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Organization

1. Graph and colorings
2. Separation of languages
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Part I: Graphs and colorings
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Graphs and colorings Separation of languages

What is a graph?
Graph = vertices

+ edges
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Bordeaux Lyon

Paris

Lille

Nancy

Various optimization problems
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Coloring problems
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Graphs and colorings Separation of languages

Chromatic number
χ(G) = minimum number of colors such that:

a b ⇒ a 6= b.

Maximum degree
∆(G) = maximum number of neighbors of a vertex in G .
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χ(G) = 2
∆(G) = 4
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Graphs and colorings Separation of languages

Greedy upper bound
χ(G) = minimum number of colors
∆(G) = maximum number of neighbors

χ(G) 6 ∆(G) + 1

Greedy argument:
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Graphs and colorings Separation of languages

Can we do better?
Theorem (Brooks, 1941)
χ(G) 6 ∆(G) unless G is

Odd cycle Clique

Cycle = graph where each vertex is linked only to the previous
and next vertices, and first to last.
Clique = graph with all possible edges.
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Graphs and colorings Separation of languages

For more specific graphs
A graph is planar when it can be drawn without crossing
edges.

Planar

Planar Not planar

Question (Guthrie, 1852)
How many colors are needed to color a planar graph?

Theorem (Appel, Haken, 1976)
If G is planar, χ(G) 6 4.
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Powers of graphs
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Graphs and colorings Separation of languages

The case of squares (k = 2)

For every graph G ,

∆(G) + 1 6 χ(G2) 6 ∆(G)2 + 1

∆

∆

∆ ∆ ∆
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Graphs and colorings Separation of languages

Greedy upper bound for graph powers

χ(Gk) 6 ∆(Gk) + 1

6 f (k ,∆(G)) + 1
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k
=

3

f (k ,∆) = ∆ · (1 + (∆− 1) + · · ·+ (∆− 1)k−1).
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Graphs and colorings Separation of languages

Theorem (Brooks, revisited)
For every graph G with k > 2,

χ(Gk) 6 f (k ,∆(G)) + 1− 1

unless Gk is a clique or an odd cycle.

Theorem (Hoffman, Singleton, 1960)
For every graph G with k > 2 and ∆(G) > 3,

χ(Gk) 6 f (k ,∆(G)) + 1− 1

unless k = 2 and G is a Moore graph:

+ finitely many others
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Graphs and colorings Separation of languages

Can we do better?
Theorem (Bonamy, Bousquet, 2014, Cranston,
Rabern, 2016)
For every graph G with k > 2 and ∆(G) > 3,

χ(Gk) 6 f (k ,∆(G)) + 1− 2

unless k = 2 and G is a Moore graph.

Conjecture (Bonamy, Bousquet, 2014)
Gap is at least k , except for “few” graphs.

Theorem (P., 2019)
Gap is at least k − 2, except for “few” graphs.
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Graphs and colorings Separation of languages

The case of squares (k = 2)
For every graph G ,

∆(G) + 1 6 χ(G2) 6 ∆(G)2 + 1

∆

∆

∆ ∆ ∆

and
∆(G) + 1 6 χ(G2) 6 ∆(G)2 − 1

unless G is a Moore graph.
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Graphs and colorings Separation of languages

What about planar graphs?

⇒ 3∆
2 colors needed

Conjecture (Wegner, 1977)
If G is planar with ∆ > 8,

χ(G2) 6
⌊
3∆(G)

2

⌋
+ 1

Theorem (Amini et al., 2007)
If G is planar with large ∆,

χ(G2) 6 3∆(G)
2 + o(∆)
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Graphs and colorings Separation of languages

Can we do better than 3∆
2 for large ∆?

/ Girth 4: not sufficient (Wegner, 1977).
, Girth g > 7: χ(G2) 6 ∆(G) + 1 (Borodin et al., 2004).
, Girth g > 6: χ(G2) 6 ∆(G) + 2 (Borodin et al., 2004).
, Girth g > 5: χ(G2) 6 ∆(G) + 2 (Bonamy et al., 2015).
, No 4 nor 5-cycles: χ(G2) 6 ∆(G) + 2 (Dong and Xu, 2017).

Which cycles to forbid for obtaining ∆ + O(1) for large ∆?

Theorem (Choi, Cranston, P., 2019)
• C4 has to be forbidden.
• If G is C4-free, planar and ∆(G) is large,

χ(G2) 6 ∆(G) + 2.

Girth = length of smallest cycle

19/39
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Graphs and colorings Separation of languages

Idea of the proof

Theorem (Choi, Cranston, P., 2019)
• C4 has to be forbidden.
• If G is C4-free, planar and ∆(G) is large,

χ(G2) 6 ∆(G) + 2.

G = minimum counterexample.
1. G does not contain some configurations, otherwise we

can find a smaller counterexample H .

2. Prove that every C4-free planar graph has to contain such
a configuration.

20/39
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Graphs and colorings Separation of languages

An example for step 1

1. G does not contain some configurations, otherwise we
can find a smaller counterexample H .

By contrapositive, extend a coloring with ∆ + 2 colors to the
red vertex.

6 ∆1

1
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Graphs and colorings Separation of languages

The configurations

1 B 2 2 S

S

S

S S

S

S

2 2

B
S

3

3

2

2
BS

3

2

2
B

S

S S SSS

2 2 222

B

+ 1 other “dense” configuration

S = small = degree 6
√

∆
B = big = degree >

√
∆
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Graphs and colorings Separation of languages

Ideas for step 2

2. Prove that every C4-free planar graph G has to contain
such a configuration.

• Decomposition into regions.
• Find a dense region.
• Auxiliary (multi)graph: find a vertex with large degree
and few neighbors.
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Graphs and colorings Separation of languages

To sum up

1. Graph colorings:
• Ω(1) gap for coloring graph powers.
• Definitive answer for cycle obstructions in square
coloring of planar graphs.

2. Language separation problem:
• Complexity does not depend on the representation.
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Graphs and colorings Separation of languages

Part II: Separation of regular languages
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Graphs and colorings Separation of languages

Word = sequence of letters

ab ababb ε

Language = set of words

{a, ab} {an, n ∈ N} {(ab)n, n ∈ N}
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Graphs and colorings Separation of languages

Regular languages

Three representations:
• Automata
• Monoids
• Expressions

27/39
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Automata

0 1

a

b

ab aba abb
accept reject reject

Accepted language = {(ab)n, n ∈ N}.
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Monoids
• Monoid = set with associative operation and identity.

• Allows us to make computations.
• M = (Z/2Z,+), each letter maps to 1.

a b a b a
1

+

1

+

1

+

1

+

1
= 1

• Words mapped on 0 = words of even length.

L is recognized by ϕ : {words} → M if L = ϕ−1(F ) for some
set F ⊂ M

Recognition by an automaton ⇔ Recognition by a monoid.
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Graphs and colorings Separation of languages

Expressions

Constructed from letters with three operations:
• Concatenation: {a, b} · {a} = {aa, ba}.

• Union: {a, b} ∪ {ba} = {a, b, ba}.
• Kleene’s star:
{a, ab}∗ = {ε, a, ab, aab, aba, aa, abab, abaab, . . .}.

Without star?
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Graphs and colorings Separation of languages

The star-height problems

Question (Eggan, 1963)
What is the minimum number of (nested) stars needed to
define a language?

• Restricted star-height: ∪, ·, ∗:

• Infinite hierarchy.
• Solved by Hashiguchi (1983): restricted star-height is
computable!

• Star-height: ∪, ·, ∗ and L 7→ L (preserves regularity):

• No known language of star-height 2.
• Star-height 0 already challenging.
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Star-height 0 languages

(ab)∗ has star-height 0:

(ab)∗ = b∅ ∪∅a ∪∅aa∅ ∪∅bb∅.

But not (aa)∗...

Theorem (Schützenberger, 1965)
One can decide whether a given regular language has
star-height 0.
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Graphs and colorings Separation of languages

The membership problem

C = class of languages.

C-membership
• Input: a regular language L
• Output: does L ∈ C?

Deciding membership ⇔ understanding expressiveness of C.
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The separation problem

C-separation
• Input: L1, L2 regular
• Output: does there exist L ∈ C such that L1 ⊂ L and

L2 ∩ L = ∅?

L1 L2

(aa)∗ (bb)∗b

L ∈ C

a∗ = ∅b∅
s.-h.=0

s.-h.=1 s.-h.=1
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Separation is harder than membership

L L

C-separation for (L, L)⇔ C-membership for L.
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A generic complexity result for separation

Membership for star-height 0:
• PSpace-complete on automata
• LogSpace on monoids.

Theorem (P., Place, Zeitoun, 2017)
The complexity of C-separation does not depend on whether
inputs are automata or monoids when C is reasonable.
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Ideas of the proof

AutomataMonoids

LogSpace

PSpace

Specific automata
LogSpace

(Non-)separability
preserved

• Complexity for monoids 6 Complexity for automata.

• Complexity for monoids > Complexity for automata.
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To sum up

1. Graph colorings:
• Ω(1) gap for coloring graph powers.
• Definitive answer for cycle obstructions in square
coloring of planar graphs.

• If G is planar with ∆ = 8, χ′′` (G) 6 10 = ∆(G) + 2.
2. Language separation problem:

• Complexity does not depend on the representation.
• PSpace lower bound for Pol(C)-separation.
• Extension to infinite words.
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Perspectives

1. Graph colorings:
• Forbidding infinitely many cycle lengths
• Bounds on the gap
• Use similar methods for other coloring problems

2. Language separation problem:
• Decidability and complexity for specific classes
• Extensions of separation
• Other structures than finite words

Thanks for your attention.
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Graphs and colorings Separation of languages

1. Vertex coloring → χ, χ`

2. Edge coloring → χ′, χ′`
3. Total coloring: vertices + edges → χ′′, χ′′`

••• •••
6=

•••
•••

•••
•••

•••

•••

•••
•••

Theorem (Bonamy, P., Sopena, 2018)
If G is a planar graph with ∆(G) = 8, then
χ′′` (G) 6 10 = ∆(G) + 2.
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χ′ 6 ∆ + 1 (Vizing, 1964)
χ′ = ∆ if ∆ > 8 (Vizing, 1965)
χ′′ 6 ∆ + 2 if ∆ 6= 6 (Kostochka, Sanders, Zhao, . . .)
χ′′ = ∆ + 1 if ∆ > 9 (Kowalik, Sereni, Škrekovski, . . .)

χ′` 6 ∆ + 1 if ∆ > 8 (Bonamy, 2013)
χ′` = ∆ if ∆ > 12 (Borodin, Kostochka, Woodall)
χ′′` 6 ∆ + 2 if ∆ > 9 (Borodin, 1989)
χ′′` = ∆ + 1 if ∆ > 12 (Borodin, Kostochka, Woodall)
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Automaton → monoid

0 1

a

a

a 0 1
0 X X
1 X X

aa 0 1
0 X X
1 X X

ϕ: word 7→ matrix.
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Covering

K3

K1

K2

L2

L1

K3

K1

K2
L′1

L′2L′3

{K1,K2,K3} is covered by L′1 ∪ L′2 ∪ L′3, but not by L1 ∪ L2.
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A complexity result

Pol(C) is the smallest class containing C and closed under:
• ∪ and ∩
• marked concatenation: K , L, a 7→ KaL

Theorem
Pol(C)-separation is PSpace-hard when C is large enough.
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Infinite words

Theorem (Place, Zeitoun, 2014)
Pol(C)-separation is decidable when C is finite and reasonable.

Theorem (P., Place, Zeitoun, 2016/2018)
Pol(C)-separation is decidable for infinite words when C is
finite and reasonable.

39/39


	Graphs and colorings
	Intro
	Brooks for powers
	Squares of planar graphs

	Separation of languages
	Intro
	Example of problem
	Complexity issues


