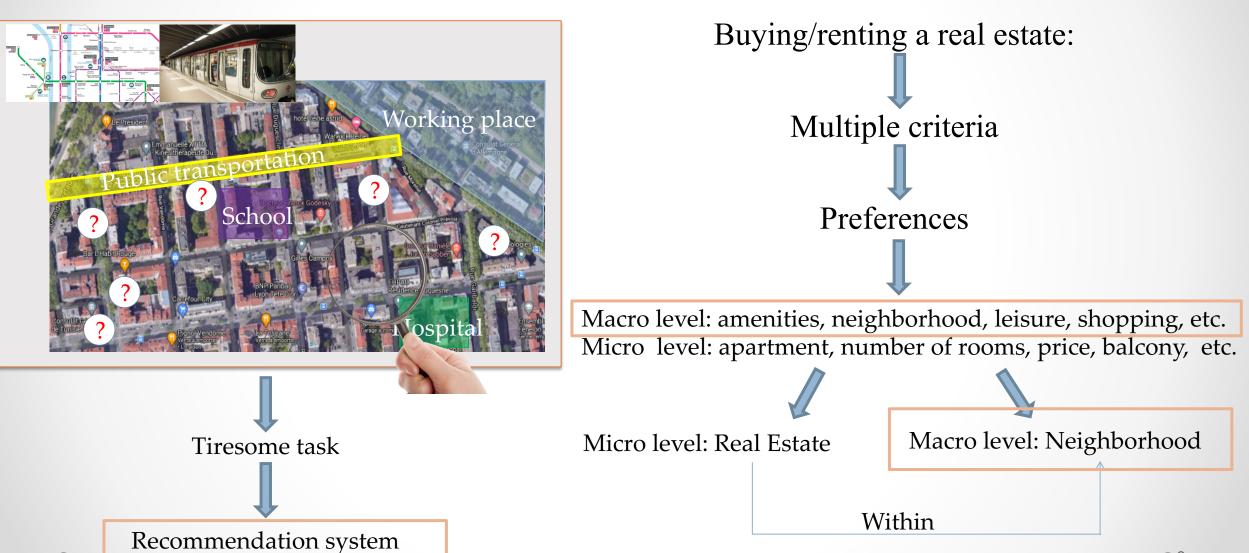


Ontology-Based Approach for Neighborhood and Real Estate Recommendations (NAREO)

Wissame Laddada, Fabien Duchateau, Franck Favetta, Ludovic Moncla


LocalRec'20, November 3, 2020

Context and Motivations

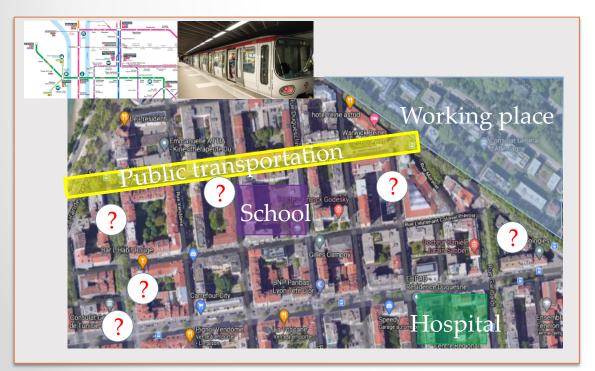
Context and Motivations

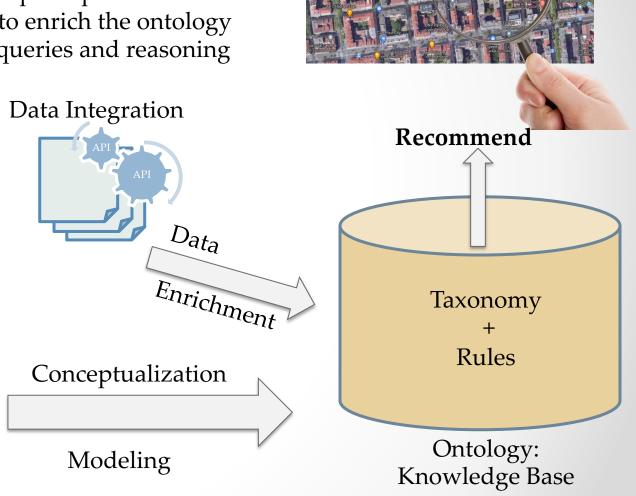
Outline

- Spatial Recommendation Background
- Ontology for Neighborhood and Real estate recommendation
 - Motivations and approach overview
 - Conceptualization/modeling
 - SWRL rules definition for criteria
- Case study
- Perspectives and discussion

Spatial Recommendation Background

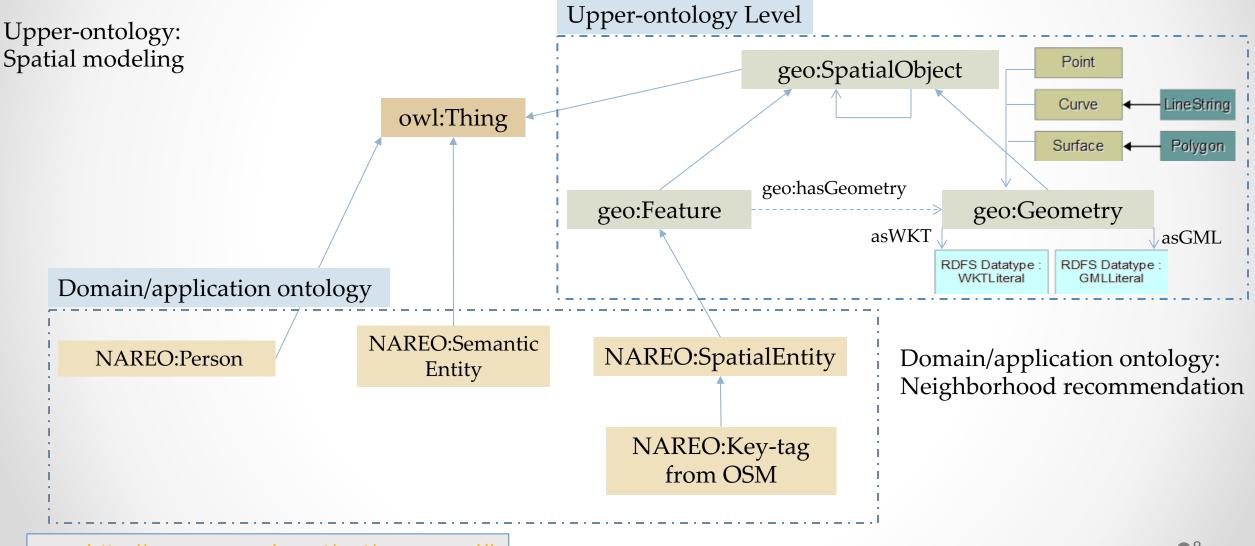
1	U
User perception is consistent with the quantitative numbers that describe the given neighbor- hood	Limited to distance between placesPattern matchingLi et al.
Malczeweski et al.	Yuan et al.
Heavy task for users when scoring preferences (taking into account by means of rules)	SEED Layout Limited to distances from locations and some real estate constraints

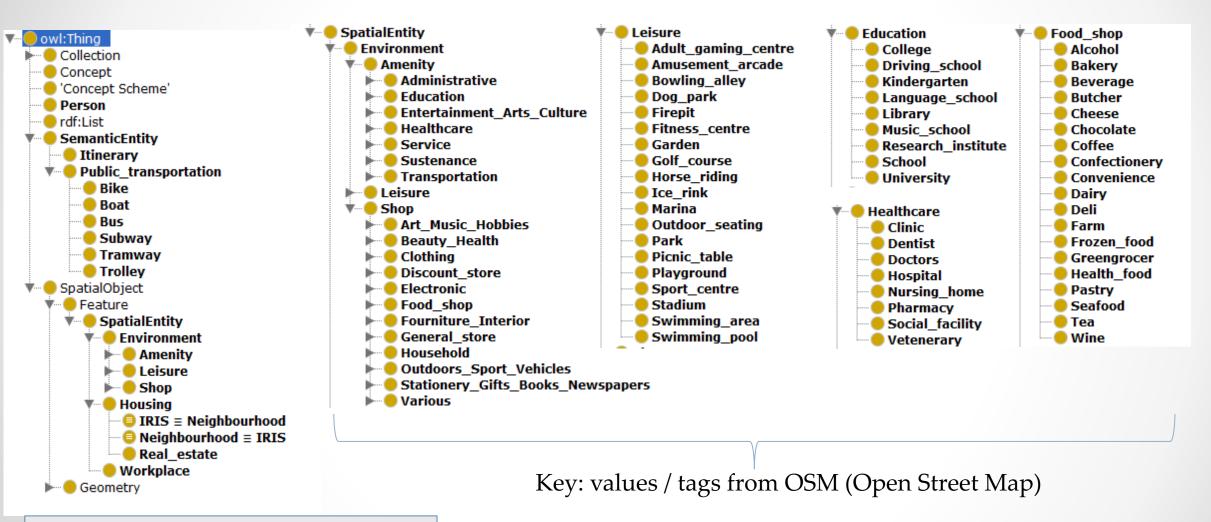

Ontology for Neighborhood and Real estate recommendation NAREO


Motivation

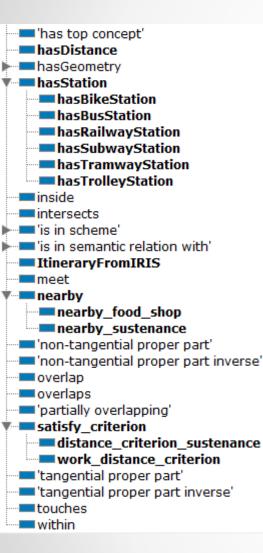
- Modeling qualitative and quantitative preferences
- > Extension is possible if needed (adding classes, properties, rules, axioms)
- > Integrate spatial information with theories for spatial reasoning
- Relevant semantic expressiveness for queries to get a specific information

Approach Overview


- Conceptualization/modeling: define a taxonomy of concepts/ roles within a knowledge base to model the environment
- Rules definition: define rules for criteria so a user can express preferences
- Data integration: collect data from different resources to enrich the ontology
- Recommendation : suggestions by means of semantic queries and reasoning process


7

Conceptualization/modeling: Concept Definition (1/3)


geo: http://www.opengis.net/ont/geosparql#

Conceptualization/modeling: Concept Definition (2/3)

NAREO: Partial overview (concepts)

Conceptualization/modeling: Roles Definition (3/3)

- owl:topDataProperty
 adress
 age
 atmosphere
 - code_IRIS
 - contrat_type
 - coordinateDimension
 - dinensio
 - distance value
 - subway_distance
 - tram_distance

 - car_disatnce
 - train_distance
 - trolley_distance
 - walking_distance
 - gender
 - 'has serialization'
 insee COM
 - IRIS
 - isEmpty
 - isSimple
 - marital_status

 - nom_COM
 - nom_IRIS
 - notation
 - number_children
 - salary
 - spatialDimension
 - type_IRIS
 - 🗝 urgent_profil

<u>Example</u>

hasDistance(SpatialEntity,Itinerary)
hasSubwayStation(Subway,Transport_station)
itineraryFromIRIS(Itineray,IRIS)

IRIS(s) Intinerary(i) Workplace(k) hasDistance(k,i) itineraryFromIRIS(i,s) subway_distance(i, '20') tram_distance(i,'15')

NAREO: Partial overview (Properties)

SWRL rules definition for criteria (1/2)

Predicate₁ (x_1) ^... Predicate₂ (x_1 , y_1) ... ^Predicate (x_n) => Consequences(x_i , y_j)

DL safe rule

SWRL Rule 1

```
IRIS(?i) ^ hasGeometry(?i,?g1) ^ asWKT(?g1,?w1) ^
Food_shop(?f) ^ hasGeometry(?f,?g2) ^ asWKT(?g2,?w2) ^
distance_criterion_food_shop(?d,?w1,?w2)
=> nearby_food_shop(?i, ?f)
```

Proximity to food shops criterion Built-in: distance_criterion_food_shop

SWRL Rule 2

```
IRIS(?i) ^ hasGeometry(?i,?g1) ^ asWKT(?g1,?w1) ^
Sustenance(?s) ^ hasGeometry(?s,?g2) ^ asWKT(?g2,?w2) ^
distance_criterion_sustenance(?d,?w1,?w2)
=> nearby_sustenance(?i, ?s)
```

SWRL Rule 3

```
IRIS(?i) ^ (nearby_sustenance >= 5)(?i)
=> atmosphere(?i, "true")
```

Proximity to sustenance and neighborhood atmosphere criterion Built-in: distance_criterion_sustenance

SWRL rules definition for criteria (2/2)

SWRL Rule 4

```
IRIS(?i) ^ hasGeometry(?i,?g1) ^ asWKT(?g1,?w1) ^
Workplace(?k) ^ hasGeometry(?k,?g2) ^ asWKT(?g2,?w2) ^
hasDistance(?k, ?iT1) ^...^ hasDistance(?k,iT5) ^
differentFrom(?iT1,?iT2) ^ differentFrom(?iT1,?iT3) ^
...^ differentFrom(?iT4,?iT5) ^
itineraryFromIRIS(?iT1,?i) ^...^
itineraryFromIRIS(?iT5,?i) ^
work_distance_criterion (?w1,?w2,?dv1,...,
?dv5,?v1,?v2,?v3,?v4...)
=> subway_distance(?iT1,?v1) ^...^
tram_distance(?iT5,?v35) ^ distance_value(?iT1,?dv1)^...^
```

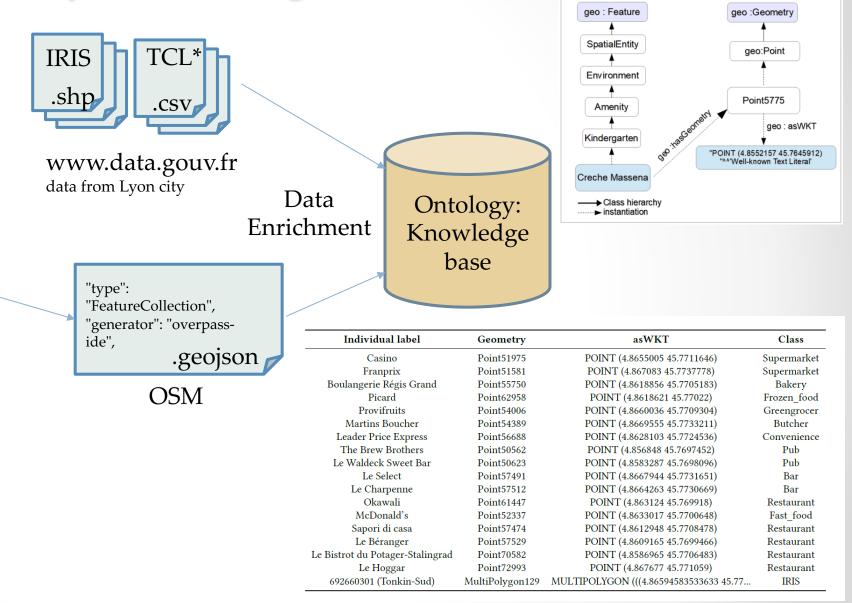
Distances to workplace Built-in: work_distance_criterion

Inference of different distances (tram_distance, subway_distance, etc.) for each itinerary, from a given neighborhood to a workplace

Case study: Data integration (1/3)

[out:json]; // gather results

// query part for: "aminity=*"
node["amenity"](around:10000,45.75,4.85);
way["amenity"](around:10000,45.75,4.85);


relation["amenity"](around:10000,45.75,4.85) ;

nwr["shop"](around:10000,45.75,4.85); nwr["leisure"](around:10000,45.75,4.85);); // print results

out; >; out skel qt;

https://overpass-turbo.eu/

*TCL: Transport en Commun de Lyon (public transportation of Lyon city)

Case study: Inferences by means of SWRL rules (2/3)

Proximity criterion (to food shops) (Rule 1)

IRIS	Inference	Food_shop
692660301 (Tonkin-Sud)	nearby_food_shop	Casino
692660301 (Tonkin-Sud)	nearby_food_shop	Franprix
692660301 (Tonkin-Sud)	nearby_food_shop	Boulangerie Régis Grand
692660301 (Tonkin-Sud)	nearby_food_shop	Picard
692660301 (Tonkin-Sud)	nearby_food_shop	Provifruits
692660301 (Tonkin-Sud)	nearby_food_shop	Martins Boucher
692660301 (Tonkin-Sud)	nearby_food_shop	Leader Price Express

Proximity criterion (to sustenance) (Rule 2)

IRIS	Inference	Sustenance
692660301 (Tonkin-Sud)	nearby_sustenance	The Brew Brothers
692660301 (Tonkin-Sud)	nearby_sustenance	Le Waldeck Sweet Bar
692660301 (Tonkin-Sud)	nearby_sustenance	Le Select
692660301 (Tonkin-Sud)	nearby_sustenance	Le Charpenne
692660301 (Tonkin-Sud)	nearby_sustenance	Okawali
692660301 (Tonkin-Sud)	nearby_sustenance	McDonald's
692660301 (Tonkin-Sud)	nearby_sustenance	Sapori di casa
692660301 (Tonkin-Sud)	nearby_sustenance	Le Béranger
692660301 (Tonkin-Sud)	nearby_sustenance	Le Hoggar

Inference of the triplet about the atmosphere (rule3) : •"692660301" → atmosphere →"true"

Facts about workplace :

- Workplace(LIRIS)
- hasGeometry(LIRIS, Point9600)
- asWKT(Point9600, POINT(4.865.. 45.78..))
- Itinerary(T1), Itinerary(T2), Itinerary(T3)
- itineraryFromIRIS(T1, 692660301)
- itineraryFromIRIS(T2, 692660301)
- itineraryFromIRIS(T3, 692660301)

Inferences of distances (Rule 4)

- walking_distance(T1, 11), bus_distance(T1, 2)
- **distance_value(T1, 13),** train_value(T1, 0)
- subway_distance(T1, 0), car_distance(T1, 0)
- tram_distance(T1, 0), Trolley_distance(T1, 0)
- walking_distance(T2, 5), tram_distance(T2, 5)
- **distance_value(T2, 10)**, train_value(T2, 0)
- subway_distance(T2, 0), car_distance(T2, 0)
- bus_distance(T2, 0), Trolley_distance(T2, 0)
- walking_distance(T3, 19), distance_value(T3, 19)
- tram_distance(T3, 0), train_value(T3,0)
- subway_distance(T3, 0), car_distance(T3, 0)
- bus_distance(T3, 0), Trolley_distance(T3, 0)

Case study: Semantic queries to express preferences (3/3)

SPARQL Query 1

```
select ?name_IRIS ?itinerary ?temporal_distance
where{?x a base:IRIS;
    base:nom_IRIS ?name_IRIS.
    ?w a base:Workplace;
    rdfs:label \"Nautibus\";
    base:hasDistance ?itinerary.
    ?itinerary base:ItineraryFromIRIS ?x;
    base:distance_value ?temporal_distance.
    FILTER (?temporal_distance <= 20)
  }</pre>
```

1. Get neighborhoods (IRIS) for an accommodation by taking into account the distance to a workplace

SPARQL Query 2

```
select ?name_IRIS (count(distinct ?shop) as ?count)
where {?x a base:IRIS;
    base:nom_IRIS ?name_IRIS;
    base:nearby_food_shop ?shop.
    } GROUP BY ?name_IRIS
```

2. Get neighborhoods nearby food shops classified per categories

SPARQL Query 3

select ?name_IRIS
where{?x a base:IRIS;
 base:nom_IRIS ?name_IRIS;
 base:atmosphere true.

3. Get neighborhoods that are animated or quiet

SPARQL Query 4

```
select ?name_IRIS ?name_sustenance ?class
where {?x a base:IRIS;
    base:nom_IRIS ?name_IRIS;
    base:nearby_sustenance ?tag.
    ?tag rdfs:label ?name_sustenance;
    a ?class."
    FILTER( STRSTARTS(STR(?class), str(base:)) )
}
```

4. Refine recommendation considering an animated neighborhood and add a restriction on sustenance category

Perspectives and discussion

- More semantics expressing criteria, like natural elements in the surrounding area (IRIS), should be added to NAREO to refine neighborhood recommendation
- Extend NAREO with more concepts/roles to recommend a real estate being within the suggested neighborhood
- Handling spatial reasoning by means of geospatial RDF stores (Parliament, Strabon, etc.)
- Enhancing NAREO with semantics to express criteria and preferences leads to define other rules which may increase the complexity with more data enrichment

