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Organization

1. Graph and colorings
2. Separation of languages
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What is a graph?

Graph = vertices
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What is a graph?

Graph = vertices + edges
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Various optimization problems
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Coloring problems
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Chromatic number

X(G) = minimum number of colors such that:

@—® = a#b.
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Greedy upper bound

X(G) = minimum number of colors
A(G) = maximum number of neighbors

x(G) < A(G) +1
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Can we do better?

Theorem (Brooks, 1941)
X(G) < A(G) unless G is

Odd cycle Clique

Cycle = graph where each vertex is linked only to the previous
and next vertices, and first to last.

Clique = graph with all possible edges.
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For more specific graphs

A graph is planar when it can be drawn without crossing
edges.
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edges.
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Question (Guthrie, 1852)

How many colors are needed to color a planar graph?
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For more specific graphs

A graph is planar when it can be drawn without crossing
edges.

Planar Planar Not planar

N

Question (Guthrie, 1852)

How many colors are needed to color a planar graph?

Theorem (Appel, Haken, 1976)
If G is planar, x(G) < 4.
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Gk=G + edges between vertices at distance < k.
12/39



Graphs and colorings

Separation of languages
0000000 0000
0e000 000000
00000000 [o]e]

The case of squares (k = 2)

For every graph G,

A(G) +1 < x(G?)
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For every graph G,
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Greedy upper bound for graph powers

X(GF) <A(GH) +1
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Greedy upper bound for graph powers

Y(GF) < A(G¥) +1 < f(k,A(G)) + 1
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Greedy upper bound for graph powers

Y(GF) < A(G¥) +1 < f(k,A(G)) + 1

(8)
(8) (8) (8) ()
OINIOINOINININININING

f(k, A)=A-(1+(A—1)+---+(A—=1)1).
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Theorem (Brooks, revisited)

For every graph G with k > 2,
X(GX) < f(k,A(G))+1 -1

unless G* is a clique or an odd cycle.
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Theorem (Brooks, revisited)

For every graph G with k > 2,
X(G¥) < f(k,A(G))+1—1
unless G* is a clique or an-edd-cycle.

Theorem (Hoffman, Singleton, 1960)
For every graph G with k > 2 and A(G) > 3,

X(GX) < f(k,A(G))+1—1

unless k =2 and G is a Moore graph:

@ + finitely many others

v

15/39



Graphs and colorings Separation of languages
0000000 0000

0000e 000000

00000000 [o]e]

Can we do better?
Theorem (Bonamy, Bousquet, 2014, Cranston,

Rabern, 2016)
For every graph G with k > 2 and A(G) > 3,

X(G¥) < f(k,A(G)) +1—2

unless k =2 and G is a Moore graph.
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unless k =2 and G is a Moore graph.

Conjecture (Bonamy, Bousquet, 2014)

Gap is at least k, except for “few” graphs.
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Can we do better?
Theorem (Bonamy, Bousquet, 2014, Cranston,

Rabern, 2016)
For every graph G with k > 2 and A(G) > 3,

X(GX) < f(k,A(G)) +1—2

unless k = 2 and G is a Moore graph.

Conjecture (Bonamy, Bousquet, 2014)

Gap is at least k, except for “few” graphs.

Theorem (P., 2019)

Gap is at least k — 2, except for “few” graphs.
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The case of squares (k = 2)

For every graph G,

and

A(G) +1< x(6%) < A(6) 1

unless G is a Moore graph.
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What about planar graphs?

A
= 32 colors needed
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What about planar graphs?

Conjecture (Wegner, 1977)

If G is planar with A > 8,

X(G?) < {%(G)J +1

A
= - colors needed
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Conjecture (Wegner, 1977)
If G is planar with A > 8,

X(G?) < {%(G)J +1

Theorem (Amini et al., 2007)

If G is planar with large A,

3A
o= 3A(G
= 5 colors needed X(Gz) < 2( )+o(9)
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Can we do better than 32 for large A?
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Can we do better than >

for large A7 J

©® Girth 4: not sufficient (Wegner, 1977).

© Girth g > 7: x(G?) < A(G) + 1 (Borodin et al., 2004).
© Girth g > 6: x(G?) < A(G) + 2 (Borodin et al., 2004).
© Girth g > 5: x(G?) < A(G) + 2 (Bonamy et al., 2015).

Girth = length of smallest cycle
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Can we do better than 32 for large A? J

©® Girth 4: not sufficient (Wegner, 1977).

© Girth g > 7: x(G?) < A(G) + 1 (Borodin et al., 2004).

© Girth g > 6: x(G?) < A(G) + 2 (Borodin et al., 2004).

© Girth g > 5: x(G?) < A(G) + 2 (Bonamy et al., 2015).

© No 4 nor 5-cycles: x(G?) < A(G) + 2 (Dong and Xu, 2017).

Which cycles to forbid for obtaining A + O(1) for large A? ]

Theorem (Choi, Cranston, P., 2019)

e (; has to be forbidden.
o If G is C4-free, planar and A(G) is large,
x(G?) < A(G) + 2.

Girth = length of smallest cycle
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|dea of the proof

Theorem (Choi, Cranston, P., 2019)

e (C, has to be forbidden.
o If G is Cy-free, planar and A(G) is large,
x(G?) < A(G) + 2.

G = minimum counterexample.

1. G does not contain some configurations, otherwise we
can find a smaller counterexample H.
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|dea of the proof

Theorem (Choi, Cranston, P., 2019)

e (C, has to be forbidden.
o If G is Cy-free, planar and A(G) is large,
x(G?) < A(G) + 2.

G = minimum counterexample.
1. G does not contain some configurations, otherwise we
can find a smaller counterexample H.

2. Prove that every C4-free planar graph has to contain such

a configuration.
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An example for step 1

1. G does not contain some configurations, otherwise we
can find a smaller counterexample H.

\
1
4
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An example for step 1

1. G does not contain some configurations, otherwise we
can find a smaller counterexample H.

® ;

21/39



and colorings

ion of languages

00000000

An example for step 1

1. G does not contain some configurations, otherwise we
can find a smaller counterexample H.

By contrapositive, extend a coloring with A + 2 colors to the

red vertex.
@ ‘\
| 1
/
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The configurations

e os Dol

+ 1 other “dense” configuration

S = small = degree < VA
B = big = degree > VA
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|deas for step 2

2. Prove that every (y4-free planar graph G has to contain
such a configuration.
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2. Prove that every (y4-free planar graph G has to contain
such a configuration.

e Decomposition into regions.

e Find a dense region.
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|deas for step 2

2. Prove that every (y4-free planar graph G has to contain
such a configuration.

e Decomposition into regions.
e Find a dense region.

e Auxiliary (multi)graph: find a vertex with large degree
and few neighbors.
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To sum up

1. Graph colorings:

e Q(1) gap for coloring graph powers.
o Definitive answer for cycle obstructions in square
coloring of planar graphs.

2. Language separation problem:
o Complexity does not depend on the representation.
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Part |l: Separation of regular languages
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Word = sequence of letters

ab ababb ¢
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Word = sequence of letters
ab ababb ¢
Language = set of words

{a,ab} {a",ne N} {(ab)",ne N}
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Regular languages

Three representations:
e Automata
e Monoids

e Expressions
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Automata

a

ab aba abb
accept reject reject

Accepted language = {(ab)",n € N}.
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Monoids

e Monoid = set with associative operation and identity.
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Monoids

e Monoid = set with associative operation and identity.

e Allows us to make computations.
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Monoids

e Monoid = set with associative operation and identity.
e Allows us to make computations.

e M = (Z/2Z,+), each letter maps to 1.
a b a b a
1 +1 + 1 + 1 + 1

=1
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Monoids

Monoid = set with associative operation and identity.
Allows us to make computations.
M = (Z/2Z,+), each letter maps to 1.

a b a b a
1 + 1 + 1 + 1 + 1
= 1

Words mapped on 0 = words of even length.
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Monoids

e Monoid = set with associative operation and identity.
e Allows us to make computations.
o M = (Z/2Z,+), each letter maps to 1.

a b a b a
1 + 1 + 1 + 1 + 1
= 1

e Words mapped on 0 = words of even length.

L is recognized by ¢ : {words} — M if L = o~1(F) for some
set FC M
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Monoids

e Monoid = set with associative operation and identity.
e Allows us to make computations.
o M = (Z/2Z,+), each letter maps to 1.

a b a b a
1 + 1 + 1 + 1 + 1
= 1

e Words mapped on 0 = words of even length.

L is recognized by o : {words} — M if L = o~1(F) for some
set FC M

Recognition by an automaton < Recognition by a monoid. )

29/39
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Expressions

Constructed from letters with three operations:
o Concatenation: {a, b} - {a} = {aa, ba}.
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Expressions

Constructed from letters with three operations:
o Concatenation: {a, b} - {a} = {aa, ba}.

e Union: {a,b} U {ba} = {a, b, ba}.
e Kleene's star:

{a,ab}* = {e, a, ab, aab, aba, aa, abab, abaab, . .

Separation of languages
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©00000
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Expressions

Constructed from letters with three operations:
o Concatenation: {a, b} - {a} = {aa, ba}.
e Union: {a,b} U {ba} = {a, b, ba}.
o Kleene's star:

{a,ab}* = {e, a, ab, aab, aba, aa, abab, abaab, . .

Without star?

Separation of languages
0000

©00000

oo
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The star-height problems

Question (Eggan, 1963)

What is the minimum number of (nested) stars needed to
define a language?
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Question (Eggan, 1963)

What is the minimum number of (nested) stars needed to
define a language?

o Restricted star-height: U, -, x:
o Infinite hierarchy.

e Solved by Hashiguchi (1983): restricted star-height is
computable!
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The star-height problems

Question (Eggan, 1963)

What is the minimum number of (nested) stars needed to
define a language?

o Restricted star-height: U, -, x:
o Infinite hierarchy.

e Solved by Hashiguchi (1983): restricted star-height is
computable!

e Star-height: U, -, x and L — L (preserves regularity):

e No known language of star-height 2.
e Star-height 0 already challenging.
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Star-height 0 languages

(ab)* has star-height 0:

(ab)* = bd U FaU Faad U TbbD.
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Star-height 0 languages

(ab)* has star-height 0:

(ab)* = bd U FaU Faad U TbbD.

But not (aa)*...
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Star-height 0 languages

(ab)* has star-height 0:

Theorem (Schiitzenberger, 1965)

One can decide whether a given regular language has
star-height 0.
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The membership problem

C = class of languages.

C-membership

e Input: a regular language L
e Output: does L € C?
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Separation of languages

The membership problem

C = class of languages.

C-membership

e Input: a regular language L
e Output: does L € C?

Deciding membership < understanding expressiveness of C.
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The separation problem

C-separation

e Input: Ly, L, regular

e Output: does there exist L € C such that L; C L and
LNL=o7?

LeC
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Separation is harder than membership

~I

C-separation for (L, L) < C-membership for L.
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A generic complexity result for separation

Membership for star-height 0:
e PSpace-complete on automata

e LogSpace on monoids.
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A generic complexity result for separation

Membership for star-height 0:
e PSpace-complete on automata

e LogSpace on monoids.

Theorem (P., Place, Zeitoun, 2017)

The complexity of C-separation does not depend on whether
inputs are automata or monoids when C is reasonable.
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1. Graph colorings:

e Q(1) gap for coloring graph powers.
e Definitive answer for cycle obstructions in square
coloring of planar graphs.
o If G is planar with A =8, x/(G) < 10 = A(G) + 2.
2. Language separation problem:
o Complexity does not depend on the representation.

e PSpace lower bound for Pol(C)-separation.
e Extension to infinite words.
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Perspectives

1. Graph colorings:

e Forbidding infinitely many cycle lengths

e Bounds on the gap

e Use similar methods for other coloring problems
2. Language separation problem:

e Decidability and complexity for specific classes
o Extensions of separation
o Other structures than finite words
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Perspectives

1. Graph colorings:

e Forbidding infinitely many cycle lengths

e Bounds on the gap

e Use similar methods for other coloring problems
2. Language separation problem:

e Decidability and complexity for specific classes
o Extensions of separation
e Other structures than finite words

Thanks for your attention.
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1. Vertex coloring — x, x¢
2. Edge coloring — X', X}
3. Total coloring: vertices + edges — x”, x7

e ol

Theorem (Bonamy, P., Sopena, 2018)

If G is a planar graph with A(G) = 8, then
X/(G) < 10 = A(G) + 2.
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[ IZAN | 7/AN

/A A

A+1 (Vizing, 1964)
(Vizing, 1965)

A+2 if A#6 (Kostochka, Sanders, Zhao, ...)
(

A+1 if A>9 (Kowalik, Sereni, Skrekovski, )

A+1 if A>8 (Bonamy, 2013)

A if A >12 (Borodin, Kostochka, Woodall)
A+2 if A>9 (Borodin, 1989)
A+1 if A>12 (Borodin, Kostochka, Woodall)
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A+1

A+2
A+1

A+1

A+2
A+1

if

if
if

A>3
A>12
A>3
A>12

(
(
(
(

(
(
(
(

Vizing, 1964)
Vizing, 1965)
Kostochka, Sanders, Zhao, ..
Kowalik, Sereni, Skrekovski, ..

Bonamy, 2013)

Borodin, Kostochka, Woodall)
Bonamy, P., Sopena)

Borodin, Kostochka, Woodall)

)

)
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Automaton — monoid
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Automaton — monoid

— Ooly
<~ X|lo
X A=

39/39



Graphs and colorings Separation of languages
0000000

0000
00000 000000
00000000 o]

Automaton — monoid

39/39



Graphs and colorings Separation of languages
0000000

0000
00000 000000
00000000 o]

Automaton — monoid

: word — matrix.
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Covering

{Ki, K2, K3} is covered by L[] U L, U L%, but not by L; U L.
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A complexity result

Pol(C) is the smallest class containing C and closed under:
e Uand N

e marked concatenation: K, L, a+— KalL

Pol(C)-separation is PSpace-hard when C is large enough.
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Separation of languages

Infinite words

Theorem (Place, Zeitoun, 2014)

Pol(C)-separation is decidable when C is finite and reasonable.

Theorem (P., Place, Zeitoun, 2016,/2018)

Pol(C)-separation is decidable for infinite words when C is
finite and reasonable.
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