A Context-based Measure for Discovering Approximate Semantic Matching between Schema Elements

Fabien Duchateau, Zohra Bellahsène and Mathieu Roche

Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier UNIVERSITÉ MONTPELLIER II, France

> RCIS'07 Ouarzazate, Morocco

Table of Content

Introduction and Motivations

- Introduction
- Contributions
- A terminological example
- A context example

2 Approxivect Approach

- Some Notions
- A 2-steps Matching Algorithm
- Parameters
- Experiments Results

Introduction Contributions A terminological example A context example

Introduction and Motivations

- Introduction
- Contributions
- A terminological example
- A context example

Approxivect Approach

- Some Notions
- A 2-steps Matching Algorithm
- Parameters
- Experiments Results

3 Related Work

4 Conclusion and Future Work

Introduction Contributions A terminological example A context example

- Finding semantic correspondences between 2 schemas still a challenging issue
- Semi automatic matchers available based on several approaches (combination of terminological measures, structural rules, ...)

Motivations

Terminological measures are not sufficient, for example:

- $\bullet\,$ mouse (computer device) and mouse (animal) $\Rightarrow\,$ polysemia
- $\bullet\,$ university and faculty $\Rightarrow\,$ totally dissimilar labels

Structural measures have some drawbacks:

- propagating the benefit of irrelevant discovered matches to the neighbour nodes increases the discovering of more irrelevant matches
- not efficient with small schemas

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction Contributions A terminological example A context example

A D > A A P > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

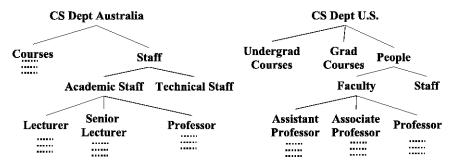


Figure: Two schemas from the university domain.

Introduction Contributions A terminological example A context example

Our approach: Approxivect

Based on the work of [1], Approxivect evaluates the similarity between two terms from different schema trees. It has the following properties:

- it is based on the combination of terminological measures (Levenhstein and n-grams) and structural measures (cosine measure applied to contexts)
- it is both automatic and not language-dependent
- it does not rely on dictionaries or ontologies
- it provides an acceptable matching quality

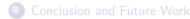
Figure: XML schemas relative to university.

- 3grams(Courses, GradCourses) = 0.2
- Lev(Courses, GradCourses) = 0.42
- \Rightarrow StringMatching(Courses, GradCourses) = 0.31

Figure: In the second schema, *Courses* replaces *GradCourses* due to StringMatching value.

- StringMatching(Faculty, University) = 0.002
- Context(Faculty) = Faculty, Courses, Professor
- Context(University) = University, Courses, Professor

\Rightarrow CosineMeasure(Context(Faculty), Context(University)) = 0.37


Some Notions A 2-steps Matching Algorithm Parameters Experiments Results

Introduction and Motivations

- Introduction
- Contributions
- A terminological example
- A context example

2 Approxivect Approach

- Some Notions
- A 2-steps Matching Algorithm
- Parameters
- Experiments Results

Some Notions A 2-steps Matching Algorithm Parameters Experiments Results

Context of node n_c

- represents the most important neighbour nodes n_i for n_c
- each neighbour n_i is assigned a weight depending on the relationship n_c

$$\omega(n_c, n_i) = 1 + rac{K}{\Delta d + |level(n_c) - level(n_a)| + |level(n_i) - level(n_a)|}$$

String Matching is the average between

- Levenhstein distance
- 3-grams

Some Notions A 2-steps Matching Algorithm Parameters Experiments Results

Discovering semantic similarities:

- String Matching between 2 node labels
- if above a given threshold, replacement of one of the label by the other.

Cosine Measure using context:

• due to replacements, the contexts of two nodes can be very similar

Similarity between two nodes

It is the best value between String Matching and Cosine Measure.

Introduction and Motivations Approxivect Approach Related Work Parameter Conclusion and Future Work Experime

Some Notions A 2-steps Matching Algorithm Parameters Experiments Results

- NB_LEVELS restricts the context by limiting the number of levels
- MIN_WEIGHT restricts the context by keeping only nodes with a weight above this threshold
- REPLACE_THRESHOLD if the StringMatching between two node labels is above this replacement threshold, then one label is replaced by the other
- K represents the importance given to the context

Flexibility

These parameters allow more flexibility. Tuning them is required in some specific scenarii.

∃ ► < ∃ ►</p>

 Introduction and Motivations
 Some Notions

 Approxivect Approach
 A 2-steps Matching Algorithm

 Related Work
 Parameters

 Conclusion and Future Work
 Experiments Results

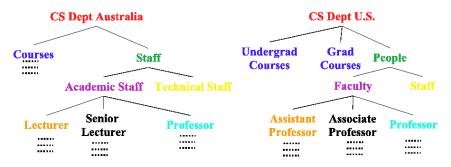


Figure: Mappings discovered by an expert between the schemas.

э

イロト イポト イヨト イヨト

Element from schema 1	Element from schema 2	Similarity value	Relevance
Professor	Professor	Professor 1.0	
CS Dept Australia	People 0.46		
Courses	Grad Courses	rad Courses 0.41	
CS Dept Australia	CS Dept U.S. 0.36		+
Courses	Undergrad Courses	Courses 0.28	
Academic Staff	Faculty 0.25		+
Staff	People	0.23	+
Technical Staff	Staff	0.21	+
Senior Lecturer	Associate Professor	ciate Professor 0.16	

Table: Approxivect similarity ranking between the two schemas

Element from schema 1	Element from schema 2 Similarity value		Relevance
Professor	Professor 0.5354546		+
Technical Staff	Staff 0.5300107		+
CS Dept Australia	CS Dept U.S.	0.52305263	+
Courses	Grad Courses	rses 0.5041725 +	
Courses	Undergrad Courses	0.5041725	+

Table: COMA++ discovered mappings between the two schemas

э

イロト イポト イヨト イヨト

Introduction and Motivations	Some Notions
Approxivect Approach	A 2-steps Matching Algorithm
Related Work	Parameters
Conclusion and Future Work	Experiments Results

	Precision	Recall	F-measure
COMA++	1	0.56	0.72
Approxivect	0.62	0.89	0.73

Table: Results of COMA++ and Approxivect on the XML schemas


Note that Approxivect parameters are set to default. An optimal configuration enables to obtain a 0.82 F-measure.

Introduction and Motivations

- Introduction
- Contributions
- A terminological example
- A context example

2 Approxivect Approach

- Some Notions
- A 2-steps Matching Algorithm
- Parameters
- Experiments Results

COMA++ [2]

- combination of many terminological measures and a user-defined synonym table
- a matrix is built for each couple of elements and for each measure
- a strategy is applied to select the mappings
- mappings are modified and/or validated by the user

Similarity Flooding [3]

- a simple string matching algorithm to provide initial matchings
- structural rules and propagation to refine the matchings
- mappings are modified and/or validated by the user

Introduction and Motivations

- Introduction
- Contributions
- A terminological example
- A context example

2 Approxivect Approach

- Some Notions
- A 2-steps Matching Algorithm
- Parameters
- Experiments Results

An automatic schema matching approach

- based on the combination of terminological and structural measures
- with an acceptable quality of matching
- flexible thanks to the parameters

However

- tuning is not automatic, but some tools could handle this step (eTuner)
- more heterogeneity in the experiments

Ongoing work

performance aspect

- T. YiFei, "Using contextual and lexical information to map terms of schemas," Master's thesis, Research Master - Université de Montpellier 2, 2006.
- D. Aumueller, H. Do, S. Massmann, and E. Rahm, "Schema and ontology matching with coma++," in *SIGMOD 2005*, 2005.
- S. Melnik, H. G. Molina, and E. Rahm, "Similarity flooding: A versatile graph matching algorithm and its application to schema matching," in *Proc. of the International Conference on Data Engineering (ICDE'02)*, 2002.