Integrating and Ranking Interests From User Profiles

Fabien Duchateau, Lynda Hardman CWI, The Netherlands

ESWC / LUPAS 2010, Greece

Outline

- Context
- Motivations
- Contributions

2 Our Approach

- Overview
- Integration
- Ranking

Context Motivations Contributions

Many websites store a profile of their users.

- Lots of scattered profiles, even for the same user
- Profiles from different websites are seldom compatible
- Service providers use these profiles for recommendations, improved search results, etc.

Interoperability among these profiles would benefit both users and service providers

Context Motivations Contributions

Related Work

Different approaches have been proposed:

- Representing user profiles: FOAF, UserRDF, and GUMO
- Aggregating or linking Web profiles such as Mypes¹, Google Social Graph API², OpenID³ => redundancies in the aggregated tag cloud or implies links between public profiles
- Integration of user profiles for domains such as human resources [VDM03] or education [SCCA06] => too specific approaches

Yet, many Web applications still include their own user models

¹http://mypes.groupme.org/mypes/ ²http://code.google.com/apis/socialgraph/ ³http://openid.net/

Context Motivations Contributions

Running Example

Figure: Running example with two users and their profiles

Context Motivations Contributions

Motivations

For users:

- Integrate a profile at a higher level of abstraction for converting profiles from one model to another *(tennis and rock climbing abstracted as sport)*
- Use information already stored in their various profiles to automatically fill in empty profile based on existing ones

For service providers:

- Analysing user profiles for extracting the most relevant information to exploit (recommendations)
- Comparing different user profiles to deduce common user interests and propose related events/activities (fishing and angling)

Context Motivations Contributions

Contributions

We propose an approach that:

- integrates two profiles (same or different users) by clustering their interests around the same higher-level concept
- ranks each cluster according to its importance in user profiles

Benefits:

- aggregate common user interests at different levels (low and high abstraction levels)
- extract relevant interests in large profiles or provide a summary

- Context
- Motivations
- Contributions

2 Our Approach

- Overview
- Integration
- Ranking

Overview Integration Ranking

Overview of our Approach (1/2)

Figure: A two-step approach

Overview Integration Ranking

Overview of our Approach (2/2)

Integrating

The idea is to create clusters of similar interests under the same (high-level) concept. To discover these concepts, we use matching techniques (terminological and linguistic).

Ranking

After the clustering, we compute the weight of each concept w.r.t. user interests.

Before integrating and discovering high-level concepts, we need to prepare the data:

- Extracting interests from each user profile (APIs)
- Apply several techniques for cleaning the data (e.g., tokenization)

Example

medical professional => medical, profession

The next step deals with matching. We match all interests from one profile to all interests from another profile. Which matching techniques ?

- structural
- constraint-based
- linguistic
- terminological

The next step deals with matching. We match all interests from one profile to all interests from another profile. Which matching techniques ?

- structural (no structure in the profiles)
- constraint-based
- linguistic
- terminological

The next step deals with matching. We match all interests from one profile to all interests from another profile. Which matching techniques ?

- structural (no structure in the profiles)
- constraint-based (no constraints in the profiles)
- linguistic
- terminological

The next step deals with matching. We match all interests from one profile to all interests from another profile. Which matching techniques ?

- structural (no structure in the profiles)
- constraint-based (no constraints in the profiles)
- linguistic => Wordnet dictionary for its reliability in terms of quality
- terminological

The next step deals with matching. We match all interests from one profile to all interests from another profile. Which matching techniques ?

- structural (no structure in the profiles)
- constraint-based (no constraints in the profiles)
- linguistic => Wordnet dictionary for its reliability in terms of quality
- terminological

The next step deals with matching. We match all interests from one profile to all interests from another profile. Which matching techniques ?

- structural (no structure in the profiles)
- constraint-based (no constraints in the profiles)
- linguistic => Wordnet dictionary for its reliability in terms of quality
- terminological => COMA++ matching tool for its library of 17 terminological measures

Linguistic matching:

Detecting the closest common higher-level concept between two interests based on the Wordnet dictionary⁴

- A distance is computed in terms of intermediary (Wordnet) concepts between both interests
- The search for the common concept is limited to 7 upper levels

Example

rock climbing and tennis => linked by the Wordnet sport concept tennis [has parent] court game [has parent] athletic game [has parent] sport [has child] rock climbing (distance = 4)

⁴http://wordnet.princeton.edu/

Introduction Ove Our Approach Inte Conclusion Ran

Overview Integration Ranking

Integration (4/6)

Figure: Interests [work] Linked to the Concepts [job] using Linguistic Measures [->]

Terminological matching:

Many interests are not matched because no Wordnet concept links them. Thus, we use COMA++ [ADMR05] to discover similarities between an interest and a concept based on their labels. COMA++ includes a library of terminological measures and is reputed to provide acceptable quality.

Examples

job search and *job* => terminological similarity = 0.42 *salsa, blues* and *sport* => terminological similarity = 0

Overview Integration Ranking

Integration (6/6)

Figure: Interests [work] Linked to the Concepts [job] using Linguistic [->] and Terminological [- ->] Measures

After identifying the clusters, we propose a ranking for clusters (concepts) according to their weight.

- User profiles may contain hundreds of interests (including pages and groups)
- Need for distinguishing strong interests from occasional ones

How do we rank ?

Compute a score for each cluster based on the (normalized) similarity values of the interests linked to it

Overview Integration Ranking

Ranking (2/2)

Figure: Ranked clusters (concepts) from our running example

Conclusion

We have presented a new method for:

- Integrating different profiles by clustering similar interests
- Extracting the most shared interests from profiles

Future Work

- We need more experiments on real datasets (Petamedia project)
- Relying on other resources for linguistic matching (e.g., DBpedia)
- User behaviours (frequent keyword search, frequency of visited websites)

David Aumueller, Hong Hai Do, Sabine Massmann, and Erhard Rahm.

Schema and ontology matching with COMA++. In <u>ACM SIGMOD</u>, pages 906–908, 2005.

- Craig Stewart, Alexandra Cristea, Ilknur Celik, and Helen Ashman.
 Interoperability between AEH user models.
 In APS '06: Proceedings of the joint international workshop on Adaptivity, personalization & the semantic web, pages 21–30, New York, NY, USA, 2006. ACM.
- B. Vandermeulen, Joost R. Duflou, and Bart De Moor. The role of user profiles in vector-based information retrieval. In IKE, pages 668–669, 2003.