of confidence levels (see Section ‎III.C). 
In this process, the merged entities resulting from the 
integration are displayed on a map. 

B. Integration and Uncertainty Computation 

The challenges in entity integration traditionally deals with 
the selection of data and transformation functions to be used for 
merging. In our context, we can add the computation of 
relevant and useful confidence scores for spatial and 
terminological attributes. In this part, we describe a simple 
solution for detecting and matching corresponding entities and 
for computing confidence levels. 

 Many generic approaches for "entity matching" have been 
proposed [16]. Getting inspired by these generic approaches, 
we propose a simple entity matching process based on 
sophisticated  similarity measures. The matching process is 
performed between all entities resulting from the mediation 
process. Given two entities from different sets, we compute 
confidence scores between their attributes. A score close to 0 
means that two entities are totally dissimilar. Conversely, a 
score equal to 1 indicates that both entities are equivalent. The 
coordinates of two entities are compared according to the 
Euclidian distance. The shorter the distance between both 
entities, the closer to 1 the similarity value for coordinates is. 
All terminological attributes (e.g., name, phone) are compared 
using the Levenshtein measure. This measure is the most 
effective with regards to other string similarity measures [28]. 
Using several metrics to match the same attribute involves a 
new problem for combining the different similarity scores. 
When all the individual scores have been computed, we may 
also compute a global score. A weighted average is 
traditionally used for combining the individual similarity 
scores. A decision step is finally required to select the 
correspondences. Various methods such as a threshold or the 
top-K enables this automatic selection [3]. In our context, 
proposing the corresponding entities with the highest global 
score is sufficient. To select which attributes of corresponding 
entities should be merged, we apply statistics (mainly value 
frequency). This simple proposition of entity matching and 
merging aims at illustrating our uncertainty visualization 
solutions. Note that any integration algorithm, which takes the 
same inputs, can replace our proposition. 

Concerning the output of the confidence scores, they are 
deduced from the similarity scores computed during the entity 
matching. The score computed between the coordinates 
constitutes the spatial confidence score. All terminological 
scores (between names, phones, etc.) are averaged to become 
the terminological confidence score. The global confidence 
score aims at evaluating the global confidence about a merged 
entity. For instance, the integration process produces a high 
score of spatial confidence when two providers locate the same 
POI at the same place and a low score of terminological 
confidence when two providers provide the user with totally 
different names, addresses, telephones, websites, etc. At the 
end of the integration process, corresponding entities have been 
merged and three confidence scores have been computed for 
each merged entity. The next step consists in visualizing these 
scores on a map. 

C. Visualization of Uncertainty 

Visualization of integrated information may be insufficient 
in various cases. For instance, a user needs to check original 
information when observing strange outcome from the 



 
 

Figure 3. Visual variables chosen for our study 

 

 integration process. Therefore, the user requires to estimate 
himself the confidence of integration process visualizing (i) the 
spatial and terminological uncertainty for each integrated POI 
and (ii) the whole providers’ source information. This 
requirement generates a large amount of information that might 
become an issue to visualize. To meet this requirement, in our 
approach, we first convert the spatial, terminological and global 
scores output from the integration process into three confidence 
levels (similar to the three uncertainty levels in [30, 19]): 
uncertain (low confidence level), moderately certain (medium 
confidence level), certain (high confidence level). The first 
range [0, 0.5] is associated to the uncertain level. The middle 
range (]0.5, 0.75]) includes the moderately certain values. And 
the certain level stands for highest values in the range ]0.75, 1]. 
These ranges have been fixed according to experiments 
performed with similarity measures [9]. In the future, we intend 
to learn the best ranges for each level. 

We are interested in monitoring uncertainty of two 
dimensions: the confidence level of spatial attributes (the 
spatial confidence score from integration process) and the 
confidence level of terminological attributes (the 
terminological confidence score from integration process). 
Moreover, to create a map easier to read and understand for a 
tourist, we propose to group these two dimensions of 
confidence to display one global confidence level. Then, a POI 
has a global (spatial and terminological) high confidence level 
when the data of the providers are consistent and complete 
between them. On the contrary, a POI has a global low 
confidence level when the providers are not consistent and/or 
not complete between them. 

An analysis of the results obtained by [19] leads us to select 
the most relevant data useful in our context. Location, Size and 
Fuzziness variables are relevant to portray spatial uncertainty. 
Smiley, Filled bar associated with Slider and Thermometer are 
interesting to portray terminological uncertainty. Finally, 
Fuzziness, Location and Color Value are well suited to portray 
global uncertainty. 

We define various cartographic proposals to portray 
confidence levels of POI that are oriented in two directions: 
first the choice of the visual variables, second the choice of the 
dimension(s) of the geographic information (the attributes) to 
display on the map. 

1)  Visual Variables to Portray Confidence Levels 
On the basis of conclusions made in Section ‎II.B, we 

propose two alternative visual variables to portray the 

confidence level of each dimension of geographic information 
(spatial, terminological, global). Fig. 3 illustrates them. 

Concerning the spatial attributes, we decide to compare 
Location with Size associated to Fuzziness. We choose 
Location because it is intuitively connoted to space. We 
aggregate Size and Fuzziness. The taller the sign, the fuzzier 
the sign. We do this combination because independently, an 
order would be created between the signs with large or distinct 
signs seen before the others. This combination reduces this 
perception of order. 

Concerning the terminological attributes, the proposals of 
[30, 19] have been investigated. For our application, Smiley is 
too connoted to a score relative to the quality of a POI obtained 
from the opinions of different users. Then if the smiley is 
happy, it will be interpreted as a good POI for the public (e.g., 
a "good" restaurant) and this is not what we want to represent. 
Concerning Filled bar associated with Slider, we think it is 
difficult to correctly perceive the differences between its three 
degrees because only one small element of the slider is 
modified. For the previous reasons, the Thermometer icon is 
selected and is compared to a new visual variable: Frequency, 
based on graphic representations created to show uncertain 
chaotic behaviors of signals in Electronics Science.   

Finally, for the global confidence level (spatial and 
terminological attributes together), we choose to combine 
Fuzziness with Color Value. We eliminate Location because it 
is too connoted to the spatial dimension. 

2) Dimensions of the Geographic Information to Display 

on Map 
Portraying whole uncertainty information may overload the 

interface. Our approach proposes instead to portray the 
confidence levels with a cartographic interactive application 
that gives the advantage to provide the user with only main 
confidence information and get more confidence details on 
demand opening a tool-tip to display complementary 
information. The user can also interact with the map (zoom 
in/out, move around, etc.). In such an application, various 
visualization strategies can be proposed depending on various 
confidence information we can highlight on the map. In the 
first two proposals, we make the assumption that spatial 
(respectively terminological) dimension of geographic 
information is estimated as the most important for the user. In 
this case, for each POI, we portray only the confidence level of 
this more significant dimension whereas the other one is shown 
in its tool-tip (Fig. 4). 

In three other proposals, geographic information 
dimensions are both considered important for the user. In Fig. 
5, spatial and terminological confidence levels are both 
portrayed on each POI using two signs. In Fig. 6, a global 
confidence level is displayed for each POI, corresponding to 
the confidence combination of spatial and terminological 
attributes. In this case, the tool-tip of each POI shows the 
spatial and terminological confidence levels. Finally, global, 
spatial and terminological confidence levels are all portrayed 
together for each POI (Fig. 7). 

The next section illustrates some of our proposals by 
describing a use-case navigation scenario of a prototype we 



 
 

Figure 4. Spatial (top) or terminological (down) confidence level displayed on 

the map 

 
 

 

 

 

 
 

Figure 5. Spatial and terminological confidence levels are both portrayed 

 

 
 

Figure 6. Global confidence level is portrayed, spatial and terminological 

confidence level are displayed in the tool-tip  

 

 
 

Figure 7. Global, spatial and terminological confidence levels are all 

portrayed together 

 

have implemented. The proposals are Color Value for global 
confidence levels and in the tool-tip of each POI: Location, 
Size and Fuzziness to portray spatial confidence level and 
Thermometer to portray terminological confidence level. 

IV. PROTOTYPE 

Our proposal has been integrated in a LBS prototype. The 
POIs of this service are the result of the integration of the POIs 
from several LBS providers. This prototype implements the 
choice of solution presented above for visualizing uncertainty 
of integrated spatial data. 

The prototype runs on an ad-hoc POI database that has been 
created collecting POIs of several types from three real 
providers using their Application Programming Interface 
(API). The integration process is pre-performed on the whole 
POI database and the prototype interface navigates through the 
result. The prototype interface is composed of three 
components as shown in Fig. 8: 1) POI types selector: a list that 
the user check/uncheck to display or hide, 2) legend: the 
visualization solution used to portray global, spatial and 
terminological confidence levels and 3) map inheriting 
OpenStreetMap background and features (zoom in/out, 
satellite/map view, etc). The user can choose two modes for the 
map, the former denoted as "Integrated mode" displays 
integrated POIs with their global confidence levels. The latter, 
denoted as "Source mode", portrays the POIs of the source 
providers of an integrated POI with full information. 

When the user starts navigating, the prototype detects and 
centers the map at user location, and the "Integrated mode" is 
set by default. The user selects the POI types from the selector. 
All the POIs of the selected types that are near the user location 

are collected from the integrated dataset and displayed on the 
map. The map window of Fig. 8 illustrates the POIs of type 
Restaurant, Color Value variable indicating global confidence. 
Two deep colored restaurants have a high global confidence 
level (top and bottom), two light colored restaurants have a low 
global confidence level (in the center) and the three remaining 
have a medium global confidence level. The user can click on a 
POI to display the tool-tip that contains the full POI 
terminological information, spatial confidence and 
terminological confidence of the integration as shown in Fig. 8. 
At the right top corner of the tool-tip, the Thermometer icon 
indicates that the terminological confidence is medium while 
the Location, Size, Fuzziness icon indicates that the spatial 
confidence is low for the selected POI. 



 
 

Figure 8. The prototype interface is composed of three components: 1) POI types, 2) legend and 3) map (here in Integrated mode). 

 
 

Figure 9. Comparison of terminological information offered by  

several providers for the same POI 

 

 
 

 

 

 

As well, the user can check the source providers of an 
integrated POI by switching to the "Source mode" where all the 
integrated POIs are hidden except the checked one. In this 
mode, the user can consult the full POI information delivered 
by all the source providers. This mode shows the location of 
the integration result and of all source providers that the user 
can compare. The user can also check out terminological 
information of every source and compare them all. A table that 
contains POI terminological information delivered by each 
provider can be displayed (Fig. 9). Also, the distance between 

each source POI and the integrated one is indicated at the 
bottom of the table for each provider. 

V. CONCLUSION 

In this paper, we have proposed and studied different 
representations of uncertainty in a spatial integration context. 
Our approach is generic and the simple integration process that 
we have presented can be replaced. The integration process 
merges corresponding entities and produces confidence scores 
at spatial, terminological and global levels. These confidence 
scores are converted into confidence visualization solutions. 
Solutions have been implemented into an application prototype 
to demonstrate the feasibility and the benefits in a scenario. 

One of our future objectives is to customize the visual 
representation and the navigation process according to user 
profiles. To reach this goal, we plan to test our proposals to 
select, for each dimension of the geographic information 
(spatial, terminological and global), the most efficient visual 
variables. Quantitative tests (e.g., A/B testing) are used to 
evaluate alternative choices while qualitative tests (e.g., user 
observation, interviews) explore how end-users (tourists) 
navigate with interactive maps. These tests should allow us to 
select the solution that is both best perceived and the most 
useful for the end-user according to her expectations. They 
could also demonstrate how such uncertainty representation is 
partly user-dependent. In that case, learning automatically the 
best representation for a new user could be an interesting 
challenge. For instance, a dynamic prototype which allows 
users to customize the mode of representation would allow us 
to evaluate the preferred solutions and to identify their 



correlations with various criteria such as user profile and 
device type (e.g., computer, smart phone). 

ACKNOWLEDGMENT 

This work was supported by the LABEX IMU (ANR-10-
LABX-0088) of Université de Lyon, within the program 
"Investissements d'Avenir" (ANR-11-IDEX-0007) operated by 
the French National Research Agency (ANR). Special thanks 
goes to OpenStreetMap for providing the base maps. 

REFERENCES 

[1] E. M. Arkin, L. P. Chew, D. P. Huttenlocher, K. Kedem, and J. S. B. 

Mitchell, “An efficiently computable metric for comparing polygonal 

shapes,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 13, no.3, pp. 209–
21, March 1991. 

[2] C. Beeri, Y. Doytsher, Y. Kanza, E. Safra, and Y. Sagiv, “Finding 

corresponding objects when integrating several geospatial datasets”. 

ACM International Workshop on Geographic Information Systems, 
2005, pp. 87–96. 

[3] Z. Bellahsene, A. Bonifati, and E. Rahm, “Schema Matching and 
Mapping,” Springer-Verlag, Heidelberg, 2011. 

[4] J. Bertin “Semiology of graphics: diagrams, networks, maps,” 1983.  

[5] P. A. Burrough, “Principles of Geographical Information Systems for 

Land Resources Assessment (Monographs on Soil Resources Survey),” 
Oxford University Press, USA, 1986. 

[6] M. L. Casado, “Some basic mathematical constraints for the geometric 

conflation problem,” International symposium on spatial accuracy 

assessment in natural resources and environmental sciences, 2006, pp. 
264-274. 

[7] C.-C. Chen, S. Thakkar, C. A. Knoblock, and C. Shahabi, 

“Automatically annotating and integrating spatial datasets,” In 
Symposium on Spatial and Temporal Databases, 2003, pp. 469–488. 

[8] M. A. Cobb, F. E. Petry, and K. B. Shaw, “Fuzzy spatial relationship 

refinements based on minimum bounding rectangle variations,” Fuzzy 
Sets and Systems, vol. 113, no. 1, pp. 111–120, 2000. 

[9] W. Cohen, P. Ravikumar, and S. Fienberg, “A comparison of string 

metrics for matching names and records,” Workshop on Information 
Integration on the Web, 2003, pp. 73–78. 

[10] T. Devogele, C. Parent, and S. Spaccapietra, “On spatial database 

integration,” International Journal of Geographical Information Science, 
vol. 12, no. 4, pp. 335–352, 1998. 

[11] Y. Doytsher, “A rubber sheeting algorithm for non-rectangular maps,” 
Computers & Geosciences, vol. 26, no. 9, pp. 1001–1010, 2000. 

[12] M. Gombosoi, B. Zalik, and S. Krivograd, “Comparing two sets of 

polygons,” International Journal of Geographical Information Science, 
vol. 17, no. 5, pp. 431–443, July-August 2003. 

[13] I. N. Gregory, “Time-variant gis databases of changing historical 

administrative boundaries: A european comparison,” Transactions in 
GIS, vol. 6, no. 2, pp. 161–178, March 2002. 

[14] H. Kang, V. Sehgal, and L. Getoor, “Geoddupe: A novel interface for 

interactive entity resolution in geospatial data,” In International 
Conference on Information Visualisation, 2007, pp. 489–496. 

[15] R. Karam, F. Favetta, R. Kilany, and R. Laurini, “Integration of similar 

location based services proposed by several providers,” In Networked 
Digital Technologies, 2010, pp. 136–144. 

[16] H. Kopcke and E. Rahm, “Frameworks for entity matching: A 

comparison,” Data Knowl. Eng., vol. 69, no. 2, pp. 197–210, February 
2010. 

[17] A. MacEachern, “How maps work,” New York, London: The Guilford 
Press, 1995. 

[18] A. M. MacEachren, A. Robinson, S. Hopper, S. Gardner, R. Murray, M. 

Gahegan, and E. Hetzler, “Visualizing geospatial information 

uncertainty: What we know and what we need to know,” Cartography 
and Geographic Information Science, vol. 32, no. 3, pp. 139–160, 2005. 

[19] A. M. MacEachren, R. E. Roth, J. O’Brien, B. Li, D. Swingley, and M. 

Gahegan, “Visual semiotics and uncertainty visualization: An empirical 

study,” IEEE Transactions on Visualization and Computer Graphics, 
vol. 18, no. 12, pp. 2496–2505, December 2012. 

[20] A. Masuyama, “Methods for detecting apparent differences between 

spatial tessellations at different time points,” International Journal of 

Geographical Information Science, vol. 20, no. 6, pp. 633–648, July 
2006. 

[21] J. L. Morrison, “A theoretical framework for cartographic generalization 

with the emphasis on the process of symbolization,” International 
Yearbook of Cartography, vol. 14, pp. 115–27, 1974. 

[22] A. Olteanu, “A multi-criteria fusion approach for geographical data 
matching,” International Symposion in Spatial Data Quality, 2007.  

[23] J. J. Ruiz, F. J. Ariza, M. A. Urena, and E. B. Blazquez, “Digital map 

conflation: a review of the process and a proposal for classification,” 

International Journal of Geographical Information Science, vol. 25, no. 
9, pp.1439–1466, 2011. 

[24] A. Saalfeld, “A fast rubber-sheeting transformation using simplicial 

coordinates,” The American Cartographer, vol. 12, no. 2, pp. 169–173, 
1985. 

[25] A. Saalfeld. Conflation automated map compilation, “International 

Journal of Geographical Information System, vol. 2, no. 3, pp. 217–228, 
1988. 

[26] E. Safra, Y. Kanza, Y. Sagiv, C. Beeri, and Y. Doytsher, “Location-

based algorithms for finding sets of corresponding objects over several 

geo-spatial data sets,” International Journal of Geographical Information 
Science, vol. 24, no. 1, pp. 69–106, 2010. 

[27] E. Safra, Y. Kanza, Y. Sagiv, and Y. Doytsher, “Integrating data from 

maps on the world-wide web,” In Web and Wireless Geographical 
Information Systems, 2006, pp. 180–191.  

[28] V. Sehgal, L. Getoor, and P. Viechnicki, “Entity resolution in geospatial 

data integration,” ACM International Symposium on Geographic 
Information Systems, 2006, pp. 83–90. 

[29] G. Shafer, “A mathematical theory of evidence, volume 1,” Princeton 
university press Princeton, 1976. 

[30] J. Thomson, E. Hetzler, A. MacEachren, M. Gahegan, and M. Pavel, “A 

typology for visualizing uncertainty,” In Electronic Imaging, 2005, pp. 
146–157. 

[31] S. Volz, “An iterative approach for matching multiple representations of 

street data,” In Proceedings of the JOINT ISPRS Workshop on Multiple 
Representations and Interoperability of Spatial Data, 2006, pp. 101–110. 

[32] M. Zhang, W. Shi, and L. Meng, “A generic matching algorithm for line 

networks of different resolutions,” In Workshop of ICA Commission on 

Generalization and Multiple Representation Computering Faculty of A 
Coruna University-Campus de Elvina, Spain, 2005. 

[33] M. F. Worboys and E. Clementini, “Integration of imperfect spatial 

information,” Journal of Visual Languages and Computing, vol. 12, 
no.1, pp. 61–80, February 2001. 

 

 

 


