

An Indexing Structure for Automatic Schema Matching

SMDB 2007, Istanbul

Fabien Duchateau, Zohra Bellahsène, Mathieu Roche LIRMM, Université Montpellier 2
France

Mark Roantree
ISG, Dublin City University
Ireland

Motivations

- BtreeMatch: an index structure for accelerating schema matching
 - Semantic Aspect
 - Performance Aspect
 - Some Performance Results

Conclusion and Future Work

Finding semantic correspondences between 2 schemas still a challenging issue

Available semi automatic matchers focus on the quality aspect of matching

More and more large schemas, especially on the Web

Our Approach

An Index Structure for Automatic Schema Matching

Semantic aspect

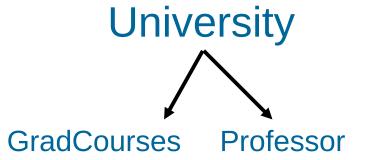
- terminological (Levenhstein and 3grams)
- structural (context based using cosine measure)

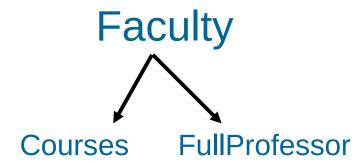
- Performance aspect
 - indexing structure (B-tree)

BtreeMatch: Semantic Aspect (1/4)

LIRMM

- Context of node *n*
 - represents the most important neighbour nodes of n
 - each of them is assigned a weight depending on the relationship with n


$$\omega_{1}(n_{c}, n_{i}) = 1 + \frac{K}{\Delta d + |lev(n_{c}) - lev(n_{a})| + |lev(n_{i}) - lev(n_{a})|}$$


- We define StringMatching as the average between
 - Levenhstein distance
 - n-grams

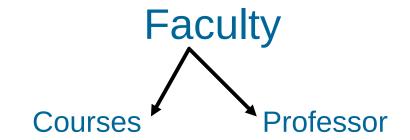
BtreeMatch: Semantic Aspect (2/4)

LIRMM

3grams(GradCourses, Courses) = 0.2

Lev(GradCourses, Courses) = 0.42

StringMatching(GradCourses, Courses) = 0.31


StringMatching(Professor, FullProfessor) = 0.38

BtreeMatch: Semantic Aspect (3/4)

University

Courses Professor

StringMatching(Faculty, University) = 0.002

Context(University) = {University, Courses, Professor}

Context(Faculty) = {Faculty, Courses, Professor}

CosineMeasure(Context(University),Context(Faculty)) = 0.37

BtreeMatch: Semantic Aspect (4/4)

LIRMM

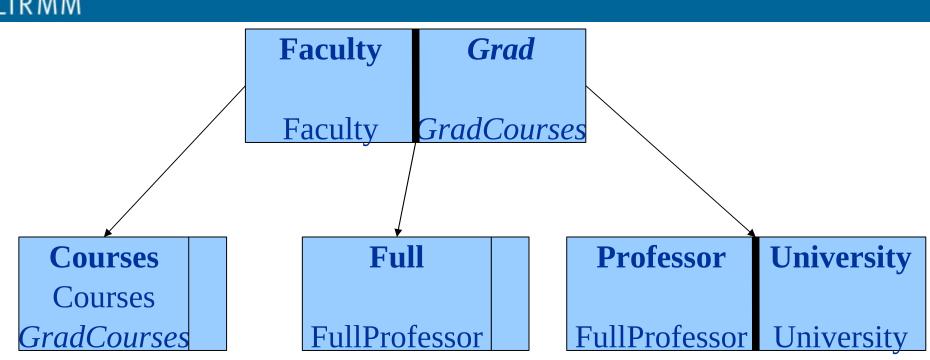
- Acceptable quality of matching
 - better than COMA++ in some scenarios

	Precision	Recall	F-measure
COMA++	1	0.56	0.72
BtreeMatch	0.62	0.89	0.73

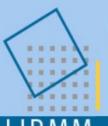
- can be tuned
 - to restrict the context
 - to increase the similarity and replacement thresholds

BtreeMatch: Performance Aspect

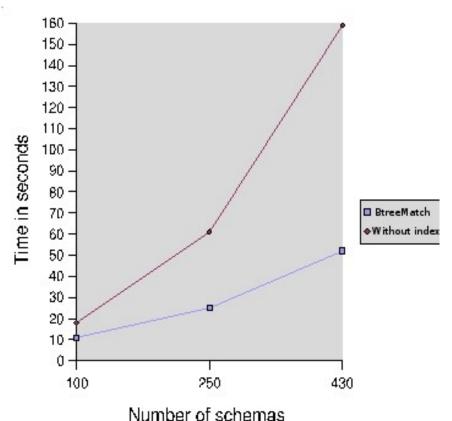
LIRMM


B-tree indexing structure to restrict the search space because "most of similar labels share a common token"

Algorithm


- Labels are divided into tokens
- Each token is an index in the B-tree with references to all labels containing this token
- Match search of a label is limited to the labels referenced by the common tokens
- Else the whole B-tree may be searched using the cosine measure

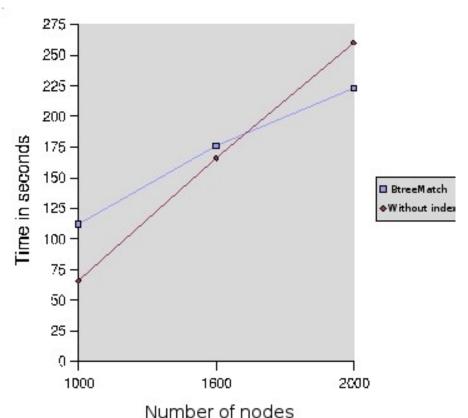
BtreeMatch: Performance Aspect


- Searching a match for GradCourses involves
 - creation of an index for Grad
 - only evaluating and discovering a similarity between GradCourses and Courses due to their common token

BtreeMatch: Performance Results

LIRMM

Comparison of the performance with and without the indexing structure, depending on the number of schemas using XCBL and OASIS schemas


11

BtreeMatch: Performance Results

LIRMM

Comparison of the performance with and without the indexing structure, depending on the size of the schemas using XCBL and OASIS schemas

12

Conclusion and Future Work

An automatic schema matching tool that

- handles many large schemas.
- provides an acceptable quality of matching.
- tuning is not automatic

Discovering complex mappings

Exploring other index structures (hashtables)