A Generic and Flexible Framework for Selecting Correspondences in Matching and Alignment Problems

Fabien Duchateau

Université Claude Bernard Lyon 1 / LIRIS

DATA'2013 Conference, Reykjavík

http://liris.cnrs.fr/~fduchate/

Context

Large amount of data is produced everyday. For meaningful exploitation, this data has to be integrated:

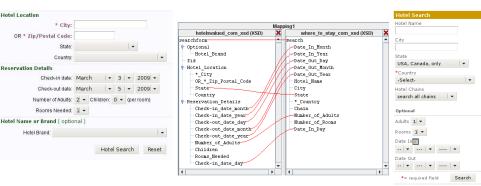
- Fusioning catalogs of products
- ► Generating new knowledge from scientific databases
- Helping decision-makers during catastrophic scenarios

Discovering correspondences between data sources ⇒ schema matching, ontology alignment, entity resolution

Motivation Example

Two Web Forms about Hotel Booking

Motivation Example



Discovering Correspondences for the Web forms with COMA++

Outline of the Talk

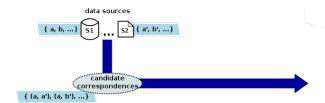
Preliminaries

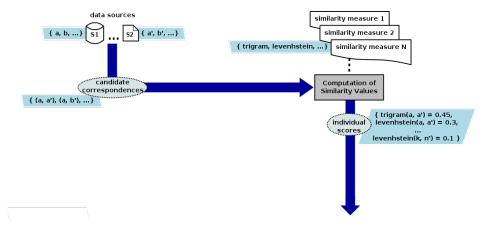
Details of the Framework

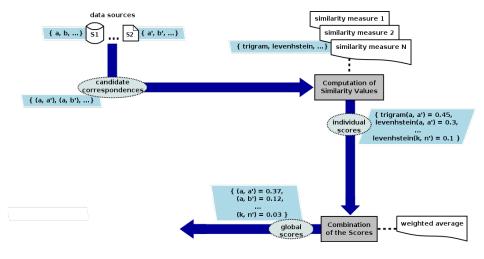
A Model for Classifying Similarity Measures Detecting Discriminative Measures Computing a Confidence Score

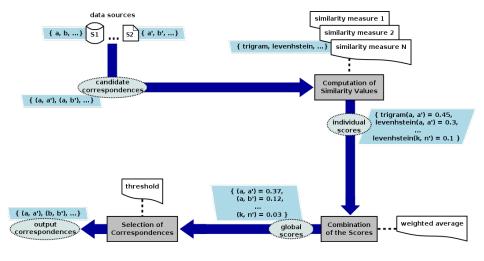
Experimental Validation

Experimental Protocol Experiment Results









Issues

Tuning:

- ▶ Difficulty for tuning a similarity measure (e.g., weights, thresholds)
- Difficulty for tuning the combination function (e.g., strong impact of similarity measures of the same type)
- ▶ No extensibility (adding a new measure involves tuning again)

Selection of correspondences:

- All similarity values may not be significant for determining the relevance of a correspondence
- Inability of a similarity measure for discovering a correspondence (e.g., with two polysemous labels "mouse")

Proposition

A generic framework for selecting correspondences in matching/alignment problems:

- A classification of similarity measures according to their features
- Automatic selection of the meaningful similarity values to compute a confidence score
- No need for tuning
- Validation of the approach with a benchmark containing real-world entity matching datasets

Running Example

► Two data sources d and d':

▶
$$\mathcal{E}_d = \{a, b, c\}$$

$$\mathcal{E}_{d'} = \{a', b', d'\}$$

- ▶ Set of correct correspondences: $\{(a, a'), (b, b')\}$
- ► Set of four similarity measures: {sim₁, sim₂, sim₃, sim₄}

sim_1	a	Ь	С
a'	0.8	0	0
ь'	0	0.3	0
ď'	0.8	0	0.7

sim ₂	а	b	С
a'	0.1	0.1	0.1
b'	0.2	0.1	0.2
ď'	0.8	0.2	0.6

1	sim ₃	а	b	С
	a'	0.6	0.2	0.1
	b'	0.3	0.9	0.4
	ď,	0.3	0.2	0.2

sim ₄	а	b	С
a'	0	0	0.5
ь'	0	0.5	0
d'	0	0	0

Similarity Matrices for Similarity Measures

Outline

Preliminaries

Details of the Framework

A Model for Classifying Similarity Measures Detecting Discriminative Measures Computing a Confidence Score

Experimental Validation
Experimental Protocol
Experiment Results

A Model for Classifying Similarity Measures (1)

Intuition: similarity measures can be organized according to various features, and a score can be computed to compare their ability for matching

- Category (e.g., terminological, linguistic, structural)
- ► Type of input (e.g., character strings, records)
- ► Type of output (e.g., number, semantic relationship)
- Use of external resources (e.g., a dictionary, an ontology)

W. Cohen, P. Ravikumar, and S. Fienberg.

A comparison of string distance metrics for name-matching tasks. In Proceedings of the IJCAI, 2003.

Pavel Shvaiko and Jerome Euzenat.

A survey of schema-based matching approaches.

Journal of Data Semantics IV. pages 146–171, 2005.

Journal of Data Semantics IV, pages 140–171, 200

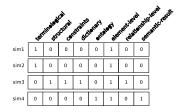
A Model for Classifying Similarity Measures (2)

Modelization of the similarity measures:

- Representation of a measure by a binary vector according to its features (1 for the feature, 0 else)
- ▶ Computation of a difference score Δ_{sim_i} ⇒ a similarity measure is different from the others if its vector is different. The more unique features a measure has, the more dissimilar it is w.r.t. other measures
- ► Computation of a dissimilarity score ⇒ normalization of the difference score in [0, 1]

Result: each similarity measure obtains a dissimilarity score

Running Example



Binary Vectors for each Similarity Measure

	sim ₁	sim ₂	sim ₃	sim ₄
Δ	0.33	0.33	0.67	0.375
dissim	0.19	0.19	0.40	0.22

Difference and Dissimilarity Scores of each Measure

The similarity measure sim_1 has 19% of different features compared to other measures, or sim_1 has an ignorance degree equal to 81%

Detecting Discriminative Measures

Intuition: a matcher should identify the significant similarity values and the discriminative measures for a candidate correspondence

- ► For each similarity measure, use of the mean and the standard deviation to obtain a range of non-discriminative values
- A similarity value outside of that range and the associated measure are considered discriminative for a candidate correspondence
- One iteration may not be sufficient: discarding of the previous discriminative values for next iteration

Result: each candidate correspondence is associated to a set of discriminative similarity measures

Running Example

sim ₁	a	Ь	С
a'	0.8	0	0
Ь'	0	0.3	0
ď'	0.8	0	0.7

sim ₂	a	b	С
a'	0.1	0.1	0.1
b'	0.2	0.1	0.2
ď'	0.8	0.2	0.6
	_		

sim ₃	a	Ь	С
a'	0.6	0.2	0.1
b'	0.3	0.9	0.4
ď'	0.3	0.2	0.2

sim ₄	а	b	С
a'	0	0	0.5
b'	0	0.5	0
ď'	0	0	0

Similarity Matrices for Similarity Measures¹

- $Avg_{sim_1} = 0.28$
- $\blacktriangleright \mathsf{Std}_{\mathit{sim}_1} = 0.35$
- ▶ Range of non-discriminative values for $sim_1 = [0, 0.63]$
- ▶ Discriminative measures for (a, a') = $\{sim_1, sim_3\}$

Computing a Confidence Score (1)

Intuition: a confidence score should be higher for a candidate correspondence which obtains discriminative values with different similarity measures

► The confidence score is computed with the discriminative values and the dissimilarity scores

$$conf_{(e,e')}^{t} = \sum_{i=1}^{n} dissim_{sim_{i}} \times \frac{\sum_{i=1}^{n} sim_{i}(e,e')}{n}$$

 Solve conflict by discarding correspondences with already matched elements, or use refine technique to detect a complex correspondance

Result: each candidate correspondence obtains a confidence score

Running Example

sim ₁	а	Ь	С
a'	0.8	0	0
b'	0	0.3	0
ď'	0.8	0	0.7

а	Ь	С
0.1	0.1	0.1
0.2	0.1	0.2
0.8	0.2	0.6
	0.1 0.2	0.1 0.1 0.2 0.1

sim ₃	a	b	С
a'	0.6	0.2	0.1
Ь'	0.3	0.9	0.4
ď'	0.3	0.2	0.2

sim ₄	а	b	С
a'	0	0	0.5
b'	0	0.5	0
ď'	0	0	0

Similarity Matrices for Similarity Measures

- 1. conf(b, b') = 0.43
- 2. conf(a, a') = 0.41
- 3. conf(a, d') = 0.30
- 4. conf(c, d') = 0.25
- 5. conf(c, a') = 0.19

Running Example

sim ₁	a	b	С
a'	0.8	0	0
Ь'	0	0.3	0
ď'	0.8	0	0.7

sim_2	а	b	С
a'	0.1	0.1	0.1
b'	0.2	0.1	0.2
ď'	0.8	0.2	0.6

sim ₃	а	b	С
a'	0.6	0.2	0.1
Ь'	0.3	0.9	0.4
ď'	0.3	0.2	0.2

sim ₄	а	b	С
a'	0	0	0.5
b'	0	0.5	0
ď	0	0	0

Similarity Matrices for Similarity Measures

- 1. conf(b, b') = 0.43
- 2. conf(a, a') = 0.41
- 3. conf(a, d') = 0.30 discarded
- 4. conf(c, d') = 0.25 requires manual verification
- 5. conf(c, a') = 0.19 discarded

Outline

Preliminaries

Details of the Framework

A Model for Classifying Similarity Measures Detecting Discriminative Measures Computing a Confidence Score

Experimental Validation

Experimental Protocol Experiment Results

Experimental Protocol (1)

Benchmark for entity resolution

- Domains: Web products (Abt/Buy and Amazon/GoogleProducts) and publications (DBLP/Scholar and DBLP/ACM)
- Sizes: from 1081 entities (Abt) to 65000 (Scholar)
- ▶ Set of perfect correspondences: from 1097 (Abt-Buy) to 5347 (DBLP-Scholar)
- ► Tested with a matching tool: **BenchTool**

Hanna Kopcke, Andreas Thor, and Erhard Rahm.

Learning-based approaches for matching web data entities. IEEE Internet Computing, 14(4):23-31, 2010

Experimental Protocol (2)

Our framework has been implemented:

- ► Use of 10 similarity measures (Second String API², Resnik metric with Wordnet, a contextual measure)
- Classification of the measures with 8 features

What we demonstrate?

- Robustness and extensibility
- Matching quality at least equal to BenchTool

Fabien Duchateau, Remi Coletta, Zohra Bellahsene, and Renée J. Miller.

(Not) Yet Another Matcher.

In Conference on Information and Knowledge Management, pages 1537-1540, 2009.

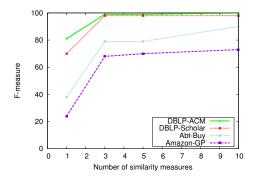
Philip Resnik.

Semantic similarity in a taxonomy: An information-based measure and its application to problems of ambiguity in natural language.

Journal of Artificial Intelligence Research, 11:95-130, 1999.

²http://secondstring.sourceforge.net/

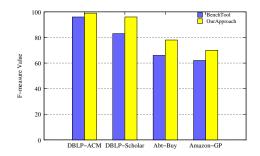
Demonstrating Robustness and Extensibility



Quality results according to the number of similarity measures:

- ▶ Random selection of the measures, average results of 10 runs
- Without any tuning, our approach integrates new measures
- ▶ The matching quality increases with more available measures

Demonstrating Matching Quality



Comparative results in terms of F-measure:

- Web products are more difficult to match: confusing attribute "description" (full sentences) and some very similar products (e.g., HD with different storage capacity)
- Our approach improves over Benchtool for the four datasets

Conclusion

Contributions:

- ▶ A generic and extensible framework for selecting correspondences, with no need for tuning
- Validation of the approach with an entity matching benchmark

Perspectives:

- More experiments (with schemas/ontologies/parameters)
- Study the replacement of boolean vectors by real vectors
- ▶ Automatically determine the features of a similarity measure, using a benchmark (e.g., OAEI benchmark track) or the value distribution of the measure

Ontology Alignment Evaluation Initiative (OAEI).

http://oaei.ontologymatching.org/, 2013.

Thank you!

