Schémas d'induction : de la séparation de langages à la coloration de graphes

Théo Pierron

Encadrants : Marthe Bonamy, Éric Sopena, Marc Zeitoun

8 Juillet 2019

Induction Schemes: From Languages Separation to Graph Colorings

Théo Pierron

Advisors: Marthe Bonamy, Éric Sopena, Marc Zeitoun

July 8, 2019

Organization

- 1. Graph and colorings
- 2. Separation of languages

Part I: Graphs and colorings

What is a graph?

 $\mathsf{Graph} = \mathsf{vertices}$

What is a graph?

 $\mathsf{Graph} = \mathsf{vertices} + \mathsf{edges}$

Various optimization problems

Chromatic number

 $\chi(G) = \text{minimum number of colors such that:}$

Chromatic number

 $\chi(G) = \text{minimum number of colors such that:}$

$$\bigcirc \longrightarrow \bigcirc \Rightarrow a \neq b.$$

Maximum degree

 $\Delta(G) = \text{maximum number of neighbors of a vertex in } G.$

Chromatic number

 $\chi(G) = \text{minimum number of colors such that:}$

$$\bigcirc \longrightarrow \bigcirc \Rightarrow a \neq b.$$

Maximum degree

 $\Delta(G) = \text{maximum number of neighbors of a vertex in } G.$

Greedy upper bound

$$\chi(G) =$$
 minimum number of colors $\Delta(G) =$ maximum number of neighbors

$$\chi(G) \leqslant \Delta(G) + 1$$

Greedy upper bound

 $\chi(G)$ = minimum number of colors $\Delta(G)$ = maximum number of neighbors

$$\chi(G) \leqslant \Delta(G) + 1$$

Greedy argument:

Greedy upper bound

$$\chi(G)$$
 = minimum number of colors $\Delta(G)$ = maximum number of neighbors

$$\chi(G) \leqslant \Delta(G) + 1$$

Greedy argument:

Can we do better?

 $\label{eq:cycle} \mbox{Cycle} = \mbox{graph where each vertex is linked only to the previous} \\ \mbox{and next vertices, and first to last.}$

Clique = graph with all possible edges.

A graph is planar when it can be drawn without *crossing* edges.

Planar

For more specific graphs

A graph is planar when it can be drawn without *crossing* edges.

A graph is planar when it can be drawn without *crossing* edges.

Question (Guthrie, 1852)

How many colors are needed to color a planar graph?

A graph is planar when it can be drawn without crossing

Planar

Not planar

Question (Guthrie, 1852)

How many colors are needed to color a planar graph?

Theorem (Appel, Haken, 1976)

If G is planar, $\chi(G) \leq 4$.

 $G^k = G + \text{edges between vertices at distance} \leq k$.

The case of squares (k = 2)

For every graph G,

$$\Delta(G)+1\leqslant\chi(G^2)$$

The case of squares (k = 2)

For every graph G,

$$\Delta(G) + 1 \leqslant \chi(G^2) \leqslant \Delta(G)^2 + 1$$

Greedy upper bound for graph powers

$$\chi(G^k) \leqslant \Delta(G^k) + 1$$

Greedy upper bound for graph powers

$$\chi(G^k) \leqslant \Delta(G^k) + 1 \leqslant f(k, \Delta(G)) + 1$$

Greedy upper bound for graph powers

$$\chi(G^k) \leqslant \Delta(G^k) + 1 \leqslant f(k, \Delta(G)) + 1$$

$$f(k,\Delta) = \Delta \cdot (1 + (\Delta - 1) + \cdots + (\Delta - 1)^{k-1}).$$

Theorem (Brooks, revisited)

For every graph G with $k \ge 2$,

$$\chi(G^k) \leqslant f(k, \Delta(G)) + 1 - 1$$

unless G^k is a clique or an odd cycle.

Theorem (Brooks, revisited)

For every graph G with $k \ge 2$,

$$\chi(G^k) \leqslant f(k, \Delta(G)) + 1 - 1$$

unless Gk is a clique or an odd cycle.

Theorem (Brooks, revisited)

For every graph G with $k \geqslant 2$,

$$\chi(G^k) \leqslant f(k, \Delta(G)) + 1 - 1$$

unless Gk is a clique or an odd cycle.

Theorem (Hoffman, Singleton, 1960)

For every graph G with $k \geqslant 2$ and $\Delta(G) \geqslant 3$,

$$\chi(G^k) \leqslant f(k, \Delta(G)) + 1 - 1$$

unless k = 2 and G is a Moore graph:

+ finitely many others

Can we do better?

Theorem (Bonamy, Bousquet, 2014, Cranston, Rabern, 2016)

For every graph G with $k \geqslant 2$ and $\Delta(G) \geqslant 3$,

$$\chi(G^k) \leqslant f(k, \Delta(G)) + 1 - 2$$

unless k = 2 and G is a Moore graph.

Can we do better?

Theorem (Bonamy, Bousquet, 2014, Cranston, Rabern, 2016)

For every graph G with $k \geqslant 2$ and $\Delta(G) \geqslant 3$,

$$\chi(G^k) \leqslant f(k, \Delta(G)) + 1 - 2$$

unless k = 2 and G is a Moore graph.

Conjecture (Bonamy, Bousquet, 2014)

Gap is at least k, except for "few" graphs.

Can we do better?

Theorem (Bonamy, Bousquet, 2014, Cranston, Rabern, 2016)

For every graph G with $k \geqslant 2$ and $\Delta(G) \geqslant 3$,

$$\chi(G^k) \leqslant f(k, \Delta(G)) + 1 - 2$$

unless k = 2 and G is a Moore graph.

Conjecture (Bonamy, Bousquet, 2014)

Gap is at least k, except for "few" graphs.

Theorem (P., 2019)

Gap is at least k-2, except for "few" graphs.

The case of squares (k = 2)

For every graph G,

$$\Delta(G) + 1 \leqslant \chi(G^2) \leqslant \Delta(G)^2 + 1$$

and

$$\Delta(G) + 1 \leqslant \chi(G^2) \leqslant \Delta(G)^2 - 1$$

unless G is a Moore graph.

What about planar graphs?

$$\Rightarrow \frac{3\Delta}{2}$$
 colors needed

What about planar graphs?

$$\Rightarrow \frac{3\Delta}{2}$$
 colors needed

Conjecture (Wegner, 1977)

If G is planar with $\Delta \geqslant 8$,

$$\chi(G^2) \leqslant \left\lfloor \frac{3\Delta(G)}{2} \right\rfloor + 1$$

What about planar graphs?

 $\Rightarrow \frac{3\Delta}{2}$ colors needed

Conjecture (Wegner, 1977)

If G is planar with $\Delta \geqslant 8$,

$$\chi(G^2) \leqslant \left\lfloor \frac{3\Delta(G)}{2} \right\rfloor + 1$$

Theorem (Amini et al., 2007)

If G is planar with large Δ ,

$$\chi(G^2) \leqslant \frac{3\Delta(G)}{2} + o(\Delta)$$

© Girth 4: not sufficient (Wegner, 1977).

- © Girth 4: not sufficient (Wegner, 1977).
- \odot Girth $g\geqslant 7$: $\chi(G^2)\leqslant \Delta(G)+1$ (Borodin et al., 2004).
- \odot Girth $g\geqslant 6$: $\chi(G^2)\leqslant \Delta(G)+2$ (Borodin et al., 2004).
- © Girth $g \geqslant 5$: $\chi(G^2) \leqslant \Delta(G) + 2$ (Bonamy et al., 2015).

- © Girth 4: not sufficient (Wegner, 1977).
- \odot Girth $g\geqslant 7$: $\chi(G^2)\leqslant \Delta(G)+1$ (Borodin et al., 2004).
- \odot Girth $g\geqslant 6$: $\chi(G^2)\leqslant \Delta(G)+2$ (Borodin et al., 2004).
- \odot Girth $g\geqslant 5$: $\chi(G^2)\leqslant \Delta(G)+2$ (Bonamy et al., 2015).
- \odot No 4 nor 5-cycles: $\chi(G^2) \leqslant \Delta(G) + 2$ (Dong and Xu, 2017).

- © Girth 4: not sufficient (Wegner, 1977).
- \odot Girth $g\geqslant 7$: $\chi(G^2)\leqslant \Delta(G)+1$ (Borodin et al., 2004).
- © Girth $g \geqslant 6$: $\chi(G^2) \leqslant \Delta(G) + 2$ (Borodin et al., 2004).
- \bigcirc Girth $g \geqslant 5$: $\chi(G^2) \leqslant \Delta(G) + 2$ (Bonamy et al., 2015).
- \odot No 4 nor 5-cycles: $\chi(G^2) \leqslant \Delta(G) + 2$ (Dong and Xu, 2017).

Which cycles to forbid for obtaining $\Delta + O(1)$ for large Δ ?

- © Girth 4: not sufficient (Wegner, 1977).
- \odot Girth $g\geqslant 7$: $\chi(G^2)\leqslant \Delta(G)+1$ (Borodin et al., 2004).
- \odot Girth $g \geqslant 6$: $\chi(G^2) \leqslant \Delta(G) + 2$ (Borodin et al., 2004).
- \odot Girth $g\geqslant 5$: $\chi(G^2)\leqslant \Delta(G)+2$ (Bonamy et al., 2015).
- \odot No 4 nor 5-cycles: $\chi(G^2) \leqslant \Delta(G) + 2$ (Dong and Xu, 2017).

Which cycles to forbid for obtaining $\Delta + O(1)$ for large Δ ?

Theorem (Choi, Cranston, P., 2019)

- C₄ has to be forbidden.
- If G is C_4 -free, planar and $\Delta(G)$ is large,

$$\chi(G^2) \leqslant \Delta(G) + 2.$$

Girth = length of smallest cycle

00000000

Idea of the proof

Theorem (Choi, Cranston, P., 2019)

- C₄ has to be forbidden.
- If G is C_4 -free, planar and $\Delta(G)$ is large,

$$\chi(G^2) \leqslant \Delta(G) + 2.$$

G = minimum counterexample.

1. G does not contain some configurations, otherwise we can find a smaller counterexample H.

Idea of the proof

Theorem (Choi, Cranston, P., 2019)

- C₄ has to be forbidden.
- If G is C_4 -free, planar and $\Delta(G)$ is large,

$$\chi(G^2) \leqslant \Delta(G) + 2.$$

G = minimum counterexample.

- 1. G does not contain some configurations, otherwise we can find a smaller counterexample H.
- 2. Prove that every C_4 -free planar graph has to contain such a configuration.

An example for step 1

1. G does not contain some configurations, otherwise we can find a smaller counterexample H.

An example for step 1

1. G does not contain some configurations, otherwise we can find a smaller counterexample H.

An example for step 1

1. G does not contain some configurations, otherwise we can find a smaller counterexample H.

By contrapositive, extend a coloring with $\Delta+2$ colors to the red vertex.

The configurations

+ 1 other "dense" configuration

$$\begin{aligned} \mathbf{S} &= \mathsf{small} = \mathsf{degree} \leqslant \sqrt{\Delta} \\ \mathbf{B} &= \mathsf{big} = \mathsf{degree} > \sqrt{\Delta} \end{aligned}$$

2. Prove that every C_4 -free planar graph G has to contain such a configuration.

- 2. Prove that every C_4 -free planar graph G has to contain such a configuration.
 - Decomposition into regions.

- 2. Prove that every C_4 -free planar graph G has to contain such a configuration.
 - Decomposition into regions.
 - Find a dense region.

- 2. Prove that every C_4 -free planar graph G has to contain such a configuration.
 - Decomposition into regions.
 - Find a dense region.
 - Auxiliary (multi)graph: find a vertex with large degree and few neighbors.

To sum up

- 1. Graph colorings:
 - $\Omega(1)$ gap for coloring graph powers.
 - Definitive answer for cycle obstructions in square coloring of planar graphs.
- 2. Language separation problem:
 - Complexity does not depend on the representation.

Part II: Separation of regular languages

 $\mathsf{Word} = \mathsf{sequence} \; \mathsf{of} \; \mathsf{letters}$

ab ababb arepsilon

Word = sequence of letters

ab ababb
$$arepsilon$$

 $Language = set\ of\ words$

$$\{a,ab\} \quad \{a^n,n\in\mathbb{N}\} \quad \{(ab)^n,n\in\mathbb{N}\}$$

Regular languages

Three representations:

- Automata
- Monoids
- Expressions

Automata

ab

ab accept

ab aba

ab abaaccept reject

ab aba abb accept reject

ab aba abbaccept reject reject

ab aba abbaccept reject reject

Accepted language = $\{(ab)^n, n \in \mathbb{N}\}.$

 $\bullet \ \ \mathsf{Monoid} = \mathsf{set} \ \mathsf{with} \ \mathsf{associative} \ \mathsf{operation} \ \mathsf{and} \ \mathsf{identity}.$

- Monoid = set with associative operation and identity.
- Allows us to make computations.

- Monoid = set with associative operation and identity.
- Allows us to make computations.
- $M = (\mathbb{Z}/2\mathbb{Z}, +)$, each letter maps to 1.

- Monoid = set with associative operation and identity.
- Allows us to make computations.
- $M = (\mathbb{Z}/2\mathbb{Z}, +)$, each letter maps to 1.

- Monoid = set with associative operation and identity.
- Allows us to make computations.
- $M = (\mathbb{Z}/2\mathbb{Z}, +)$, each letter maps to 1.

а	b	a	b	a
1	1	1	1	1

- Monoid = set with associative operation and identity.
- Allows us to make computations.
- $M = (\mathbb{Z}/2\mathbb{Z}, +)$, each letter maps to 1.

- Monoid = set with associative operation and identity.
- Allows us to make computations.
- $M = (\mathbb{Z}/2\mathbb{Z}, +)$, each letter maps to 1.

- Monoid = set with associative operation and identity.
- Allows us to make computations.
- $M = (\mathbb{Z}/2\mathbb{Z}, +)$, each letter maps to 1.

= 1

ullet Words mapped on 0= words of even length.

- Monoid = set with associative operation and identity.
- Allows us to make computations.
- $M = (\mathbb{Z}/2\mathbb{Z}, +)$, each letter maps to 1. a b a b a 1 + 1 + 1 + 1 + 1= 1
- Words mapped on 0 = words of even length.

L is recognized by φ : $\{\text{words}\} \to M$ if $L = \varphi^{-1}(F)$ for some set $F \subset M$

- Monoid = set with associative operation and identity.
- Allows us to make computations.
- $M=(\mathbb{Z}/2\mathbb{Z},+)$, each letter maps to 1. a b a b a 1+1+1+1+1+1

$$= 1$$

Words mapped on 0 = words of even length.

L is recognized by φ : $\{\text{words}\} \to M$ if $L = \varphi^{-1}(F)$ for some set $F \subset M$

Recognition by an automaton \Leftrightarrow Recognition by a monoid.

Constructed from letters with three operations:

• Concatenation: $\{a, b\} \cdot \{a\} = \{aa, ba\}.$

Constructed from letters with three operations:

- Concatenation: $\{a, b\} \cdot \{a\} = \{aa, ba\}.$
- Union: $\{a, b\} \cup \{ba\} = \{a, b, ba\}.$

Constructed from letters with three operations:

- Concatenation: $\{a, b\} \cdot \{a\} = \{aa, ba\}.$
- Union: $\{a, b\} \cup \{ba\} = \{a, b, ba\}.$
- Kleene's star:

```
\{a, ab\}^* = \{\varepsilon, a, ab, aab, aba, aa, abab, abaab, \ldots\}.
```

Constructed from letters with three operations:

- Concatenation: $\{a, b\} \cdot \{a\} = \{aa, ba\}.$
- Union: $\{a, b\} \cup \{ba\} = \{a, b, ba\}.$
- Kleene's star:

```
\{a, ab\}^* = \{\varepsilon, a, ab, aab, aba, aa, abab, abaab, \ldots\}.
```

Without star?

Question (Eggan, 1963)

Question (Eggan, 1963)

What is the minimum number of (nested) stars needed to define a language?

Restricted star-height: ∪, ·, *:

Question (Eggan, 1963)

- Restricted star-height: ∪, ·, *:
 - Infinite hierarchy.

Question (Eggan, 1963)

- Restricted star-height: ∪, ·, *:
 - Infinite hierarchy.
 - Solved by Hashiguchi (1983): restricted star-height is computable!

Question (Eggan, 1963)

- Restricted star-height: ∪, ·, *:
 - Infinite hierarchy.
 - Solved by Hashiguchi (1983): restricted star-height is computable!
- Star-height: \cup , \cdot , * and $L \mapsto \overline{L}$ (preserves regularity):

Question (Eggan, 1963)

- Restricted star-height: ∪, ·, *:
 - Infinite hierarchy.
 - Solved by Hashiguchi (1983): restricted star-height is computable!
- Star-height: $\cup, \cdot, *$ and $L \mapsto \overline{L}$ (preserves regularity):
 - No known language of star-height 2.

Question (Eggan, 1963)

- Restricted star-height: ∪, ·, *:
 - Infinite hierarchy.
 - Solved by Hashiguchi (1983): restricted star-height is computable!
- Star-height: $\cup, \cdot, *$ and $\underline{L} \mapsto \overline{\underline{L}}$ (preserves regularity):
 - No known language of star-height 2.
 - Star-height 0 already challenging.

Star-height 0 languages

(ab)* has star-height 0:

$$(ab)^* = \overline{b\overline{\varnothing} \cup \overline{\varnothing} a \cup \overline{\varnothing} aa\overline{\varnothing} \cup \overline{\varnothing} bb\overline{\varnothing}}.$$

Star-height 0 languages

(ab)* has star-height 0:

$$(ab)^* = \overline{b\overline{\varnothing} \cup \overline{\varnothing} a \cup \overline{\varnothing} aa\overline{\varnothing} \cup \overline{\varnothing} bb\overline{\varnothing}}.$$

But not (*aa*)*...

Star-height 0 languages

 $(ab)^*$ has star-height 0:

$$(ab)^* = \overline{b}\overline{\varnothing} \cup \overline{\varnothing} a \cup \overline{\varnothing} aa\overline{\varnothing} \cup \overline{\varnothing} bb\overline{\varnothing}.$$

But not (*aa*)*...

Theorem (Schützenberger, 1965)

One can decide whether a given regular language has star-height 0.

The membership problem

C =class of languages.

\mathcal{C} -membership

Input: a regular language L

• Output: does $L \in C$?

The membership problem

C =class of languages.

C-membership

Input: a regular language L

• Output: does $L \in C$?

Deciding membership \Leftrightarrow understanding expressiveness of \mathcal{C} .

The separation problem

\mathcal{C} -separation

- Input: L_1, L_2 regular
- Output: does there exist $L \in \mathcal{C}$ such that $L_1 \subset L$ and $L_2 \cap L = \emptyset$?

The separation problem

\mathcal{C} -separation

- Input: L_1, L_2 regular
- Output: does there exist $L \in \mathcal{C}$ such that $L_1 \subset L$ and $L_2 \cap L = \emptyset$?

The separation problem

\mathcal{C} -separation

- Input: L_1, L_2 regular
- Output: does there exist $L \in \mathcal{C}$ such that $L_1 \subset L$ and $L_2 \cap L = \emptyset$?

Separation is harder than membership

 \mathcal{C} -separation for $(L, \overline{L}) \Leftrightarrow \mathcal{C}$ -membership for L.

A generic complexity result for separation

Membership for star-height 0:

- PSpace-complete on automata
- LogSpace on monoids.

A generic complexity result for separation

Membership for star-height 0:

- PSpace-complete on automata
- LogSpace on monoids.

Theorem (P., Place, Zeitoun, 2017)

The complexity of C-separation does not depend on whether inputs are automata or monoids when C is reasonable.

• Complexity for monoids \leqslant Complexity for automata.

- Complexity for monoids ≤ Complexity for automata.

To sum up

1. Graph colorings:

- $\Omega(1)$ gap for coloring graph powers.
- Definitive answer for cycle obstructions in square coloring of planar graphs.
- If G is planar with $\Delta=8$, $\chi''_{\ell}(G)\leqslant 10=\Delta(G)+2$.

2. Language separation problem:

- Complexity does not depend on the representation.
- PSpace lower bound for Pol(C)-separation.
- Extension to infinite words.

Perspectives

- 1. Graph colorings:
 - Forbidding infinitely many cycle lengths
 - Bounds on the gap
 - Use similar methods for other coloring problems
- 2. Language separation problem:
 - Decidability and complexity for specific classes
 - Extensions of separation
 - Other structures than finite words

Perspectives

- 1. Graph colorings:
 - Forbidding infinitely many cycle lengths
 - Bounds on the gap
 - Use similar methods for other coloring problems
- 2. Language separation problem:
 - Decidability and complexity for specific classes
 - Extensions of separation
 - Other structures than finite words

Thanks for your attention.

- 1. Vertex coloring $\rightarrow \chi, \chi_{\ell}$
- 2. Edge coloring $\rightarrow \chi', \chi'_{\ell}$
- 3. Total coloring: vertices + edges $\to \chi'', \chi''_{\ell}$

Theorem (Bonamy, P., Sopena, 2018)

If G is a planar graph with $\Delta(G) = 8$, then $\chi''_{\ell}(G) \leq 10 = \Delta(G) + 2$.

$$\begin{array}{lll} \chi' & \leqslant & \Delta+1 & \text{(Vizing, 1964)} \\ \chi' & = & \Delta & \text{if} & \Delta \geqslant 8 & \text{(Vizing, 1965)} \\ \chi'' & \leqslant & \Delta+2 & \text{if} & \Delta \neq 6 & \text{(Kostochka, Sanders, Zhao, ...)} \\ \chi'' & = & \Delta+1 & \text{if} & \Delta \geqslant 9 & \text{(Kowalik, Sereni, Škrekovski, ...)} \end{array}$$

$$\begin{array}{llll} \chi'_{\ell} & \leqslant & \Delta+1 & \text{if} & \Delta\geqslant 8 & \text{(Bonamy, 2013)} \\ \chi'_{\ell} & = & \Delta & \text{if} & \Delta\geqslant 12 & \text{(Borodin, Kostochka, Woodall)} \\ \chi''_{\ell} & \leqslant & \Delta+2 & \text{if} & \Delta\geqslant 9 & \text{(Borodin, 1989)} \\ \chi''_{\ell} & = & \Delta+1 & \text{if} & \Delta\geqslant 12 & \text{(Borodin, Kostochka, Woodall)} \end{array}$$

$$\begin{array}{lll} \chi' & \leqslant & \Delta+1 & \text{ (Vizing, 1964)} \\ \chi' & = & \Delta & \text{if } \Delta \geqslant 8 & \text{ (Vizing, 1965)} \\ \chi'' & \leqslant & \Delta+2 & \text{if } \Delta \neq 6 & \text{ (Kostochka, Sanders, Zhao, ...)} \\ \chi'' & = & \Delta+1 & \text{if } \Delta \geqslant 9 & \text{ (Kowalik, Sereni, Škrekovski, ...)} \end{array}$$

$$\begin{array}{llll} \chi'_{\ell} & \leqslant & \Delta+1 & \text{if} & \Delta\geqslant 8 & \text{(Bonamy, 2013)} \\ \chi'_{\ell} & = & \Delta & \text{if} & \Delta\geqslant 12 & \text{(Borodin, Kostochka, Woodall)} \\ \chi''_{\ell} & \leqslant & \Delta+2 & \text{if} & \Delta\geqslant 8 & \text{(Bonamy, P., Sopena)} \\ \chi''_{\ell} & = & \Delta+1 & \text{if} & \Delta\geqslant 12 & \text{(Borodin, Kostochka, Woodall)} \end{array}$$

 φ : word \mapsto matrix.

Covering

 $\{K_1,K_2,K_3\}$ is covered by $L_1'\cup L_2'\cup L_3'$, but not by $L_1\cup L_2$.

A complexity result

 $\operatorname{Pol}(\mathcal{C})$ is the smallest class containing \mathcal{C} and closed under:

- \bullet \cup and \cap
- marked concatenation: $K, L, a \mapsto KaL$

$\mathsf{Theorem}$

 $\operatorname{Pol}(\mathcal{C})$ -separation is PSpace-hard when \mathcal{C} is large enough.

Infinite words

Theorem (Place, Zeitoun, 2014)

 $\operatorname{Pol}(\mathcal{C})$ -separation is decidable when \mathcal{C} is finite and reasonable.

Theorem (P., Place, Zeitoun, 2016/2018)

 $\operatorname{Pol}(\mathcal{C})$ -separation is decidable for infinite words when \mathcal{C} is finite and reasonable.