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Abstract:

Knowledge bases are deductive databases where the machinery of logic
is used to represent domain-specific and general-purpose knowledge over
existing data. In the existential rules framework, a knowledge base is com-
posed of two layers: the data layer which represents the factual knowledge,
and the ontological layer that incorporates rules of deduction and negative
constraints. The main reasoning service in such framework is answering
queries over the data layer by means of the ontological layer. As in classi-
cal logic, contradictions trivialize query answering since everything follows
from a contradiction (ex falso quodlibet). Recently, inconsistency-tolerant
approaches have been proposed to cope with such problem in the existential
rules framework. They deploy repairing strategies on the knowledge base
to restore consistency and overcome the problem of trivialization. However,
these approaches are sometimes unintelligible and not straightforward for
the end-user as they implement complex repairing strategies. This would
jeopardize the trust relation between the user and the knowledge-based sys-
tem. In this thesis we answer the research question: “How do we make
query answering intelligible to the end-user in presence of inconsistency?”.
To answer the question we consider the general framework of argumentation
and we propose three types of explanations: (1) One-shot Argument-based
Explanations, (2) Meta-level Dialectical Explanations, and (3) Object-level
Dialectical Explanations. The first one is a set of arguments in favor or
against the query in question. The two others take the form of a dialogue
between the user and the reasoner about the entailment of a given query.
We study these explanations in the framework of logic-based argumentation
and dialectics and we study their properties and their impact on users.

Keywords: Argumentation, Inconsistency, Explanation, Dialogue Games,
Existential Rules, Datalog±.



Résumé:

Les bases de connaissances sont des bases de données déductives où la
logique est utilisée pour représenter des connaissances de domaine sur des
données existantes. Dans le cadre des règles existentielles, une base de
connaissances est composée de deux couches : la couche de données qui
représentent les connaissances factuelle et la couche ontologique qui incor-
pore des règles de déduction et des contraintes négatives. L’interrogation
des données à l’aide des ontologies est la fonction de raisonnement principale
dans ce contexte. Comme dans la logique classique, les contradictions posent
un problème à l’interrogation car d’une contradiction, on peut déduire ce
que l’on veut (ex falso quodlibet).

Récemment, des approches d’interrogation tolérantes aux incohérences
ont été proposées pour faire face à ce problème dans le cadre des règles
existentielles. Elles déploient des stratégies dites de réparation pour restau-
rer la cohérence. Cependant, ces approches sont parfois inintelligibles et
peu intuitives pour l’utilisateur car elles mettent souvent en œuvre des
stratégies de réparation complexes. Ce manque de compréhension peut
réduire l’utilisabilité de ces approches car elles réduisent la confiance entre
l’utilisateur et les systèmes qui les utilisent. Par conséquent, la problématique
de recherche que nous considérons est comment rendre intelligible à l’utilisateur
l’interrogation tolérantes aux incohérences. Pour répondre à cette ques-
tion de recherche, nous proposons d’utiliser deux formes d’explication pour
faciliter la compréhension des réponses retournées par une interrogation
tolérante aux incohérences. La première est dite de niveau méta et la seconde
de niveau objet. Ces deux types d’explication prennent la forme d’un dia-
logue entre l’utilisateur et le raisonneur au sujet des déductions retournées
comme réponses à une requête donnée. Nous étudions ces explications dans
le double cadre de l’argumentation fondée sur la logique et de la dialec-
tique formelle, comme nous étudions leurs propriétés et leurs impacts sur
les utilisateurs en termes de compréhension des résultats.

Keywords: Argumentation, Incohérence, Explication, Jeux de Dialogues,
Règles Existentielles, Datalog±.
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1
Introduction

This thesis presents an original research in the field of Knowledge Represen-
tation and Reasoning, a central Artificial Intelligence issue. The knowledge
representation we consider is the existential rules framework (Datalog±), a
family of logical languages to represent ontologies introduced in Cal̀ı et al.
(2009a,b); Chein and Mugnier (2009). This language is widely-used in the
Ontology-Based Data Access (OBDA) paradigm introduced in Poggi
et al. (2008) where an ontology on top of an existing and potentially incon-
sistent data is used to enrich the querying process. The contribution of the
thesis is the proposal of a formal model of explanation based on logic-based
argumentation to explain query answers in presence of inconsistency. The
model’s goal is to improve the usability of knowledge-based systems that use
existential rules formalism.

This chapter is structured as follows. In Section 1.1 we start by in-
troducing the general context of the thesis and the line of development of
the existential rules framework. Next in Section 1.2 we shift to a narrower
context where we present how inconsistency is handled within the existen-
tial rules framework under the OBDA paradigm. Then, in Section 1.3 we
present the research problem of the thesis alongside to our contributions on
this regard. Finally, in Section 1.4 we conclude the chapter by highlighting
the structure of the thesis.

1.1 Knowledge Representation and Reasoning

Knowledge Representation and Reasoning (KRR) is one of the main issues
in Artificial Intelligence (AI). It deals with the problem of representing real-
world knowledge in order to achieve human-level intelligence and reasoning
faculties. The biggest dilemma in Knowledge Representation and Reasoning
is the tradeoff between expressiveness and computational tractability of a
given formalism (Levesque and Brachman, 1987). In fact, the difficulty of

1



CHAPTER 1. INTRODUCTION

reasoning increases proportionally with the expressive power of the underly-
ing logical language. With the rapid growth of data in the last two decades,
an emergent need for tractable but yet expressive logical languages has been
raised. This has particularly appeared within the intersection of Knowl-
edge Representation and Database Systems where Deductive Databases have
been firstly introduced as a logic-based formalism to improve the querying
facility of classical databases with deductive functionalities (i.e. more ex-
pressiveness) (Gallaire and Nicolas, 1987; Ceri et al., 2012). It is in fact the
fruit of combining logic programming with relational databases which pro-
vides a framework that is more expressive than relational databases but less
expressive than logic programming systems. In a deductive database, data
is represented as a set of facts written within a first-order language (Prolog-
like syntax). Alongside the data, rules are added to enrich the vocabulary
of the data and allow the deduction of new facts. Datalog is a rule-based
language that is often used as an underlying expressive representation and
tractable reasoning machinery for Deductive Databases (Ceri et al., 1989).
According to (Ramakrishnan and Ullman, 1995, p. 2), it is the adaptation
of “...Prolog, which has a “small-data” world view of the world to a “large-
data” world”. This logical language has been recently extended to Datalog±
to fulfill the need of the Semantic Web movement where more expressiveness
is needed. Datalog± extends Datalog with (mainly) the capacity of coping
with incomplete knowledge by introducing existentially quantified variables
in the facts and the head of the rules, this makes it possible to refer to un-
known individuals as “the person x has a mother whose name is unknown”.
As opposed to Datalog, Datalog± comes with another type of formulas called
negative constraints which captures some sort of logical negation by forbid-
ding certain combinations of facts. These extensions (alongside to others)
make Datalog± general enough to capture a variety of Description Logics
families (Cali et al., 2010) which are the underpinning logical formalisms for
OWL/OWL2 languages. This generality promotes Datalog± as an adequate
language to represent ontologies as shown in Cal̀ı et al. (2012). For historical
accuracy, the logical interpretation of Conceptual Graphs of Sowa (1976) in
Chein and Mugnier (2009) has yielded the same formalism as Datalog± but
under the name of existential rules framework. In the thesis we may
use the two names interchangeably.

Nowadays, the existential rules framework is widely-used in the paradigm
of Ontology-based Data Access (OBDA) where it provides satisfactory re-
sults with respect to the reasoning issue on how to query data while tak-
ing ontological knowledge. However, under this paradigm the problem of
data inconsistency emerges and manifests itself as logical contradictions,

2
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namely in form of constraints violations in the factual part. Since OBDA
is mainly used in data exchange and data integration, inconsistency is more
likely to occur in the data part rather than the ontological part (rules and
constraints) since the ontology is assumed to be well-written by domain ex-
perts. On top of that, the size of the ontology is rather small when compared
to the size of the data.

The problem of inconsistency has challenged the KRR formalisms. New
approaches to tolerate and cope with inconsistency became a must. In the
next section we give a brief introduction on the main approaches.

1.2 Inconsistency Tolerance

Inconsistency management is a well-established research discipline in KRR
that motivated and challenged the KRR community for decades. In fact,
it dates since the pre-Socratic Greek era where the concept of logical con-
tradictions appeared in the sayings of Parmenides of Elea as reported by
Plato:

The great Parmenides from beginning to end testified...“Never
shall this be proved - that things that are not are”. (Plato,
Sophist, 237A)

The problem is in fact due to the principle of explosion in logic (ex
falso quodlibet) which states that “from contradiction, anything follows”.
Consequently, given an inconsistent knowledge base K in a logical language
L then one can deduce every sentence from the knowledge base according
to Classical Logics, more precisely, If one assumes that ψ and ¬ψ are both
true then one can say that any formula φ is true. This can be proven as
follows: ψ ∨ φ is true because ψ is true (by assumption). But ¬ψ is also
true by assumption, therefore, for ψ ∨ φ to be true φ must be true, hence φ
is true.

In KRR several approaches to handle inconsistency have been proposed
in the literature. The two main approaches are Coherence-based approaches
and Dung-style Logic-based Argumentation. Please notice that this domain
of research is vivid and full of approaches. In this introduction we limit
ourselves to the above-mentioned approaches as the main problem of the
thesis is not inconsistency management.1

1For more details on the subject we refer the reader to Martinez et al. (2013); Bertossi
et al. (2005).

3
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In the Coherence-based approaches (firstly introduced in Rescher and
Manor (1970)), maximal consistent subsets (MCSs) of the knowledge base
are constructed and new non-classical consequence relations are defined to
infer from the knowledge base. A formula is a universal consequence of
the knowledge base if and only if it is the logical consequence of all MCSs.
A formula is a credulous consequence of the knowledge base if and only
if it is the consequence of at least one MCS. Different maximality criteria
(set-inclusion or cardinality) give rise to different types of non-classical con-
sequence relations. In the same line of research, other approaches such as
Benferhat et al. (1993, 1995) appeal to a primal concept of argumentation
in order to define new consequence relations that are mainly based on the
idea of MCSs but differ in their productivity (they may validate more or
less formula compared to the universal consequence relation).

Dung-style Logic-based Argumentation approaches (also called Coali-
tion approaches in Bertossi et al. (2005)) have been widely used to reason in
presence of inconsistency. An argumentation framework à la Dung (1995)
is defined as a set of arguments and an attack relation among them. The
logic-based version of Dung’s framework regards an argument as a tuple
of a hypothesis and conclusion built from a given knowledge base K over
a base logic. The approach proceeds by computing from K the set of all
arguments. Next, it computes the attack relation among them (which is
grounded on inconsistency), then it produces coalitions of arguments called
extensions (i.e. sets of non-conflicting arguments that defend one another).
From the extensions, inconsistency-tolerance is defined as follows: a formula
is entailed from K if and only if there exists an argument that belongs to all
extensions and whose conclusion entails the formula in question. In Cayrol
(1995) it has been shown that by picking a specific attack relation (attack
on the hypothesis, i.e. undercut) Dung-style Logic-based Argumentation ap-
proaches generalize the Coherence-based approaches of Rescher and Manor
(1970). The work in Amgoud and Besnard (2013); Vesic (2013) generalizes
this result for any logic-based argumentation framework that is grounded
on a Tarskian logic.

Despite their equivalence, the Coherence-Based approaches of Rescher
and Manor (1970) have gained an enormous interest in the field of Database
Systems where the concept of Maximal Consistent Subsets took the name of
Data Repairs and the Universal Consequence took the name of Consistent
Query Answering semantics (CQA) (Arenas et al., 1999; Calvanese et al.,
2005; Bertossi, 2006; Chomicki, 2007; Bertossi, 2011).2 The reason that the

2For an exhaustive treatment of the subject we refer the reader to Bertossi (2011).
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Coherence-based approaches have gained interest is due to their construc-
tiveness. Put differently, they are not in rupture with Classical Logics as
much as the other approaches such as Paraconsistent Logics (Priest, 1979),
Default Logics (Reiter, 1980), etc. In fact constructing maximal consistent
subsets over an inconsistent knowledge base is an attempt to restore con-
sistency by eliminating inconsistencies as less as possible. The reason to
do so is to be able to reuse Classical Logics machinery in reasoning as the
universal consequence relation, or any other coherence-based consequence
relations, will be defined in terms of the classical consequence relation.

Later on, Data Repairs and the Consistent Query Answering seman-
tic were adapted to suit the OBDA setting in Lembo et al. (2010) where
Description Logics is used as a representation formalism for the ontology.
On the same line of research, Lukasiewicz et al. (2012) handled the case of
OBDA where the ontology is represented within Datalog±.

To clarify how CQA works, let us give an informal example. Please notice
that the example is for illustration purposes to introduce the intuition behind
the approach. Formal examples will be introduced in future chapters.

Example 1.2.1. Consider the following inconsistent knowledge base K about
a hotel. Following the existential rules framework it is composed of a set
of facts, set of rules and set of negative constraints. Imagine that we have
only these information and there are no means by which we can verify their
truthfulness and reliability. And imagine that we are interested in knowing
whether there was a person in Room 1408 or not at 8pm.
We have the following set of facts:

(F1): The light was On in Room 1408 at 8pm.

(F2): John has seen Alice in Room 1480 at 8pm.

(F3): John was in vacation the whole month.

(F4): There was no electricity in Room 1408 at 8pm.

(F5): Video footages at 8pm have shown Alice in Room 1408.

And the following set of rules:

(R1): If the light was On in room x at a given time y then there was a person
in room x at time y.

(R2): If there was no electricity in room x at a given time y then there was
no person in room x at time y.
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(R3): If video footages show a person at a given time y in room x then there
was a person in room x at time y.

(R4): If someone has seen another person in room x at a given time y then
this person was in room x at time y.

And the following set of constraints:

(N1): It is impossible that the light was On in room x and there was no
electricity in room x.

(N2): It is impossible for a person x to see someone in a place z at a given
time y given that x was not in the same place as z at time x.

Inconsistency is syntactically defined as the violation of one of the con-
straints.3 One can see that K is inconsistent because F1 and F4 violate
together the constraint N1 and F2 and F3 violate together N2. Now the
user may be interested in querying the knowledge base K using the queries:

• “Q1: was there a person in Room 1408 at 8pm?”

• “Q2: was there no person in Room 1408 at 8pm?”

The problem is that under the classical query answering in OBDA we would
get a yes answer to Q1 because F1 and R1 allows the deduction of such
answer. However, we get a yes answer too for Q2 using F4 and R2. As one
can see, this is a clear contradiction.

To cope with such problem, the CQA semantics constructs data repairs
on the set of facts. In OBDA it is assumed that the facts are less reliable
than the rules and constraints whose reliability is taken for granted. It is
the reason why data repairs are built only over the facts.

Repair P1 = {F1, F2, F5}:
The light was On in Room 1408 at 8pm. John has seen Alice in
Room 1480 at 8pm. Video footages at 8pm have shown Alice in
Room 1408.

Repair P2 = {F1, F3, F5}:
The light was On in Room 1408 at 8pm. John was in vacation
the whole month. Video footages at 8pm have shown Alice in
Room 1408.

3This is equivalent to the non-existence of a model for K in the model-theoretic inter-
pretation.
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Repair P3 = {F4, F3, F5}:
There was no electricity in Room 1408 at 8pm. John was in
vacation the whole month. Video footages at 8pm have shown
Alice in Room 1408.

Repair P4 = {F4, F2, F3}:
There was no electricity in Room 1408 at 8pm. John has seen
Alice in Room 1480 at 8pm. Video footages at 8pm have shown
Alice in Room 1408.

To answer the queries CQA uses the following reasoning strategy:

• If a query Q has a yes answer over all repairs then the answer to the
query Q under the CQA semantics is yes (Q is accepted under CQA).

• If a query Q has at least one no answer over all repairs then the answer
to the query Q under the CQA semantics is no (Q is not accepted
under CQA).

Following CQA, the query Q1 has a yes answer whereas the query Q2

has a no answer.

It seems that with such semantics, inconsistency is dealt with to a certain
degree. However, another problem not as much as addressed as inconsistency
emerges. It is when the user asks “why Q1 has a yes answer” or “why Q2

has a no answer?” under CQA. The user here is asking for an explanation
about the answers of some queries under the inconsistency-tolerant seman-
tics CQA. The next section is devoted to present this problem in details.

1.3 Research Problem

The problem of inconsistency is not the only problem that faces Ontology-
based Data Access. Another important issue is to explain query answering
under inconsistency-tolerant semantics. This is motivated by the fact that
reasoning using these approaches in the context of OBDA is a complex pro-
cedure that deploys different repairing strategies that may not seem intuitive
for the user when querying the knowledge base. Indeed the user may think
that a query should have a specific answer while the inconsistency-tolerant
semantics cuts off this answer as it is deemed inconsistent. For instance,
the user may have thought that there was no person in Room 1408, so
he/she wants to know why the answer was “yes there was a person in Room
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1408 at 8pm”. In case of absence of explanations, the usability of OBDA is
jeopardized and the trust in the inconsistency-tolerant semantics is at stake
(McGuinness and Patel-Schneider, 1998).

We focus on the notion of explanation in the context of one particular
approach of the coherence-based approaches in OBDA, namely the CQA
semantics. We restrict ourselves to the CQA semantics for the following
reasons:

• CQA semantics is a widely-used, well-developed and thoroughly-investigated
semantics that lies in the intersection of many disciplines. Most no-
tably: KRR, Database Systems and Semantic Web.

• All coherence-based approaches in the OBDA setting are variants of
CQA. In fact the other approaches are attempts to reduce its compu-
tational intractability:

– Intersection semantics (Bienvenu, 2012; Lembo et al., 2010).

– Lazy semantics (Lukasiewicz et al., 2012).

– k-defeater and k-supporter (Bienvenu and Rosati, 2013).

– Preferred and Cardinality-Based semantics (Bienvenu et al., 2014).

– Non-objection (Bouraoui et al., 2016).

This fact has been confirmed in the unifying framework of Baget et al.
(2016) which incorporates all the approaches in one framework.

• It has a tight relation with other formalisms such as Default Logics
(Arioua et al., 2015b) and Logic-Based Argumentation in existential
rules (Croitoru and Vesic, 2013).

So the research problem we consider in this thesis is:

Research problem
How do we make Consistent Query Answering intelligible to the

end-user?

The answer to this research problem is:

Solution
We do so by providing explanations to facilitate the understanding

of Consistent Query Answering.
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The claim of the thesis is:

Claim
Formal Argumentation can serve as a solution to this problem. More-
over, it provides an added explanatory value with respect to the state-
of-the-art approaches.

One may be tempted to tackle such research problem by adapting clas-
sical methods of explanation in KRR, especially from Description Logics
(DLs). In what follows we give the state-of-the-art approaches and we show
why they are not suitable to solve this research problem.

Approaches in McGuinness and Borgida (1995); Borgida et al. (2000);
Schlobach et al. (2003) are close to our research problem. Precisely, they
tackle the problem of explaining “why the knowledge base is inconsistent?”
as opposed to “why the query Q is (not) accepted?”. The solutions proposed
for their problem is to compute the so-called Minimal Inconsistent Subsets
which are those sets of formulas that are responsible for the inconsistency.
To explain why the knowledge base of Example 1.2.1 is inconsistent, these
solutions would give the following explanation (S1 and S2 counts as one
explanation):

S1: The light was On in Room 1408 at 8pm. There was no
electricity in Room 1408 at 8pm.

S2: John was in vacation the whole month. John has seen Alice
in Room 1480 at 8pm.

To show that this solution is not suitable for our problem consider the
query:

• “Q3: was John in vacation the whole month?”

The answer to this query is “no”under the CQA semantics. The expla-
nation above would fail to answer the question “why the query Q3 has a no
answer?” because S1 is completely irrelevant as an explanation of the query
Q3. In addition, the explanation lacks elaboration which is an important
aspect when interacting with users. It is important to say that we are not
implying the futility of these approaches, but rather we are delineating their
area of impact.

Other works in DLs such as Baader et al. (2007); Schlobach (2005) fo-
cused on explaining why a concept is subsumed (implied) by another con-
cept using Axiom Pinpointing and Concept Pinpointing. This is done by
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computing minimal subsets of formulas (i.e. concepts and axioms) from the
knowledge base that entails the formula in question. This approach has been
adapted for existential rules in Arioua et al. (2014a) where an explanation
is defined as a deduction path that starts from a minimal set of facts and
rules and ends with the query to be explained. This approach suffers from
the following shortcoming:

• Soundness: consider the query Q1 which has a yes answer under
CQA. If we look for a minimal subset of the knowledge base that
allows the entailment of Q1 one could point out directly the set of
formulas {F1, R1}. However, this is not true because the real reason
behind is in fact the minimal subset {F5, R3}. Put differently, under
the CQA semantics the query should be entailed from all repairs and
F1 is not in all repairs, hence {F1, R1} is not a correct explanation.
On the contrary, F5 is in all repairs therefore {F5, R3} is the actual
explanation.

The first contribution of the thesis aims at overcoming this shortcoming.

1.3.1 Contribution 1: One-shot Argument-based Explanations

As we have stated in Section 1.2, Coherence-based approaches and Dung-
style Logic-based Argumentation are equivalent. Recently, this result has
been confirmed by Croitoru and Vesic (2013) for CQA semantics and Dung-
style Logic-based Argumentation under existential rules within OBDA. This
equivalence relation is very interesting as argumentation is well-known for
its explanatory power as stated by Modgil and Caminada (2009a).

In Dung’s abstract model of argumentation (Dung, 1995), arguments
acquire a justification state (according to a semantics). An argument is
skeptically accepted if it belongs to all extensions. It is credulously accepted
if it belongs to at least one extension. In the logical instantiation of this
model, the arguments are usually seen as tuples of logical formulas called
hypothesis and conclusion. In this case another type of justification state
is introduced. We say that a formula is skeptically accepted if it is the
conclusion of a skeptically accepted argument and it is credulously accepted
if it is the conclusion of a credulously accepted argument. In Amgoud et al.
(2008) a new acceptance called universal has been introduced that states
that a conclusion is universally accepted if it is the conclusion of different
arguments that are distributed over all extensions. This universal acceptance
in the existential rules framework is shown by Croitoru and Vesic (2013) to
be exactly the same as CQA semantics for queries in OBDA as a consequence
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of a deeper equivalence result that states that a bijection exists between
extensions and repairs. However, there were no exact characterizations of
why a query could be universally accepted and not skeptically accepted, or
vice-versa. This in fact appears to be very important to introduce and define
formally the concept of explanations.

In Chapter 3 we follow Croitoru and Vesic (2013) and investigate the
formal properties of their instantiation. We show that it enjoys interesting
properties that are very important for the other contributions of this thesis.
We characterize universal acceptance in terms of what we call blocks and
proponent sets:

• Proponent set: a proponent set is a minimal set of arguments in
favor of the query that contains an argument from each extension.
A query is universally accepted if and only if it has a proponent set
(Arioua and Croitoru, 2016c; Arioua et al., 2015a).

• Block: a block is an admissible set of arguments that attacks all the
supporters of the query. A query is not universally accepted if and only
if it has a block (Arioua and Croitoru, 2016c; Arioua et al., 2015a).

Since finding blocks or proponent sets are necessary and sufficient reasons
to determine universal acceptance, consequently CQA entailment, we use
them as explanations to show why a query has a yes or no answer under
CQA. It worth noticing that this approach has been investigated separately
at the same time by Bienvenu et al. (2016) using another framework. The
approach relies on the concept of a cause which is a minimal set of facts
that entails the query. Then CQA explanations are defined as set of causes
with certain properties. It is clear that causes here are the counterpart of
arguments in our framework and explanations are equivalent to blocks and
proponent sets. From now on we may refer to our solution to mean the two.

As we discovered during the thesis, this solution, as beneficial as it seems
to be, could be improved to overcome the following issues:

1. Computational burden: computing all extensions is inefficient and
computationally hard. This makes computing explanations inherently
hard as it takes the extensions as an input.

2. Lack of interactiveness: these explanations are one-shot. They are
presented to the user as a set of arguments with no further elaboration.
In fact, they cannot handle user’s expectation failure. In this condition
the user may have some expectations about the query, or some prior
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knowledge that may made him/her think that the query should have a
yes (resp. no) answer under CQA. Therefore, he/she maybe interested
in asking follow-ups. In other words, he/she may be interested in
an explanation that takes the form of a dialogue, i.e. a dialectical
explanation.4

The solution to these two issues should:

• Allow the computation of blocks on the fly instead of computing the
extensions first.

• Provide an added explanatory value with respect to interactiveness as
opposed to One-shot Argument-based Explanations.

• Be engaging to the point that it allows the user to be involved in the
process of discovering the answer of the query.

In the next section we describe the second contribution of the thesis
regarding these issues.

1.3.2 Contribution 2: Meta-level Dialectical Explanations

Dialectical proof theories in argumentation (Modgil and Caminada, 2009b)
are common ways to prove the justification state of an argument without
passing through the process of computing extensions. Dialectical proofs
are dialogues between two fictitious players, one is called PRO and tries to
establish the justification state of an argument (skeptical state for instance)
and the other is called OPP and tries to refute such state. Dialectical proofs
provide a procedural description of how the argument would acquire its
justification state (i.e. they are explanations). And since they take the
form of dialogues between two players, the user can be engaged in such
dialogue by taking the role of one of the players. However, to the best of our
knowledge there is no dialectical proof theory for universal acceptance in
logic-based argumentation in general and logic-based argumentation within
the extensional rules framework.

In Chapter 4 we propose a dialectical proof theory for universal accep-
tance and we prove its completeness and soundness. The significance of this
contribution is twofold:

4dialectics: the art of investigating or discussing the truth of opinions. dialectical:
relating to the logical discussion of ideas and opinions. The Oxford English Dictionary.
http://www.oxforddictionaries.com/definition/english/dialectic. (08/07/2016).
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• It handles an unsolved problem in Dung-style Logic-based Argumen-
tation frameworks under the existential rules framework.

• It handles the issues that face one-shot argument-based explanations.

These two claims shed light on our experimental hypothesis with respect
to this contribution:

Meta-level dialectical explanations enjoy an added explanatory value
when compared to one-shot argument-based (a.k.a cause-based) ex-
planations with respect to Consistent Query Answering Explanation.

To validate this hypothesis we present in Chapter 4 an experimental
evaluation on the impact of one-shot argument-based explanation and meta-
level dialectical explanation on users. The result is significant and promising
as a validation.

Meta-level dialectical explanations are referred to as meta-level for a
reason. Their goal is to get the user to understand why the query has a yes
or no answer under CQA. It is more justificatory in the sense that it tries
to convince or persuade the user that the answer under the CQA semantics
is justified. Therefore, the object of the explanation is in fact the semantics
itself not the content of the query. Consequently, Meta-level Dialectical
Explanations are content-independent. This makes them not suitable for
“educative” explanations. Those explanations that answer the questions
“What is a video footage?” or “Why the sky is blue?”, etc. And even if
they can answer “why” questions they are unable to provide the user with
appropriate locutions within the dialogue such as declaring whether he/she
understands or not the explanation. Moreover, it does not give the reasoner
the possibility to track the state of understanding of the user to stay coherent
and precise.

In the next section we present the last contribution of the thesis on this
regard.

1.3.3 Contribution 3: Object-level Dialectical Explanations

In this contribution (Chapter 5) we introduce Object-level Dialectical Ex-
planations which complement meta-level dialectical explanations on the ed-
ucative part. The motivation of this contribution stems from an application
problem.
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The DUR-DUR project aims at improving the French Durum Wheat
quality while reducing pesticides and fertilizers. The project is multidis-
ciplinary with different partners from different disciplines. Our task was
to integrate knowledge that comes from different parties in one knowledge
base about Durum Wheat then make it available for the parties for querying
about Durum Wheat related knowledge. As the project is multidisciplinary,
those who work, for instance on pasta transformation, may find difficulties in
understanding Durum Wheat related knowledge as it lies out of their exper-
tise. Another problem was the difficulty to acquire knowledge from experts
as they are not expert in existential rules formalism and find it hard to ex-
plore a knowledge base written in a logical language. Therefore, extending
meta-level dialectical explanations to the object-level is indeed needed, in
particular for the following reasons:

• It would facilitate the communication between different experts in dif-
ferent disciplines.

• It would improve knowledge acquisition as the content of the knowl-
edge base would be better exposed when the reasoner explains in a
goal-directed and rule-governed way. This would consequently help in
reducing inconsistencies.

In this contribution we propose a dialogue model of explanation that
is based on Walton’s dialogue model of explanation; Walton (2004, 2007,
2011, 2016). We define its syntax and semantics and we instantiates it on
the existential rules framework.

The significance of our work lies within the following points:

• It shows how argumentation theory can go beyond other approaches
in handling usability issues in knowledge-based systems.

• It attempts to solve a practical problem and shows the significance of
Formal Dialectics as an important discipline in formal argumentation.

We present in Chapter 5 a use case with Agronomy experts on the utility
of using object-level dialectical explanations in knowledge acquisition that
shows promising results for their utility.

1.4 Thesis Structure

In addition to this chapter which provides the context of our research, the
thesis contains seven chapters.
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• Chapter 2 introduces necessary preliminaries on Dung’s abstract model
of argumentation proposed in his seminal paper Dung (1995). It ex-
plains the different semantics proposed by Dung, namely, admissible,
complete, stable, preferred and grounded and their coincidence. We
present the relations established in the literature among these classes.
Exploring such relation is very important to investigate the gain in
terms of computational complexity. It explains how an argument can
be regarded as skeptically, credulously accepted, or rejected under a
given semantics.

• Chapter 3 presents the study of Dung-style logic-based argumentation
in the existential rules framework. First, we start by introducing the
logical language of existential rules. Then, we proceed by presenting
the instantiation of Dung’s abstract model on this logical language by
Croitoru and Vesic (2013). We prove that this instantiation enjoys
interesting properties, i.e. finiteness, coherence, relative groundedness
and non-triviality. The chapter also presents the first contribution
of the thesis where One-shot Argument-based Explanations are intro-
duced as a precise characterization of the universal acceptance. It fur-
ther investigates the satisfaction of the recent postulates proposed in
Amgoud (2014) and recalls the representation theorem established by
Croitoru and Vesic (2013); Vesic (2013) between preferred/stable ex-
tensions and data repairs of Lembo et al. (2010); Bienvenu (2012). This
chapter builds upon works published in Arioua and Croitoru (2016c);
Arioua et al. (2015a).

• Chapter 4 is about the second contribution of the thesis where we
propose Meta-level Dialectical Explanations by solving the problem
of universal and non-universal acceptance in logic-based argumenta-
tion framework through a dialectical proof theory (dialogue game).
We prove the soundness and completeness of the dialectical proof the-
ory and we study the dispute complexity of dialectical proofs along-
side other interesting properties. We empirically evaluate the effect of
meta-level dialectical explanations on users with respect to different
criteria. We report how they impact the accuracy of users when faced
with inconsistent situations. Moreover, we investigate how the users
evaluate meta-level dialectical explanations with respect to clarity and
intelligibility. This chapter builds upon the work published in Arioua
and Croitoru (2016c) and parts from Arioua and Croitoru (2016b);
Arioua et al. (2014c,b).
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• Chapter 5 is about Object-level Dialectical Explanations. As opposed
to Meta-level Dialectical Explanations, Object-level Dialectical Ex-
planations are domain-specific explanations which are meant to use
the domain knowledge stored in the knowledge base to answer the
user’s requests for explanations. It presents how the state-of-the-art
explanatory dialogue model fails to capture certain desirable aspects.
For that matter, we propose a dialogue model for explanations called
EDS. We formally define its protocol’s syntax and semantics and we
investigate the role of commitments in such dialogue and their relation
to termination and success. We discuss how this dialogue model can
be extended with argumentative faculties so that it can account for
user’s objections against explanations. We present a use case within
the DUR-DUR project that shows how object-level dialectical expla-
nations can be used in knowledge acquisition and inconsistency reso-
lution. This chapter builds upon the work published in Arioua and
Croitoru (2015).

• Chapter 6 presents another contribution with respect to the DUR-
DUR project which consists of the construction of a domain-specific
knowledge base about Durum Wheat under the existential rules frame-
work. It presents the implementation of a prototype called dalek
(DiALectical Explanations in Knowledge bases) that implements One-
shot Argument-based Explanation, Object-level Dialectical Explana-
tions and certain aspects of Meta-level Dialectical Explanations. This
chapter describe the work published in Arioua and Croitoru (2016a).

• Chapter 7 concludes the thesis and presents a number of interesting
future research problems.
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2
Abstract Argumentation

In this chapter we provide an introduction to Dung’s abstract model of
argumentation proposed in his seminal paper Dung (1995) through an in-
troductory example. Next, in Section 2.2 we recall the formal definitions of
the semantics proposed by Dung, namely, admissible, complete, stable, pre-
ferred and grounded. It turns out that these semantics may coincide. Their
coincidence gives birth to different argumentation classes. In Section 2.4 we
present the relations between these classes. Exploring such relation is very
important to investigate the gain in terms of complexity.

Different semantics give different interpretations of argument acceptabil-
ity and justification state. In Section 2.3 we conclude the chapter by recalling
how an argument can be regarded as skeptically, credulously accepted, or
rejected.

2.1 Introduction

Humans are always concerned with debating and arguing as it constitutes an
important part of our day-to-day communications. Alongside to other types
of dialogues, argumentation dialogues are of great impact on our lives. It is
within which opinions are confronted against each other and arguments are
advanced to support them. It turns out that this complex process of arguing
comes down, as Dung has concluded, to a very simple principle: “The one
who has the last word laughs best”. To better illustrate the point consider
the following example from Dung (1995), where two persons I and A whose
countries are at war about who is responsible for blocking negotiation in
their region.1

I: My government cannot negotiate with your government because your
government doesn’t even recognize my government.

1The author does not side with any political view, this is only an illustrative example.
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A: Your government doesn’t recognize my government either.

The person I here tries to give an argument that supports the point that
the one who blocks the negotiation is A’s government because it doesn’t
recognize I’s government. A in its turn uses the same argument to counter
attack I’s argument using the same way of reasoning. At this stage, neither I
nor A can claim victory in the debate. Consider the following continuation:

I: But your government is a terrorist government.

This argument presents another attack on I’s argument. If the exchange
stops here, then I clearly has the “last word”, which means that he has
successfully argued that A’s government is responsible for blocking the ne-
gotiation (Dung, 1995, pp. 322).

The goal of Dung’s work was to give a scientific account of this basic
principle: “The one who has the last word laughs best”, and to explore
possible ways for implementing this principle on computers.

2.2 Abstract Argumentation Frameworks

The model of Dung is an abstract model where the structure of arguments
and the type of attack is not defined. It takes as input a set of arguments and
a pre-constructed binary relation that represents attack between arguments.

De�nition 2.2.1 (Argumentation framework). An argumentation framework
is a pair H = (A,X ) where A is a set of arguments and X is a binary relation
over A. Given two arguments a, b ∈ A we denote by aX b or (a, b) ∈ X that
the argument a attacks b.

Remark 2.2.1. If A is finite then H is called a finite argumentation frame-
work. H is called finitary if each argument a ∈ A is attacked by a finite
set of arguments. Note that in finitary argumentation frameworks the set of
arguments could be infinite.

An argumentation framework can be seen as a directed graph where
vertices represent arguments and edges represent attack between arguments.

Example 2.2.1 (Dung (1995)). The exchange between I and A can be rep-
resented by an argumentation framework H = (A,X ) as follows: A =
{i1, i2, a} and X = {(i1, a), (a, i1), (i2, a)} with i1 and i2 denoting the first
and the second argument of I, respectively, and a1 denoting the argument of
A. The figure 2.1 represents the argumentation framework (a.k.a argument
graph).
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Figure 2.1: The corresponding argument graph of Example 2.2.1.

De�nition 2.2.2. We say a set of arguments S attacks an argument b if there
exists an argument a ∈ S such that (a, b) ∈ X . If there is an argument c ∈ S
such that (b, c) ∈ X and S attacks b we say that S defends c. We also the
use following notations:

• range+(a) = {b | (a, b) ∈ X}.

• range−(a) = {b | (b, a) ∈ X}.

• range+(S) =
⋃
a∈S range

+(a).

• range−(S) =
⋃
a∈S range

−(a).

Example 2.2.2 (Cont'd). {i1, i2} attacks a.

A rational agent accepts only arguments for which she has a rational rea-
son to do so. This reason is called acceptability condition, which stipulates
that a rational agent accepts only arguments which she can defend from all
possible attacks. This condition is defined with respect to the concept of ar-
gumentation semantics. The latter refers to a set of criteria applied on a set
of arguments. Two different methods are proposed in the literature to define
semantics, extension-based of Dung (1995) and labeling-based of Caminada
(2006). The latter is based on labeling the arguments with specific labels,
namely, in, out, und meaning that the argument is accepted, rejected and
undecided respectively. In this thesis we focus on the extension-based ap-
proaches which is more declarative. It defines explicitly what an acceptable
argument means under some specific criteria. Examples of these semantics,
the admissible, complete, grounded, preferred and stable semantics due to
Dung (1995). Other semantics such as prudent, recursive, semi-stable and
ideal (among others) can be found in Baroni and Giacomin (2009). We limit
the scope of the thesis to those semantics which are defined in Dung (1995).
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Any extension-based semantics is based on the principle of conflict-
freeness which translates the idea that for a set of arguments to be con-
sidered as an extension it should be able to stand together. That means
there is no attack between the elements of the same extension.

De�nition 2.2.3 (Con�ict-freeness). We say a set of arguments S is conflict-
free if and only if there are no a, b ∈ S such that (a, b) ∈ X .

Example 2.2.3 (Cont'd). {i1, i2} is conflict-free.

A set of non-conflicting arguments can be seen as an agent’s position.
In fact, it does not correspond exactly to a position, since a position should
stand on its own Baroni and Giacomin (2009). This means that a set of non-
conflicting arguments S should counterattack any outside attack by means
of arguments only from S. This corresponds to the notion of acceptability
and admissibility in Dung (1995).

De�nition 2.2.4 (Admissibility). Given an argumentation framework
H = (A,X ).

• An argument a ∈ A is acceptable with respect to a set of arguments
S ⊆ A if and only if ∀b ∈ A; if (b, a) ∈ X then S attacks b.

• A conflict-free set of arguments S is admissible if and only if every
argument a ∈ S is acceptable with respect to S.

Acceptability is defined with respect to the defense criteria. Admissibil-
ity is based on acceptability and conflict-freeness, therefore an admissible
set of arguments is a set of non-conflicting arguments that defends all its
elements. That means that all arguments of S are acceptable with respect
to S. Such set is called an admissible extension.

Example 2.2.4. In Example 2.2.1 we have 3 admissible extensions: ∅, {i1},{i2},
{i1, i2}. But {a} is not an admissible extension since it does not defend itself
from i2.

Note that every argumentation framework has at least one admissible
set, the empty set.

De�nition 2.2.5 (Complete semantics). Given an argumentation framework
H = (A,X ). An admissible set of arguments S ⊆ A is a complete extension
if and only if ∀a ∈ A if S defends a then a ∈ S.

Example 2.2.5 (Cont'd). The set {i1, i2} is a complete extension. {i1} and
{i2} are not.
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Figure 2.2: Empty stable extensions.

A more refinement of the admissible and complete semantics is the stable
semantics where aggressiveness is imposed.

De�nition 2.2.6 (Stable semantics). Given an argumentation framework H =
(A,X ). A set of arguments S ⊆ A is a stable extension if and only if S is
conflict-free and for all a ∈ A such that a /∈ S, S attacks a.

This means S attacks all arguments outside of S. One can observe that
in Example 2.2.5 where the set {i1, i2} is a stable extension. Because of
the aggressive behavior an argumentation framework may have no stable
extension.

Example 2.2.6. Consider the argumentation framework H = (A,X ) of Fig-
ure 2.2 where A = {a, b, c} and X = {(c, b), (b, a), (a, a)}. It is clear that
H has no stable extension, however the sets ∅ and {c} are admissible and
complete.

To avoid the problem of having no extension under the stable semantics
(i.e. extension emptiness), the aggressiveness criterion is relaxed in the
preferred semantics where a preferred extension is a maximal admissible
set.

De�nition 2.2.7 (Preferred semantics). Given an argumentation framework
H = (A,X ). A set of arguments S ⊆ A is a preferred extension if and only
if S is a maximal (w.r.t set-inclusion) admissible extension of H.

Example 2.2.7. {c} in the previous example is a preferred extension. In
Example 2.2.1 the set {i1, i2} is a preferred extension which is the superset
of the admissible extensions {i1} and {i2}.

An argument may be accepted with respect to an extension and rejected
with respect to another. Dung has proposed another semantics which is
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called the grounded semantics. This semantics is a unique-extension se-
mantics, meaning that an argumentation framework has only one grounded
extension and an argument can be either accepted or rejected by this unique
extension.

De�nition 2.2.8 (Grounded semantics). The grounded extension of an argu-
mentation framework H is the least (w.r.t set-inclusion) complete extension.

Example 2.2.8. Consider the following argumentation framework.

The admissible extensions are {d}, {a}, {a, d}, {a, c}. The complete ex-
tensions are {a}, {a, c} and {a, d}. The preferred extensions are {}, {a, c}
and {a, d}. Observe that the least complete extension of the complete exten-
sions is {a} which is the grounded extension. And finally we have one stable
extension {a, d}.

One can see that there is a strong relation between the semantics. For
instance, in the previous example all complete extensions are admissible ex-
tensions but not vice versa, and all preferred extensions are complete but not
vice versa. In what follows we show the relation between the aforementioned
semantics.

Theorem 2.2.2 (Dung (1995)). Given an argumentation framework H =
(A,X ). The following hold:

• Every stable extension is preferred.

• Every preferred extension is complete.

• Every grounded extension is complete.

• Every complete extension is admissible.

We conclude the following properties about the grounded, admissible
and preferred semantics.

Theorem 2.2.3 (Dung (1995)). LetH = (A,X ) be an argumentation frame-
work. The following hold:
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Figure 2.3: The inclusion relation between the semantics.

• H has at least one preferred extension.

• H has a unique grounded extension (which may be empty).

• The grounded extension of H is a subset of any preferred extension of
H.

• For each admissible set S of H, there exists a preferred extension E of
H such that S ⊆ E .

Table 2.1 summaries the semantics and their essential criteria. The cri-
teria are as follows: cf means the extensions are conflict-free, df means
they defend all their elements, incdf means they include what they defend,
max means they are maximal w.r.t ⊆, agr refers to aggressiveness and
it means they attack all what is outside and adm refers to admissibility.
Please note that since the table is only for illustration purposes the criteria
are not completely dependent, some of them are derivable from others ( for
instance, adm from cf and df).

2.3 Justification State

Argumentation frameworks take as an input a set of arguments and an
attack relation, they give as an output a set of extensions under a specific
semantics. Taking into account this output, arguments can be classified
with respect to their membership in the resulting extensions. Therefore, we
distinguish the following three justification state.

De�nition 2.3.1 (Justi�cation state). Given a semantics x and argumenta-
tion framework H. Let Extx(H) denote the set of all extensions of H under
the semantics x. An argument a ∈ A is:
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cf df adm incdf max agr

Admissible × × ×

Complete × × × ×

Stable × × × × ×

Preferred × × × × ×

Grounded × × × ×

Table 2.1: Semantics with respect to criteria. × means the criterion is
satisfied.

• Skeptically accepted if and only if a ∈
⋂
Ei, such that Ei ∈ Extx(H).

• Credulously accepted if and only if a ∈
⋃
Ei, such that Ei ∈ Extx(H).

• Rejected if and only if it is not credulously accepted.

A skeptically accepted argument is an argument that is accepted from
all possible standpoints (extensions), whereas a credulously accepted argu-
ment that may be accepted in some extensions and rejected in others. A
rejected argument is referred to as an overruled argument. It is clear that
every skeptically accepted argument is also credulously accepted but not
vice versa.

Example 2.3.1 (Cont'd Example 2.2.8). Under the preferred semantics, the
argument a is skeptically accepted and the arguments d and c are credulously
accepted. The argument b is rejected.

Note that the justification state can change with respect to the semantics
under consideration.

2.4 Coincidence between Semantics

In general, reasoning with abstract argumentation frameworks is hard (Dunne
and Wooldridge (2009); Dimopoulos et al. (1999)). However, this task be-
comes easier when certain properties are verified. Namely, the preferred and
stable semantics coincide (coherence), the coincidence between intersection
of preferred extensions and the grounded extension (relative groundedness),
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Decision problem Complexity

Is S admissible? p

Is S a stable extension? p

Is S a preferred extension? co-np-c

Does H have any stable extension? np-c

Is x in some preferred extension? np-c

Is x in some stable extension? np-c

Is x in every stable extension? co-np-c

Is x in every preferred extension? Πp
2-c

Is x in the grounded extension? p

Is H coherent? Πp
2-c

Table 2.2: Computational complexity of certain decision problems. H is
an argumentation framework, x is an argument and S a set of arguments.
Results taken from Dunne and Bench-Capon (2002); Dunne and Wooldridge
(2009).

coincidence between complete, grounded, preferred and stable with a unique
extension (well-foundedness) and the existence of one empty preferred exten-
sion (triviality). In this section we recall each property and show the main
sufficient conditions for such coincidence proved in Dung (1995); Dunne and
Bench-Capon (2002); Doutre (2002).

Let us start with the coherence property of Dung (1995). One significant
benefit of coherence has been shown in Vreeswik and Prakken (2000) where
a proof mechanism for establishing skeptical acceptance has been provided
for coherent argumentation frameworks. Therefore, satisfying such property
in certain argumentation frameworks comes with that benefit. In addition,
as it is know from Dunne and Bench-Capon (2002) the computational com-
plexity of the skeptical membership problem is co-NP-complete for stable
and Πp

2-complete for preferred. In this case, an enormous reduction in com-
plexity is gained where we jump from the the second level of the polynomial
hierarchy Πp

2-complete to the first level Πp
1-complete (i.e. co-NP-complete).

To plot a full picture about the computational benefit, Table 2.2 shows the
computational problems with their computational complexities.

De�nition 2.4.1 (Coherence). An argumentation framework H is said to be
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Figure 2.4: Coherent argumentation framework.

Figure 2.5: Non-coherent argumentation framework.

coherent if and only if all its preferred extensions are stable extensions. We
denote by coherent the class of argumentation frameworks that are coher-
ent.

Example 2.4.1. Figure 2.5 presents an argumentation framework H that is
not coherent, observe that Extp(H) = {{a, d}, {e}} which is not equal to
Exts(H) = {{a, d}}. The argumentation framework H′ of 2.4 is coherent
where Extp(H′) = Exts(H′) = {{a, c, e}}.

The problem is how one can tell from looking at the graph whether
a given argumentation framework is coherent? Unfortunately, according
to Dunne and Bench-Capon (2002) there is no tractable procedure (unless
P=NP) that can preform such check. However, certain classes of argumen-
tation frameworks for which there are efficiently testable properties that
suffice to guarantee coherence are identified in the literature.

Dung identified the classes uncontroversial and limited controversial ar-
gumentation frameworks for which coherence is verified. These two classes
are based on two simple concepts called indirect defense/attack.

De�nition 2.4.2 (Indirect defense/attack).

• We say an argument b indirectly attacks a if there exists a finite
sequence (a0, . . . , a2n+1) such that (1) a0 = a and b = a2n+1 and (2)
for each i, 0 ≤ i ≤ 2n, ai+1 attacks ai.

• We say an argument b indirectly defends a if there exists a finite
sequence (a0, . . . , a2n) such that (1) a0 = a and b = a2n and (2) for
each i, 0 ≤ i ≤ 2n, ai+1 attacks ai.
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An argument is controversial if it defends and attacks (indirectly) in the
same argument.

De�nition 2.4.3 (Controversy). An argument b is said to be controversial
with respect to a if b indirectly attacks a and indirectly defends a. An argu-
ment is controversial if it is controversial w.r.t at least one argument.

Example 2.4.2. In the argumentation framework of Figure 2.5 the argument
c is controversial because it indirectly attacks/defends e. To see why, we give
the following sequences:

• (e, d, c) where as one can see c attacks d and d attacks e (c indirectly
defends e).

• (e, d, c, b, a, c) (c indirectly attacks e).

Uncontroversy and limited controversy is defined as follows.

De�nition 2.4.4 (Uncontroversial and limited controversial).

1. An argumentation framework is uncontroversial if none of its argu-
ments is controversial.

2. An argumentation framework is limited controversial if there exists no
infinite sequence of arguments a0, . . . , an, . . . such that ai+1 is contro-
versial with respect to ai.

We denote by uncontroversial and lcontroversial the class of
argumentation frameworks that are uncontroversial and limited controversial
respectively.

Example 2.4.3. In the argumentation framework of Figure 2.4 one can see
that there is no controversial argument.

As stated by Dung (1995), every uncontroversial argumentation frame-
work is limited controversial but not vice versa. And the two of them are
coherent. Put clearly:

Theorem 2.4.1 (Dung (1995)). uncontroversial ⊂ lcontroversial ⊆
coherent.

In Dunne and Bench-Capon (2002) a larger class that subsumes Dung’s
controversial argumentation frameworks has been identified. In what follows
we introduce this class.

We denote by noddcycle the class of argumentation frameworks that
have no simple directed cycle of odd length. Recall that in graph theory a

27



CHAPTER 2. ABSTRACT ARGUMENTATION

cycle is a path whose source node is identical to the goal node. The length
of a cycle is equal to the number of edges in that cycle. A simple cycle is a
cycle where repetitions of vertices and edges are not allowed.

Theorem 2.4.2 (Dunne and Bench-Capon (2002)). noddcycle ⊆ coherent.

Example 2.4.4. Observe that Figure 2.4 has no cycle of odd length.

Doutre (2002) has shown that noddcycle comprises limited contro-
versial argumentation frameworks. Put differently, a limited controversial
argumentation framework has no cycle of odd length.

Theorem 2.4.3 (Doutre (2002)). lcontroversial ⊆ noddcycle.

Another interesting class of argumentation frameworks that has been
proven to be coherent by Coste-Marquis et al. (2005) is symmetric argu-
mentation frameworks (denoted as symmetric). Symmetric frameworks
are those argumentation framework whose attack relation is symmetric.

Theorem 2.4.4 (Coste-Marquis et al. (2005)). symmetric ⊆ coherent.

Another class of coherent argumentation frameworks is the one where
the complete, preferred, stable and grounded coincide resulting a unique
non-empty extension. The corresponding class of such case is called well-
founded argumentation frameworks and denoted as wfounded. It is first
identified by Dung (1995).

De�nition 2.4.5 (Well-foundedness). An argumentation framework H = (A,X )
is well-founded iff there is no sequence a0, . . . , an, . . . such that for each i,
(ai+1, ai) ∈ X .

For finite argumentation frameworks this class corresponds exactly to
the argumentation frameworks with no cycles (Doutre (2002)).

Theorem 2.4.5 (Dung (1995)). Every well-founded argumentation frame-
work has exactly one complete extension which is grounded, preferred and
stable.

The preferred can coincide with another semantics. In what follows we
look at the coincidence between the intersection of preferred extensions and
the grounded extension (Dung (1995)).

De�nition 2.4.6 (Relative groundedness). We say that an argumentation
framework H is relatively grounded if its grounded extension coincides with
the intersection of all preferred extensions. We denote by rgrounded the
class of argumentation frameworks that are relatively grounded.
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Class Name Description

coherent Coherent ∀H, Extp(H) = Exts(H).

noddcycle No simple odd-length cycle ∀H, X has no simple odd-length cycle.

uncontroversial Uncontroversial ∀H, H has no controversial arguments.

lcontroversial Limited controversial
∀H, there is no sequence a0, . . . , an, . . .

s.t for each i, ai+1 is controversial w.r.t ai.

rgrounded Relatively grounded ∀H, Extg(H) =
⋂

Extp(H).

wfounded Well-founded
∀H, there is no sequence a0, . . . , an, . . .

s.t (ai+1, ai) ∈ X for each i.

symmetric Symmetric ∀H, XH is symmetric and irreflexive.

Table 2.3: Classes of argumentation frameworks studied in the literature.
Note that these classes are with respect to those argumentation frameworks
that contain at least one argument. p and s refers to preferred and stable
respectively.

This is an interesting property since in this case the problem of “Is x in
every preferred extension?” reduces down to checking weather “Is x in the
grounded extension?” which is polynomial.

The following theorem is provided by Dung (1995) that stipulates that
every uncontroversial argumentation framework is relatively grounded.

Theorem 2.4.6 (Dung (1995)). uncontroversial ⊆ rgrounded.

Example 2.4.5. The argumentation framework of Example 2.2.8 is relatively
grounded because E = {a} coincides with the intersection of the preferred
extensions, i.e. {a, d} ∩ {a, c}.

When the argumentation framework has one preferred extension which
is the empty extension then it is called trivial. Note that these kind of
argumentation frameworks are not coherent because the empty extension is
not a stable extension. Therefore one can use the different testable properties
of coherence to check triviality.

Table 2.3 summaries the known classes of argumentation frameworks
in literature. Figure 2.6 shows the relation between the known classes of
coherent frameworks. Figure 2.7 shows the relation between major classes,
i.e. coherent, relatively grounded and unique preferred extension. Please
note that this figure is taken from Doutre (2002).
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Figure 2.6: Inclusion between classes of coherent argumentation frameworks.
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Figure 2.7: Relation between major classes of argumentation frameworks.
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2.5 Conclusion

In this chapter we have presented Dung’s abstract argumentation frame-
work. In this frameworks arguments are abstract entities related with an
abstract concept of attack relation. We have recalled the different semantics
proposed in Dung (1995) and we have explored the relation established in
the literature between them. We also presented different properties that an
argumentation framework may verify, namely, finiteness, controversy, coher-
ence, relative groundedness, well-foundedness and triviality.

An interesting relation between the preferred and the stable semantics is
when they coincide, the corresponding family of argumentation frameworks
that verifies this property are called coherent argumentation frameworks.
We have seen some sub-families of such family. Finally, we have recalled
the main stream justification state which are studied in the literature, i.e.
skeptical, credulous and rejected.

As already emphasized, Dung’s model is abstract and the structure ar-
guments and the type of the attack relation is left unspecified. In the next
chapter we study the instantiation of Dung’s model on a specific logical lan-
guage called the existential rules framework (Baget et al., 2011b; Chein and
Mugnier, 2009; Cal̀ı et al., 2012), we study its properties and its output.
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3
Logic-based Argumentation

In this chapter we study Dung-style logic-based argumentation in the log-
ical language of existential rules (Datalog±). We precisely characterize its
output to introduce a formal definition of One-shot Argument-based Expla-
nations. We show how this particular instantiation enjoys the properties
studied in the previous chapter, i.e. finiteness, coherence, relative ground-
edness and non-triviality. After that, we further investigate the satisfaction
of the recent postulates proposed in Amgoud (2014). Finally, we recall
the representation theorem established by Croitoru and Vesic (2013); Vesic
(2013) between preferred/stable extensions and data repairs of Lembo et al.
(2010); Bienvenu (2012) which is crucial to exploit the explanatory power of
argumentation in explaining query acceptance under the Consistent Query
Answering semantics.

3.1 Introduction

In Dung’s abstract frameworks, arguments are regarded as abstract entities.
There is no specified structure for arguments. Also, there is no semantics
specification of what is an attack between arguments. They are considered
to be given as an input. Generally, we are interested in constructing an in-
stantiated argumentation framework where we start by building arguments
from a knowledge base under a given logical language using a given logic,
then the different interactions between the arguments are identified accord-
ing to the type of attack we are willing to consider. Four major logical
approaches have been studied in the literature. Assumption-based argu-
mentation frameworks (ABA) (Bondarenko et al., 1993), ASPIC/ASPIC+
(Modgil and Prakken, 2013), DeLP (Garćıa and Simari, 2004) and the De-
ductive Argumentation (Besnard and Hunter, 2008). The first three ap-
proaches are rule-based approaches where arguments are constructed from
a knowledge base with defeasibile and strict rules. The fourth approach is
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more oriented towards Classical Logics where an argument is perceived as
a tuple (H, c) of set of premises and a conclusion. In this approach two
major classes are proposed in the literature. Those approaches that define
logic-based argumentation over an abstract logic (Tarskian) like Amgoud
and Besnard (2010), and those approaches that define argumentation over
a concrete logic like; Propositional Logics in Amgoud and Cayrol (1998) or
First-Order Logics in Besnard and Hunter (2008, 2014). In this thesis we
are interested in the logic-based approach. More precisely, the second one.
We place ourselves in a concrete setting called Ontology-based Data
Access (OBDA, (Poggi et al., 2008)). In this setting the ontology is used
to “access” different data sources. These sources are solely consistent but
mutually inconsistent. It is taken for granted in this setting that the ontol-
ogy is consistent. In the next section we introduce the logical language that
accounts for such setting. Next, in Section 3.3 we deal with the instantiation
of Dung’s abstract argumentation frameworks over this setting.

3.2 Logical Language: Existential Rules Framework

There are two major approaches to represent an ontology in the OBDA set-
ting. The first one is Description Logics such as EL (Baader et al., 2005)
and DL-Lite, families (Calvanese et al., 2007). The second is rule-based
languages such as Datalog± (Cal̀ı et al., 2012), a generalization of Datalog
(Ceri et al., 1989) that allows for existentially quantified variables in rule’s
head. Despite Datalog± undecidability when answering conjunctive queries,
different decidable fragments are studied in the literature (see Baget et al.
(2011a)). These fragments generalize the aforementioned Description Logics
families and overcome their limitations by allowing any predicate arity as
well as cyclic structures. Here we follow the second method for its expres-
siveness. The main goal of this section is to introduce such logical language,
which will serve as a base logic for the abstract argumentation framework.

The guidelines are as follows, in Subsection 3.2.1 we introduce the syn-
tactical building blocks of the language and we show how querying facilities
are available in such language. Next, to increase the expressiveness we ac-
count in Subsection 3.2.2 for the ontological part where rules and negative
constraints are taken into account. However, as the OBDA setting is highly
prone to inconsistencies we present in Subsection 3.2.3 how inconsistency is
dealt with in the literature.
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3.2.1 The language, facts and queries

We consider the positive existential syntactic fragment of first-order logic
FOL(∃,∧) (Chein and Mugnier (2009); Baget et al. (2011b)). Its language L
is composed of some formulas built with the usual quantifiers (∃,∀) and only
the connectors, implication (→) and conjunction (∧). A special-purpose
constant that denotes the falsity ⊥ is used. There is no disjunction and
negation.

We consider usual first-order vocabularies with constants but no other
function symbols as follows.

De�nition 3.2.1 (Vocabulary). Consider a vocabulary composed of three dis-
joint sets Voc = (C,P,V), where C is a finite set of constants, P is a finite
set of predicates and V is an infinite set of variables. A function ar : P → N
associates a natural number ar(p) with each predicate p ∈ P that defines the
arity of p.

• A term t over Voc is a constant t ∈ C or a variable t ∈ V.

• An atomic formula (or atom) over Voc is of the form p(t1, ..., tn) where
p ∈ P, ar(p) = n and t1, ..., tn are terms.

• A ground atom is an atom with no variables.

• A conjunction of atoms is called a conjunct. A conjunction of ground
atoms is called a ground conjunct. By convention a ground atom is
a ground conjunct. A variable in a formula is free if it is not in the
scope of any quantifier. A formula is closed if it has no free variables
(also known as sentence).

We denote by ~x a sequence of variables (x1, . . . , xn).

Since we are in the setting of knowledge bases, constant symbols with
different names represent different individuals (unique name assumption).
This is safe to assume since our data often come from a relational database
where constants that represent individuals are meant to be unique. It is
to be noted that this logical language is negation-free. We use uppercase
letters for constants and lowercase letters for variables.

Example 3.2.1 (Atoms and conjuncts). Consider the following vocabulary
C = {John}, P = {student, teacher, teaches} and an infinite set of variables
V = {x1, x2, x3, . . .}. Then, teaches(John, x1) is an atom, teacher(John)
is a ground atom, teaches(John, x1) ∧ teacher(John) is a conjunct and
teacher(John)∧ teaches(John, Tom)∧ student(Tom) is a ground conjunct.
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One way to represent knowledge about the world is to grasp factual
knowledge. This kind of knowledge is deemed the most basic form of knowl-
edge, for instance the information “John teaches Tom” is basic or atomic.
In logic programming and deductive databases this is called a fact, since
it represents a basic form of knowledge no wonder that classically ground
atom are used to represent facts. To account for incomplete knowledge such
as “John teaches a student that we don’t know the name of”, a fact is ex-
tended so that it may contain existentially quantified variables and not only
constants (e.g. Baget et al. (2011b)).

De�nition 3.2.2 (Fact). A fact on Voc is the existential closure of a con-
junction of atoms over Voc.

So “John teaches a student that we don’t know the name of” is repre-
sented as:

∃x1(teacher(John) ∧ student(x1) ∧ teaches(John, x1))

where x1 is an existentially quantified variable. Note that we may omit
quantifiers in facts as there is no ambiguity (they are all existentially quanti-
fied). So the existential variables permit to represent unknown values which
is an interesting property in this language. In addition, in the context of
OBDA and Semantic Web we cannot assume that we can name all individ-
uals.

Notation 3.2.1. Let F be a fact, we denote by terms(F ) (resp. vars(F ))
the set of terms (resp. variables) that occur in F . We exclude duplicate
atoms in facts, which allows to see a fact as a set of atoms. For instance,
the fact F = ∃x∃y(r(x)∧p(A, y)∧r(x)) can be seen as {p(A, y), r(x)} where
vars(F ) = {x, y} and terms(F ) = {x, y,A}. From now on we may use the
set notation and the logical notation interchangeably to denote a fact.

Arbitrary sets of ground facts F are in fact relational databases that store
factual knowledge about a given domain. The reason to store knowledge is
to be able answer queries about different aspects of such domain. In what
follows we recall the notions of substitution and homomorphism between
facts. Then we show how these two notions are used to evaluate queries
over a given set of facts F .

De�nition 3.2.3 (Substitution and homomorphism). Given a set of variables
V and a set of terms T , a substitution σ of V by T (notation σ : V →
T ) is a mapping from V to T . Given a fact F , σ(F ) denotes the fact
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obtained from F by replacing each occurrence of x ∈ V ∩ vars(F ) by σ(x).
A homomorphism from a fact F to a fact F ′ is a substitution σ of vars(F )
by (a subset of) terms(F ′) such that σ(F ) ⊆ F ′.

Let us take an example to better clarify this.

Example 3.2.2 (Homomorphism). Consider the following vocabulary Voc =
(C,P,V):

• C = {A,B}.

• P = {q, r}.

• V = {x, y, z, . . .} is infinite set of variables.

We have the following set of facts over the vocabulary Voc:

• F = {q(A, x)} where terms(F ) = {A, x} and vars(F ) = {x}.

• F ′ = {q(A,B), r(A)} where terms(F ′) = {A,B} and vars(F ′) = ∅.

Consider vars(F ) and terms(F ′) as our set of variables and set of terms.
We have two possible substitutions.

• σ1 = {(x,A)}.

• σ2 = {(x,B)}.

Where x is substituted by A in σ1 and by B in σ2. Let us see which of
these substitutions is a homomorphism from F to F ′:

• When we apply σ1 on F we get σ1(F ) = {q(A,A)}.

• When we apply resp. σ2 on F we get σ2(F ) = {q(A,B)}.

It is clear that the substitution σ2 is a homomorphism from F to F ′

(unlike σ1) because σ2(F ) ⊆ F ′ such that σ2(F ) = {q(A,B)}.

As in database systems, we can query our initial set of facts F using
queries. Conjunctive queries are the basic and more frequent queries. Let
us recall the definition of Baget et al. (2011b).
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De�nition 3.2.4 (Queries). A conjunctive query (CQ) has the following form:
Q = ans(x1, . . . , xk) ← B, where B (the “body” of Q) is a fact, and
x1, . . . , xk occur in vars(B) and ans is a special k-ary predicate, whose ar-
guments are used to build an answer. Given a set of facts F , an answer to
Q in F is a tuple of constants (A1, . . . , Ak) such that there is a homomor-
phism σ from B to F , with (σ(x1), . . . , σ(xk)) = (A1, . . . , Ak). If k = 0, i.e.
Q = ans()← B, Q is called a Boolean conjunctive query, the unique answer
to Q is the empty tuple if there is a homomorphism from B to F , otherwise
there is no answer to Q.

Without loss of generality, we restrict our work to BCQs as they are
polynomially equivalent to CQs. Consequently the term “query” from now
on refers to BCQ unless stated otherwise. Please note that a BCQ Q can
be shortly referred to by its body B. So instead of writing Q = ans() ←
student(John) we may write Q = student(John).

A complementary way to represent knowledge is rules. We would like
to enrich our set of facts with a set of rules that encode certain domain-
specific knowledge. These rules are regarded as an ontological layer that
reinforces the expressiveness of the knowledge base by encoding the so-called
intentional knowledge in databases. In what follows we see the added value
of rules (existential ones) over other formalisms then we show how we can
perform deduction (query answering) in presence of existential rules.

3.2.2 Adding rules and negative constraints

Rules have been extensively used in knowledge-based and expert systems.
Rules are logical formulas which allow us to infer facts from other facts. An
example of a rule is: “If x is a cat then x is an animal”. In order to be general,
rules often contain variables. To be even more general, rules should account
for unknown individuals. For instance “ If x is a cat then x has a mother y
and a father z”. These are called existential rules (Baget et al., 2011b; Cal̀ı
et al., 2012) and the ability to represent unknown individuals is also known
in database community as value invention (Abiteboul et al., 1995). This
in fact captures the case where some information are incomplete and some
individuals are unknown. In the above example, we still know that x has a
mother but we fail to know who she is as the variable y is an existential one.

Overall, what we need to do when we have a set of facts supplied by a
set of existential rules and negative constraints is to use these rules to de-
duce all possible knowledge while respecting the negative constraints. The
output of such procedure is a set of facts that extends the first one. There-
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fore, query answering can be easily done over this new set of facts using
homomorphisms.

In what follows we define the logical form of existential rules and nega-
tive constraints. Then we explain how do we use rules to derive new facts
using rule application. And finally we explain the saturation procedure that
performs a breadth-first application of all rules on the set of facts.

De�nition 3.2.5 (Existential rules). Recall that we denote by ~x a sequence
of variables. An existential rule (or simply a rule) is a closed formula of
the form R = ∀~y((∀~xB) → (∃~zH)), where B and H are conjuncts with
vars(B) = ~x ∪ ~y, and vars(H) = ~z ∪ ~y.

The variables ~z are called the existential variables of the rule R. B and
H are respectively called the body and the head of R. We denote them
respectively body(R) for B and head(R) for H. Given a rule R, body(R)
and head(R) should not be empty.

Rules exhibit different syntactical structures. According to this syntac-
tical structure their expressiveness varies. The well-known Horn clauses of
Datalog (Ceri et al., 1989) and Prolog restrict the head of the rule to one
atom. Existential rules overcome such limitation by allowing more than one
atom in the head of the rule alongside to the possibility of representing ex-
istential variables. It is to be noted that this form of rules is also known as
tuple-generating dependencies in database community; Fagin (2009).

When it comes to other formalisms such as Description Logics, existential
rules are more expressive as they can represent complex relations between
individuals.1 Consider the following existential rule:

R = ∀y1y2 (siblingOf(y1, y2)→ ∃z1parentOf(z1, y1) ∧ parentOf(z1, y2))

This cannot be expressed in Description Logics because of the “cycle on
variables”; Chein and Mugnier (2009)), i.e. despite the possibility to say y1

is linked to z1 by parentOf and y2 is linked to z1 by parentOf there are no
means in DL by which we can say that they are related to the same z1.

Another important aspect of the existential rules framework is the possi-
bility of having unrestricted predicate arity. This is very important because
it can help us in adding contextual information such as provenance, trust,
etc. and also it facilitates a direct translation of database relations.

1For an extensive study on the relation between different families of DLs and existential
rules please see Mugnier and Thomazo (2014); Cal̀ı et al. (2012).

39



CHAPTER 3. LOGIC-BASED ARGUMENTATION

It comes as no surprise that this expressiveness is at the expense of
decidability. In fact, entailment is undecidable for general existential rules
(Beeri and Vardi, 1981). However, many classes of existential rules that
ensure decidability (while keeping expressiveness) have been studied (see
(Baget et al., 2011b)). In this thesis and for practical reasons we work on
such classes.

To represent knowledge about the world one should account for negative
knowledge, i.e. knowledge that dictates how things are not ought to be. The
existential rules is negation-free which makes it hard to represent such kind
of knowledge. In database systems the notion of integrity constraints is used
to forbid certain invalid inputs and to preserve the semantics of the data. In
the existential rules we find a logical account of integrity constraints under
the name of negative constraints (Cal̀ı et al., 2012).

De�nition 3.2.6 (Negative constraint). A negative constraint (or simply a
constraint) is a rule of the form N = ∀~x(B → ⊥).2

Negative constraints are very important as they serve as logical devices
to detect inconsistencies in the factual part of the knowledge base. In fact
and as we will see in Subsection 3.2.3, the firing of a negative constraint is
interpreted as a presence of inconsistency in the knowledge base.

Compared to Description Logics, negative constraints in the existential
rules framework fully captures concept disjointness of DLs. In fact, negative
constraints are more expressive than concept disjointness. Consider the case
where an individual a can belong to at most two concepts but not three at
the same time. So we may forbid that a belongs to A, B and C together but
nevertheless it can belong to A and B or B and C or A and C. This form of
constraints cannot be expressed in DL-Lite for instance. However, in more
expressive DL families (such as EL) this can be simulated by means of other
higher concepts (e.g. we can consider “A and B” as a new concept called
AB). The problem with such tweak is that it necessitates the modification
of the initial knowledge base which makes it hard for the user to understand
the newly introduced concepts.

Example 3.2.3. An example of a negative constraint:

N = retiredFrom(x, y) ∧ worksIn(x, y)→ ⊥
It is impossible that a person is retired from an establishment and she is

still working in this establishment.

2We may sometimes omit quantifiers in the rules and constraints and write R = B → H
and N = B → ⊥.
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Up to now, we have seen three different forms of knowledge, facts, rules
and negative constraints. Let us now define a knowledge base.

De�nition 3.2.7 (Knowledge base). A knowledge base over a vocabulary Voc
is a tuple K = (F ,R,N ) of finite sets of facts, rules and negative constraints
respectively.

In order to be able to perform deduction, rules must be used jointly with
facts to produce new facts.

Example 3.2.4. Consider the following rule and fact:

R1 : teaches(x, y) ∧ student(y)→ teacher(x)

F1 : teaches(John, Tom) ∧ student(Tom)

From these two formulas we produce a new fact teacher(John).

In logic, this is a pure application of the well-know Modus ponens infer-
ence rule, in Datalog it is referred to as the Elementary Production Principle
(EPP) (Ceri et al., 1989). For this to work, the body of the rule should map
to some facts in F . In other words, there must be a substitution of variables
that makes the body of R1 resembles to F1. Clearly here we have x is sub-
stituted by John and y by Tom. For R1 to be applicable on F1 we need a
homomorphism that maps body(R1) to F1. Let us see the formal definition
of rule application.

De�nition 3.2.8 (Rules application Baget et al. (2011b)). A rule R = B → H
is applicable to a fact F if there is a homomorphism σ from B to F . The
application of R to F w.r.t. σ produces a fact α(F,R, σ) = F ∪ σsafe(H),
where σsafe is the safe substitution that replaces existential variables with
fresh variables (not introduced before). α(F,R, σ) is said to be an immedi-
ate derivation from F .

Fresh variables are used to avoid the attribution of already used variables
to new facts. This would cause a problem when reapplying the rules on the
new facts.

Example 3.2.5. For instance, consider R = q(x, y) → p(z, y) and F =
{q(A,B), r(A)}, R is applicable to F because there is a homomorphism from
{q(x, y)} to {q(A,B), r(A)} that substitutes x by A and y by B. The imme-
diate derivation from F is the fact F ′ = {q(A,B), r(A)} ∪ {p(w,B)} where
w is a fresh variable not introduced before.
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Rules can be applied according to an order. For instance, it is possible
that a rule, say R2, is not applicable to any fact in our initial set of facts,
but however it becomes so only after applying some other rules. The same
thing can happen for other rules. This gives birth to the so-called derivation
sequence and R-derivation (Baget et al., 2011b).

De�nition 3.2.9 (R-derivation and derivation sequence). Let F be a fact and
R be a set of rules. A fact F ′ is called an R-derivation of F if there is
a finite sequence (called the derivation sequence) 〈F0, ..., Fn〉 such that
F0 = F , Fn = F ′ and for all 0 ≤ i < n there is a rule R ∈ R which is
applicable to Fi and Fi+1 is an immediate derivation from Fi.

Example 3.2.6. Let F = {q(A,B), r(D), p(x1, C)} and R = {R1, R2} such
that:

• R1 = q(x2, y1) ∧ r(z1)→ d(x2, z1).

• R2 = p(x3, y2) ∧ r(z2)→ m(z2, x3).

The following is a derivation sequence:

〈F0, F1, F2〉

where:

• F0 = F .

• F1 = F ∪ {d(A,D)}.

• F2 = F1 ∪ {m(D,x1)}.

We get F1 by applying R1 on F then we get F2 by applying R2 on F1.
We say F2 is an R-derivation of F . Note that x1 is not a fresh variable
because z2 in R2 is quantified universally.

When we have an initial set of facts F and a set of rules R, we are
interested in unfolding all possible knowledge using all possible rules in R.
Informally, this can be seen as a saturation mechanism that uses a breadth-
first forward chaining scheme. So, We start with a derivation sequence with
F0 being F , then each step i consists of producing a fact, say Fi, from the
current fact Fi−1, by computing all homomorphisms from the bodies of all
rules to Fi−1, then performing all corresponding rule applications. The fact
Fk obtained after the step k is called the k-saturation of F . Let us formally
introduce the concept of k-saturation from Baget et al. (2011b).
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De�nition 3.2.10 (k-saturation). Let F be a fact and R be a set of rules.

• Π(R, F ) denotes the set of homomorphisms from all rules bodies in R
to F :
Π(R, F ) = {(R, σ) | R ∈ R and σ is a homomorphism from body(R) to F}

• The direct saturation of an arbitrary fact F with R is defined as:
C`R(F ) = F

⋃
(R,σ)∈Π(R,F ) σ

safe(head(R)).

• The k-saturation of F with R is denoted by C`kR(F ) and is inductively
defined as follows:
C`0R(F ) = F and, for i > 0, C`iR(F ) = C`R(C`i−1

R (F )).

We note C`∞R (F ) =
⋃
k∈NC`

k
R(F ), where C`∞R (F ) is possibly infinite.

Please note that R is a parameter for C` like F .

The following example explains the saturation step by step.

Example 3.2.7. Consider the following knowledge base K = (F ,R,N ):

• F = {p(A), q(B), s(B)}

• R = {R1 : p(x) → r(x, y), R2 : p(x) ∧ s(y) → p(y), R3 : q(x) →
r(x, y), R4 : r(x, y)→ t(x)}

• N = ∅

We start from F :

• C`0R(F) = F .

• C`1R(F) = F ∪ {r(A, y1), p(B), r(B, y2)} using R1 with σ1 = {(x,A)},
R2 with σ2 = {(x,A), (y,B)} and R3 with σ3 = {(x,B)}.

• C`2R(F) = C`1R(F) ∪ {t(A)} using R4 with σ4 = {(x,A), (y, y1)} and
R4 with σ5 = {(x,B), (y, y2)}.

After C`2R(F) there are no applicable rules that produce new facts.

As one may see, the saturation procedure halts after 3 steps. If we had
the rule R5 : p(x) → m(z, x) ∧ p(x) the saturation would never terminate.
To see why, think of p as “person” and m as “mother of” then whenever
we apply R5 we get another person y1 on which we reapply the rule R5,
which in turn gives us another person y2, . . . continues ad infinitum. Many
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classes of existential rules have been defined in the literature where some
restrictions on the rules are considered to ensure the termination of the
saturation procedure (e.g. frontier-guarded rules (Calı et al., 2008)). In
this thesis we assume that the set of rules belongs to one of the classes
that ensures decidability of entailment (saturation termination). When the
saturation procedure halts we refer to C`∞R (F) as C`∗R(F).

The saturation procedure is known as the naive chase in the database
community (Calı et al., 2008; Abiteboul et al., 1995), it was mainly used
to repair a database that does not respect some functional dependencies.
We should draw the intention of the reader that the term “chase” is still
used in the early works of Datalog± (see for instance (Cal̀ı et al., 2012; Cali
et al., 2010)). Different chases are studied in the literature, e.g. core chase
(Deutsch et al., 2008), skolem chase (Marnette, 2009), etc. the difference
between these chases is in their way of handling existential variables and
redundancy. For instance, the skolem chase runs a pre-processing step where
each rule is skolemized by replacing each occurrence of an existential variable
with a function. Then, the naive chase is applied. As the thesis is not
about studying different types of chases, we chose the naive chase (above-
explained) as the deduction mechanism.

From a semantics point of view, the saturation operator (C`) can bee
seen as a fixed-point operator where C`∗R(F) is the least fixed-point of C` on
F and R. For instance, C`2R(F) in the previous example is the fixed point
of C` because C`3R(F) = C`2R(F), C`4R(F) = C`3R(F), so on and so forth.

From a model-theoretic perspective, we can see the set of rules as a set
of first-order sentences (i.e. a first-order theory) that describes a specific
“world”. Since a set of sentences may describe infinitely many models it
is hard to conclude whether a given fact is a logical consequence of our
theory. Therefore, to be able to say for certain that a given fact is a logical
consequence of the theory we need to be sure that the fact is true in all
possible models of the theory. One can achieve this by the construction of
the so-called universal model. This model is particularly interesting because
it can be mapped to any other model of our theory. So to check whether
a fact F is a logical consequence of theory, it is sufficient to check if its
universal model is also a model of F . The saturation procedure described
above does construct the universal model. The following theorem of Baget
et al. (2011b) shows that.

Theorem 3.2.1 (Saturation). Let F and F ′ be two facts and R be a set of
rules. Then F,R |= F ′ if and only if there is a homomorphism from F ′ to
C`∗R(F).
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The theorem can be stated equivalently as:

F,R |= F ′ if and only if C`∗R(F ) |= F ′

From a logical point of view, the operator C` can be considered as a
closure operator or a consequence operator. Since this terminology is widely
used in logic-based argumentation (e.g. Amgoud and Besnard (2009, 2010,
2013); Amgoud (2014); Vesic (2011)), for convenience we call C` a conse-
quence operator and for a given knowledge base K we interpret C`∗R(F) as
the set of all logical consequences of F and R.

Please note that the term consequence operator is not to be understood
in the full classical sense where tautologies are also deduced by the chase
procedure. In fact the chase procedure does not compute tautologies, it only
applies rules to extend the initial set of facts buy rule firing. Therefore, it
computes a part of the all possible logical consequences which have the form
of facts.

In the next subsection, we see what happens when the negative con-
straints are violated and how do we handle such case.

3.2.3 Consistent query answering

Existential rules framework is widely used in Semantic Web and in the so-
called Ontology-Based Data Access. Where rules and constraints act
as an ontology used to “access” a different data sources. These sources are
prone to inconsistencies. In this setting the following assumptions (Lembo
et al. (2010)) are made:

Assumption 3.2.2 (Coherence). The set of rules and negative constraints are
satisfiable.3

This assumption is made because in OBDA we assume that the ontology
is believed to be reliable as it is the result of a robust construction by domain
experts. However, as data can be large and heterogeneous due to merger
and fusion, in the OBDA setting the data is assumed to be the source of
inconsistency.

Assumption 3.2.3 (Inconsistency). The set of facts F may be inconsistent
with respect to the rules and negative constraints.

In what follows we recall the formal definition of inconsistency in the
existential rules framework, then we introduce different repairing techniques

3In logic, a set of formulas is satisfiable if and only if it has at least one model.
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which are inspired from the work in database community (Chomicki, 2007)
and Description Logics (Lembo et al., 2010; Bienvenu and Rosati, 2013).
For such purpose, we introduce the definition of the repair of a set of facts
and the CQA semantics.

De�nition 3.2.11 (Inconsistency). A set of facts F is inconsistent with re-
spect to a set of rules R and negative constraints N (or inconsistent for
short) if and only if C`∗R(F) |= body(N) such that N ∈ N .

This means that the set of facts violates the negative constraint N or
triggers it. Correspondingly, a knowledge base K = (F ,R,N ) is inconsistent
(with respect to R and N ) if and only if there exists a set of facts F ′ ⊆ F
such that F ′ is inconsistent. An alternative writing is C`∗R(F) |= ⊥. This
is straightforward since negative constraints are special forms of rules where
falsity ⊥ can be deduced. Because if the body of a negative constraint is
entailed from C`∗R(F) then necessarily ⊥ is entailed from C`∗R(F).

Example 3.2.8. Let us consider the following knowledge base K with: F =
{cat(Tom), bark(Tom)}, R = {R1 : cat(x1) → miaw(x1)}, N = {N1 :
bark(x2) ∧miaw(x2) → ⊥}. The saturation yields C`∗R(F) = {cat(Tom),
bark(Tom),miaw(Tom)}. Observe that this knowledge base violates the neg-
ative constraint N1.

One way in classical logic to cope with inconsistency is to construct
maximal consistent subset of the knowledge base that is consistent (Rescher
and Manor, 1970). This corresponds to “Data Repairs” (Arenas et al., 1999).
Informally, a data repair of a knowledge base K = (F ,R,N ) is a set of facts
F ′ such that F ′ is consistent and there does not exist a subset of F that
strictly contains F ′ that is consistent (Lembo et al., 2010).

De�nition 3.2.12 (Repair). Let K = (F ,R,N ) be a knowledge base. A data
repair (repair for short) of K is a set of facts F ′ ⊂ F such that:

• C`∗R(F ′) 6|= ⊥ (consistency).

• ∀X ⊂ F \ F ′, F ′ ∪ X is inconsistent (maximality).

Since repairs are computed exclusively on the set of facts and given that
the factual part of the knowledge base is the only source of inconsistency
we, from now on, abuse slightly the notation and refer to K′ by its set of
facts F ′. The set of all repairs of K is denoted as:

Repair(K) = {F ′ | F ′ ⊆ F and F ′respects Definition 3.2.12}.
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Example 3.2.9 (Cont'd Example 3.2.8). The two possible repairs are: P1 =
{cat(Tom)} and P2 = {bark(Tom)}. If we consider F ∪ {animal(Tom)},
then the repairs become:

P1 = {cat(Tom), animal(Tom)} and P2 = {bark(Tom), animal(Tom)}

Once all repairs are computed, there are different ways to compute
queries that follow from an inconsistent knowledge base. The most promi-
nent way is to allow the entailment of a query if it is entailed from all
repairs. This is called the CQA semantics or AR-semantics. Please note
that a query under CQA has either a yes or a no answer. When we say
a query is accepted that means it has a yes answer (entailed), otherwise it
has a no answer (not entailed). The queries we are considering are ground
BCQs where only constants are allowed in the query.

De�nition 3.2.13 (CQA semantics). Let K = (F ,R,N ) be a knowledge base
and let Q be a query. Then Q is accepted under CQA in K, written K |=CQA
Q iff for every repair P ∈ Repair(K), it holds that C`∗R(P) |= Q.

Example 3.2.10 (Cont'd). C`∗R(P1) = {cat(Tom), animal(Tom),miaw(Tom)},
C`∗R(P2) = {bark(Tom), animal(Tom)}. It is the case that K |=CQA animal(Tom)
but it is not the case that K |=CQA miaw(Tom). Because miaw(Tom) is
not entailed from P2.

Inconsistency handling in inconsistent knowledge bases can use another
concept called minimal conflicts. Given a knowledge base K, a set of facts
C is called a minimal conflict of K if and only if C is inconsistent and every
subset of C is consistent.

De�nition 3.2.14 (Minimal con�icts). Let K = (F ,R,N ) be an inconsistent
knowledge base. A set of facts C is called a minimal conflict of K if and
only if:

• C`∗R(C) |= ⊥ (inconsistency).

• ∀X ⊂ C, C \X is consistent (minimality).

We denote by conflicts(K) the set of all minimal conflicts of K.

Example 3.2.11 (Con�icts). Consider the following knowledge base K = (F ,R,N ):

• F = {p(A,A), p(B,C), q(C,B), r(C), w(D)}.

• R = {q(x, y)→ s(x, y)}.
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• N = {p(x, x)→ ⊥, p(x, y) ∧ q(y, x) ∧ r(y)→ ⊥}.

We have the following conflicts(K):

• C1 = {p(A,A)} and C2 = {p(B,C), q(C,B), r(C)}.

Note that {p(B,C), s(C,B), r(C)} is not a conflict because it is consis-
tent. It is clear from this knowledge base that every fact in F is involved in
some inconsistencies except for w(D). This means that w(D) will be in all
repairs. Whereas p(B,C) will never succeed to be in a repair that contains
q(C,B) therefore it will never be in all repairs, hence not accepted under
CQA semantics. Here are the repairs to make the example more clear:

• P1 = {p(B,C), r(C), w(D)}.

• P2 = {p(B,C), q(C,B), w(D), }.

• P3 = {q(C,B), r(C), w(D), }.

We have seen how the CQA semantics handles inconsistency in the ex-
istential rules framework. In the next section we introduce logic-based ar-
gumentation in existential rules which is another method to handle incon-
sistency.

3.3 Instantiating Dung’s Abstract Framework

Croitoru and Vesic (2013) have presented the first logic-based instantiation
in the framework of existential rules.4 Therefore we recall their instantia-
tion with certain syntactical alteration which will be explained later. Our
contribution with respect to this instantiation lays in:

• Providing a fine-grained analysis of the outputs (Subsection 3.3.2).

• Introducing and studying the concept of One-shot Argument-based
Explanations (Subsection 3.3.3).

• Studying the different properties that this logic-based instantiation
satisfies (Subsection 3.3.4).

4In fact, Martinez et al. (2014) have done so but with a slightly different approach.
They have extended the language with defeasible rules, which makes it fall into the DeLP
approaches.
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Logic-based instantiations may behave in unexpected ways leading to
inconsistent results. There have been lots of works to define rationality pos-
tulates for logic-argumentation, notably in Caminada and Amgoud (2007);
Gorogiannis and Hunter (2011); Amgoud (2014). Overall, these works give
some postulates that a logic-based instantiation should satisfy to avoid in-
consistent results. The followings are the recent postulates proposed in
Amgoud (2014).

(Rationality postulates Amgoud (2014) )

� (P1) Closure under C`: the set of conclusions that can be
drawn from any extension should be closed under C`.

� (P2) Closure under sub-arguments: if an argument is accepted
in an extension then so are all its sub-arguments. An argument
is a sub-argument of another argument if the support of the
former is a subset of the support of the latter.

� (P3) Consistency : the set of conclusions that can be drawn
from any extension should be consistent.

� (P4) Exhaustiveness: if an argument is accepted in an exten-
sion, then all its sub-parts should also be accepted in that ex-
tension

� (P5) Free precedence: any argument that is built only from the
inconsistency-free part of the knowledge base it should be in
every extension.

Croitoru and Vesic (2013) have proven that their instantiation satisfies
the rationality postulates of Caminada and Amgoud (2007). Recently, a
more general set of postulates have been proposed in Amgoud (2014). In
Subsection 3.3.5 we give positive results with respect to the satisfaction of
the remaining postulates.

3.3.1 Arguments and attack

Classically, an argument is composed of premises and a conclusion (Besnard
and Hunter (2008)). The set of premises is seen as a justification, a support,
a reason or a proof for the conclusion. We follow this classical definition
and alter the definition of Croitoru and Vesic (2013) as follows.
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De�nition 3.3.1 (Argument). Given an inconsistent knowledge K = (F ,R,N ).
An argument is a tuple a = (H,C) such that:

1. H ⊆ F and C`∗R(H) 6|= ⊥ (consistency).

2. C = α0 ∧ . . . ∧ αn is a conjunct such that {α0, . . . , αn} ⊆ C`∗R(H)
(entailment).

The support (resp. conclusion5) of an argument a is denoted as Supp(a) = H
(resp. Conc(a) = C).

An argument is defined as tuple in which the support is a set of facts
responsible from the entailment of the conclusion C from the knowledge
base K. The first clause ensures that the support is consistent which is an
important property (Besnard and Hunter (2008)). It is not hard to see that
an argument with an inconsistent support will never be accepted in an argu-
mentation process. The second clause ensures the preservation of entailment
from the support H to the conclusion C. Note that here arguments are con-
structed only from the factual part F of the knowledge base, and there are
no rules or negative constraints in the support or the conclusion. The rea-
son to exclude such formulas is due to the Coherence Assumption (page 45)
which dictates that the rules and the negative constraints are satisfiable and
reliable, therefore they will not be subjects of any attack. Note also that
minimality constraint is not imposed, we shall return to this case later.

We should point out that in Croitoru and Vesic (2013) an argument is
defined as a derivation sequence (in the sense of Definition 3.2.9, page 42).
This way of defining arguments produces unnecessarily large set of argu-
ments as it allows syntactically identical arguments. Let H,C, F1, F2, F

′
1

and F ′2 be distinct facts. The Croitoru-Vesic arguments (H,F1, F2, C) and
(H,F ′1, F

′
2, C) are considered different despite having the same support and

conclusion. This occurs due to the dissimilarity within the derivation se-
quence. Moreover, the intermediate facts F1, F2, F

′
1, F

′
2 have no effect on the

output of the argumentation system as the attack relation is defined with
respect to the conclusion and the support (assumption attack as we will
see). However, this definition can be found useful in understanding the link
between the support and the conclusion. Clearly, with our definition we will
definitely get fewer arguments while maintaining the same output.

Arguments may attack each other, different types of attacks are iden-
tified in the literature in Besnard and Hunter (2014). Rebuttal is a type

5Note that the conclusion of an argument is a fact, therefore it can bee seen as a query
as defined in Section 3.2. From now on, we may use interchangeably the words “claim’ or
“conclusion” to mean the same thing, the word “query” may also be used instead.
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of attack whose source is inconsistency between conclusions. Another well-
know type of attack is undercut. In this type of attack, the attack relation
is defined with respect to the presence of inconsistency between the con-
clusion of the attacking argument and the support of attacked argument.
Direct undercut is a special attack of undercut where the conclusion of the
attacking argument is inconsistent with a single atom in the support of the
attacked argument. For a full taxonomy of types of attacks see (Besnard
and Hunter, 2014, 2008).

In this thesis we focus on the so-called direct undercut (assumption at-
tack). The reason to avoid classical undercut and rebuttal is because they
lead to undesirable results as they give symmetric argumentation frame-
works (Amgoud and Besnard (2009)). Moreover, direct undercut provides
equivalence results between extensions and CQA semantics studied in Sub-
section 3.2.3, this would allow us to use argumentation to explain query
answering under inconsistency as we shall see.

De�nition 3.3.2 (Attack). An argument a attacks b if and only if ∃h ∈
Supp(b) such that C`∗R({Conc(a), h}) |= ⊥.

In fact this particularity makes the attack relation not symmetric as
shown in Croitoru and Vesic (2013).

Proposition 3.3.1 (Non-symmetry). Let K = (F ,R,N ) be a knowledge base,
H = (A,X ) be its corresponding argumentation framework. IfK = (F ,R,N )
is inconsistent and X is not empty then X is not symmetry and irreflexive.

To show the non-symmetry of the attack consider the following example.

Example 3.3.1 (Non-symmetry). Let F = {p(M), q(M), r(M)}, R = ∅, N =
{p(x) ∧ q(x) ∧ r(x) → ⊥)}. Let a = ({p(M), q(M)}, p(M) ∧ q(M)), b =
({r(M)}, r(M)). We have (a, b) ∈ X and (b, a) /∈ X because there exists
no h ∈ Supp(a) which is inconsistent with Conc(b) = r(M). However, the
set {p(M), q(M)} is indeed inconsistent with r(M), but according to the
definition of the attack we consider a single atom in the support of a. In
fact, if the attack were to be defined as H ⊆ Supp(a) then b would definitely
attack a. This type of attack is called classical undercut.

This attack relation is also irreflexive. This is guaranteed by the fact that
for any argument a, Supp(a) is consistent and it entails Conc(a), therefore
Supp(a) and Conc(a) are consistent together. Consequently, an argument
cannot attack itself.

Another case which can occur is the emptiness of the attack relation. It
occurs when all minimal conflicts in the knowledge base are unary. That
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means the only inconsistent facts in the knowledge base are those which
are self-contradictory. Hence, none of them will construct an argument.
Consequently there will be no attack. This leads us to the following.

Proposition 3.3.2 (Emptiness). If K has only unary minimal conflicts then X
is empty.

Example 3.3.2.

Example 3.3.3. Consider F = {p(M), r(M)}, R = ∅, N = {p(X) → ⊥)}.
We have only one argument in this case a = ({r(M)}, r(M)). It is clear
that p(M) is self-contradictory because it triggers the negative constraint. It
is not hard to see that the attack relation is empty.

Emptiness can occur in other cases. When the knowledge base is con-
sistent or the set of arguments is empty due to the emptiness of the set of
facts then the attack relation would be empty.

Before completing the definition of the argumentation framework let us
introduce some important notations.

Notation 3.3.1. Let K be a knowledge base, F ⊆ F be a set of facts and S
be a set of arguments. We adapt the following notations:

• Args(F ) = {a | a is an argument such that Supp(a) ⊆ F}. This refers
to the set of all possible arguments that can be constructed from a
given set of facts F .

• Base(S) =
⋃
Supp(ai) such that ai ∈ S. A base of a set of arguments

is a set of facts that contains all supports of all arguments of S.

• The set of all arguments that can be constructed over K is denoted as
Args(F).

An argumentation framework is defined as follows (from Croitoru and
Vesic (2013)).

De�nition 3.3.3 (Argumentation framework). Let K = (F ,R,N ) be a knowl-
edge base. The corresponding argumentation framework is a pair H =
(Args(F),X ) where Args(F) is the set of all arguments that can be con-
structed from F and X is the corresponding attack relation as specified in
Definition 3.3.2.
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For an argumentation framework H = (A,X ) we denote by Extx(H) the
set of its extensions with respect to the semantics x. We use the abbrevia-
tions c, p, s, and g for respectively complete, preferred, stable and grounded
semantics. We denote by Scx(H) and Crx(H) the set of all arguments that
are skeptically accepted and credulously accepted in H under the semantics
x respectively.

Let us take an example of how we construct an argumentation framework
from a given knowledge base.

Example 3.3.4 (Pick two!). Consider the “Fast, Good or Cheap. Pick two!”
project management principle. It states the fact that the three properties
Fast, Good and Cheap of a project are interrelated, and it is not possible to
optimize all the three, then one should always pick two of the three.

Figure 3.1: Pick any two.

It can be represented as a knowledge base as follows:
F = {project(P ), isfast(P ), isgood(p), ischeap(P )}
R = {isfast(x) ∧ isgood(x)→ isexpensive(x)}
N = {ischeap(x) ∧ isexpensive(x)→ ⊥}

Some of the arguments that can be generated from K are presented in Table
3.1.6 The attacks are defined with respect to the following set of conflicts:

conflicts(K) = {C1, C2} such that
C1 = {ischeap(P ), isfast(P ), isgood(P )} and

C2 = {ischeap(P ), isexpensive(P )}.

The attack relation is presented in the argumentation framework in Fig-
ure 3.2. The blue edges represent the arguments attacked by the extension

6For space reasons the set of all arguments are not provided here. Please see Appendix
A of Chapter 3, Example 3.3.4.
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a3 = ({project(P ), isgood(P ), ischeap(P )}, project(P ) ∧ isgood(P ) ∧ ischeap(P ))

a7 = ({project(P ), isgood(P ), ischeap(P )}, project(P ) ∧ isgood(P ))

a8 = ({project(P ), isgood(P ), ischeap(P )}, project(P ) ∧ ischeap(P ))

a9 = ({project(P ), isgood(P ), ischeap(P )}, isgood(P ) ∧ ischeap(P ))

a16 = ({project(P ), isgood(P ), ischeap(P )}, project(P ))

a17 = ({project(P ), isgood(P ), ischeap(P )}, isgood(P ))

a18 = ({project(P ), isgood(P ), ischeap(P )}, ischeap(P ))

a23 = ({project(P ), isgood(P )}, project(P ) ∧ isgood(P ))

a24 = ({isgood(P ), ischeap(P )}, isgood(P ) ∧ ischeap(P ))

a25 = ({project(P ), ischeap(P )}, project(P ) ∧ ischeap(P ))

a28 = ({project(P ), isgood(P )}, project(P ))

a29 = ({project(P ), isgood(P )}, isgood(P ))

a30 = ({isgood(P ), ischeap(P )}, isgood(P ))

a31 = ({isgood(P ), ischeap(P )}, ischeap(P ))

a34 = ({project(P ), ischeap(P )}, project(P ))

a35 = ({project(P ), ischeap(P )}, ischeap(P ))

a40 = ({project(P )}, project(P ))

a42 = ({ischeap(P )}, ischeap(P ))

a43 = ({isgood(P )}, isgood(P ))

Table 3.1: The arguments of E3. There is 54 arguments in A.

E3 (range+(E3)). In what follows we present the extensions under the sta-
ble/preferred semantics:

• E1 = {a2, a10, a11, a12, a13, a14, a15, a22, a23, a27, a28, a29, a32, a33, a38, a39,
a40, a41, a43, a44, a45, a46, a47, a48, a49, a50, a51, a52, a53, a54}.

• E2 = {a1, a4, a5, a6, a19, a20, a21, a22, a25, a26, a32, a33, a34, a35, a36, a37, a40,
a41, a42, a44}.

• E3 = {a3, a7, a8, a9, a16, a17, a18, a23, a24, a25, a28, a29, a30, a31, a34, a35, a40,
a42, a43}.

For this argumentation framework Scs(H) = Scp(H) = {a40} which cor-
responds to the grounded extension. The credulous arguments Crs(H) =
Crp(H) = A. This means that there are no rejected arguments.

It is easy to check that the argumentation framework is asymmetric. The
argument a1 = ({project(P ), isfast(P ), ischeap(P )}, project(P )∧isfast(P )∧
ischeap(P )) attacks a7 because it is impossible to have a fast and good
project on the one hand and a cheap project on the other hand since the
former gives an expensive project. However, a7 does not attack a1.
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Figure 3.2: The argumentation framework. Green vertices belong to exten-
sion E3. The blue edges represent range+(E3) where it shows the conflict-
freeness and defense of E3. The blue vertex is the skeptically accepted argu-
ment.

3.3.2 Outputs of logic-based argumentation

Besides the conventional output of abstract argumentation frameworks shown
in Chapter 2, Section 2.2 and the justification state in Section 2.3. Logic-
based argumentation frameworks allow to exploit the structure of arguments
to reason in terms of acceptable conclusions.

The set of plausible conclusions of an argumentation framework are those
conclusions that can be inferred from all extensions under a given semantics
(Amgoud (2014)).

De�nition 3.3.4 (Plausible conclusions). Let K = (F ,R,N ) be a knowledge
base and H = (A,X ) its corresponding argumentation framework. The set
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of plausible conclusions of H = (A,X ) under a semantics x is defined as:

Outputx(H) =


⋂

E∈Extx(H)

Concs(E) if Extx(H) 6= ∅

∅ Otherwise

Such that Concs(E) = {Conc(a) | a ∈ E}.

At first glance the plausible conclusions seem to be those facts which are
the conclusion of skeptically accepted arguments. In fact this is not always
the case, to see why we let us first introduce some notions.

De�nition 3.3.5 (Outputs). Let K = (F ,R,N ) be a knowledge base, H =
(A,X ) be its corresponding argumentation framework. We distinguish the
following outputs with respect to a semantics x.

• The skeptical output: Outputscx (H) = {Conc(a) | a ∈ Scx(H)}.

• The credulous output: Outputcrx (H) = {Conc(a) | a ∈ Crx(H)}.

• The rejected output: Outputrex (H) = {Conc(a) | a 6∈ Crx(H)}.

The skeptical output is the conclusions of all skeptical arguments. The
credulous output are those of credulous arguments and the rejected output
are those of the rejected arguments. It is clear that credulous output contains
all conclusions except of those of the rejected arguments.

Fact 3.3.1. Outputscx (H) ⊆ Outputx(H) ⊆ Outputcrx (H).

However, the statement Outputscx (H) ⊆ Outputx(H) means that there
are some conclusions which could be in Outputx(H) but not skeptical. They
are not strong enough to be skeptical and not weak as credulous. To show
why this happens, consider the following example.

Example 3.3.5. The following is an inconsistent knowledge base K where:

• F = {jaguar(T ), leopard(T )}.

• R = {jaguar(x)→ animal(x), leopard(x)→ animal(x)}.

• N = {jaguar(x) ∧ leopard(x)→ ⊥}.

We have the following Args(F):
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Figure 3.3: Plausible conclusions are not always skeptical. The gray-colored
arguments are the supporting arguments of the query Q = animal(T ).

a1 = ({jaguar(T )}, jaguar(T )) a2 = ({leopard(T )}, leopard(T ))

a3 = ({leopard(T )}, animal(T )) a4 = ({jaguar(T )}, animal(T ) ∧ jaguar(T ))

a5 = ({jaguar(T )}, animal(T )) a6 = ({leopard(T )}, animal(T ) ∧ leopard(T ))

The attack relation is drawn in Figure 3.3. Consequently, we get the
following Extx(H) such that x ∈ {s, p}:

E1 = {a1, a4, a5} E2 = {a2, a3, a6}

We have the following outputs: Scx(H) = ∅, thus Outputscx (H) = ∅. But still
Outputx(H) = {animal(T )}. Note that Outputcrx (H) = F ∪ {animal(T )}.

As one can see, no argument is skeptically accepted but yet the conclu-
sion Q = animal(T ) is plausible. This is due to the fact that Q is inferred
from all extensions by means of different arguments.

In order to capture such subtle difference let us define the notion of a
supporting argument. An argument a supports a query if and only if the
query is the conclusion of the argument a.

De�nition 3.3.6 (Support). Let H = (A,X ) be an argumentation framework
over an inconsistent knowledge base K and let Q be a query. An argument
a ∈ A supports the query Q if and only if Conc(a) = Q. We call a a
supporter or a supporting argument of Q. The set of all supporters of
a given query Q is denoted as S(Q).
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After introducing the notion of supporting arguments we can clarify the
issue of Example 3.3.5.

De�nition 3.3.7 (Universal output). Let K = (F ,R,N ) be a knowledge
base, H = (A,X ) be the corresponding argumentation framework and F ∈
C`∗R(F). The universal output of H is defined as follows:

Outputunx (H) = {F | F ∈ Outputcrx (H) and ∀E ∈ Extx(H), ∃a ∈ S(F ) such
that a ∈ E}.

This output corresponds to those conclusions that have supporting ar-
guments which are distributed over all the extensions. It is clear that the
skeptical output is included in the universal output.

Fact 3.3.2. Outputscx (H) ⊆ Outputunx (H).

Having the different outputs of the logic-based argumentation frame-
work, we can now define the acceptance of a query (or conclusion) as follows.

De�nition 3.3.8 (Query acceptance). Let H = (A,X ) be an argumentation
framework built over an arbitrary inconsistent knowledge base, Q be a query
and x be a semantics. Then, Q is:

• Skeptically accepted under x if and only if Outputscx (H) |= Q.

• Universally accepted under x if and only if Outputunx (H) |= Q.

• Credulously accepted under x if and only if Outputcrx (H) |= Q.

• Rejected under x if and only if Outputrex (H) |= Q.

Corollary 3.3.1. If Q is skeptically accepted then it is universally accepted.
The converse is false.

Let us see this on an example.

Example 3.3.6 (Cont'd Example 3.3.5). Let us consider F ′ = F∪{felidae(T )}.
We get Args(F ′) = Args(F) plus:

58



3.3. INSTANTIATING DUNG’S ABSTRACT FRAMEWORK

a7 = ({jaguar(T ), felidae(T )}, jaguar(T ))

a8 = ({jaguar(T ), felidae(T )}, jaguar(T ) ∧ felidae(T ))

a9 = ({jaguar(T ), felidae(T )}, felidae(T ) ∧ animal(T ))

a10 = ({jaguar(T ), felidae(T )}, jaguar(T ) ∧ felidae(T ) ∧ animal(T ))

a11 = ({jaguar(T ), felidae(T )}, animal(T ))

a12 = ({leopard(T ), felidae(T )}, leopard(T ))

a13 = ({leopard(T ), felidae(T )}, leopard(T ) ∧ felidae(T ))

a14 = ({leopard(T ), felidae(T )}, felidae(T ) ∧ animal(T ))

a15 = ({leopard(T ), felidae(T )}, leopard(T ) ∧ felidae(T ) ∧ animal(T ))

a16 = ({leopard(T ), felidae(T )}, animal(T ))

a17 = ({felidae(T )}, felidae(T ))

We have the following outputs:

• Outputscx (H) = {felidae(T )}.

• Outputunx (H) = {animal(T ), felidae(T ) ∧ animal(T )}.

• Outputx(H) = {felidae(T ), animal(T ), felidae(T ) ∧ animal(T )}.

The query Q1 = felidae(T ) is skeptically accepted and universally accepted.
The query Q2 = felidae(T ) ∧ animal(T ) is universally accepted but not
skeptically accepted. The query Q3 = jaguar(T )∧ felidae(T ) is credulously
accepted.

In the next subsection we characterize the output of logic-based argu-
mentation framework in attempt to give a formal ground for the concept of
explanation.

3.3.3 Characterizing the outputs

The universal and non-universal acceptance can be further characterized in
a precise way. The goal of introducing such characterization is to be able to
understand why a query is universally accepted or not. Consequently, to be
able to explain to the users why a query is (non)-universally accepted. Note
that we may omit in what follows the subscript that refers to the semantics
in the notation Extx(H) to mean stable or preferred.

De�nition 3.3.9 (Reduct of extension). Given an extension E ⊆ A and a
query Q. The reduct EQ ⊆ E of the extension E w.r.t the query Q is defined
as the non-empty intersection S(Q)

⋂
E. The reduct of the set of all exten-

sions Ext(H) with respect to Q is defined as Ext(H)Q = {EQ|E ∈ Ext(H)}.
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The reduct EQ of the extension E with respect to the query Q is defined
as the set of all supporters of Q which belong to E .

De�nition 3.3.10 (Complete reduct). The set of all reducts Ext(H)Q with
respect to a query Q is complete if and only if there exists no E ∈ Ext(H)
such that EQ /∈ Ext(H)Q.

This means that the set of all reducts is complete if it covers all the
extensions.

Example 3.3.7 (Cont'd Example 3.3.5). Let us see how we compute reducts
for the following queries:

• Consider Q1 = animal(T ) we get EQ1
1 = {a5, a4} and EQ1

2 = {a3, a6}.

• Consider Q2 = animal(T ) ∧ leopard(T ) we get EQ2
2 = {a6} and EQ2

1

does not exist.

Ext(H)Q1 = {EQ1
1 , EQ1

2 } is complete and Ext(H)Q2 = {EQ2
2 } is not be-

cause the latter does not cover the extension E1 as it has no reduct.

Using the notion of reducts we can establish the following relations with
query acceptance.

Proposition 3.3.3. Given a query Q. Then, the following statements hold:

1. Outputscx (H) |= Q ⇔ Ext(H)Q is complete and
⋂
Ext(H)Q 6= empty.

2. Outputunx (H) |= Q ⇔ Ext(H)Q is complete.

3. Outputcrx (H) |= Q ⇔ Ext(H)Q 6= ∅.
The symbol “⇔” refers to equivalence.

The equivalence statements define the three types of acceptance in terms
of the reducts of extensions. It is clear in the first statement that the inter-
section of reducts w.r.t Q corresponds to all skeptically accepted arguments
that support Q. The second statement stipulates that for a query Q to
be universally accepted it has to be supported from all possible extensions
(hence the completeness). The third statement dictates that a query Q is
credulously accepted if and only if it has some supporters in some extensions.

Still the characterization of universal acceptance is not precise enough to
give a complete account. Consider the set of all reducts w.r.tQ = animal(T )
which is {{a5, a4}, {a3, a6}} (Example 3.3.7). This set holds sufficient “rea-
sons” to believe that Q is universally accepted. However, it would have
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been sufficient to just have {{a5}, {a3}} or other combinations that keep in
a minimal way those supporters which preserve the existence of the query
Q in each extension.

In combinatorics and diagnosis theory this problem is known as the hit-
ting set problem (Reiter, 1987). It is also referred to as the transversal
problem in hypergraph theory (Eiter and Gottlob, 2002).

De�nition 3.3.11 (Hitting set). Given a collection C = {S1, ..., Sm} of finite
nonempty subsets of a set B (the background set). A hitting set of C is
a set A ⊆ B such that Sj ∩ A 6= ∅ for all Sj ∈ C. A hitting set of C is
minimal (w.r.t ⊆) if and only if no proper subset of it is a hitting set of C.
A minimum hitting set is a minimal hitting set w.r.t set-cardinality.

Finding one/all minimal/minimum hitting set is an interesting problem.
It has a relation with different problems in different areas. In what follows
we give a precise characterization of universal acceptance by means of the
hitting set problem.

De�nition 3.3.12 (Proponent set). A set of arguments S ⊆ A is a proponent
set of Q if and only if S is a minimal (w.r.t ⊆) hitting set of Ext(H)Q and
Ext(H)Q is a complete reduct.

We get the following characterization which is similar to the concept of
a complete base in Thang et al. (2009).

Proposition 3.3.4. Q is universally accepted ⇔ Q has a proponent set.

Example 3.3.8. Q = animal(T ) has 4 proponent sets S1 = {a5, a3}, S2 =
{a5, a6}, S3 = {a4, a3} and S4 = {a4, a6}.

A proponent set holds the smallest set of arguments which are distributed
over all extensions and support the query Q. So, if one extension does not
contain any supporter then the query is not universally accepted. The reason
for the absence of such supporter is what we call the presence of a block.
We follow the notion of a block from Modgil and Caminada (2009b) and
instantiate it in our setting. A block B is a set of arguments which are (1)
all credulously accepted, (2) attack all the supporters of Q, and (3) they
can all together be extended to form an extension.

De�nition 3.3.13 (Block). Let Q be a query and let C = {range−(a)|a ∈
S(Q)}. A set of arguments B ⊆ A is a block of Q if and only if:

1. B is a hitting set of C; and,
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2. There exists an admissible set B′ ⊆ A such that B ⊆ B′.

Note that a query may have more than one block.

Interestingly, a block is related to the hitting set problem. Informally,
we take all the supporters of the query Q and for each supporter we get its
attackers (i.e. range−(a)) then we look for those hitting sets (over all sets of
attackers) that can be extended to an extension, in other words those which
belong to the same admissible set. Note that while a block is necessarily a
hitting set it is not necessarily a minimal one.

The last requirement is very important as the following example shows.

Example 3.3.9. Consider again the query Q1 = animal(T ) of Example 3.3.7.
Let us compute its block(s):

• S(Q1) = {a3, a4, a5, a6}.

• range+(a3) = range+(a6) = {a1, a4}.

• range+(a4) = range+(a5) = {a2, a6}.

We get the following hitting sets: {a1, a6},{a1, a2},{a4, a6},{a4, a2}. Ob-
serve that none of them is considered as a block, because non of them can
be extended to form an extension. In fact, they violate the conflict-freeness
condition. While Q1 has no blocks, the query Q2 = animal(T )∧ leopard(T )
has two blocks {a1} and {a4}.

Since the concept of a block characterizes exactly non-universal accep-
tance, the following result is straightforward.

Proposition 3.3.5. A query Q has a block iff it has no proponent set.

Proponent sets and blocks can be seen as causes describing why a query
is universally accepted or not. They describe precisely the reasons behind
the acceptance or non-acceptance of the query. Moreover, if a query is
(not) universally accepted then there is always an explanation (block or
proponent set) to explain its state, which is an interesting feature. As block
and proponent set are set of arguments we call then One-shot Argument-
based Explanations.

After characterizing the outputs of argumentation frameworks in the
existential rules framework, we shift now to study the general properties of
such argumentation frameworks.
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3.3.4 Properties

In this subsection we provide some important properties for the class of ar-
gumentation we defined in this chapter. We investigate finiteness, coherence,
well-foundedness, relative groundedness and non-triviality.

Let us start with the following simple fact.

Proposition 3.3.6. If K is consistent then the corresponding argumentation
framework H has no attack and it produces only one complete extension
E = A which is grounded, preferred and stable.

In this thesis we are interested in the class of argumentation frameworks
that are built over inconsistent knowledge bases in the existential rule
framework and whose set of arguments is not empty. This class is denoted
as arg∃. When we write H ∈ arg∃ we mean that there exists an incon-
sistent knowledge base K such that H is its corresponding argumentation
framework.

It turns out that the argumentation frameworks of arg∃ enjoy the finite-
ness property. Finiteness is divided into two types, (1) finiteness of argu-
ments and (2) finiteness of the set of arguments. First, let us define the
notion of a finite argument:

De�nition 3.3.14 (Finite argument). An argument a is finite if and only if
Conc(a) is finite.

This means that the conclusion of the argument does not contain infinite
conjunctions. Note that, since Supp(a) is constructed from a finite set of
facts F , it is finite.

Proposition 3.3.7 (Finiteness). ∀H ∈ arg∃ the following hold: (i) ∀a ∈ A, a
is finite; and (ii) H is finite (thus finitary).

Proof (Sketch). (i) Let Conc(a) = α0 ∧ α2 ∧ . . . be infinite. By definition
∀αi ∈ {α0, α2, . . .}, αi ∈ C`∗R(Supp(a)). This means C`∗R(Supp(a)) is in-
finite. This is in contradiction with the assumption we have made in the
logical language section page 43 about the finiteness of the saturation. (ii) if
it were the case that H is not finite then A should contain infinitely many
arguments. This means we have arguments with infinite conclusions. This
is not the case from (i).

The first property ensures that there is no argument that contains infi-
nite conjunctions. This is very important for proving the finiteness of the
argumentation framework. Recall that finiteness requires that the set of ar-
guments of a given argumentation framework is finite. If we have no infinite
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arguments then the set of all arguments is bounded. The second property
dictates that argumentation frameworks of arg∃ are finite and finitary. Re-
call that finitary requires that the set of attackers for each argument is finite.
It is obvious that a finite argumentation framework is necessarily a finitary
one (Dung, 1995). This is due to the fact that the set of arguments is finite
therefore every argument would have a finite set of attackers.

Now we shift to prove the rest of the properties, we shall prove non-
triviality. To do so we need to show that there is always a non-empty
admissible set in the argumentation frameworks of arg∃. Next, we turn to
the property that stipulates that there is no rejected arguments in arg∃, we
prove such property by stating that every argument belongs to an admissible
set. To prove the two properties we need to show that there exists always
an argument that defends itself (guaranties the existence of non-empty ad-
missible set), then we show that every argument in arg∃ either it defends
itself or it is defend by another argument that eventually defends itself.

Proposition 3.3.8. ∀H ∈ arg∃, the argument a = (A,
∧
A) such that A is a

maximal consistent set of facts is an admissible set.

Proof (By contradiction). To show that {a} is admissible we need to prove
that whenever it is attacked then it defends itself. Let us proceed by contra-
diction. Assume that there exists an argument b that attacks a, that means
there exists h ∈ Supp(a) such that {Conc(b), h} is inconsistent, consequently
Supp(b) ∪ {h} is inconsistent.

Assume further that a does not attack b, then there exists no h ∈ Supp(b)
such that {Conc(a), h} is inconsistent. By maximality we conclude that
Supp(b) ⊆ A. But according to the conclusion above, Supp(b)∪{h} is incon-
sistent which is a contradiction with the fact that A is consistent.

As a result of this proposition we get the following.

Proposition 3.3.9. Let a ∈ A be an argument of the form a = (A,
∧
A) such

that A is a maximal consistent set of facts. Then, for all argument b such
that Supp(b) ⊆ Supp(a) then a defends b. Consequently, {b, a} is admissible.

Proof (Direct). If there exists an argument c such that c attacks b then
there exists h ∈ Supp(b) such that {Conc(c), h} is inconsistent, and since
h ∈ Supp(a) then c attacks also b. From Proposition 3.3.8 the argument a
defends itself from all attacks, hence a attacks c.

We have seen in Proposition 3.3.6 that argumentation frameworks over
consistent knowledge bases have always one non-empty extension under
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the preferred semantics, thus non-trivial. In what follows we prove that
when K is inconsistent (i.e. H ∈ arg∃) then H stays non-trivial.

Proposition 3.3.10 (Non-triviality). ∀H ∈ arg∃, Extp(H) 6= ∅.

Proof (Contradiction). Suppose that ∃H ∈ arg∃ such that Extp(H) = {{}}.
This means that there exists only the empty set as the admissible set of
H. This is in contradiction with Proposition 3.3.8 which states that the
argument a = (A,

∧
A) such that A is a maximal consistent set of facts is

admissible. Thus, there exists a non-empty admissible set.

From the proof of this proposition we can affirm easily that arg∃ con-
tains no argumentation framework with rejected arguments.

Proposition 3.3.11 (Rejected arguments). For all H ∈ arg∃:

AH =
⋃

E∈Extx(H)

E

Such that x ∈ {p, s}.

Proof . According to Proposition 3.3.9 for every argument b there exists an
argument a = (A,

∧
A) such that Supp(b) ⊆ Supp(a) and A is a maximal

consistent of facts where {b, a} is admissible. Therefore all arguments are
defended, hence there are no rejected arguments.

It means that all the arguments are credulously accepted under the pre-
ferred/stable semantics.

Coherent argumentation frameworks (denoted coherent) are very in-
teresting class of argumentation frameworks. This class received a particu-
lar interest in the community where many algorithms and proof procedures
have been developed for such class (Modgil and Caminada (2009b)). In what
follows we prove that arg∃ is within the class of coherent argumentation
frameworks. Note that this has been proven in Croitoru and Vesic (2013).

Proposition 3.3.12 (Coherence). arg∃ ⊆ coherent.

The coherence is very interesting as it reduces the complexity of the
skeptical preferred acceptance of arguments to the case of skeptical sta-
ble which is less demanding, i.e. from Πp

2-c to co-np-c. The next step is
to see whether the skeptical preferred/stable for arg∃ coincides with the
grounded acceptance. It has been proven in Croitoru and Vesic (2013) that
if an argumentation framework has no rejected arguments under the pre-
ferred semantics then it is relatively grounded. From Proposition 3.3.11 we
conclude the following:
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Proposition 3.3.13 (Relative groundedness). arg∃ ⊂ rgrounded.

This makes the complexity of skeptical preferred/stable decreases to the
complexity of acceptance under grounded semantics which is in p.7

The proper inclusion is due to the fact that arg∃ are not well-founded.
Recall that an argumentation framework is well-founded if and only if it is
acyclic (has no cycle); Doutre (2002). To prove that we need to show that
argumentation frameworks of arg∃ are cyclic (contain always cycles).

Lemma 3.3.1. Let K be the knowledge base of an argumentation framework
H ∈ arg∃. For all minimal conflicts C = S ∪ S′ of K, the attack between
a = (S,

∧
S) and b = (S′,

∧
S′) such that S and S′ are non-empty sets of

facts and |S| = |S′| = |C| − 1 is symmetric.

Proof . We show that the two arguments are valid and a attacks b and b
attacks a.

• It is clear that Supp(a) and Supp(b) are consistent because by definition
any subset of a minimal conflict is consistent (Definition 3.2.14, page
47).

• Let us prove that a attacks b. By definition there exists h ∈ S′ such
that C = S∪{h} (it complements S to form C). Consequently, S∪{h}
is inconsistent, in other words {Conc(a)∪ h} inconsistent, that means
a attacks b.

• Let us prove that b attacks a. By definition there exists h ∈ S such
that C = S′ ∪ {h}. Consequently, S′ ∪ {h} is inconsistent, in other
words {Conc(b) ∪ h} is inconsistent, that means b attacks a.

Proposition 3.3.14. ∀H ∈ arg∃,H are always cyclic.

Proof . It follows from Lemma 3.3.1 in the sense that for all H ∈ arg∃
there exists always a symmetric attack in X , consequently a cycle, therefore
H is cyclic.

The following proposition is immediate.

Proposition 3.3.15 (Well-foundedness). arg∃ ∩wfounded = ∅.

Figure 3.4 shows the relation between the class arg∃ and well-founded,
trivial and coherent classes.

7For complexity results see Chapter 2, Table 2.2, page 25.
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Figure 3.4: Relation between arg∃ and other classes.

3.3.5 Postulates satisfaction

In this subsection we prove that arg∃ comprises only argumentation frame-
works that satisfy the rationality postulates. These postulates ensure that
the output of the argumentation framework does not produce inconsisten-
cies. In Caminada and Amgoud (2007) a set of postulates have been pro-
posed for rule-based argumentation frameworks (i.e. frameworks that use
strict and defeasible rules). Then, in Amgoud (2014) a more general set
of postulates have been proposed for argumentation frameworks that are
grounded on classical logics (Tarski’s logics). In this thesis we are concerned
with the latter.

In what follows we recall the postulates presented in the beginning of
the section. Next, every postulate will be formally defined when we attempt
to prove it.
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(Rationality postulates Amgoud (2014) )

� (P1) Closure under C`: the set of conclusions that can be
drawn from any extension should be closed under C`.

� (P2) Closure under sub-arguments: if an argument is accepted
in an extension then so are all its sub-arguments.

� (P3) Consistency : the set of conclusions that can be drawn
from any extension should be consistent.

� (P4) Exhaustiveness: if an argument is accepted in an exten-
sion, then all its sub-parts should also be accepted in that ex-
tension

� (P5) Free precedence: any argument that is built only from the
inconsistency-free part of the knowledge base it should be in
every extension.

In Croitoru and Vesic (2013) direct consistency, indirect consistency and
closure of Caminada and Amgoud (2007, 2005) has been proven. In Amgoud
(2014), it has been shown that direct consistency and indirect consistency
coincide giving rise to Postulate P3. We start by proving P2 which will
provide with P3 the result that arg∃ satisfies strong consistency. Finally,
we prove P4 and P5. Since the preferred and stable coincide for arg∃,
throughout this section the set of extensions Ext(H) refers to the one under
the preferred semantics.

It has been shown in (Amgoud, 2014, Proposition 29) that argumentation
frameworks whose attack relation satisfies the following condition are closed
under sub-arguments:

• ∀a, b, c ∈ A such that Supp(a) ⊆ Supp(b) if c attacks a then c attacks
b.

Proposition 3.3.16. ∀H ∈ arg∃ the attack relation satisfies the condition
above.

Proof . If c attacks a then there exists h ∈ Supp(a) such that {Conc(c), h} is
inconsistent. Since Supp(a) ⊆ Supp(b) then h ∈ Supp(b) therefore c attacks
b.

Corollary 3.3.2 (Closure under sub-arguments). ∀H ∈ arg∃,∀E ∈ Ext(H):
if a ∈ E then ∀a′ ∈ A, a′ ∈ E where a′ is a sub-argument of a.
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Proof . Corollary of Proposition 3.3.16.

The argumentation frameworks of arg∃ satisfy strong consistency. Which
dictates that for every extension E , Base(E) is consistent. This property has
not been proven in Croitoru and Vesic (2013).

Corollary 3.3.3 (Strong consistency). ∀H ∈ arg∃, ∀E ∈ Ext(H), Base(E) is
consistent.

Proof . Corollary of P2, P3 and (Amgoud, 2014, Proposition 10) that dic-
tates that if an argumentation framework satisfies consistency and closure
under sub-arguments, then it also satisfies strong consistency.

We provide a proof for P4 (Exhaustiveness).8

Proposition 3.3.17 (Exhaustiveness). ∀H ∈ arg∃, ∀E ∈ Ext(H), ∀a = (H,C) ∈
A, if H ∪ {C} ⊆ Concs(E), then a ∈ E .

Proof . Assume that ∃a = (H,C) ∈ A such that H ∪ {C} ⊆ Concs(E) and
a /∈ E. This means that there exists an argument b ∈ E such that b attacks
a because E is a stable extension. Consequent, ∃h ∈ Supp(a) such that
{h, Conc(b)} is inconsistent. However, we know that Supp(a) ⊆ Concs(E)
and Conc(b) ∈ Concs(E). This indicates that Concs(E) is inconsistent which
is in contradiction with the Consistency postulate.

We finish the section by proving P5 (Free Precedence). To achieve that
we prove that the attack relation of H is conflict-dependent.

Lemma 3.3.2 (Con�ict-dependent). ∀H ∈ arg∃, ∀a, b ∈ A, if (a, b) ∈ X then
Supp(a) ∪ Supp(b) is inconsistent.

Proof . If a attacks b then there exists h ∈ Supp(b) such that {h, Conc(a)}
is inconsistent. Consequently, h ∪ C`∗R(Supp(a)) is inconsistent, there-
fore Supp(b) ∪ C`∗R(Supp(a)) is inconsistent, hence Supp(a) ∪ Supp(b) is
inconsistent.

The following proposition is from (Amgoud, 2014, Proposition 36).

Proposition 3.3.18. For all argumentation systems H = (A,X ) such that X is
conflict-dependent, H satisfies free precedence under grounded, ideal, com-
plete, semi-stable and preferred semantics.

8This proof has been written independently from the one of (Amgoud, 2014, Proof of
Proposition 14), page 36.
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This yields the following proposition.

Proposition 3.3.19 (Free precedence). ∀H ∈ arg∃,∀E ∈ Ext(H):

Args(Free(K)) ⊆ E .

Where K is the argumentation framework over which H has been built and
Free(K) is F \C for all C ∈ conflicts(K) and conflicts(K) is the set of
all minimal conflicts of K.

In the next section we show the relation between the output of argumen-
tation frameworks in arg∃ and CQA semantics. The goal is to show how
argumentation can explain answers under the CQA semantics.

3.3.6 Relation with consistent query answering

Given an inconsistent knowledge base K = (F ,R,N ), a repair is a maximal
(w.r.t ⊆) consistent set of facts F ⊆ F . We present the results of Croitoru
and Vesic (2013) that show that there is a correspondence between repairs
Repair(K) and the extensions Ext(HK) of argumentation frameworks of
arg∃ under the preferred (and stable) semantics.

Theorem 3.3.1 (Croitoru and Vesic (2013)). Let K be a knowledge base,
HK ∈ arg∃ its corresponding argumentation framework. Then:

Extp(HK) = {Args(P) | P ∈ Repair(K)}

After establishing the correspondence between the extension of preferred
semantics with repairs, let us show the equivalence between reasoning under
argumentation semantics and CQA semantics.

Theorem 3.3.2 (Croitoru and Vesic (2013)). Let K = (F ,R,N ) be a knowl-
edge base, let HK be the corresponding argumentation framework and let
Q be a query. Then:

• K |=CQA Q iff ∀E ∈ Extp(HK), E |= Q.

Example 3.3.10. Consider the knowledge base of Example 3.3.6. The repairs
Repair(K) are:

• P1 = {jaguar(T ), felidae(T )}

• P2 = {leopard(T ), felidae(T )}
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The extensions are:

• E1 = {a1, a4, a5, a7, a8, a9, a10, a11, a17}.

• E2 = {a2, a3, a6, a12, a13, a14, a15, a16, a17}.

We have the following equivalences:

• Q = felidae(T ) is accepted under CQA semantics.

• Q = felidae(T ) is universally accepted.

• Q′ = animal(T ) is accepted under CQA semantics but not skeptically
accepted. But it is universally accepted.

• Q′′ = jaguar(T ) is not accepted under CQA semantics and not uni-
versally accepted.

An important corollary of Theorem 3.3.2 is that CQA semantics and
universal acceptance are equivalent.

Corollary 3.3.4. A query Q is accepted under CQA semantics if and only if
it has a proponent set.

This gives us the possibility to use One-shot Argument-based Expla-
nations (blocks and proponent sets) of Subsection 3.3.3 to explain CQA
answering in existential rules. For instance to explain why Q′ is accepted
under CQA we use the proponent set “T is an animal because he is either
a jaguar or a leopard”. To explain why Q′′ is not accepted under CQA we
use the block “T is not a jaguar because it is possible that he is a leopard”.

3.4 Conclusion

In this chapter we have introduced argumentation theory in its abstract and
logical form. For the latter, we have considered the logic-based instantia-
tion of Dung’s abstract argumentation of Croitoru and Vesic (2013) that is
grounded on the existential rules framework.

For such instantiation, we have shown that the concept of skeptical ac-
ceptance of arguments does not necessarily yield all plausible conclusions.
In fact there are other conclusions which are plausible (belong to the output)
but their supporting arguments are not in all extensions. We proved that
the set of plausible conclusions contains skeptical conclusions that follow
from skeptical arguments and universal conclusions that are not necessarily
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conclusions of skeptically accepted arguments (Proposition 3.3.2). As the
characterization of skeptical acceptance is well-studied in the community, we
turned to universal and non-universal acceptance for which we have given a
precise characterization. The main results are :

• Proposition 3.3.4: a conclusion is universally accepted iff it has a pro-
ponent set. A proponent set is a minimal set of supporting arguments
that contains an argument from each extension.

• Proposition 3.3.5: a conclusion is not universally accepted iff it has a
block. A block is a set of arguments that can be extended to form an
extension and attacks all the supporters of the conclusion.

• The two problems are defined in terms of the hitting set problem.

• Blocks and proponent sets are in fact explanations for non-universal
acceptance and universal acceptance respectively. Since these expla-
nations are not interactive (not dialogical) they are referred to as One-
shot Argument-based Explanations.

After studying the properties of the output, we shifted in Subsection 3.3.4
to the study of the properties of the class of such argumentation frameworks,
i.e. the class arg∃. The main results that we have shown is that every
argumentation framework H ∈ arg∃ is:

• Finite: arguments are finite and the set AH is finite and the attack
relation is finitary.

• Coherent: the stable, preferred extensions coincide. As a trivial con-
sequence, semi-stable coincides too with stable and preferred.

• Not well-founded: the argumentation framework is not well-founded,
therefore the argument graph is not acyclic.

• Relatively grounded: the grounded extension coincides with the inter-
section of all preferred extensions.

• Non-trivial: the empty extension is never the only preferred extension
of H.

Next, we have proven that the instantiation does respect the augmented
rationality postulates of Amgoud (2014). Namely, closure under subargu-
ments, consistency, exhaustiveness and free precedence. Then we showed
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that these postulates are not respected under the naive semantics. However,
the satisfaction of these postulates under the preferred semantics naturally
yields9 to a full correspondence between the preferred extensions of HK and
repairs of K. In Subsection 3.3.6 we explored such correspondence which
has already been proven by Croitoru and Vesic (2013), this relation is in the
heart of our thesis because the correspondence between universal acceptance
and CQA semantics allows us to use the explanatory power of argumenta-
tion to explain CQA answers using One-shot Argument-based Explanations.
However, this type of explanation lacks interactiveness with the user and its
computation is based on the computation of extensions (which is computa-
tionally hard). In the next section we use another approach for explanation
which is dialogical (i.e. interactive) and does not necessitate the computa-
tion of extensions. We introduce Meta-level Dialectical Explanations which
are based on the concept of dialectical proof theories in argumentation.

9According to Croitoru and Vesic (2013); Amgoud and Besnard (2013); Vesic (2013).
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4
Meta-level Dialectical Explanations

In this chapter we are interested in the problem of universal and non-
universal acceptance in logic-based argumentation frameworks under the
preferred/stable semantics. We show in this chapter how this problem can
be solved through a dialogue game between an opponent and a proponent
over a given query. This dialogue results in what is called a dialectical proof
which is the meta-level dialectical explanation for the query in question.
The goal of proposing a dialectical proof theory is twofold: (1) provide a
computational procedure that decides query acceptance without the need to
compute extensions, and most importantly (2) provide a formal ground for
interactive explanations that overcome the limitations of one-shot argument-
based explanations. We start in Section 4.1 by an introduction and an infor-
mal description of dialectical proof theories for abstract argumentation with
a discussion on the existing dialectical proof theories. We show through a
critical example why the state-of-the-art dialectical proof theories cannot be
applied to our context. Then, in Section 4.2 we propose a dialectical proof
theory for universal and non-universal acceptance under the preferred/stable
semantics. Then, in Section 4.3 we explain how the proof theory applies on
a detailed example. In Section 4.4 we prove the soundness and complete-
ness of the theory and we study the dispute complexity of dialectical proofs
alongside other properties. Finally, in Section 4.5 we empirically evaluate
the effect of meta-level dialectical explanations on users with respect to dif-
ferent criteria. We report how they impact the accuracy of users when faced
with inconsistent situations. Moreover, we investigate how the users find
meta-level dialectical explanations with respect to clarity and intelligibility.

4.1 Introduction

Dialectical proof theories have their roots in the dialogical approach to logic
(Lorenz, 2001). In the Greek antiquity, logic was studied in a dialogical
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context where two parties exchange arguments over a central claim. In
modern logic, the dialogical approach or dialogical logics is used to provide
a game-theoretical semantics for logical systems. Precisely, they provide a
constructive proof for the notion of validity in classical or non-classical logics.
This proof is presented as a dialogue game between two parties arguing about
a thesis while respecting some fixed rules. The dialogue is adversarial where
one party plays the role of the defender of the thesis (proponent) and the
other argues against the thesis (opponent). Any dialogue ends after a finite
number of moves with a winner and a loser.

After the introduction of abstract argumentation framework in Dung
(1995), many attempts have been made to adapt this dialogical approach
to provide formal proof theories for abstract argumentation. It is often re-
ferred to as dialectical proof theories where the adjective “dialectical” is due
to the conversational aspect of the proof. Jakobovits and Vermeir (1999);
Prakken (2001) define, similarly to dialogical logic, a dialectical proof the-
ory as an argument game with a winning criterion alongside with a legal
move function that decides the allowed moves to be played. Given an ar-
gumentation framework, a semantics x and an argument a, the goal is to
prove whether the argument a is skeptically/credulously accepted under the
semantics x. We say a dialectical proof theory is sound if it proves only
skeptically/credulously accepted arguments (it does not prove what is false).
We say it is complete if it can prove every skeptically/credulously accepted
arguments (it proves all what is true).

The TPI (Two Party Immediate Response) procedure proposed in Vreeswik
and Prakken (2000) and further formalized in Dunne and Bench-Capon
(2003) is used for credulous and skeptical games in finite and coherent argu-
mentation frameworks where two players exchange arguments (moves) until
one of them cannot play. The justification state of the argument (skepti-
cal/credulous) is decided with respect to the wining criterion. The turn
in TPI-disputes shifts after one move with the move mi attacks the prece-
dent one (hence immediate response). Their dialectical proof theories are
sound and complete. In Cayrol et al. (2003), the same guideline is followed
but with a refinement on the size of the proof, where Cayrol et al. (2003)
produce shorter proofs than Dunne and Bench-Capon (2003). In Modgil
and Caminada (2009b) a different dialectical proof theory has been pro-
posed for skeptical acceptance where, instead of exchanging arguments the
proponent and the opponent exchange whole admissible sets. The goal is to
construct a block, which is an admissible set of arguments that conflicts with
all admissible sets around the argument in question (Modgil and Caminada,
2009b, Theorem 6.7). Following the same idea, Doutre and Mengin (2004)

76



4.2. UNIVERSAL ACCEPTANCE DIALECTICAL PROOFS

construct such block in a meta-argumentation framework within a meta-
dialogue where admissible sets are considered as moves, then the classical
credulous proof theory of Cayrol et al. (2003) is used as a sub-procedure to
proof skeptical acceptance. In Thang et al. (2009) a more general frame-
work has been provided which is sound for any argumentation framework
and it is complete for general classes of finitary argumentation frameworks
including the class of finite argumentation frameworks using the notions of
dispute derivation and base derivation. For skeptical preferred, the proof
theory proposes to find a base then check whether it is complete or not. A
base of a is a set of admissible sets that contain a such that whenever a is
in an extension then there is an admissible set in the base that belongs to
this extension. The base is complete if all extensions contain an admissible
set from the base.

When it comes to logic-based argumentation, the situation is quite differ-
ent. In logic-based argumentation we differentiate between the acceptance
of an argument and the acceptance of a conclusion. As mentioned in Chap-
ter 3, Example 3.3.5,, page 56 the universal acceptance of a conclusion does
not necessarily entail the skeptical acceptance of its argument(s), whereas
the skeptical acceptance of an argument necessarily entails the skeptical ac-
ceptance of its conclusion (consequently the universal acceptance). For this
reason, applying the already proposed dialectical proof theories will fail sim-
ply because they handle a different problem. In the next section, following
Dunne and Bench-Capon (2003) we propose a new TPI-like dialectical proof
theory for universal acceptance.

4.2 Universal Acceptance Dialectical Proofs

Given a queryQ and an argumentation frameworkH, the preferred universal
dialectical proof theory is a two-person argument game between a proponent
(PRO) and an opponent (OPP). PRO takes the position of supporting the
query Q while OPP takes the opposite. The proponent and the opponent are
engaged in an argumentation dialogue of precisely defined types of moves.
The goal is to determine at the end of the dialogue whether the query is
universally accepted or not. If the query is universally accepted (or not) the
dialogue is considered as a dialectical proof for its justification state.

Let us formally define what is a dialogue in this proof theory.

De�nition 4.2.1 (Dialogue). Let H = (A,X ) be an argumentation frame-
work. A dialogue based on H is a finite sequence dn = (m1, . . . ,mn) of
moves where each mj is either:
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• Support move: mj = support(a) such that a ∈ A (In this case we
denote Arg(mj) = a and Sp(mj) = support).

• Counter move: mj = counter(A) such that A ⊆ A (In this case
we denote Arg(mj) = A and Sp(mj) = counter).

• Retrace move: mj = retrace(A, i) such that A ⊆ A and i < j (In
this case we denote Arg(mj) = A, Sp(mj) = retrace).

Odd-indexed (resp. even-indexed ) moves are played by PRO (resp. OPP). We
denote by d · d′ and d · m the concatenation of the dialogues d and d′ and
the dialogue d with the move m respectively. The retrace move has a special
parameter i called the index (denoted as Idx(m)). The subscript of dn refers
to the stage of the dialogue. We may abuse notation and we write mi ∈ dn
to mean that mi is in dn.1

A dialogue is a sequence of moves with different types of moves respect-
ing a turn taking mechanism. The turn taking mechanism is simple and
deterministic where odd indexed moves are advanced by PRO while even in-
dex moves are advanced by OPP. The moves of the dialogue are defined in
terms of speech acts and content which can express, support, counter attack
or retrace. The move support(a) advances an argument a which supports
an arbitrary query. The move counter(A) counterattacks the position of
PRO by advancing a set of arguments. The move retrace(A, i) is used to
retrace to earlier stage in the dialogue and continue from thereafter. The
first move can only be played by PRO, whereas counter and retrace are
only employed by OPP.

In this dialectical theory, any dialogue starts by PRO advancing a support
move to support the query in question. Then, OPP presents an argument (or
a set) that attacks the previously advanced argument. Next, PRO try to
avoid this attack and reinstate the query using another argument which is
not attacked by the already advanced attackers. OPP in turn, tries to extend
the previous set of attackers so that it attacks all the supporters advanced so
far. When OPP fails to extend the set, he retraces back and chooses another
set of arguments and continues the dialogue from thereafter. By doing so
OPP is somehow trying to construct a set of arguments that attacks all the
supporters of the query Q. In other words, he is trying to build a block for
the query Q (cf. Definition 3.3.13, page 61).

Many questions can rise, for instance, what happens when OPP retraces?
would PRO play the supporters which were attacked before retracing or not?

1We may sometimes omit the subscript when it is not needed.
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what is the nature of the advanced sets of arguments in counter?

In order to answer these question (and others) we need to introduce a
control structure that keeps track of the state of the dialogue. This structure
will be used in defining the nature and legality of moves.

De�nition 4.2.2 (Dialectical state). Let dk be a dialogue at stage k. The
dialectical state of dk is a tuple δk = (πk, hk, θk, βk,∆k)

2:

• πk: the set of arguments available to PRO.

• hk: the set of arguments that have been played so far by PRO.

• θk: the set of arguments available to OPP.

• βk: the current block constructed by OPP.

• ∆k: the sets of arguments that have been shown to be not blocks.

d0 is the empty dialogue and δ0 is its initial dialectical state.

This state defines at any stage k of the dialogue dk the set of arguments
πk available to PRO that can be used to support the query Q. In the di-
alectical state, we find also the set hk which shows the arguments that have
been so far played by PRO. In addition, it presents the set θk of arguments
that can be used to attack the arguments previously advanced by PRO. βk
presents the currently constructed block. When OPP fails to extend the cur-
rent block to another that attacks all the previously played supporters, he
uses the retrace move. By doing so we need to keep track of the sets of
arguments that cannot be extended to a block. These are stored in ∆k.

Given a query Q, the initial state of the dialectical state is described as
follows:

• π0 = S(Q).

• h0 = ∅, θ0 = ∅, β0 = ∅, ∆0 = ∅.

Since the dialogue d0 has not yet been started, the set of available ar-
guments π0 for PRO ranges over all the possible supporters of the query Q.
The played arguments h0, the available arguments θ0, current block β0 and
∆0 are empty since the first move has not yet been uttered.

2To be able to understand the terms think of π as the first letter of proponent, h as
history, θ as opponent and β as block.
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The advancement of moves within the dialogue are usually controlled
by a legal move function (Modgil and Caminada, 2009b) which can be ex-
pressed in terms of rules, called dialogue rules. Every move depends on
certain preconditions about the actual dialectical state and the previous
move advanced by the other party. Every move also determines the possible
moves to be played next (postcondition rules).

Moves affect the dialectical states of the dialogue. In fact, we can see the
moves as transitions between possible dialectical states where a dialectical
state δk for a dialogue dk and a move mk+1 define a new dialectical state
δk+1. This is called the effect of the move.

In what follows we recall for each move its informal description and
we present the preconditions that should be satisfied so that the move is
considered legal to be played. We present then its effect on the dialectical
state and its postconditions.

Let dk be a dialogue and δk the current dialectical state of dk. Let
mk+1 be a move and δk+1 be the dialectical state of the dialogue dk+1 =
dk ·mk+1 after playing the move mk+1. Note that for a given move we index
preconditions (resp. effects) by the first letter of the speech act of the move
followed by P (resp. E) and subscripted by a number.

Move:
mk+1 = support(a).

Description:
this move advances an argument that supports the query in question.

Preconditions:

(SP1) k + 1 is odd.

(SP2) a ∈ πk.

Postconditions rules:
the next move can be either counter or retrace.

Effects:

(SE1) πk+1 = πk/a.

(SE2) hk+1 = hk ∪ {a}.
(SE3) θk+1 = range−(hk+1).

(SE4) βk+1 = βk.

(SE5) ∆k+1 = ∆k.
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This move is advanced by PRO, therefore k + 1 should be odd (SP1). It
advances an argument a that supports the query Q which is not attacked
by the current block βk presented so far (SP2). To respond to this move, in
the next turn OPP should either use counter or retrace.

As one may notice, the support move mk+1 changes the set of available
arguments πk+1 of PRO. In fact a supporting argument seizes to be available
once it is played (SE1). In contrast it is added to the history hk+1. The
support move alters the set of available arguments of OPP by adding all
arguments that can be played in the future by OPP (SE3).

As indicated in the postconditions of the support move, a counter move
is allowed to be played next.

Move:
mk+1 = counter(A).

Description:
this move advances a set of arguments that attacks all the arguments
presented so far.

Preconditions:

(CP1) k + 1 is even.

(CP2) A = βk ∪ S such that S ⊆ θk (i.e. A extends βk by S).

(CP3) A attacks hk and belongs to (or is) an admissible set.

(CP4) there is no A′ ∈ ∆k such that A′ ⊆ A.

Postconditions rules:
the next move should be support.

Effect:

(CE1) πk+1 = πk/range
+(A).

(CE2) hk+1 = hk.

(CE3) θk+1 = θk.

(CE4) βk+1 = A.

(CE5) ∆k+1 = ∆k.

This move is advanced by OPP therefore k + 1 should be even (CP1).
It tries to extend the current block βk to another set of arguments that
attacks all the supporters presented so far (CP2 and CP3). OPP does so by
incorporating arguments from θk. The new current block (βk+1 = A) or one
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of its subsets should have not been already proven to be not a block (CP4).
After advancing mk+1, πk+1 contains all the arguments from πk+1 except
those which are attacked by A (CE1), thus they are spared from further
use. Note that the spared arguments may be radded afterwards, this is
particularly the case when we use retrace as we shall mention later.

The set of available moves θk+1 of OPP contains all the arguments that
attack the supporting arguments that can be played by PRO (CE3). Since
A attacks all the supporting arguments so far provided, it is considered the
current block (CE4). The set ∆k+1 and hk+1 are left unchanged (CE2 and
CE5).

After a support move, OPP can also play a retrace move. This is partic-
ularly needed when he is unable to play a counter move. The formal details
about the retrace move are presented hereafter:

Move:
mk+1 = retrace(A, i).

Description:
this move retraces to the recent stage i from which it can extend the
current block of i.

Preconditions rules:

(RP1) k + 1 is even, i < k + 1 and i is odd.

(RP2) there is no set of arguments S ⊆ θk such that βk∪S is (or belongs
to) an admissible set and attacks hk.

(RP3) A = βi ∪ S such that S ⊆ θi.
(RP4) A attacks hi and belongs to (or is) an admissible set.

(RP5) there is no A′ ∈ ∆k such that A′ ⊆ A.

Postconditions:
the next move should be support.

Effect:

(RE1) πk+1 = πi/range
+(A).

(RE2) hk+1 = hi.

(RE3) θk+1 = θi.

(RE4) βk+1 = A.

(RE5) ∆k+1 = ∆k ∪ βk.
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When OPP cannot extend the current block βk with arguments from θk
(RP2), he should retrace back and choose other arguments. The index i
(which should be odd) determines the point of a support move from which
OPP can mount another line of attack. By starting a new line of attack, OPP
should opt for a new block that attacks all the supporters from Stage i up
to the Stage 1 (RP3) by extending βi from θi. The new block βk+1 = A or
one of its subsets should have not been already proven to be not a block
(CP5).

When the retrace move is advanced, πk+1 is reset to its ancient state i
in addition to excluding all the arguments that can be attacked afterwards
(RE1). The current block βk+1 is set to A (RE4), while ∆k+1 is set to ∆k∪βk
(RE5), i.e. the block of stage k which OPP could not extend.

If one of the preconditions is not satisfied, OPP go further and look for
other stages where he can mount a new attack. OPP follows the following
procedure:

Procedure 4.2.1. Let dn be a dialogue and mn be the last played move such
that Sp(mn) = support. If OPP cannot play a counter move mn+1 then it
tries to play the retrace move mn+1 as follows: 3

1. do y = y − 1 until my = retrace(A, x) or my = support(a) or
y = 0.

2. if my = retrace(A, x) then:

(a) If there does not exist a move mn+1 = retrace(A′, x) that re-
spects the preconditions then set y = x and goto 1 else play mn+1

and exit.

3. if my = support(a) then:

(b) If there does not exist a move mn+1 = retrace(A′, y) that re-
spects the preconditions then goto 1 else play mn+1 and exit.

OPP starts by looking for the most recent retrace or support move (line
1). If a retrace move is found (line 2) then it tries to play a retrace to
stage x that respects the preconditions (line a) by looking exhaustively for
all possible sets A′ that makes the move respect the preconditions. If he
succeeds to play such move, the procedure exits. Otherwise it continues the
search by setting y to x. If a support move my is found (line 3) then it plays

3Note that y is initialized to n and x < y, and a, A are arbitrary (set of) arguments
respectively.
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a retrace with index to y. Otherwise, it continues the search for other moves
from which OPP can play.

To better illustrate the point let us apply the procedure on an example.

Example 4.2.1. Consider the dialogue example in the table of Figure 4.1. Let
us see how OPP has played the retrace move at stage (8). Note that this is
just an illustrative example and does not correspond to a real dialogue.

At stage (7), PRO played the argument c. OPP tried to play a counter move
but he failed to do so. Now, OPP will follow Procedure 4.2.1 to play a retrace
move. At this moment n = 7, y = n. OPP gets into the loop at line (1).
When y = 6, OPP encounters the retrace move m6 = retrace({p, r}, 3),
he tries to play a retrace move m8 = retrace(A′, 3) but it seems that he
couldn’t play such move because there is no A′ that makes the retrace move
respect the preconditions. OPP continues this time from 2 (y is set to 3 in
line (b) and it gets decreased at line (1)) where he skips the counter move
and stops at stage (1) where a support move m1 = support(a) is found. At
this point, OPP plays the retrace move m8 = retrace({s}, 1) which seems
to respect the preconditions. Afterwards, the dialogue continues normally by
PRO until it stops at stage (12) with OPP playing the last move.

In fact, the dialogue represents a compact representation of a tree where
retrace moves represent branching points. This tree is called the associated
dialogue tree and it is defined as follows.

De�nition 4.2.3 (Dialogue tree). Given a dialogue dn = (m1, . . . ,mn), its
dialogue tree is a labeled tree T (dn) = (V,D) such that V is a set of nodes
and D is a binary relation over V defined as follows:

• V = {Arg(mi) | mi ∈ dn}.

• D = {(Arg(mi−1), Arg(mi)) | i 6 n and mi 6= retrace(A, j)} ∪
{(Arg(mj), Arg(mn)) | i 6 n and mi = retrace(A, j)}.

Arg(m1) is the root node of the tree. Note that |T (dn)| = |V| refers to
the size of the tree which is equal to the number of its nodes.

It is a tree where nodes are arguments or set of arguments played by
both parties. Odd-level nodes are played by PRO and even-level nodes are
played by OPP.

Fact 4.2.1. Le dn be a dialogue, T (dn) its associated dialogue tree and
Pre(T (dn)) the pre-order traversal of T (dn). The following hold:
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i Move

1 support(a)

2 counter({p})

3 support(b)

4 counter({p, q})

5 support(c)

6 retrace({p, r}, 3)

7 support(c)

8 retrace({s}, 1)

9 support(d)

10 counter({s, t})

11 support(e)

12 retrace({s, v}, 9)

Figure 4.1: The left table presents the dialogue, the right figure shows its
associated dialogue tree.

1. T (dn) is unique.

2. |dn| = |T (dn)|.

3. Pre(T (dn)) = Seq(dn).

Such that Seq(dn) = (c1, . . . , cn) is the sequence of the content of moves
played in dn, i.e. ci = Arg(mi).

Example 4.2.2. The tree in Figure 4.1 represents the associated tree T (d12)
of the dialogue d12 (shown in the table). The pre-order traversal of T (d12)

• Pre(T (d12)) = (a, {p}, b, {p, q}, c, {p, r}, c, {s}, d, {s, t}, e, {s, v})

is the same as the sequence of content that can be extracted from d12. Also,
observe that |T (d12)| = 12.

The dialogue terminates when no one can further the dialogue with
moves.
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De�nition 4.2.4 (Termination and wining). Let dk be a dialogue and δk the
current dialectical state of dk. The dialogue dk is a terminated dialogue if
and only if the player to play has run out of moves. The winner of the
dialogue is Player(mk) (the player of the last move).

It is easy to determine the winner of a dialogue from its tree.

Property 1. Le dn be a terminated dialogue, T (dn) its associated dialogue
tree. The following statements are equivalent:

• The length of the right-most path is odd.

• PRO is the winner of dn.

Proof (Sketch). It is clear that the last move is corresponds to the leaf node
in the right-most path of the tree. If the length of the path is odd then PRO

is the last one who played, consequently PRO is the winner.

After having defined the theory, let us define the concept of a dialectical
proof.

De�nition 4.2.5 (Dialectical proof). Given a query Q and a terminated di-
alogue dn. We call dn a dialectical proof for the universal acceptance of Q
if and only if PRO is the winner, otherwise it is called a dialectical proof for
non universal acceptance of Q.

In the next section we give a detailed example of universal acceptance
and non-universal acceptance on a real argumentation framework.

4.3 Example

Consider the argumentation framework H of Figure 4.2.(a). This argumen-
tation framework is coherent. Suppose that the gray-colored arguments
supports a query Q (i.e. S(Q) = {a, d, e, l, h}). In what follows, we show
how the query Q is universally accepted by providing a dialectical proof.

The dialectical proof is presented in Table 4.1 and its associated dialogue
tree is shown in Figure 4.2.(b).

At stage (0) the dialectical state is initialized as defined previously. The
dialogue starts at stage (1) by PRO playing the supporter a from the available
supporters in π0. When PRO plays a, the argument a is moved from the
available supporters π1 to the history of advanced arguments by PRO h1.
The set of available attackers θ1 becomes the set of all attackers of π1 ∪ h1.
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i Move πi hi θi βi ∆i

0 - {a, d, e, l, h} ∅ ∅ ∅ ∅

1 s(a) {d, e, l, h} {a} {g, i} ∅ ∅

2 c({g}) {e, l, h} {a} {g, i} {g} ∅

3 s(l) {e, h} {a, l} {g, i, c, b} {g} ∅

4 c({g, c}) {e, h} {a, l} {g, i, c, b} {g, c} ∅

5 s(e) {h} {a, l, e} {g, i, c, b, k} {g, c} ∅

6 r({i}, 1) {d, e, l, h} {a} {g, i} {i} {β5}

7 s(d) {e, l, h} {a, d} {g, i, f, j, b} {i} {β5}

8 c({i, f}) {l, h} {a, d} {g, i, f, j, b} {i, f} {β5}

9 s(h) {l} {a, d, h} {g, i, f, j, b, k} {i, f} {β5}

10 c({i, f, k}) {l} {a, d, h} {g, i, f, j, b, k} {i, f, k} {β5}

11 s(l) ∅ {a, d, h, l} {g, i, f, j, b, k, c} {i, f, k} {β5}

12 r({i, j}, 7) {e, l, h} {a, d} {g, i, f, j, b} {i, j} {β5, β11}

13 s(h) {e, l} {a, d, h} {g, i, f, j, b, k} {i, j} ∆12

14 c({i, j, k}) {l} {a, d, h} {g, i, f, j, b, k} {i, j, k} ∆12

15 s(l) ∅ {a, d, h, l} {g, i, f, j, b, k, c} {i, j, k} ∆12 ∪ {β14}

Table 4.1: A dialectical proof for the query Q. For space reasons s(), c()
and r() denote support(), counter() retrace() respectively.

This means when the turn of OPP comes at stage (2) he shall choose from
this set. At stage (2) OPP advances a counter move with argument g that
attacks all the advanced supporters (i.e. h1 = {a}). After advancing such
move, the argument d is removed from the set of available arguments π2

since g attacks d, thus PRO will not be able to play d. Observe that j is
removed also from θ2 because it does not attack any argument in π2 ∪ h2.
Since {g} attacks all the supporters advanced so far, it becomes the current
block, i.e. β2 = {g}. At stage (3), PRO responds by a support move with
the argument l that is not attacked by the current block. At stage (4), OPP
extends the current block β3 = {g} by the argument c which attacks l. Note
that {g, c} is a subset of the admissible set {g, c, e}. Now, β4 = {g, c} attacks
all the presented supporters. At stage (5), PRO presents another unattacked
supporter (i.e. e). Note that the choice of the supporters is arbitrary.

At stage (6), OPP could not extend the current block β5 into another that
attacks e too. Therefore OPP plays a retrace move r({i}, 1) that can be read
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as “retrace to stage (1) and play a counter move with {i}”. By doing so,
OPP creates another line of dialogue and rolls back all the changes that have
been made on the dialectical state up to the stage (1). That is why at stage
(6) the sets π6, h6 and θ6 are set to π1, h1 and θ1 respectively. The current
block is changed to {i} and the ancient block β5 is moved to ∆6 = {β5}.
The former would say that this set or any of its supper sets will never form
a block. This is important to avoid unnecessary moves. The same thing
happens at stage (12) where OPP retraces to stage (7) because he could not
retrace to the stage (9). The current block β12 is set to {i, j} which extends
β7.

The dialogue continues until stage (15) where PRO plays a support move
with argument l against which OPP could neither attack nor retrace to pre-
vious stages. At this stage the dialogue ends and PRO is declared as the
winner.

The associated tree in Figure 4.2.(b) shows clearly the relation between
the advanced arguments played by both parties. The tree in Figure 4.3.(b)
is another dialogue tree for another dialogue where PRO is the winner. This
can be easily observed since all leaf nodes are within an odd layer.

Let us now take an example where of another query Q′ which is not
universally accepted. The supporters are S(Q′) = {a, d, e, h}. The dialogue
is presented in Table 4.2 and its associated dialogue tree is shown in Figure
4.3.(a). In this example, OPP has been able to construct the block β6 =
{k, i, j} in the last move which attacks all the supporters. This made PRO

unable to continue the dialogue. Note that we do not allow retracing for
PRO because one block is sufficient to prove the unacceptability of the query.

i Move πi hi θi βi

0 - {a, d, e, h} ∅ ∅ ∅

1 s(h) {a, d, e} {h} {k, f, b} ∅

2 c({k}) {a, d} {h} {k, f, b} {k}

3 s(a) {d} {a, h} {k, f, b, g, i} {k}

4 c({k, i}) {d} {a, h} {k, f, b, g, i} {k, i}

5 s(d) ∅ {d, a, h} {k, f, b, g, i, j} {k, i}

6 c({k, i, j}) ∅ {d, a, h} {k, f, b, g, i, j} {k, i, j}

Table 4.2: A dialectical proof for the non-universal acceptance of Q′. Note
that we omit ∆i as it is always empty in this example.
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(a) The argumentation framework. (b) The dialogue tree.

Figure 4.2: The circles are the extensions presented in an increasing order
with E1 being the inner circle.

(a) Non-universal acceptance.
(b) Universal acceptance

Figure 4.3: The associated dialogue tree.
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The question that one should ask is how we can be sure that if a query
is not universally accepted then OPP will always win. The same thing when
the query is universally accepted and PRO is the winner. In the next section
we prove the completeness and soundness of the proof theory and present
other interesting properties.

4.4 Properties

In this section we look at which proprieties our dialectical proof theory
satisfies. Namely, finiteness, soundness and completeness. Next we shift to
studying the dispute complexity defied in Dunne and Bench-Capon (2003)
of dialectical proofs.

4.4.1 Finiteness, soundness and completeness

As indicated in Amgoud et al. (2013); Johnson et al. (2003), finiteness or
termination is an important property for any dialogue, since a possibly in-
finite dialogue will fail to meet the intended goal, i.e. provide a proof in
a finite way. In what follows we show how our dialectical theory produces
always finite dialogues.

To establish such property we need to show that for any dialogue d its
associated dialogue tree is finite. Such result can be established by showing
that the height of the tree is finite and that for each node the number of its
children is finite.

Lemma 4.4.1. Let H be an argumentation framework4 and D∞ be the set
of all possible dialogues over H. Given T (d) = (V,D) of any d ∈ D∞ the
following hold:

1. ∃k ∈ N such that Height(T (d)) 6 k.

2. ∀ v ∈ V, ∃l ∈ N such that |C(v)| 6 l.

Such that Height(T (d)) is the height of the tree T (d) and C(v) is the set of
all child nodes of v.

Proof . Let us suppose that Height(T (d)) is infinite, and let P be the longest
path in T (d) starting from the root node. This means either there are in-
finitely many supporting arguments used in P , or there are some infinity

4Throughout the chapter, this refers to argumentation frameworks as defined in Chap-
ter 3.
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repeated supporting arguments used in P . The first one is impossible since
we are dealing with finite argumentation frameworks (the set of all argu-
ments is finite). The second is impossible since once an argument is played
it cannot be advanced afterwards in the same path (see SE1 of support
move).

Let us suppose that |C(v)| is infinite. This means that either (i) v is a
supporting argument and it has infinitely many attacker; or (ii) v contains
arguments that are advanced to attack previous supporters. The first case
is impossible since the argumentation framework is finite, and the second
is impossible since if it were the case then PRO would be allowed to retrace
against counter moves, which is forbidden in our framework.

In Amgoud et al. (2013) an additional constraint has been added to
finiteness, i.e. the finiteness of the moves’ contents. This constraints insures
that the arguments advanced within the dialogue are finite. In our context
we distinguish two cases, (i) the argument in a support moves should be
finite, and (ii) the set of arguments advanced in a counter move should
be finite too. Fortunately, the two cases are verified in our argumentation
framework because as shown in Chapter 2 the set of arguments A for any
argumentation framework over a possibly inconsistent knowledge base is
finite and the set of attacker for a given argument is finite. We get the
following result on finiteness.

Theorem 4.4.1 (Finiteness). Let H be an argumentation framework and
D∞ be the set of all possible dialogues over H. Then, for every d ∈ D∞,
∃k ∈ N such that |d| 6 k.

Proof . Let us suppose that d is infinite. This means, either (i) Height(T (d))
is infinite; or (ii) there is a node in T (dn) with infinitely many child nodes.
From Lemma 4.4.1, the two cases are impossible.

Finiteness is not sufficient alone as a desirable property for a dialectical
proof theory. After all, if a dialectical proof theory gives finite dialogues
but incorrect results then such proof theory would be useless. Soundness is
the property that insures that the proof theory gives only correct results.
In other words, if one has a dialectical proof for universal acceptance (resp.
non-universal acceptance) of a query then the query should be universally
accepted (resp. not universally accepted).

Before proceeding to soundness let us show that the dialectical proof
theory is consistent in the sense that there is no two dialogues about a
query Q such that PRO wins one and loses the other. Put differently, if one

91



CHAPTER 4. META-LEVEL DIALECTICAL EXPLANATIONS

of the participant wins a dialogue about a given query Q then we are sure
that he will win all the other dialogues about Q.

Proposition 4.4.1. Let Ω(H,Q) be the set of all terminated dialogues about
Q in H and let d ∈ Ω(H,Q). Then, if d is won by PRO (resp. OPP) then so
is all d′ ∈ Ω(H,Q).

Proof . Suppose that d is won by OPP and there exists another dialogue d′

that is won by PRO. This means that OPP has failed to construct a block in
d′′. This means that either (i) there is no block, or (ii) the Procedure 4.2.1
is not exhaustive. The former is in contradiction with the fact that OPP has
won d therefore a block does exist. The latter is in contradiction with the
evident fact that the procedure indeed tries all possible moves.

This property is very important since we do not want to have a dialec-
tical proof theory that is contradictory. It turns out that this property is
important for soundness. In what follows soundness is characterized by the
existence of one winning dialogue (by PRO or OPP).

Theorem 4.4.2 (Soundness). Given a dialogue dn about the query Q, if dn
is won by PRO then Q is universally accepted.

Proof . Let us proceed by contradiction. Suppose that dn is won by PRO

but Q is not universally accepted. On the one hand, recall that if Q is not
universally accepted then there exists a block B against all Q’s supporters.
On the other hand, if PRO has won dn then OPP could not find any block that
attacks all supporters advanced in dn. This means that either (i) OPP search
was not exhaustive or (ii) there is no such block. As one can see, (ii) is in
contradiction with the assumption and (i) is in contradiction with the fact
that the Procedure 4.2.1 is exhaustive.

If the dialectical proof theory is sound but does not provide dialectical
proofs for all universally (resp. not universally) accepted queries then it
would be incomplete. In what follows we provide a proof for completeness.

Theorem 4.4.3 (Completeness). Given a query Q. If Q is universally ac-
cepted then PRO wins any dialogue about Q.

Proof . By contradiction, if Q is universally accepted and PRO loses then
OPP has constructed a block βn for Q. This means that Q is not universally
accepted, which is a contradiction.
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4.4.2 Dispute complexity

In this subsection we are interested in the question of how many moves the
dialogue would contain for a query (at best-case) to establish its universal
acceptance (non-universal acceptance). Dunne and Bench-Capon (2003)
have introduced the so-called dispute complexity for a given argument in a
given argumentation framework. We adapt this definition to our context and
we define the dispute complexity for a given query over a given instantiated
argumentation framework as follows.

De�nition 4.4.1 (Dispute complexity). Let H be an argumentation frame-
work and Q be a query. Its dispute complexity δ(H,Q) is defined as follows:

δ(H,Q) = min(|d| : d is a terminated dialogue about Q in H)

It is read as the dispute complexity of the query Q in the argumentation
framework H.

The dispute complexity is the minimal number of moves that can be
used to prove that Q is universally accepted or not universally accepted.
Dunne and Bench-Capon (2003) have given an exact characterization of
such complexity for credulous acceptance by considering as an input the
argumentation framework and all admissible sets. Our goal in what follows
is to propose some bounds for such complexity in universal (or non universal)
acceptance. To proceed we need to recall the minimum hitting set problem.

De�nition 4.4.2 (Minimum hitting set). Given a collection C = {S1, ..., Sm}
of finite nonempty subsets of a set B (the background set). A hitting set of
C is a set H ⊆ B such that Sj ∩H 6= ∅ for all Sj ∈ C. A minimum hitting
set of C is the smallest hitting set for C with respect to set cardinality.

In Definition 3.3.13, page 61 we have seen that a block of a given query
is necessarily a hitting set.

Notation 4.4.1. Let Q be a query, H an argumentation framework such
that Q is not universally accepted in H and C = {range−(x) | x ∈ S(Q)}:

• HS(H,Q) denotes the set of all hitting sets of C.

• MHS(H,Q) denotes the set of all minimal hitting sets of C.

• BS(H,Q) denotes the set of all blocks of Q.

• MinBS(H,Q) denotes the set of all minimum blocks of Q.

93



CHAPTER 4. META-LEVEL DIALECTICAL EXPLANATIONS

• The block number of Q in H is the size of the minimum block:
τ(H,Q) = min(|B| : B ∈ MinBS(H,Q)).

• The hitting set number is the size of the minimum hitting set of C:
α(H,Q) = min(|S| : S ∈ MHS(H,Q)).

The block number corresponds to the minimum block which is the small-
est block (w.r.t set-cardinality) among all blocks. Note that it is not nec-
essary that every minimum hitting set of C is a minimum block, because a
minimum block imposes that its members have to belong to the same admis-
sible set (see Example 4.4.1 below). Therefore it is possible to have a block
which is minimum but does not correspond to any minimum hitting set. In
contrast, a minimum block has to be a hitting set. We get the following
straightforward relations:

Fact 4.4.1. The following statement hold:

• BS(H,Q) ⊆ HS(H,Q).

From this fact we can easily deduce that the block number can be equal
or greater than the hitting set number of a query in an argumentation frame-
work.

Corollary 4.4.1. τ(H,Q) > α(H,Q).

In the context of a dialogue about a query Q, the minimum block repre-
sents what the opponent would play in order to finish the dialogue as fast as
possible. It means that the opponent will not use counter moves that might
be avoided. Therefore, the dispute complexity of non-universal acceptance
can be bounded by such number.

Theorem 4.4.4. For any terminated dialogue d about Q in an argumenta-
tion framework H where Q is not universally accepted:

δ(H,Q) = 2× τ(H,Q).

This theorem shows that given a query Q the complexity of the dispute
in an argumentation framework is equal to the double of the block number.
This is explained as follows, if the size of the minimum block B equals n then
at each stage OPP will extend his current block by advancing one attacker
at each stage. Therefore, for each support move we will have a counter
move that extends the current block by one argument. When the current
block reaches the size n, that means OPP has played all the arguments of the
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minimum block, PRO will have no supporting argument to advance, thus the
dialogue terminates after 2×n stage. Note that if we allow the extension of
the current block with more than one argument, which is not the case, then
it is possible for OPP to play the whole minimum block in the first counter
move, this would make the dialogue terminates after 2 moves.

Example 4.4.1. Consider the example in Table 4.2, page 88.

• S(Q) = {a, d, e, h}.

• the set of all sets of attackers C is as follows:

1. range−(a) = {i, j}.
2. range−(d) = {g, j, b, f}.
3. range−(e) = {b, k}.
4. range−(h) = {b, k, f}.

The following minimum hitting sets are candidate blocks:

1. B1 = {b, i}.
2. B2 = {j, b}.

As one can see these minimum hitting sets do not belong to any admis-
sible set since they are not conflict-free. Hence the minimum blocks will
have sizes of at least 3. Therefore, the following are minimum blocks
(among others):

1. B3 = {k, i, j}.
2. B4 = {j, f, k}.
3. B5 = {i, f, k}.

In the dialogue d6, B3 has been constructed. We can see clearly that:

δ(H,Q) = 2× 3 = 6.

A direct result of the theorem is the following.

Corollary 4.4.2. Let d be the shortest dialogue for the non-universal accep-
tance of Q. The associated dialogue tree T (d) is a chain.

This result is straightforward since OPP will attack all supporters without
any need to retrace, hence there will be no branching in the associated
dialogue tree (see Figure 4.3.(a)).
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Let us turn to the dispute complexity for universal acceptance. As we
have seen in Chapter 2, proponent sets also have a strong relation with
minimal hitting sets, in fact they are minimal hitting set over the reduct
of extensions (see Definition 3.3.12, Chapter 3). We define similarly the
proponent number and the attack degree of a query in an argumentation
framework to be able to bound the dispute complexity of its universal ac-
ceptance.

Notation 4.4.2. Let Q be a query and H an argumentation framework such
that Q is universally accepted in H.

• the proponent number is the size of the minimum proponent set:
ρ(H,Q) = min(|S| : S is a proponent set of Q in H).

• the attack degree of Q in H: deg(H,Q) = max(|range−(a)| : a ∈
P(Q)) such that P(Q) is the set all supporting arguments that belongs
to at least one minimum proponent set.

The proponent set is a minimal set of supporting arguments which covers
the whole extensions. A minimum proponent set is the smallest proponent
set with respect to set cardinality. When PRO is engaged in a dialogue he
always uses the set of all supporters S(Q). It is obvious that a proponent set
(minimum or not) can replace S(Q) since it represents all what PRO needs
to establish the universal acceptance of Q.

Proposition 4.4.2. Let P be a proponent set of a given query Q in an argu-
mentation framework H. Let us change the rules of the dialogue described
earlier so that PRO plays only from P instead of S(Q). Then, the soundness
and completeness are preserved.

The proposition is straightforward, because if there is no P the dialogue
will not start and the query will not be accepted. If P exists then there is no
block that can attack all members of P . Certainly, it is not intuitive to start
with a proponent set because the goal of the dialogue is to establish whether
such set exists or not. However, this result is very important to determine the
smallest dialogue to prove Q, consequently to bound the dispute complexity.

It is obvious that dialogues where PRO plays with minimum proponent
sets are shorter than all other dialogues. Because in the former dialogues PRO
will play only the support moves that are needed to terminate the dialogue.

Proposition 4.4.3. Let δ(H,Q) be the dispute complexity of the query Q in
H. Let Θ(H,Q) be the size of the shortest dialogue where PRO plays only
with a minimum proponent set. Then,
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Figure 4.4: A worst-case associated dialogue tree with k = 3. Gray-colored
nodes are support move nodes while black-colored nodes are counter move
nodes.

δ(H,Q) 6 Θ(H,Q).

But this claim is not precise enough to serve as an upper bound. Actu-
ally, we need to bound the quantity Θ(H,Q). To do so, one has to see what
would be the worst-case size of such quantity.

If we imagine the associated dialogue tree of the shortest dialogue, the
worst-case for such quantity would be that at each support node we would
have k child with k being the worst-case number of attackers, which corre-
sponds to the attack degree of the query Q in H. This tree is similar to the
one in Figure 4.4 (called the worst-case associated dialogue tree). We have
the proponent number is 4 (number of gray nodes) and k = 3, therefore
every support node has exactly 3 children, whereas every counter move has
exactly one child. It is clear that to compute the worst-case quantity that
bounds Θ(H,Q) one needs to compute the number of nodes of the worst-case
optimal associated dialogue tree. Therefore, we get the following theorem:

Theorem 4.4.5. For any dialogue d aboutQ in an argumentation framework
H where Q is universally accepted:

δ(H,Q) 6 2× kh/2+1 − 1

k − 1
− 1

Such that k = deg(H,Q) and h = 2× (ρ(H,Q)− 1).

The quantity h is the height of the worst-case optimal associated dialogue
tree and k = deg(H,Q) is the worst-case branching factor. Consider the
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example of Figure 4.4, the dispute complexity is bounded by the number of
nodes in this tree:

2× 36/2+1 − 1

3− 1
− 1 = 1 + 3 + 3 + 9 + 9 + 27 + 27 = 79.

Let us see how we compute the upper bound of the dispute complexity
on a real example.

Example 4.4.2. Consider the example of Figure 4.3.(a) where we consider
another query with S(Q′′) = {a, d, e, l, h}∪{k} such that k is also a supporter
of Q. Note that we add k here to make the computation easier.

• the query Q′′ has two minimum proponent sets: P = {P1, P2} and
P1 = {k, h}, P2 = {k, e}.

Let us compute the upper bound for the dispute complexity of Q′′.

δ(H,Q′′) 6 2× kh/2+1 − 1

k − 1
− 1

Such that:

• the proponent number ρ(H,Q′′) = 2.

• the height of the worst-case associated dialogue tree h = 2×(ρ(H,Q′′)−
1) = 2× (2− 1) = 2.

• The query has two minimum proponent sets P = {{k, h}, {k, e}}. The
attack degree of Q′′ is max(1, 2, 3) = 3 for k, e, h respectively.

Therefore,

δ(H,Q) 6 2× 32 − 1

3− 1
− 1

δ(H,Q) 6 7

The worst-case associated dialogue tree is presented in Figure 4.5.(a).
The shortest dialogue is presented in Figure 4.5.(b). The real dispute com-
plexity is equal in this case to:

δ(H,Q) = 5 < 7

In the next section we turn to the practical effects of meta-level dialectical
explanations where we study their explanatory power and their effects on
users.
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(a) The worst-case associated dialogue
tree for Q.
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(b) The associated dialogue tree for the
shortest dialogue.

Figure 4.5: The two associated dialogue trees.

4.5 Effects of Meta-level Dialectical Explanations

The goal of meta-level dialectical explanations is to help the user to un-
derstand query entailment in inconsistent knowledge bases. In our case
meta-level dialectical explanations are dialectical proofs of universal and
non-universal acceptance. In this section we want to see whether these ex-
planations would achieve such goal or not. As understanding is a vague
concept and sometimes subjective. We focused on measuring the effect of
Meta-level Dialectical Explanations on the accuracy (when answering certain
questions) and the subjective evaluation of the clarity of explanations. Our
claim is that if understanding has really taken place then the users would be
more accurate in answering some questions and would appreciate better the
meta-level dialectical explanations. As we will explain later, the experiment
has been conducted on two groups, one has received meta-level dialectical
explanations and the other has received one-shot argument-based explana-
tions. One-shot argument-based explanations are those which explained
Definitions 3.3.12 and 3.3.13 (page 61). Recall that a one-shot argument-
based explanation for the non-universal acceptance of a query is a block,
and a one-shot argument-based explanation for the universal acceptance of
a query is a proponent set.

4.5.1 Method

In experimental settings within-subjects design is commonly used. In this
design every participant is subjected to every single treatment one after an-
other. Next, we compare the results for each treatment. This helps in elim-
inating participants individual differences. However, the problem with such
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design is the carryover effects where treatments can influence each other.
To avoid such problem, between-subjects design is used where participants
are divided into two (or more) groups, a control group and a treatment
group(s).5 Like that every participant is only subjected to a single treat-
ment. In our experiment we choose the between-subjects design to avoid
the carryover effects. One disadvantage of this design is the possibility of
having individual differences. To minimize this effect we conducted the ex-
periment with students from the same class. Let us see more details about
the experiment.

Objective. The goal is to show the effect of meta-level dialectical expla-
nations and one shot explanations on user’s understanding of query entail-
ment in inconsistent knowledge base under CQA. Our hypothesis is that
meta-level dialectical explanations help better understanding the process of
entailing a query from an inconsistent knowledge base and this would have
a positive effect on accuracy, time and explanations’ evaluations.

Subjects. The experiment is conducted with 34 subjects with an average
age of 19. The subjects are second year computer science students at the
university and they are not familiar with logic and argumentation. Therefore
it is safe to assume that their abilities are similar. The experiment has taken
place in IUT Montpellier during the last week of May 2016.

Materials and procedure. We developed a web application to perform
the experiment.6 Subjects are split into two equal groups (17 per group) with
a random assignment. The control group (Group OE) and the treatment
group (Group DE). Since the subjects are not familiar with logical formulas,
knowledge bases are presented in a textual form by staying as faithful as
possible to the underlying logical formalism (i.e. they contain facts, rules
and constraints). Each fact, rule and negative constraint has been expressed
in plain French text (e.g. a negative constraint: “a person cannot wear
sunglasses and protective glasses in the same time”).

All the subjects are presented with 7 different descriptions of certain
situations containing inconsistencies (Figure 4.6 in ‘Situation’). To avoid
the effect of a priori knowledge, these situations where fictitious. For each
situation all subjects are presented with a query (called normal query) and

5a.k.a independent measures design.
6The platform is available at http://cloud.lirmm.fr/. It is programmed by Abdel-

raouf Hecham.
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its answer over the situation in question (we have in total 7 normal queries
for 7 situations). The difference between the two groups is that one group
(Group DE) has received only meta-level dialectical explanations and the
other (Group OE) has received only one-shot argument-based explanations
for the 7 queries (Figure 4.6 in ‘Query and Explanation’). To variate the
type of queries, 4 out of 7 are not universally accepted and the rest are
universally accepted. Each subject is asked to do two things:

• Evaluate the explanations on the following scale: “not clear at all”,
“not clear”, “clear”, “so-so”, “very clear” (Figure 4.6 in ‘How do you
find the explanation?”).

• Answer by yes or no about the acceptance of a test query and give a
justification for the answer. Note that we do so to test whether he/she
really understood how (non-)universal query acceptance works.

In each group, the subject starts randomly with a situation as shown in
Figure 4.6. The subject is given an unlimited time to understand the answer
of the normal query (with the aid of the explanation) and to give his/her
evaluation of the explanation. At this point, the test query is hidden, and
when the subject clicks on ‘Show test query’ the test query is shown and
the subject is asked to answer by yes or no in a time frame of 2 min. Next,
he/she is asked to provide a justification in another 2 min. The justification
is used to insure that the subjects answer seriously to the test query. Then
he/she proceeds sequentially as described above until he/she terminates all
the 7 situations. Once the subject terminates a situation he/she can never
return and read or alter his/her answers or justifications. Note that the
subjects cannot know whether their answers are right or wrong.

4.5.2 Results and analysis

Three variables have been considered, the accuracy of answers for test
queries, the time taken to answer them and the scale of the evaluation of
the explanations.We investigate the difference between the two groups with
respect to these variables to show the effect of meta-level dialectical expla-
nations on the subjects. In what follows we give the results for each variable
with the discussion of the result.

4.5.2.1 Accuracy

In the accuracy we are interested in knowing the average accuracy of each
subject in answering test queries. It is defined as the proportion of right
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Figure 4.6: A screen shot of the experiment platform with a meta-level
dialectical explanation (Group DE). Note that the platform is originally in
French.
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Figure 4.7: A screen shot of the experiment platform with a one-shot
argument-based explanation (Group OE).
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answers among the total answers of test queries (i.e. 7). After computing
accuracy for each subject we compute the average accuracy of each group.
Our hypothesis is that:

Group DE (Meta-level Dialectical Explanations) has a better accu-
racy than Group OE (One-shot Argument-based Explanations).

Table 4.3 shows the average accuracy for each subject in each group. An
overall look shows a close accuracy within groups and a significant differ-
ence between groups. This is confirmed by an independent-sample Mann-
Whitney U test to check the positive effect of dialectical explanations on
the subject’s accuracy (p-value = 0.002), we can see that dialectical expla-
nations are associated with an improved accuracy (group DE mean=0.77,
group OE mean=0.63).7 The mean is read as: on average, subjects in Group
DE get 77% of the answers for test queries correct and on average subjects
in Group OE get 63% of the answers correct. By computing the median on
the number of correct answers per subject we find that for Group DE on
average, subjects get 6 out of 7 correct answers while subject of Group OE
get 4 out of 7 correct answers. The results in the table are ordered, we can
observe that the accuracy is better in absolute term in Group DE. One can
observe for instance that the third in Group DE is at least as good the first
one in Group OE.

To confirm the significance we ran a chi-square (χ2 = 5.801, p-value=0.016
< 0.05) which indeed has shown a significant difference between Group DE
and Group OE. Table 4.4 shows the contingency table of correct and incor-
rect answers for each group. We can observe that the number of correct
answers for Group DE is bigger than the one of Group OE. The same thing
can be observed for the number of incorrect answers which is almost the
half of those of Group OE. In conclusion, the data validates the hypoth-
esis as it shows in general that explanations (dialectical or one-shot) are
helpful in improving accuracy. However, it tells more specifically that di-
alectical explanations contribute better to this improvement than one-shot
argument-based explanations.

7Mann-Whitney U test is a statistical hypothesis test which tells whether the means of
two groups are significantly different from each other. The p-value refers to the probability
that the difference we are observing is not significant (i.e. due to chance). The lower it is
the more significant the difference is. It should be less than 0.05. This test is used because
our data is not normally distributed the student t-test is used when the distribution is
normal.
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Group DE Group OE

1 1 0,85

2 1 0,85

3 0,85 0.71

4 0,85 0.71

5 0,85 0.71

6 0,85 0.71

7 0,85 0.71

8 0,85 0.71

9 0,85 0.57

10 0.71 0.57

11 0.71 0.57

12 0.71 0.57

13 0.71 0.57

14 0.71 0.57

15 0.71 0.42

16 0.42 0.42

17 0.42 0.42

Avg 0,77 0.63

Std 0.16 0.13

Table 4.3: Average accuracy per subject for each group. Please note that
the experimental design is between-subjects that means the accuracies in
the same row are for different subjects.

4.5.2.2 Answer time

The time variable here is considered with respect to the rapidity of answering
test queries. Our hypothesis is that:

In the presence of Meta-level Dialectical Explanations, subjects of
Group DE would understand better than those of Group OE (One-
shot Argument-based Explanations). As a consequence, Group DE
answer time would be shorter than the one of Group OE.

An independent-sample t-test shows no significant difference (p(33) =
-1.4739, p-value = 0.07744 > 0.05) with Group DE mean = 10.9 sec and
Group OE mean = 16.1 sec, a difference of approximately 6 sec which does
not validate the hypothesis. An interpretation of this non-significance is
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Correct Incorrect Total

Group DE 92 27 119

Group OE 75 44 119

Total 167 71 238

Table 4.4: Contingency table of accuracy for Group DE and Group OE.

that many factors are included which make the difference seems to be a mere
chance rather than a real impact of the type of explanation. For instance, the
subject can be prudent therefore he/she would take more time in verifying
the response. This could remarkably result in a delay of answering test
queries.

4.5.2.3 Evaluation of explanations

In this variable we look at any difference between the evaluation of expla-
nations by subject. Our hypothesis is that:

Meta-level Dialectical Explanations are more intelligible than One-
shot Argument-based explanation.

Recall that each subject in each group has been asked to evaluate the
explanation he/she received on a scale of 1 to 5 (i.e. “not clear at all”, “not
clear”, “so-so”,“clear”, “very clear”) with 1 being “not clear at all” and 5
as “very clear”. Each subject has evaluated 7 explanations, giving 119 data
entries for each group.8 Since the data is ordinal (i.e. ranks) we performed
an independent-sample Mann-Whitney U test (U=5553.5, p-value = 0.0041
< 0.05) which shows a significant difference between Group DE and Group
OE (median Group DE = clear, median Group OE = so-so). We ran a
chi-square (χ2 = 23.1768, p-value=0.0001 < 0.05) which has also shown a
significant difference between the two groups. Figure 4.8 shows the bar chart
of the evaluations for each group. The graph shows that for Group DE the
number of not clear at all and not clear is significantly less than those of
Group OE. Moreover, although being close on so so and clear, Group DE
differs significantly on very clear. In conclusion, the data point to the fact
that Meta-level Dialectical Explanation are more intelligible than One-shot
Argument-based Explanations which validates the hypothesis.

8Number of subjects in each group multiplied by the number of explanations, i.e. 17
× 7=119.
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Figure 4.8: The bar-chart of the evaluation of explanations for Group DE
and Group OE.

4.5.3 Post-hoc analysis

In this subsection we are interested in looking at the data and extract some
recurring patterns. Although these patterns were not predicted to occur a
priori to the experiment, we find it important to report them and give some
interpretations.

Working on the same data entries we looked at the justification length
variable for each group. First we looked at the distributions of justification
length for each test query in each group. So, we have a total of 7 test queries
for which the answer should be justified. Therefore, we get 7 justifications
per person. This makes a total of 119 data entries for each group. We looked
first at the average length of justifications in Group DE and Group OE. An
independent-sample Mann-Whitney U test (U = 4284.5, p-value= 0.00012
< 0.05) shows a significant difference between the groups with respect to the
lengths. The mean for Group DE is 89.31 (standard deviation 57.39) and
for Group OE is 64.92 (standard deviation 44.46). Figure 4.9 shows the box-
plot of the two groups. As one can notice from the plot and the standard
deviations, the distribution of lengths in Group DE is more dispersed than
Group OE where more points above 150 are found in Group DE.
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Figure 4.9: Box plot for each group where points represent justification’s
length. Precisely, each point is the length of a justification for a test query.
Total data entries for each group is N=119. The dashed line is the mean
89.31 for Group DE and 64.92 for Group OE.
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To have more insight on justifications’ length we looked at the average
length per test query for each group. That means we computed for each
test query the average length of justifications provided by the subjects in
each group.9 Figure 4.10 gives the bar-chart for each test query. We ran
an independent-sample Mann-Whitney U test to see whether the difference
is significant. The result gives a p-value equals to 0.013 (N=7) which is
significant. One notable observation is the difference between the averages of
DE and OE for Q5 which is remarkable. After observing data, we concluded
that the subjects of Group OE in Q5 followed the same pattern (length
and structure) of the explanation they had received for the normal query
5. In fact, the normal query 5 has the shortest one-shot argument-based
explanation (26 characters) among all 7 normal queries. Whereas, it has a
relatively long meta-level dialectical explanation (515 characters). To give
more insight on that point, Table 4.5 shows the normal query 5 and test
query 5 alongside some justifications by different subjects from Group OE.

Normal query 5: Is Jude wearing sunglasses?

Answer: No

One-shot explanation: Because Jude is a puma

Test query 5: Is Jude wearing running shoes?

Answer: No.

Subject’s A justification: Because Jude is a puma. (15 sec)

Subject’s B justification : No, because Jude is a puma. (11 sec)

Subject’s C justification : Jude is a serpent. (9 sec)

Table 4.5: Situation 5 with some samples of justifications. The seconds refer
to the taken time to write the justification by the subjects of Group OE).

Although other subjects in Group OE have answered with longer justi-
fications (for different test queries), in the overall all of them have answered
with relatively short justifications compared to Group DE. In what follows
we give two hypotheses to explain why the average length for Group OE
is bigger than Group OE. We give some future directions to verify such
hypotheses and some threat to validity.

9In fact, justifications are attached to the answers of the test queries, but for brevity
we refer to test queries instead of their answers as it is unambiguous.
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Figure 4.10: A bar-chart showing averages of justification length per test
query for each group. The averages are computed over a total data entries
of N=119 for each group.
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Hypothesis 1
Subjects provide justifications with length proportional to the length
of the explanations they receive.

In this hypothesis we claim that the subjects when they receive short
(resp. long) explanations they reply with short (resp. long) justifications.
This happens because they are just following what the experiment provides.
Therefore, the length of justification is not related to the type of explanation
but rather to its length. Our data cannot serve as an evidence to validate
the hypothesis because of the risk of having individual differences. To val-
idate such hypothesis one has to augment the number of subjects and test
queries and vary the length of explanations. In addition, a within-subject
design would be more appropriate where the same subjects undergo the
same experiment under two conditions, i.e. with one-shot argument-based
explanations and with meta-level dialectical explanations. By doing so, we
would be sure that the length is not due to some differences between subjects
since each subject will be observed under two conditions.

Another alternative hypothesis is that the type of explanation would
influence the length of justification.

Hypothesis 2
Subjects who received Meta-level Dialectical Explanations understood
well the explanations therefore they try to better justify by providing
as much information as possible.

Although a quantifiable measure is not defined, we observed in the justi-
fications of Group DE some kind of elaboration which is absent in Group OE.
This elaboration aims at making the justification as clear as possible. For
instance, take the test query 5 presented above in what follows we present
some justifications from Group DE.

• Justification of subject E: Jude does not wear running shoes because
it is possible that Jude is a serpent and given that Jude cannot be a
puma and a serpent so Jude does not wear running sh. (60 sec)

• Justification of subject F: Jude can be a serpent. Except that a serpent
does not wear running shoes. But Jude can be a puma. So as we are
not sure, it is safe to say that she is not wearing running shoes. (50
sec)
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This pattern is common among subjects of Group DE for all test queries.
We can see that it is more elaborated and logical. The subjects in the two
justifications above have taken all the time they need to provide a concise
justification. In fact they reached the time limit which is 60 sec. One can
see that subject E could not even finish the phrase due to time limit (“sh”
should be “shoes”). However, this evidence is not enough to validate the
hypothesis. Actually, we still need a within-subjects experiment to be able
to draw more reliable conclusions.

To conclude the section, the experiment we have carried on shows that
meta-level dialectical explanations (compared to one-shot explanations) have
a positive impact on accuracy. Moreover, they are judged to be more
clear than one-shot argument-based explanations. However, the experiment
shows that dialectical explanations do not have a significant impact on the
time of response to test queries.

4.6 Conclusion

In this chapter we have provided a dialectical proof theory for universal ac-
ceptance in the preferred/stable semantics. We have proved its completeness
and soundness. We have also shown that such theory is consistent and does
not provide contradictory results.

• Theorem 4.4.1 (Finiteness): the dialogues of the dialectical proof the-
ory always terminate.

• Proposition 4.4.1: there is no two dialectical proofs for Q where one
of them is won by PRO and the other is won by OPP.

• Theorem 4.4.2 (Soundness): when PRO wins (resp. loses) then Q is
universally accepted (resp. not universally accepted).

• Theorem 4.4.3 (Completeness): when Q is universally accepted (resp.
not universally accepted) then PRO wins (loses).

We have also studied the dispute complexity of dialectical proofs and we
have provided the following results:

• Theorem 4.4.4: given a non-universally accepted query Q in an ar-
gumentation framework H then OPP will establish its non-universal
acceptance in a dialogue of size equals to 2× τ(H,Q).
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• Theorem 4.4.5: given a universally accepted argument Q in an argu-
mentation framework H then PRO will establish its universal accep-
tance in a dialogue of size no bigger than 2 times the number of nodes
in the worst-case associated dialogue tree of Q.

A comment about these results is in order. It is clear that the bounds
proposed for the dispute complexity of (non-)universal acceptance are es-
timated in terms of the proponent and the block numbers. Unfortunately,
these numbers are not given as inputs and they should be computed. It
is obvious that computing such numbers is hard to compute, in fact they
are equivalent to finding a minimum proponent/block for the query, which
would solve the problem in the first place. The good news is that these
numbers are related to the hitting set problem, therefore if one can estimate
the cardinality of the minimum hitting set we can easily estimate the propo-
nent or the block number by just considering the number of arguments and
attack degree as inputs in (non-)universal acceptance. This can be achieved
by using the results from Eustis (2013) on the independence number in hy-
pergraphs which is the complement of the hitting set number (also known
as the transversal number).

On the practical side, we have evaluated the effect of meta-level dialecti-
cal explanations on users. We have found that while they have no significant
effect on answer time, they have indeed a clear effect on the understanding of
query acceptance which results in an improvement of accuracy. The experi-
ment has also shown that meta-level dialectical explanations are clearer than
one-shot argument-based explanations. The post-hoc analysis revealed an
interesting pattern about the justification length and structure. It has shown
that subjects who received meta-level dialectical explanations provided, on
average, lengthy justifications with concise logical structure. Whereas those
subjects who received one-shot argument-based explanations gave, on aver-
age, shorter justifications without a logical structure.

Dialectical proof theories have an interesting explanatory power, they
exhibit the reasoning procedure in a dialogical form between a proponent and
an opponent. In interactive systems, a dialectical proof theory can be used to
explain entailment of queries in inconsistent knowledge bases where the user
can play the role of the proponent or the opponent in order to understand
entailment. However, this type of explanations is not sufficient when the user
asks for domain-specific explanations. More precisely, explanations about
the content of the domain represented within the knowledge base. In the
next chapter we present a formal dialogue model of explanations equipped
with argumentative and explanatory speech acts and a formal protocol.
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5
Object-level Dialectical Explanations

In this chapter we are interested in object-level dialectical explanations. As
opposed to meta-level dialectical explanations, object-level dialectical expla-
nations are domain-specific explanations which are meant to use the domain
knowledge stored in the knowledge base to answer the user’s requests for ex-
planations. These explanations are not “one-shot” but rather an exchange
in form of a dialogue (hence dialectical) between the User and the Reasoner
to arrive at the goal of understanding transference. In Section 5.1 we start
by a simple overview on dialogue models developed in the literature. Then,
in Section 5.2 we give a motivating example that presents the general skele-
ton of an explanation dialogue that we aim at formalizing. In Section 5.3 we
present how the state of the art explanation dialogue model fails to capture
certain desirable aspects. For that matter, in Section 5.4 we propose a di-
alogue model for explanations called EDS. We formally define its protocol’s
syntax and semantics and we investigate the role of commitments in such
dialogue and their relation to termination and success. In Section 5.5 we
discuss how this dialogue model can be extended with argumentative facul-
ties so that it can account for users’ objections against explanations. Next,
in Section 5.6 we provide the formalization of the motivating example in the
dialogue model EDS. Finally, in Section 5.7 we present a use case within the
DUR-DUR project that shows how object-level dialectical explanations can
be used in knowledge acquisition and inconsistency resolution.

5.1 Introduction

Communication takes a big part in human-human interactions. Dialogue
lays in the heart of such communication. In dialogues, humans take turn in
uttering natural language sentences with some preset goals. One may say
a joke to soften the mood or advance an argument to convince the hearer.
Different sentences, or let us say utterances, perform different speech acts
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(Austin, 1975). These speech acts produce, under specific circumstances,
changes in the observable world and the mental state of the hearer. For
instance, the utterance “the drink is really cold!” is performing the speech
act of complaint in a winter day. This speech act may affect the observable
world by making the hearer bring the speaker another drink (a hot one) and
may have an impact on the hearer’s mental state by affecting his decision
to not take the same drink. The utterance “the Moon is made of green
cheese” is an assertive speech act where the speaker commits himself to the
truthfulness of his statement. Humans utter different combinations of speech
acts in response to previous speech acts advanced by the other participant in
the dialogue. The exchange of such utterances according to a role-governed
way (a protocol) constitutes a dialogue. Dialogue modeling is a subject
of study in many domains like Linguistics, Natural Language Processing,
Spoken Dialogue Systems and Multi-agent Systems, to name just a few.

In Multi-agent Systems, a formal dialogue model is a mathematical for-
malization that aims at capturing different aspects of natural dialogues.
Dialogue may differ in nature with respect to certain criteria. (Walton and
Krabbe, 1995, p. 66) have established a topology of dialogue types where
they have classified dialogues with respect to the following criteria:

• The initial situation of the dialogue: it is the situation that pro-
ceeds the commencement of the dialogue.

• The participant’s individual goal: the goal of each participant
behind entering the dialogue.

• The main goal of the dialogue: it is what the dialogue is set to
solve or to achieve. Note that the participants may have goals which
are different from the main goal of the dialogue. One may get into a
persuasion dialogue just to reveal the position of the other participant
and not to convince him.

Three notable dialogues are well-studied in the literature, i.e. information-
seeking, inquiry and persuasion.1 In information-seeking dialogues, the ini-
tial situation is characterized by a personal ignorance where one participant
lacks information and asks the other about it. In inquiry dialogues, the
participants are found in a general ignorance about a proposition (or a hy-
pothesis) and they collaborate to prove or disprove this proposition. In

1Other dialogues are also studied in the literature but they are out of the scope of the
thesis (e.g. deliberation , negotiation, discovery, etc.).
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type initial situ-
ation

participant’s goal main goal

Information-
seeking

Personal

ignorance

Gain, pass on,

show, or hide

personal knowledge

Spreading

knowledge and

revealing positions

Inquiry
General

ignorance

Find a proof or

destroy one
Growth of knowledge
& agreement

Persuasion Conflict of
opinions

Persuade other party Resolve or clarify is-
sue

Explanation Personal lack
of under-
standing

Understand something transfer of under-
standing

Table 5.1: The three dialogues from (Walton and Krabbe, 1995, p. 66).
Note that Explanation dialogue does not figure in the topology.

persuasion dialogues, the initial situation is a conflict of opinion, the partic-
ipants undertake the dialogue to persuade one another, and the main goal
of the dialogue is the resolution of the conflict. Table 5.1 summarizes the
major differences between these three dialogues.

The topology in general lacks an important dialogue type, i.e. explana-
tion dialogues. In this type of dialogues one party tries to explain something
to the other party. Recently, Walton has proposed a new dialogue that aims
at capturing explanation dialogues in a series of papers (Walton, 2004, 2007,
2011, 2016). He has proposed two dialogue models, i.e. CE in (Walton, 2007)
and Explan in (Walton, 2011, 2016).

The initial state of an explanation dialogue is the presence of an event,
action or phenomenon which is accessible to both participants (factual). One
of the participant (the explainee) cannot understand such fact, therefore he
seeks understanding by asking for explanation(s) from the other participant
(explainer) who is assumed to have a complete understanding of the fact
in question. The main goal of the dialogue is to help the explainee to
understand something he does not understand. To give an example, imagine
a person A who has just arrived at a city. He gets out in a cloudy day and he
sees that the sky is snowing but the snow is not accumulating on the ground,
he asks another person B who sees the same thing and who happens to be
a meteorologist. A requests an explanation from person B by saying “why
it is snowing while there is no snowflakes on the ground?”. After that,
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B provides an explanation by saying “Snow forms when the atmospheric
temperature is at or below freezing. When snow reaches the ground and
the ground temperature is above freezing, snowflakes will begin to melt. As
a general rule, snow will not form if the ground temperature is 5 degrees
Celsius”.

As one may notice here this dialogue is authoritative. Person B has
the authority over A. This makes it different from persuasion dialogues
where authority is absent. Moreover, the information “it is snowing” and
“the snow is not accumulating on the ground” are true and accessible to
both parties. The subject of the dialogue is not whether it is accumulating
or not but rather why it is not accumulating? Note here that the request
for an explanation does not ask whether this is true or not, or what is the
support or the justification of the statement. This differentiates explanation
dialogues from persuasion and inquiry dialogues. In persuasion the goal is
to persuade the other participant in an adversarial way. In inquiry the goal
is proving or disproving such statement in a collaborative way.

Information-seeking dialogues are very similar to explanation dialogues.
The difference is very subtle but rather crucial. In our interpretation, in an
information-seeking dialogue the informee asks the informer some queries
that demand information. So, what the informer says will have an im-
pact on the informee epistemic state where he shifts from ignorance to non-
ignorance. Moreover, once this exchange is realized the work of the informer
is considered done. In an explanation dialogue, the explainer answers a
query that asks for an explanation. Explanations convey information, how-
ever they convey more than a mere information, they convey understanding.
Another subtle point is that at the time of requesting an explanation the
explainee is not ignorant because he knows that it is snowing and the snow
is not accumulating. In fact, he lacks understanding. So what the explainer
says will have an impact on both, the epistemic as well as the understanding
state of the explainee. Moreover, the work of the explainer does not end after
the advancement of the explanation, instead he should make sure that the
understanding has really taken place so that he can provide other explana-
tions in case of a failure of understanding transference. Table 5.2 shows how
the four dialogues differ from one another through an illustrating example.

In this chapter we build on the Explan dialogue model of explanation
(Walton, 2011, 2016). We instantiate such dialogue model in our setting. As
Explan is semi-formal, we provide a full formalization and extend it along
different directions. This will result in a new dialogue model called EDS.
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Information-seeking Inquiry Persuasion Explanation

A does not know
whether the snow has
accumulated on the
ground or not. B
knows the information
so A asks B if it is the
case.

A and B are locked in a
room and they cannot
see whether the snow
has accumulated or not
but they may have
some information that
leverage the weather
state. They collabo-
rate to prove or dis-
prove the hypothesis of
“the snow has accumu-
lated on the ground”.

A believes that the
snow has accumulated
on the ground and B
believes the contrary.
Each of them try to
persuade the other to
adapt his position.

A and B know that the
snow has not accumu-
lated. B understands
why it is the case and
A does not. So, A asks
B for an explanation.

Table 5.2: Examples showing the differences between the four types of dia-
logues.

5.2 Motivating Example

In what follows we give a dialogue example inspired from our application
context. We have a knowledge base about Durum Wheat. We present a
scenario where the User has queried the knowledge base about the subject
of stubble breaking and then asks the Reasoner for an explanation about
the content of the query.

Example 5.2.1. Consider the query “Do we perform stubble breaking on the
fields?” to which the Reasoner has answered yes. The following is an ex-
planation dialogue about the subject of why do we perform stubble breaking?

1. User: Why do we perform stubble breaking?

2. Reasoner: The fields have some stubble standing on the soil. Also,
they have residual plants which are left from previous crops. In order
to be able to seed new crops we need to cut all stubble and remove
residual plants.

3. User: Why the fields have some stubble on the soil?

4. Reasoner: After harvesting, some stubble stay incompletely cut.

5. User: I understand.

6. User: But I still don’t understand why do we perform stubble breaking.
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7. Reasoner: In fact without removing the stubble we cannot seed the next
crop. Because the stubble will block the seeds from growing. Moreover,
stubble breaking helps in creating a seedbed that will promote the germi-
nation of weed’s seeds. Consequently, we will be able to remove these
weed prior to the seeding of the new crop.

8. User: Ok, I understand now why do we perform stubble breaking.

The dialogue starts at Stage (1) by an explanation request or a why-
question about a factual statement addressed to the Reasoner by the User.
At Stage (2) the Reasoner attempts to explain why do we perform stubble
breaking. This attempt has evoked another explanation request at Stage
(3) which the Reasoner attempted to explain at Stage (4). The User at
Stage (5) declares that he has understood the last explanation. However,
it seems that he is still unable to understand why do we perform stubble
breaking (Stage 6). The Reasoner keeps trying to explain at Stage (7) where
he provides another attempt to explain why do we perform stubble break-
ing. Fortunately, at Stage (8) the User finds this explanation intelligible.
Consequently he acknowledges understanding and ends the dialogue.

As one should notice, this dialogue aims at making the User understand
why the content of the query hold. He is not questioning the veracity of the
query but rather asking why such thing is holding. Thus this dialogue has
a pure explanatory purpose.

However, since the Reasoner’s knowledge base may have some incon-
sistencies the feedback from the User is very important. The User can
challenge explanations when they seem implausible and possibly inconsis-
tent with other facts. Imagine another course of action of Stage (7), let us
refer to it as 7’. The Reasoner advances an explanation at Stage (7’) and
the User opposes to this explanation at Stage (8’) as follows:

Example 5.2.2 (Alternative scenario).

7’. Reasoner: In fact stubble breaking is used to fight against fungal dis-
eases. That is why we perform it.

8’. User: I do not think so because fungal diseases are caused by fungi
which are microorganisms that are fought against by fungicides not by
mechanical machines.

9’. Reasoner: I concede.

10’. User: I don’t understand.
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The dialogue becomes argumentative where the User opposes to the
Reasoner by giving an argument that attacks the Reasoner’s explanation.
It is clear from the User’s position that the explanation contains a possibly
imprecise information. The Reasoner concedes to this argument. This
concession may express the fact that the Reasoner lacks sufficient knowledge
to respond to the argument by being unable to recognize the argument (the
argument’s vocabulary is different from the one of the knowledge base) or
by being unable to find a counterargument even if he could recognize the
vocabulary. Whatever is the case it seems that the concession attitude of the
Reasoner is not skeptical (he accepts what he is not able to counterattack).
However, in our context we always assume that the Reasoner presents to
the User a pre-computed set of arguments that he thinks that the User may
hold. This type of argumentation dialogues has been recently studied in
Hunter (2015) under the name of asymmetric argumentation dialogues.

Note that at the end the User can pursue the explanation dialogue and
ask for further explanations. Here it seems that he fails to understand at
Stage (10’).

The dialogue respects certain rules and uses predefined speech acts like
“why”, “understand”, etc. The dialogue also has a turntaking mechanism
where the User and the Reasoner switch turns at each stage. In the next
section we present Walton’s dialogue model that attempts to capture such
example.

5.3 Walton’s Dialogue Model of Explanation

As said earlier, Walton has proposed two dialogue models of explanations.
CE in (Walton, 2007) and Explan in (Walton, 2011, 2016). The two models
follow the same general guidelines but they differ on certain aspects. Explan
extends CE by adding a dialectical shift (change in dialogue) to examination
dialogue Walton (2006) to test the understanding of the explainee as he can
have fake understanding. Moreover, the Explan dialogue model extends CE

by allowing a dialectical shift to an argumentation dialogue and gives the
possibility to shift back.2 The reason to do so is to give the user the possibil-
ity to evaluate explanations. We proceed by providing a brief introduction
about Explan.

The system of explanation dialogues (denoted as Explan) is a two-player
turntaking dialogue system of explanation (Walton, 2011). It takes place

2In fact this extension has been proposed first in our work in (Arioua and Croitoru,
2015) and later in (Walton, 2016).
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between an explainer and an explainee. The speech acts of requesting and
providing an explanation are represented as dialogue moves in the system.

The moves allowed within Explan are two distinct sets of moves: one
for the explainer and another set for the explainee. The dialogue always
starts with an assertion of a statement by the explainer, i.e. assert(ϕ)
and then the explainee requests an explanation for ϕ, i.e. explain(ϕ)(ϕ is
accessible by the two parties and believed to be true). Next, the explainer
can offer an explanation attempt or declare her/his inability to explain. In
the first case the explainee can ask for further explanations or acknowledge
her/his understanding. If both parties are satisfied, the dialogue can be
closed. If the explainee is not satisfied, he should ask further questions
(question(ϕ)), continuing the dialogue until it has reached a point where
either (a) he is satisfied or (b) his questioning must be closed off for practical
reasons (Walton, 2011, p. 369). If the explainer is not satisfied, there should
be a shift to an examination dialogue in which the explainee’s understanding
of the explanation is tested.

A comment about the speech acts assert(ϕ) and question(ϕ) is in
order. From the rules presented in Walton (2011, 2016) it is not clear how
the questions are asked and how they are answered. In Table 5.3 we put for
each speech act its appropriate reply. For assert and question it is not
clear in the model how they are replied to. However, the replies in the Table
5.3 have been confirmed through a personal communication with Douglas
Walton.

Other aspects of the dialogue model are not less ambiguous, this would
present a real challenge for an instantiation in a logical setting. There-
fore, our first contribution is to fully formalize such dialogue model to avoid
any ambiguities. The protocol of the Explan is simple and it is as Walton
described “..[it] is meant to be a simple and basic dialogue system specifica-
tion on which specialized and more complex systems can be built..” Walton
(2011). Indeed, it cannot capture the exchange in Example 5.2.1 for the
following reasons:

• Nested explanations request: the utterance at Stage (3) asks an ex-
planation about another explanation. This is not accounted for in
Explan.

• Turntaking: in Stage (5) and (6) the explainee (User) has taken two
turns to make his point.

• Liberal protocol: in Explan the explainee and the explainer cannot
backtrack to early stages. In the dialogue example the User has done
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N Speech acts Descriptions Replies

(1) assert(ϕ) Putting forward a statement (reports an event or an
action)

(2) or (3)

(2) question(ϕ) Asking whether it is the case that ϕ or not? (1)

(3) explain(ϕ) Requesting the explainer to explain ϕ (4) or (5)

(4) attempt(ϕ) Responding to a previous explanation request that
purports to convey understanding to the explainee

(6) or (7)

(5) inability(ϕ) Conceding that the explainer has no explanation to
offer at this point.

×

(6) positive(ϕ) A response claiming that the explainee understands
the explanation.

×

(7) negative(ϕ) A response claiming that the explainee does not un-
derstand the explanation

×

Table 5.3: Speech acts in the Explan model. The replies refer to the entry
number of the speech acts that reply to the one in question.

so in Stage (6) by responding to the explanation at Stage (2).

In the next section we propose the EDS (Explanatory Dialogue System)
that extends and instantiates Explan.

5.4 The EDS Dialogue Model of Explanation

We describe here our dialogue model EDS of explanation (proposed in Arioua
and Croitoru (2015)) which extends Explan and instantiates it in our logical
setting. First let us define what is a dialogue system in general.

De�nition 5.4.1 (Dialogue system). A dialogue system is a tuple Dsys =
(Pr, C,R,L,K) such that Pr = {U, R} is the set of participants where U

refers to User and R to Reasoner, C is a set of two disjoint finite sets
CU and CR that denote U’s and R’s allowed locutions respectively, R is an
irreflexive binary relation defined over C called the reply relation, L is a
logical language called the content language and K ⊆ L is the background
knowledge base which is accessible by both participants.

This dialogue system describes the general components of an asymmet-
ric arbitrary dialogue with two participants. Asymmetric dialogues are di-
alogues where the set of locutions for each participant is different from the
other’s set (may overlap). This formalization is close to the common formal-
ization of argumentation dialogues used in Prakken (2009); Amgoud et al.
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(2006). The main difference is that almost all argumentation dialogues stud-
ied in the literature except for Hunter (2015) are symmetric. In what follows
we instantiate these components to describe a dialogue system called the ex-
planatory dialogue system (EDS).

Participants. In a general dialogue system the participants refer to two
agents (sometimes more) with possibly different nature, they may be human
agents or mixed agents (e.g. machine with human) where each participant
plays a role. In the explanatory dialogue system EDS we are interested in
the case of machine-human agents where the machine is called the Reasoner
and denoted as R, while the human is called User and denoted as U. U plays
the role of the explainee and the other plays the role of an explainer.

Topic and the content language. Following Walton (2011, 2016); Ari-
oua and Croitoru (2015), given a factual information F which can be drawn
from the background knowledge base, the topic of any dialogue of EDS is
a discussion that aims to get U to understand why F is the case. In this
dialogue system, R tries to provide explanations to U. The content language
defines the language by which the participants communicate. Here we con-
sider the logical language L of existential rules previously seen in Chapter
3, Section 3.2.

Background knowledge. The background knowledge is the knowledge
mainly held by the Reasoner and accessible to the User. It is denoted as
K = (F ,R,N ) and it contains a set of facts, set of rules and set of con-
straints. In Explan, it is not clear whether a knowledge base is used or not
but it seems that in Walton (2011) the background knowledge is referred to
as the context but without any formal definition.

An important aspect of dialogue systems is the protocol which regulates
the exchange of utterances between the participants (McBurney and Par-
sons, 2009). The protocol’s syntax handles the syntactical validity of the
utterances regardless of their content. The protocol’s semantics handles the
meaning of the utterances and its impact on their validity. In Subsection
5.4.1 we start by presenting the protocol’s syntax of EDS. Next, in Subsec-
tion 5.4.2 we present the protocol’s semantics. In the literature, two crucial
subjects are always handled separately from the semantics although being
completely related to it, are commitments and termination. We dedicate
two sections to discuss them separately for their importance. We discuss
the integration of commitment and understanding stores and study their
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outcomes in Subsection 5.4.3 and we discuss the conditions of termination
and success in Subsection 5.4.4.

5.4.1 Protocol’s syntax

We follow McBurney et al. (2002) and present the syntax independently
from the semantics. The basic building of the syntax is the set of allowed
locutions (speech acts). We distinguish EDS from other dialogue systems 3

by the following locutions:

• explain: U requests an explanation for a fact.

• attempt: R gives a response (to a previous explanation request) that
attempts to provide an explanation.

• positive: U claims that he understands the explanation.

• negative: U claims that he does not understand the explanation.

• inability: R declares inability to explain. Or as in Walton’s words R

utters: “I can’t explain it”.

Formally:

De�nition 5.4.2 (Locutions). Give a dialogue system Dsys = (Pr, C,R,L,K)
as instantiated previously. The set of all allowed locutions for each partici-
pant is presented as follows:

• CR = {attempt, inability}, called R’s allowed locutions.

• CU = {explain,positive,negative}, called U’s allowed locutions.

When there is no risk of ambiguity, we may slightly abuse notation and refer
to the set of allowed locutions C as the union of its subsets.

As one can see, the set of locutions is partitioned with respect to the
participants. The difference between the sets is due to the asymmetry of
roles where the Reasoner plays the role of an explainer and the User plays
the role of an explainee. This asymmetry is in fact due to the authoritative
nature of explanation dialogues where the explainer is assumed to possess
knowledge which the explainee wants to acquire in order to understand cer-
tain statements. An example of the asymmetry is that the User is the one

3For instance, Explan, the dialogue systems of argumentation CB Walton (1984), DC
Mackenzie (1979), PPD Walton and Krabbe (1995), to name a few.
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Figure 5.1: The reply relation R over the locutions. The direction of the
arrows are read as “replies to”.

who asks for an explanation (explain) and the Reasoner is the one who
provides the explanation (attempt) not the other way around. We should
highlight that in EDS the locutions assert and question are dropped. As
our logical setting offers querying facilities, question() and assert() are
dispensable as the need for them can be fulfilled any time through the query-
ing engine. Therefore, we see no practical need to incorporate them.

Reply relation. The reply relation R in Figure 5.1 specifies which lo-
cution replies to which. As it is indicated, the explain request locution
is either replied to by an attempt that provides an explanation, or by a
declaration of inability inability. attempt is replied to by an explanation
request explain which asks for a further explanation of some parts of the
first explanation. Or by negative to disacknowledge understanding or by
positive to acknowledge understanding. Note that the explain reply to
attempt is a feature of EDS and is not presented in Explan. The usefulness
of such extension resides in allowing nested explanation requests.

Uttering these locutions in a dialogical context constitutes an explana-
tion dialogue. Generally, a dialogue is a sequence of utterances between
two parties (or more). We follow Atkinson et al. (2005) and we represent
utterances by a two-layer syntax: the wrapper layer and the content layer.
The wrapper layer encompasses locutions (e.g. explain, attempt, etc)
which represent the illocutionary force of the inner content. The content
layer includes the following components: the identifier x of the speaker, the
identifier i of the utterance, the target t of the utterance and the content
A of the utterance expressed in the content logical language L. It is defined
formally as follows:
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De�nition 5.4.3 (Utterance). Let C be the set of all allowed locutions. An
utterance u has the form X(x, i, t, A) such that:

1. i ≥ 1.

2. t < i.

3. x ∈ Pr.

4. X ∈ Cx.

5. A are well-formed formulas of L.

We use the notations loc(u) = X, part(u) = x, id(u) = i, target(u) =
t and Content(u) = A to denote respectively the locution, the participant, the
identifier, the target and the content of the utterance u. We may sometimes
use the notation X(.) and ignore the parameters to denote an anonymous ut-
terance (e.g. explain(.)). We say the utterance u is equivalent to another
utterance u′ and we write u = u′ if and only if loc(u) = loc(u′), part(u) =
part(u′), target(u) = target(u′) and Content(u) = Content(u′).

The definition imposes that the identifier of the utterance should be
greater than 0 (Clause 1) and the target’s identifier should be smaller than
the identifier of the utterance itself (Clause 2). This means that the identifier
can be seen as the timestamp of the utterance that indicates when it was
uttered. The target should be smaller then the identifier since the utterance
replies to a previous utterance. In Clause 3 the speaker should be known,
i.e. it should be in the set of participants Pr. In Clause 4 the the locution of
any utterance has to be in the set of the speaker’s allowed locutions. Finally,
Clause 4 stipulates that the content should be well-formed with respect to
the content language L. An utterance is equivalent to another if it has the
same locution, participant, target and content.

A comment about the parameter part is in order. It is legitimate to
say that we do not need this parameter in the utterance as the locutions
can unambiguously tell the participant. Indeed, this is correct. However,
when we extend this framework to incorporate symmetric argumentation
dialogues, as we shall see in Section 5.5, we will need this parameter to
differentiate between utterances.

After defining the most important part of a dialogue, i.e. utterances, we
define a dialogue as a sequence of utterances.

De�nition 5.4.4 (Explanation dialogue). An explanation dialogue (dialogue
for short) d is a possibly infinite sequence d = (u1, . . . , un, . . .) of utterances
ui where i > 0 and for all ui ∈ d, id(ui) = i.
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The finite sequence (u1, . . . , un) , denoted as dn, is the prefix of the se-
quence d where n is the number of utterances in dn and un is the most recent
utterance. dn is referred to as the dialogue at stage n. d0 is called the empty
dialogue. The set of all possible dialogues is denoted by D∞. We denote by
di ·dj, and di ·u the concatenation of the dialogues di and dj and the dialogue
di with the utterance u respectively.

Let us take an example of a dialogue.

Example 5.4.1 (Dialogue). Consider Example 5.2. Let A and B be well-
formed formulas of the language L. As the semantics is not yet considered
we do not give the logical form of A and B, we present only their natural
representation to show the intuition.

• A : we perform stubble breaking?

• B : The fields have some stubble standing on the soil. Also, they have
residual plants which are left from previous crops. In order to be able
to seed new crops we need to cut all stubble and remove residual plants.

Consider the following dialogue of 4 steps:

d4 = (

explain(U, 1, 0, A),

attempt(R, 2, 1, B),

negative(U, 3, 2, B),

positive(U, 4, 2, B)

)

This is a dialogue where U asks for an explanation. Next, R fulfills the re-
quest. After that, U disacknowledges understanding then after a while he/she
acknowledges understanding.

The parameters of the utterance contextualize the intention of uttering
its locution. The locution attempt would make no sense if we do not
specify to which locution is replying and what is the content of the reply. For
instance, the locution attempt is only an act of expressing the intention to
make an attempt of explanation (a speech act according to (Austin, 1975))
it conveys nothing beyond that. Table 5.4 indicates for each locution its
complete parameters alongside to its interpretation.
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Utterance Interpretation

explain(U, i, t, A) U responds to the utterance ut by requesting an ex-
planation of A. If t = 0, then this utterance starts
the dialogue.

attempt(R, i, t, B) R responds to the utterance ut by an explanation B.

negative(U, i, t, B) U has not understood the explanation B presented in
the utterance ut.

positive(U, i, t, B) U has understood the explanation B presented in the
utterance ut.

inability(R, i, t, A) R is unable to provide an explanation for the expla-
nation request of the utterance ut.

Table 5.4: Interpretation of utterances.

Example 5.4.2 (Cont'd Example 5.4.1). The utterance negative(U, 3, 2, B)
means that U at Stage 3 has responded to the utterance at Stage 2 by the
content B. The utterance right after, i.e. positive(U, 4, 2, B), means that
U at stage 4 has responded to the utterance at Stage 2 by the content B.

Please note that we are studying here the syntactical aspects of the dia-
logue. The real meaning of each utterance depends completely on meaning
of its content. We shall study this in the semantics (Subsection 5.4.2).

As in the motivating dialogue Example 5.2.1, R and U take turns. The
most basic form of turntaking is unique-move turntaking which is used in
Explan. This turntaking gives the participants the possibility to advance
one utterance then hand out the turn to the other to respond. A more
liberal turntaking is the multiple-move turntaking where the turn shifts af-
ter several utterances (which is the case for the example). We follow the
idea of liberal argumentation dialogues of Prakken (2005) and we choose
the multiple-move turntaking for its generality. Sure, this turntaking makes
the dialogue difficult to handle computationally, however it offers a natural
correspondence with day-to-day explanation dialogues where one uses suf-
ficient utterances to express his point. In addition such turntaking allows
the participants to interact in a sophisticated manner to capture complex
debates.

De�nition 5.4.5 (Turntaking function). A turntaking function T is defined
over the set of all possible dialogues as follows: T : D∞ −→ 2{U,R}. T assigns
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to every dialogue the next legal turn as follows:

• T (d0) = {U}, T (d1) = {R}, T (di) = {U, R}, ∀i > 1.

Depending on the previous utterances within a dialogue, the next utter-
ance to be put forward can be legal or illegal. It depends whether it replies
properly to previous utterances.

De�nition 5.4.6 (Legal reply). Given a finite dialogue dn = (u1, u2, . . . , un)
at stage n and two utterances ui and uj in dn. We say that ui replies legally
to uj in dn if and only if :

(1) (loc(uj), loc(ui)) ∈ R.

(2) part(ui) ∈ T (di−1).

(3) target(ui) = id(uj) = j.

(4) part(ui) 6= part(uj).

If non of the previous conditions are met then the utterance ui is an illegal
reply to uj in dn. Recall that (X,X′) ∈ R means that the locution X′ replies
to X.

For an utterance ui to be a legal reply to another utterance uj the clauses
impose that the locution of ui should be a correct reply to the locution of
uj with respect to the reply relation R, and it is the turn of the participant
to speak. Moreover, they impose that the target utterance uj should have
already been uttered. Finally it dictates that the part(ui) should not be
replying to himself.

Example 5.4.3 (Legal reply). Consider the following dialogue:

d4 = (

explain(U, 1, 0, A),

attempt(R, 2, 1, B),

positive(U, 3, 1, B),

positive(U, 4, 3, B)

)
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The reply positive(U, 3, 1, B) to explain(U, 1, 0, A) is illegal because the
tuple (explain,positive) is not in R as opposed to the reply attempt(R, 2, 1, B)
to explain(U, 1, 0, A) which is legal. Notice also that, the reply positive(U, 4, 3, B)
is illegal because R is replying to himself in addition to the fact that (positive,positive) /∈
R. The following dialogue is free of illegal replies.

d′3 = (

explain(U, 1, 0, A),

attempt(R, 2, 1, B),

attempt(R, 3, 1, B)

)

As one may notice, the reply of attempt(R, 3, 1, B) to explain(U, 1, 0, A)
is considered legal with respect to the conditions seen before. The prob-
lem is that this utterance is a duplicate of the reply attempt(R, 2, 1, B) to
explain(U, 1, 0, A). In fact reply’s validity is a concept with a limited scope,
it is only concerned with a local context, i.e. between two utterances. In
what follows we capture the global context of dialogues and we introduce
the syntactical validity of a dialogue.

De�nition 5.4.7 (Syntactically valid dialogues). Given a finite dialogue dn at
stage n. A dialogue dn is syntactically valid if it respects the following rules:

1. Empty dialogue rule (n = 0):

(R1) d0 is syntactically valid by convention.

2. Commencement rule (n = 1):

(R2) d1 = (u1) is syntactically valid iff u1 = explain(U, 1, 0, A).

3. Dialogue rule (n > 2):

(R3) dn−1 should be syntactically valid and the reply un to uj where
j = target(un) is legal and there is no utterance ui, i < n such
that target(ui) = target(un) and ui = un.

The definition indicates that an empty dialogue is a syntactically valid
dialogue (R1). Furthermore, a syntactically valid dialogue always starts with
an explanation request made by U (R2). It also imposes that for a dialogue
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to be syntactically valid all the replies are syntactically valid and no reply
is repeated (R3).

Another important feature of the dialogue is that we can reply to early
utterances. This breaks the sequentiality of the dialogue. In Prakken (2009)
these types of protocols are called multiple-reply protocols.

So far we have defined the syntactical part of the protocol. In the next
section we shift to the semantics part.

5.4.2 Protocol’s semantics

We address the semantics aspect of the dialogue where we are concerned with
meaning of the content of the utterances and the meaning behind a sequence
of utterances. For instance, the utterance attempt(R, 1, 0, E) conforms Def-
inition 5.4.3, however it would not be semantically legal if E were not to
be a semantically legal explanation. Following the same structural organi-
zation of the previous section, we start by defining the semantic legality of
utterances and replies, then we define the semantic validity of dialogues.

To define the semantic legality of an utterance or a reply we need first to
define what is an explanation. As the subject of defining explanatory models
is very controversial on many aspects, e.g. philosophical, logical, psycholog-
ical, etc. (Pitt, 1988). In (Arioua and Croitoru, 2015) we have proposed an
abstract setting where an abstract explanatory model is defined as a tuple
E = (L,�)4 which consists of the content language L and an explanatory
relation denoted as � which is defined over 2L × 2L

′
such that L′ ⊆ L is

the set of well-formed formulas that correspond to facts. � relates those
well-formed formulas (wffs) in L that can be considered as an explanation
to the formula to be explained called the explanandum. The explanandum
should be factual. An explanation is composed of the explanans which are
the formulas which together bear explanatory relevance to the explanandum
(Figure 5.2). Formally, given a set E of wffs and a fact F we read E � F
as “E is an explanation of F”. Note that no constraints are imposed on
the explanatory relation. Certainly, a fine-grained axiomatization is needed
which unfortunately falls out of the scope of this thesis.

As far as our logical context is concerned many logical frameworks that
account for explanation can be found in the literature (Axiom pinpoint-
ing ; (Schlobach et al., 2003), Justification Oriented Proofs (Horridge et al.,
2010), Causes (Meliou et al., 2014)). The best-known is the framework of
Logic-based Abduction (Eiter and Gottlob, 1995). This framework has been

4Please note that this definition is slightly different from the one in Arioua and Croitoru
(2015). However, this change does not impact the soundness of the dialogue system.
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Figure 5.2: Explanation according to Deductive-Nomological Model of
Hempel (1965).

applied in many domains which are far to be cited exhaustively here. There
are works on formalizing Logic-based Abduction in setting similar to ours
like (Calvanese et al., 2013; Du et al., 2014). One could easily instantiate the
explanatory relation using these works on our logical setting if one chooses
such framework for generating explanations. However, as our goal in this
chapter is not to study which explanation is better we consider a simplis-
tic instantiation of the explanatory relation. In this instantiation we define
the explanatory relation as an inference relation such that the explanation
minimally entails the explanandum. In addition, we impose that the ex-
planation and the explanandum are consistent together (a similar definition
can be found in (Falappa et al., 2002)).5

De�nition 5.4.8 (Explanation). Given a knowledge base K = (F ,R,N ) and
a fact Q. An explanation E ⊆ F ∪ R of Q in K is a set of facts and rules
such that:

1. E,N 6|= ⊥ (consistency).

2. E |= Q (entailment).

3. @E′ ⊆ E such that (1) and (2) are verified (minimality).

5The symbol � is borrowed from their work.
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One may be tempted to believe that an explanation in this sense is an
argument in the sense of Definition 3.3.1, page 50. This is simply not the
case, because an argument does not contain rules in our definition. Nev-
ertheless, it is indeed a deductive argument in the sense of Besnard and
Hunter (2008).

Notation 5.4.1. There may be more than one explanation for a given fact,
thus we denote by Exp(F ) the set all explanations of F . For an explanation
E we denote by Rules(E) and Facts(E) the set of rules and facts used in
the explanation respectively.

It is not hard to conclude that an explanation should have always some
facts in it. Because the rules need some facts on which they will be applied to
derive the explanandum. In fact this is straightforwardly intuitive because
ordinary or scientific explanations need to start from initial conditions which
are taken to be factual.

Property 2 (Factuality). Given an explanation E of Q. Facts(E) 6= ∅.

Let us take an illustrative example of explanations.

Example 5.4.4. Imagine that we have a knowledge base about employees and
their salaries. Q = has salary(Tom, x) is a fact that says that Tom has a
salary. The salary is unknown but it is to be taken as a fact that he has a
salary. Now the User can ask for an explanation “Why Tom has a salary”
or “Why is it the case that Tom has a salary”. An explanation E1 of F is
as follows:

E1 = {
works at(Tom,UM),

university(UM),

works at(x, y) ∧ university(y)→ has salary(x, z)

}

Where Facts(E) = {works at(Tom,UM), university(UM)} and Rules(E) =
{works at(x, y)∧ university(y)→ has salary(x, z)}. Below another expla-
nation E2:

E2 = {
retired from(Tom,UM),

university(UM),
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retired from(x, y) ∧ university(y)→ has salary(x, z)

}

Note that the following:

E3 = {
works at(Tom,UM),

university(UM),

student(Ahmed),

works at(x, y) ∧ university(y)→ has salary(x, z)

}

is not an explanation because student(Ahmed) is irrelevant which makes
E3 not minimal. Note also that, E4 = E1 \ {works at(Tom,UM)} is not
an explanation because it violates entailment (Definition 5.4.8, Clause 2).
Another invalid explanation which violates consistency is as follows:

E5 = E1 ∪ {retired from(Tom,UM)}

A comment is in order here about consistency. The fact that E1 and
E2 dictate possibly inconsistent facts, i.e. retired from(Tom,UM) and
works at(Tom,UM), does not affect the fact that they are correct explana-
tions. It only says that they are competitive and the background knowledge
base K is possibly inconsistent.

Utterances Replies Semantics legality

explain(U, i, t, F ) attempt(R, i+ 1, i, E) K |= F and E � F .

explain(U, i, t, F ) inability(R, i+ 1, i, F ′) K |= F , F = F ′ and @E such that E � F .

attempt(R, i, t, E) explain(U, i+ 1, i, F ) K |= F and F ⊆ Facts(E).

attempt(R, i, t, E) positive(U, i+ 1, i, E′) E = E′.

attempt(R, i, t, E) negative(U, i+ 1, i, E′) E = E′.

Table 5.5: The replies and their semantic conditions. K is the background
knowledge, F is a fact, E is an explanation and i, t are natural numbers.

For a dialogue to be semantically valid its utterances and replies should
be semantically legal. In Table 5.5 we present the conditions under which a
given utterance and their replies are considered semantically valid.
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De�nition 5.4.9 (Semantically valid dialogues). Let dn be a syntactically valid
dialogue. The dialogue dn is semantically valid if and only if all utterances
u ∈ dn and every reply u to u′ in dn is semantically legal (cf. Table 5.5).
Note that the empty dialogue d0 is semantically valid.

Many questions arise, for instance when does the dialogue is considered
successful? and when does it terminate? Moreover, how we maintain the
coherence of dialogue to avoid circular explanations. In the next section we
answer these questions.

5.4.3 Commitment and understanding stores

Commitments are set of statements to which a participant in a dialogue is
committed. When a person x says in a dialogue that “I claim that the Moon
is made of green cheese” he becomes instantaneously committed to the fact
that “the Moon is made of green cheese”, he may (or may not) believe in its
truthfulness but he claims that it is true. The notion of commitments differs
from a dialogue system to another. In the literature, precisely in (Hamblin,
1970), commitments are treated dialectically. In Hamblin’s words “A speaker
who is obliged to maintain consistency needs to keep a store of statements
representing his previous commitments, and require of each new statement
he makes that it may be added without inconsistency to this store.” (Ham-
blin, 1970, p. 257). However, others (precisely (Walton and Krabbe, 1995))
give a larger interpretation of commitments by considering them as obliga-
tions to perform actions. For instance, a participant is obliged to provide
a counterattack when his asserted proposition is challenged. It seems that
this view englobes the one of Hamblin. Walton and Krabb’s approach to
commitments is general as it handles, for instance, social actions in negoti-
ation dialogues (a magazine x commits to ship the item A to a customer y).
However, in other dialogues systems, such as (Prakken, 2005; Parsons et al.,
2003), only dialectical commitments in the sense of Hamblin are considered.
In fact the consistency requirement is dropped when commitments do not
regulate the advancement of utterances within the dialogue. In other words,
the speaker is not obliged to maintain the consistency of his commitments
as he proceeds in the dialogue.

For the dialogue system Explan, both participants are assumed to have
commitment stores that keep track of their commitments. But it is not
clear why such commitments are used or how they are updated. In addi-
tion, given the asymmetry of the dialogue system it is not clear why the
explainee (User in our case) should be consistent. One should be able to
ask (separately) for an explanation of two completely inconsistent facts and
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he is still eligible to get an explanation and there is no reason to deprive him
from that. In Arioua and Croitoru (2015) we proposed to equip only the
Reasoner with commitments store because commitments of the User have
no impact on the coherence of the dialogue. The Reasoner’s commitments
store is particularly needed to ensure that the Reasoner gives consistent
explanations. Therefore, the Reasoner’s commitments store indeed con-
straints his advancement of utterances. Although being useful in certain
cases, this requirement should be dropped for the following reason. Recall
that in Example 5.4.4 we have seen that explanations are self-consistent but
there could be some competing explanations which cannot be held together.
If we follow Arioua and Croitoru (2015) the Reasoner would not be able
to present the two explanations within the same dialogue, which could be
qualified as an incomplete and unfaithful way of explaining. However, we
retain from Arioua and Croitoru (2015) the use of dialectical shifts (change
of dialogue’s type) to argumentation dialogues to evaluate these competing
explanation. In retaining such feature, we are obliged to equip the User

with a commitment store because this will become important in the argu-
mentation dialogue where the commitments may be used in determining the
winner and termination.

To sum up, in EDS each participant has a commitment store that indi-
cates at each moment a set of formulas to which the participant is commit-
ted.

De�nition 5.4.10 (Commitment store). Given a dialogue dn = (u1, . . . , un).
A commitment store CSix ⊆ L is a set of formulas from L. We denote by CSix
such that x ∈ {U, R} the commitment store of the participant x after uttering
ui in dn. Given a background knowledge base K = (F ,R,N ), we say that
the commitment store CSix is inconsistent if and only if C`∗R(CSix) |= ⊥.

Commitments are used to solve the problem of maintaining the consis-
tency. However, there is another problem we may encounter in explanation
dialogues which is circular explanations. They appear when the Reasoner

tries to explain a fact with an explanation that contains some parts which
are not yet understood by the User. This is in fact a form of circular rea-
soning which is often ascribed to the fallacy of begging the question that is
studied in argumentation dialogues (Mackenzie, 1979). In Walton (2004),
where Walton informally described his dialectical model of explanation, he
proposed to build on the notion of Hamblin’s commitment store to capture
understanding.6 He later brought up the idea in the CE dialogue model of

6“To define understanding in dialogue, we need to build on Hamblin’s notion of the
commitment store of a participant in a dialogue.” (Walton, 2004, p. 7)
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explanation (Walton, 2007) where he highlighted the point of using some
sort of understanding states to represent the understanding of each partici-
pant (Walton, 2007, Table. 2). To be more precise, the problem of circular
explanations was not the motivation of capturing understanding in CE it
was rather the question whether understanding has been really transferred
or not.

So in what follows we develop Walton’s first intuition by proposing an
understanding store which is exclusively attributed to the User. The un-
derstanding store serves as an understanding indicator of the User’s current
understanding state and it is used to avoid circular explanations.

De�nition 5.4.11 (Understanding store). Given a dialogue dn. An under-
standing store USi ⊆ L is a set of formulas from L. i refers to the content
of the understanding store after uttering ui in dn.

We do not use any participant index in the understanding store as it is
clear to whom it is attributed (to the User). Some important comments are
worth highlighting about understanding stores.

• if US does not contain F then the User understands F .

• US may or may not be consistent.

For CE and Explan, the state of not understanding F is denoted as not-
F . However, not-F is open to many interpretations. One could say that it
means that the User understands the negation of F but not F . To avoid
such confusion, we take US as representing what is not yet understood
instead of what has been understood. In other words, if there is something
which is not understood by the User then it should be in the understanding
store and every thing that is not in the understanding store is assumed
to be understood by the User. The state of understanding of the User

evolves over time. In the beginning of the dialogue the understanding store
is conventionally assumed to be empty.7 Then in function of the utterances
advanced by both parties the store is altered. The same thing happens for
commitment stores. The rules that organize how stores are modified are
called in the literature Effect rules.

De�nition 5.4.12 (E�ect rules). Let dn = (u1, . . . , un) be a dialogue and let
CSnR , CSnU and USn be, respectively, the commitment stores of R and U and
the understanding store after advancing the utterance un.

7In fact there is no theoretical reason to impose that one should start with an empty
understanding store. It is for practical reasons and convenience that we assume so.
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1. If un = explain(U, i, t, F ) then:

(a) USn = USn−1 ∪ {F}.
(b) CSnR = CSn−1

R ∪ {F}.
(c) CSnU = CSn−1

U ∪ {F}.

2. If un = attempt(R, i, t, E) then CSnR = CSn−1
R ∪ {E}.

3. If un = positive(U, i, t, E) then:

(a) USn = USn−1 \ {F ′} such that F ′ = Content(uj) where j =
target(ut).

(b) CSnU = CSn−1
U ∪ {E}.

Utterances with the locutions inability and negative have no effect on
the stores.

When the User requests an explanation we add the explanandum F to
his understanding store (1.a). The User and the Reasoner become commit-
ted to F (1.b and 1.c) because it is agreed upon in explanation dialogues
that the explanandum F should be held true prior to requesting its expla-
nation. When the Reasoner provides an explanation he intuitively becomes
committed to it (2). If the User acknowledges understanding in response
to an explanation E, then we revoke the explanandum of the explanation
from US (3.a). This means that the User declares that he could understand
the explanandum thanks to the explanation. At his point, he becomes com-
mitted to the truthfulness of the explanation E. Since he acknowledges
understanding then he is automatically committed to it.

As we noted earlier, the commitment stores will not be used in regulating
the advancement of utterances. However, the understanding store is used to
avoid circular explanations. In what follows we extend the semantic validity
of Definition 5.4.9 by the following rule.

De�nition 5.4.13 (Closing semantic validity). Let dn be a syntactically valid
dialogue. The dialogue dn is semantically valid if and only if for all ui in dn,
i 6 n if loc(ui) = attempt then F ∩ USi = ∅ such that F = Content(ui).

In this rule we simply forbid the Reasoner from advancing an explana-
tion that contains something which has been declared as “not understood”
by the User.
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5.4.4 Termination and success

In almost any dialogue system the termination condition should be specified.
The conventional termination criterion is defined as the unavailability of
valid utterances for both participants. In our case this criterion should be
extended because in a human-machine dialogue termination is up to the user
(user-dependent). Therefore, we extend the conventional termination by a
constraint that uses a special utterance which can be played by the User,
called the termination utterance.

De�nition 5.4.14 (Termination utterance). An utterance un is the termina-
tion utterance if and only if loc(un) = positive, id(un) = n, target(un) =
1, part(un) = U and Content(un) = ∅.

De�nition 5.4.15 (Termination). Let dn be a dialogue. dn is a terminated
dialogue if and only if un is the termination utterance.

Since the main purpose of explanation dialogues is to get the User to
understand a fact F the success of the dialogue is an important outcome. In
other words, the dialogue system EDS should be able to determine whether
the Reasoner could get the User to understand F or not.

De�nition 5.4.16 (Success). Let dn be a terminated dialogue and let F =
Content(u1) be the subject of dn. If F /∈ US then dn is successful, otherwise
it is not successful.

A successful explanation dialogue is a dialogue where the User has un-
derstood the explanandum of the first explanation request (i.e. principle
request). We can define a stronger criterion of success as follows:

De�nition 5.4.17 (Strong success). Let dn be a terminated dialogue. If US =
∅ then dn is strongly successful.

These criteria are interesting as they can be used in evaluating the effi-
ciency of the Reasoner. Other criteria can be defined to precisely charac-
terize the success. We limit ourselves to the aforementioned criteria.

Before closing the subsection, we find it relevant to highlight some pos-
sible problems about termination that arise if this dialogue is meant to be
used between computational agents. We try to give general guidelines to
avoid them.
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Turntaking. The turntaking in our system is not deterministic (multiple-
move). With computational agents we risk the occurrence of starvation,
where one agent withholds the turn. To avoid such problem, one can make
the turntaking explicit by specifying time slots or a fixed number of moves
for each participant’s turn. Other solution is to use the threshold of interjec-
tion where the agent gets the turn when she has a sufficiently strong desire
to speak (Reed and Wells, 2007). This desire is computed by means of a
function with respect to the history of the dialogue.

Freedom. Since participants are allowed to respond to early utterances in
the dialogue we risk of losing the point. For instance, if the course of expla-
nation was about why birds fly where the explainer explains aerodynamics
then the explainee cannot ask about something which is not related to the
previous explanation. A solution to this problem could be the application
of a rigorous policy on replying. For instance, an agent is allowed to ask for
another explanation if and only if it is related to a previous one.

Nested explanation requests. The explainee can request explanations
about the content of other explanations. The risk relies in the possibility of
getting into a loop of requesting and providing explanations. However this
is not a problem when the explanatory model is finite as shown in (Arioua
and Croitoru, 2015). If the explanatory model is infinite then constraints
on the explanatory depth should be imposed.

5.4.5 The global picture

This subsection closes the section on the explanatory dialogue system EDS.
We find it useful in this occasion to give a full picture on how an explanation
dialogue works. We present the following three main stages where each of
which describes how the dialogue is carried on:

• Opening stage: the User opens the dialogue by advancing the ut-
terance explain(U, j, i, F ) asking for an explanation about the fact F
which is accessible and believed to be true by both parties.

• Explanation stage: in response to the explanation request in the
opening stage, if the Reasoner cannot explain F then he utters
inability(R, i, t, F ) as a reply. If the Reasoner can explain then he
issues attempt(R, i, t, E) that purports to explain the fact F . The
utterance attempt(R, i, t, E) can be replied to by confirming or di-
sacknowledging understanding. The former can be done by uttering
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positive(U, i, t, E) such that E is the explanation provided in the first
place. The latter can be done by stating negative(U, i, t, E). Another
interesting reply is explain(U, j, i, F ′) which is another explanation re-
quest about the provided explanation. This is similar to the case when
one asks “Why the room is dark?” and has received the explanation
“because there is no electricity”, one can ask “why there is no elec-
tricity?”. The two participants reserve the choice to reply to early
utterances giving rise to new lines of discussions.

• Closing stage: the dialogue ends when the User advances the ter-
mination utterance or none of the participants cannot advance a valid
utterance.

Following these three stages, we can perform an explanation dialogue
about any subject taking into account the underlying background knowl-
edge base. However, the background knowledge base may be inconsistent
resulting in presenting competing or possibly implausible explanations. In
the next section we extend EDS by argumentative faculties to facilitate ex-
planations evaluation.

5.5 Argumentative Explanation Dialogues

The knowledge base of the Reasoner can be inconsistent due to different
causes. Concerning our practical setting in DUR-DUR project, this knowl-
edge base is collectively built by several knowledge engineers from different
sites of the project. Due to various causes (errors in the factual information
due to typos, erroneous databases/excel files, incomplete facts, unspoken
obvious information “everybody knows” etc.) the collectively built knowl-
edge base is prone to inconsistencies. This undermines the authority of the
Reasoner as an explainer, therefore we can shift to argumentation whenever
the explanation seems implausible or inconsistent with the User’s knowledge.

In this section we extend the EDS explanatory dialogue system with ar-
gumentative faculties. We aim at defining a minimal extension that includes
argumentative locutions while keeping the dialogue system as simple as pos-
sible. We consider a subset of argumentative locutions from (Prakken, 2006),
which are argue and concede.

De�nition 5.5.1 (Extended EDS). Let Dsys = (Pr, C,R,L,K) be the explana-
tory dialogue system EDS. Recall that R is the reply relation and C = CR∪CU
is the set of allowed locutions. We extend EDS as follows:
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• CR = {attempt, inability} ∪ {argue,concede}.

• CU = {explain,positive,negative} cup{argue,concede}.

• R = R ∪ {(argue,argue), (argue,concede), (attempt,argue)}.

Recall that (X,X′) ∈ R means that the locution X′ replies to X.

These locutions define new utterances which are submitted to the same
syntactical validity of utterances in Definition 5.4.3 in addition to the fol-
lowing.

De�nition 5.5.2 (Utterance extension).

• u = argue(x, i, t, a) is an utterance if and only if the conditions 1-4
in Definition 5.4.3 are satisfied and a is an argument (cf. Definition
3.3.1, page 33).

• u = concede(x, i, t, A) is an utterance if and only if the conditions
1-5 in Definition 5.4.3 are satisfied.

As one can observe, the locution argue replies to argue. This is usual
in argumentation dialogue where arguments counterattack other arguments.
The concede locution expresses concession towards a claim advanced by
an argument. The reply argue to attempt is the linking ring between the
argumentative locutions and the explanatory locutions. It allows the User

to challenge the explanations advanced by the Reasoner. Such turn in an
explanation dialogue can give rise to a pure argumentation dialogue where
the other party can reply by argue and so on and so forth until termination
(concession). Nevertheless, this does not restrain the parties from replying
to early utterances about other related explanations.

One may wonder about not adding the reply (argue,explain) to EDS,
which asks for an explanation about the content of the advanced argument.
In fact there is no theoretical reason that prevents us from doing so. Due
to the dichotomy of syntax and semantic in EDS one can easily incorporate
such extension. However, it will only violate the practical goal of providing
a minimal extension of EDS that we set out in the beginning of the section.

Let us no proceed to the semantic part. As usual we need to give se-
mantic conditions for utterances’ content and to the way they reply to each
other. For argue(.) and concede(.) utterances it is straightforward as we
shall see. However, the reply argue(.) to attempt(.) need a formal char-
acterization. It says in fact that an argument can be in conflict with an
explanation. Since this particular relation between arguments and explana-
tions has not been defined, let us introduce it.

143



CHAPTER 5. OBJECT-LEVEL DIALECTICAL EXPLANATIONS

De�nition 5.5.3 (Con�ict). Let H = (A,X ) be the corresponding argumen-
tation framework of the background knowledge base K. Let a ∈ A be an
argument and E be an explanation built from K for a fact F . Then, we say
a conflicts with E if and only if C`∗R({Conc(a), Facts(E)}) |= ⊥.

An argument a is in conflict with an explanation E if the conclusion of
the argument is inconsistent with the factual part of the explanation. It is
to be noted that E /∈ A, i.e. E is not an argument and thus saying that
(a,E) ∈ X is not correct. However, we may abuse notation and say a attacks
E meaning that a conflicts with E.

Now let us introduce the new semantic conditions. Table 5.6 presents
for the utterances argue(.) and concede(.) the syntax and the informal
meaning. The column “Effect” extends the effect rules defined in Definition
5.4.12 for each new utterance.

Note that these semantic conditions do not alter the previous ones, they
only extend them. To sum up, the new EDS only extends the locutions,
the reply relation and updates the semantic conditions that correspond to
them. In Table 5.6:“Utterances”, the utterances and their syntax are pre-
sented. Table 5.6:“Meaning” gives the meaning of the utterances. In Ta-
ble 5.7:“Replies”, the possible replies for each utterance are shown. Table
5.7:“Conditions” presents the semantic conditions for each reply and for
each utterance.

Utterances Meaning Effects

argue(x, i, t, a) x responds by attacking an
argument or an explanation

CSi
x = CSi−1

x ∪ Supp(a) ∪
Conc(a), i.e. x becomes com-
mitted to the support and the
conclusion of a.

concede(x, i, t, A) concedes to the fact that A
is true

CSi
x = CSi−1

x ∪ {A}. x be-
comes committed to A.

Table 5.6: The new utterances and their meaning alongside to their effects
on the stores. x ∈ {U, R} and CSix is the commitment store of x at stage i.

5.6 Dialogue Example

In this subsection we explain how the formal dialogue system EDS applies
on Example 5.2.1 and 5.2.2. In Table 5.8 we follow step by step the ad-
vanced utterances and the evolution of the stores. The column i refers to
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Utterances Replies Conditions

attempt(R, i, t, E) argue(U, j, i, a) a ∈ A and a conflicts with
E.

argue(x, i, t, a) argue(x, j, i, b) a, b ∈ A and (b, a) ∈ X .

argue(x, i, t, a) concede(x, j, i, A) a ∈ A and A = Conc(a) or
A ∈ Supp(a).

Table 5.7: New replies and their semantic conditions. If x ∈ {U, R} then
x ∈ {U, R} \ {x}. j > i and H = (A,X ) is the corresponding argumentation
framework of K.

the identifier of the utterance, x refers to the participant, and while the
column Text refers to the textual utterances, the column Utterance presents
their formal counterpart. The column CSR denotes the commitment store of
the Reasoner, CSU the commitment store of the User and US denotes the
understanding store.

We do not give details on the logical formulas of each the utterance for
space reasons. We give just an example to illustrate the idea. For instance:

F1 = {perform(Stubbling, S1)}
and:

E1 = {
contains(S1, Stubble),

contains(S1, P lant),

residue(Plant),

residue(Stubble),

seedOn(S1),

contains(S1, Stubble)∧contains(S1, P lant)∧residue(Plant)∧residue(Stubble)}∧
seedOn(S1)→ perform(Stubbling, S1)

}

In the dialogue each utterance does not necessarily reply to the immedi-
ate precedent, it can reply to earlier utterances. For instance, the utterance
negative(x, 6, 2, E1) replies to the explanation at Stage (2).

The stores evolve due to utterances advancement following the effect
rules of Definition 5.4.12. For instance, in Stage (1) we added F1 to all the
stores indicating that the two participants are committed to it and the User

does not understand it. In Stage (8) we revoked F1 from the understanding
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store because the User has understood the explanation at Stage (7) which
explains F1, the same thing happens for F2 at Stage (5). This means that
U now understands F1 and F2. At this stage if the dialogue ends then it is
judged to be strongly successful because the understanding store is empty
(cf. Definition 5.4.17 on strong success).

An alternative course of action is from Stage (7’) to (10’), where we
assumed that the Reasoner has advanced another explanation E3 instead
of E2. The User advances an argument against the explanation E3 to which
the Reasoner has conceded. Then at Stage (10’) the User declares that he is
still incapable of understanding F1 (because F1 is still in the understanding
store). At this stage, the User can leave and end the dialogue, or ask for
other explanations.

After introducing the dialogue model of object-level dialectical explana-
tions, in the next section we provide a case study of how they can be used in
a real setting within the French national project DUR-DUR about Durum
Wheat.

5.7 Use-case: Object-level Dialectical Explanations

The DUR-DUR project suggests developing a systematic approach to inves-
tigate issues related to the management of the nitrogen, energy and contam-
inants, to guarantee a global quality of products throughout the production
and the processing chain. One task in the project is to integrate multi-
disciplinary agronomy knowledge in a knowledge base. The Durum Wheat
knowledge base has been constructed to fulfill such task.8 It will be used
in many computational tasks, notably analyzing and comparing the alter-
native innovative technical itineraries proposed in the project to reduce the
use of chemical inputs (nitrogen fertilizers and pesticides). The content and
architecture of the knowledge base will be more detailed in the next chapter.
However some necessary information are needed for the use case.

The knowledge base is built by non-experts in Agronomy from reports
and online materials which makes it prone to inconsistencies. Moreover, the
construction was manual therefore the quality of data and the quantity were
low. Inconsistencies occur as violations of constraints, for instance having
the same scientific name for two different diseases. The goal of this use
case is to show how object-level dialectical explanations can help in improv-
ing the quality of knowledge by reducing inconsistencies and improving the
quantity by gaining new knowledge as a result of a dialogue with experts.

8Available online at http://www.lirmm.fr/~arioua/dkb/.
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Figure 5.3: A screen shot of a small section of one of the forms (French).

We have carried out the use case with two Agronomy experts (of similar
competences) within the project. While the number of experts is low in
general for a given topic, it is even more difficult to perform use cases with
domain experts of similar expertise in a project where everybody is chosen
to complement the other. We have adapted an interaction protocol similar
to the Wizard of Oz (Kelley, 1984), where the experts think they are inter-
acting with an autonomous system, but in fact he/she is interacting with an
unseen human being who simulates the intended behavior. This method is
widely used in human-computer interaction, usability engineering, etc. So in
general two forms (Figure 5.3) with identical structure have been prepared
for the two experts which serve as a way to communicate with them. The
communication has been conducted with the experts separately. We made
sure that the experts do not report each others answers or discussions.

Each expert is presented with a set of 18 queries which are entailed by
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Queries Decision Object-level Dialectical Explanations

Use a straw
cereal
precedent

No

1) Expert: Since the aim is to reduce the use of chem-
ical inputs, we are looking for a precedent that will
allow us to fight against weed, provide nitrogen and
reduce diseases. Quite the opposite of a cereal that
will entertain a specialization of weed flora and leave
little nitrogen in the soil and favor certain disease like
septoria.

2) Reasoner: The introduction of such precedent limits
the pressure of selection and generates a bigger range
of flora with less density, thus facilitating weed con-
trol, hence less cost (financial + reduction of herbi-
cides).

3) Expert: I do not really agree. In doing so it pro-
motes a certain specialization of adventitious flora.
This flora is going to be higher and higher and in-
creasingly difficult to manage because it will have the
same date of exercise of wheat.

Table 5.9: An snippet of a partially filled form that shows a dialectical
explanation between Expert 1 and the Reasoner along side to the decision.
The expert here does not agree with the content of the query.

the knowledge base (universally accepted). Then they were asked to indi-
cate whether they agree with the content of the query or not and provide an
argument that supports their decision, they also had the choice to be neutral
but still they were obliged to provide an argument. Moreover, they can ask
other questions to inquire more, like “’Explain’. Then we took the experts’
arguments for all 18 queries and generated counterarguments and expla-
nations from the knowledge base, next we presented the counterarguments
to the experts in a second round and asked them to either counterattack or
concede or to acknowledge understanding. At the end of the communication
with the experts we looked at the following:

• Gain of new knowledge: each argument advanced by the expert is
analyzed to extract rules, fact and negative constraints. For instance,
when the expert says (in the 1st line of the dialogue in Table 5.9) that
straw cereal entertains a specialization of weed flora and leave little
nitrogen in the soil and favor certain disease like septoria. This can
be represented as a fact.

• Reducing inconsistencies: each argument advanced by the expert
is analyzed to resolve inconsistency. To illustrate how inconsistencies
are resolved, let us give an example. In the Durum Wheat knowledge
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Rules Facts Constraints Inconsistencies

Expert 1 29 11 10 33

Expert 2 31 20 8 28

Table 5.10: The gain of new knowledge for Expert 1 and Expert 2.

base it is stated that: straw cereal precedent and sunflower precedent
are used. The problem is that we cannot use the two precedents to-
gether. So this is a conflict in the knowledge base. In Table 5.9 the
expert says that the aim is to reduce the use of chemical inputs (her-
bicide, fertilizers, etc.) and to fight against weed. These information
when added to the knowledge base have allowed to conclude that the
precedent in question is sunflower. Thus the conflict we had before
has been solved, thus the straw cereal precedent is dismissed (delete
the fact that stipulates the use of straw cereal).

Table 5.10 presents the number of rules, facts and negative constraints
that have been elicited with Expert 1 & 2. It also presents (last column)
the number of inconsistencies (i.e. number of minimal conflicts) in the KB.
The KB had 49 inconsistencies in total before carrying out of the use case.

The numbers in the first three columns refer to the new knowledge that
has been elicited. The process of elicitation has been done manually by
analyzing the forms. This new knowledge is fresh, that means it has not
been found in the knowledge base. This is quite expected since the domain
of Agronomy is vast and the proportion of what has been represented to what
has not yet been represented is large. We can also observe the considerable
quantity of rules we get compared to facts and negative constraints. This
is explained by the fact that the experts had more tendency to give rules of
thumbs instead of reporting data and facts.

In the inconsistencies column we observe that we could reduce the num-
ber of minimal conflicts by 16 with Expert 1 and by 21 with Expert 2. Note
that the inconsistencies were independent, that means resolving one incon-
sistency does not result in resolving others inconsistencies. Therefore, what
we are observing here is the direct effect of the experts’ input on reducing
inconsistencies.

In the same use case we asked the experts to give the decisions alongside
with relevance values that represent to what extent the content of the query
is relevant on a scale of:
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Revised decisions Revised relevance values

Expert 1 25% 25%

Expert 2 25% 50%

Table 5.11: The percentage of revised decisions and revised relevance values.

{very pertinent, pertinent, indifferent, not pertinent, not pertinent at all}

We asked each expert to put the relevance after putting the decision
and his response, then we asked them again to revise their relevance values
and decisions after having received the response of the Reasoner. Then we
looked how the values of relevance and decisions change.

The results is in Table 5.11 shows an average of 35% for Expert 1 and
25% for Expert 2. This indicates that about 7 and 5 propositions out of 18
have their decision and pertinence changed after the dialogue. The reason for
this change does not mean that the expert was wrong and he/she was giving
faulty information. But instead, the expert after receiving the response had
more visibility on the content of the knowledge base through dialogue, hence
he/she could better understand the content of the query, thus he/she revises
his/her initial decision and relevance, note that the changes can be positive
or negative. Put differently, it is possible that the expert agreed on the
content of a query and he/she gives it a high relevance value. But after
having the dialogue with the reasoner, the expert comes to realize that
he/she should have not agreed on it.

Although being preliminary, this result shows that object-level dialectical
explanations can help in better guiding the expert to understand the content
of the knowledge base which would result in the improvement of the content
of the knowledge base.

5.8 Conclusion

In this chapter we have presented the third contribution of the thesis. We
have proposed a formal account of object-level dialectical explanations, which
are explanations about the domain knowledge of a given knowledge base.
We have proposed a dialectical account. That means a dialogue system for
providing explanations called the EDS (explanatory dialogue system). This
model instantiates Walton’s Explan model and extends it along different
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directions. Table 5.12 shows the differences between our dialogue model
and the Explan model. However, we should state clearly that we have not
proposed a new system that is in rupture and in concurrence with Walton’s
model. It instead builds on it and extends it to cope with practical problems
that one may encounter in logic-based settings.

Let us summarize the main characteristic of EDS model, others are men-
tioned in Table 5.12:

• Fully formalized: we followed the desiderata proposed in McBurney
et al. (2002) and separated the protocol syntax and semantics. We
have given a formal account of commitment and understanding stores
and shown how they are manipulated.

• Instantiated: we have given a complete instantiation in a logical
setting where the abstract concept of explanation is provided.

• Multi-move and multi-reply: the protocol of the dialogue is multi-
move. That means that the participants can hold the turn freely until
they hand it out to the other party. It is also multi-reply which means
that an utterance can have multiple replies.

• Liberal protocol: alongside to being multi-move and multi-reply
protocol, the participants can retrace and reply to early utterances.

• Argumentative capabilities: we can shift to argumentation when-
ever the explanation seems implausible or inconsistent with the User’s
beliefs.

We have also discussed the issue of termination in Section 5.4.4 and
we stated that EDS is used-dependent therefore the user is the one who
determines termination. However, we provided some guidelines in case one
would use EDS for agent-agent dialogues.

Finally, we have shown a use case of how object level-dialectical explana-
tions can be used in knowledge acquisition and in reducing inconsistencies
in the Durum Wheat Knowledge base.

In the next chapter we shift to the implementation of dialectical ex-
planations, we explain the architecture of the dalek system (DiALectical
Explanation in Knowledge bases) that implements dialectical explanations
in inconsistent knowledge bases. Next we present another contribution with
respect to the DUR-DUR project where we provide a methodology to build
Durum Wheat knowledge bases under the existential rules framework. We
present the latest version of our Durum Wheat knowledge base that has been
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Feature EDS Explan

Nested explanation requests
√

×

Formal
√

× (Semi)

Questions asking (
√

)
√

Commitment stores
√ √

Understanding store
√

×

Shift to Examination dialogue ×
√

Argumentative capabilities
√

×

Unique-move turntaking ×
√

Multi-move turntaking
√

×

Unique-reply ×
√

Multi-reply
√

×

Dichotomy of syntax and semantics
√

×

Table 5.12: Comparison between EDS and Explan.
√

means that the feature
is available in the dialogue model, × means that it is unavailable. (

√
) means

it is available within the logical setting but not within the dialogue model.
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improved by the object-level dialectical explanations studied in the use case
presented in this chapter.
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6
Application

In this chapter we present two outcomes of the thesis. The first one is related
to the project DUR-DUR where we present a methodology of constructing
Durum Wheat knowledge bases in the expressive framework of existential
rules. The methodology emphasizes on how we conceptualize the knowl-
edge base and how to represent knowledge using conceptual graphs. Then
we show how to test whether the knowledge represented in the knowledge
base will allow query answering by checking whether the rule base provokes
undecidability or not. We explain this methodology on the Durum Wheat
knowledge base which has been built for the project. The second outcome
is the dalek prototype that implements dialectical explanations to explain
query answers in inconsistent knowledge bases. We present its architecture
in details.

6.1 Dur-Dur and the Durum Wheat Knowledge Base

The Durum Wheat knowledge base has been constructed within the French
National Project DUR-DUR. The goal of this knowledge base is to integrate
scientific knowledge acquired from different tasks during the project to re-
design the durum wheat chain. The DUR-DUR project suggests developing
a systematic approach to investigate issues related to the management of the
nitrogen, energy and contaminants, to guarantee a global quality of prod-
ucts throughout the production and the processing chain. Started in 2014
and planned over 4 years, the project aims at integrating the 3 dimensions
of the sustainability (environmental, economic, and social), at 4 levels of
investigation (4 tasks) with a complementary task (task 5). Figure 6.1 de-
picts the different tasks of the project where the fifth task’s central role is
to integrate knowledge from different tasks. The Durum Wheat knowledge
base is on of the products of the fifth Task. It will be used in many compu-
tational tasks, notably analyzing and comparing the alternative innovative
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Figure 6.1: The different tasks of the Dur-Dur project. The knowledge tasks
aims at integrating multidisciplinary knowledge from other tasks.

technical itineraries proposed in the project to reduce the use of chemical
inputs (nitrogen fertilizers and pesticides). The knowledge base represents
domain-specific knowledge about Agronomy. It is composed of four main
parts:

• Vocabulary: it contains knowledge about concepts and relations.

• Rules: they represent rules that encode generic knowledge.

• Negative constraints: this part contains constraints about crops
and Agronomy-related constraints.

• Facts: this part contains factual knowledge about Agronomy-related
subjects (fertilizers, pesticides, diseases, etc.).

In the next section we start by highlighting the guidelines which were
followed to author the knowledge base (Subsection 6.1.1) then we turn to
the the internal structure of the knowledge base including the vocabulary,
the rule-base alongside with the constraints and the factual knowledge (Sub-
section 6.1.2).

6.1.1 The authoring

A multidisciplinary process of knowledge acquisition and representation was
deployed to author the knowledge base. We used technical reports to define
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Figure 6.2: An overview of the Durum Wheat knowledge base. The circles
contain knowledge examples represented in the conceptual graph framework.
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the scope of the knowledge base and the relevant concepts of our vocabulary.
Taking into account the recommendation of Thunkijjanukij et al. (2008).
We followed three steps specification, conceptualization and formalization
to build the knowledge base.

Specification. The scope of the Durum Wheat knowledge base has been
defined by exclusively focusing on Durum Wheat Sustainability manage-
ment. The goal is improving Durum Wheat sustainability in France and
reduce the use of nitrogen fertilizers and pesticides and optimize energy
consumption using a systematic approach that makes use of innovative tech-
nical itineraries. The contribution of the knowledge base lays in offering an
expressive way of representing domain-knowledge.

Conceptualization. The concepts and the relations among them along-
side to rules, facts and constraints have been defined and collected from
technical reports (see Figures 6.3 and 6.4) and online materials1 It is worth
mentioning that in the vocabulary part we have built on the vocabulary of
Agropedia indica (Sini and Yadav, 2009) with an increase (and modification)
in content that approximates 60%.2

Formalization. Since understanding logical formulas is quite difficult for
experts who are not familiar with KRR formalism we have chosen a graphical
framework (Conceptual Graphs (Sowa, 1976, 1983)) to author the knowledge
base. Moreover, the conceptual graphs (CGs) made it easy for the Agron-
omy experts to understand the content of the knowledge base. Furthermore,
CGs enjoy the same expressive power as existential rules. In fact, it is an
equivalent formalism of existential rules as shown in Chein and Mugnier
(2009). Therefore, our choice was to choose CGs for knowledge acquisition
and the existential rules as a framework for theoretical study. For CGs, we
used CoGui 1.6b which is an IDE for representing and reasoning with CGs.3

We shall explain in-depth in Section 6.1.2 the graphical and logical represen-
tation for each part of the knowledge base. The facts within the knowledge
base are exported to an RDF/XML format whereas the vocabulary, rules and
constraints are exported as DLGP format (DataLoG Plus (Leclère et al.,
2013)). The vocabulary of the knowledge base contains 279 concepts and

1see http://www.fiches.arvalis-infos.fr/.
2http://www.agropedia.net.
3http://www.lirmm.fr/cogui/, GraphIK, LIRMM.
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Figure 6.3: Some structured data about Durum Wheat varieties.

Figure 6.4: Description of how to cultivate Durum Wheat.
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116 relations, the rule-base contains 23 rules and the constraints part con-
tains 25 constraints. The factual part has around 900 atoms. The knowledge
base is available online at http://www.lirmm.fr/~arioua/dkb/ where the
reader can find downloadable materials.

6.1.2 The structure

As depicted in Figure 6.2 the knowledge base is composed of four parts. It is
worth mentioning that on the logical level the vocabulary and the rule-base
are the same. However, we adapt here the Semantic web notation and we
differentiate between them. Therefore, we distinguish between those rules
that express logical consequences (in the rule-base) and those that encode
generalizations and classes inclusions (in the vocabulary).

6.1.2.1 The vocabulary

The vocabulary represents an explicit specification of the terms and concepts
used in Agronomy. The vocabulary is composed of two parts: (1) concept
types hierarchy and (2) relation types hierarchy.

1. Concept types hierarchy: concepts are organized within a hier-
archy as super-concepts and sub-concepts. For instance, the concept
disease and its sub-concepts (e.g. viral disease, fungal disease, etc.),
types of pesticides (e.g. herbicide, insecticide, fungicide) are all of
organized in a hierarchy.

2. Relation types hierarchy: in CGs the concepts are related by re-
lationships. Since concepts are divided into super-concepts and sub-
concepts, relationships are divided in the same way. In the relation
types hierarchy we find super-relations and sub-relations. For instance,
the relation “useSowingProcess” which relates the seeding and sowing
production step with the process of sowing (which is a super-concept
of broadcasting, behind plough and a sub-concept of process). This re-
lation is a sub-relation of the super-relation “useProcess” that relates
any production step with any process.

In CGs the hierarchy of concept types is represented as in the upper
graph of Figure 6.5. Rectangles represent concepts and the arrow represents
the generalization between them where the source of the arrow is the sub-
concept and the target of the arrow is super-concept. In the relation types
hierarchy (the lower graph), the circles are the relations and the arrows are
generalizations.
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Figure 6.5: Concept and relation types hierarchy.

To better illustrate the relation between existential rules and CGs, let us
take an example that shows the transformation of some part of the graphs
of Figure 6.5 to their logical form.

Example 6.1.1. The left-most part of the concept types hierarchy that indi-
cates that “Viral disease is a disease” is represented logically by a rule as
follows:

• ∀x(V iral disease(x)→ Disease(x)).

The part of the relation types hierarchy that indicates that “Using Her-
bicide is using Pesticide” is represented logically by a rule as follows:

• ∀x∀y(useHerbicide(x, y)→ usePesticide(x, y)).

6.1.2.2 The factual knowledge

In the Durum Wheat knowledge base the factual part represents domain-
specific knowledge. This knowledge is divided into two parts: (1) general
factual knowledge and (2) knowledge about different technical itineraries.
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Figure 6.6: The set of facts (d) about fungal diseases and fungus.

According to Sebillotte (1978) a technical itinerary is a “logical organized
course of technical actions applied to a cropped species”.

General factual knowledge is the part of the knowledge base that repre-
sents general facts about the domain, for instance, Miradoux is a variety of
Durum Wheat or the fungal disease Fusarium Flag smut is caused by, among
other causes, the fungi Urocyctis agropyri of the family Fusarium. The fol-
lowing is an example of a set of facts. Recall that commas are interpreted
as conjunctions.

(d) {Fungal disease(Flag smut), isCausedBy(Fusarium ear blight,
Urocyctis agropyri), fungi(Urocyctis agropyri)}.

Here we have the relation isCausedBy instantiated on the individuals
Flag smut and Urocyctis agropyri. The former is a fungal disease as stated
by the concept Fungal disease and the latter is a fungi. Figure 6.6 depicts
the set of facts in the conceptual graph framework. In conceptual graphs
the rectangles are called concept nodes and the circles are called relation
nodes. A concept node has a concept type and a marker which can be either
an individual marker (constant) or a generic marker (a variable denoted as
*).

The second part of the factual knowledge part are those facts about
the technical itineraries. In what follows we give a real-world example of a
well-known technical itinerary in France.

Example 6.1.2. This example represents the reference technical itinerary in
France which is followed by farmers to cultivate their fields.

“The variety to be seeded in the soil is Miradoux, the culture precedent is
sunflower. The soil is prepared by means of harrowing. The seeding is done

with density of 280 grains/m2. Fertilization is to be performed at the
growing stage when the tiller begins with dose 40u and 50u at the end of

the tiller.”

This technical itinerary is a set of facts, e.g. “variety is Miradoux”,
“Fertilization is to be performed at the growing stage”, etc. However, not
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any set of facts. Particularly, it is a precise set of describing facts. Actually,
any ITK (according to the studied reports) should precisely account for the
following steps:

1. Variety to be seeded.

2. Date of seeding alongside the density.

3. Cultural precedent.

4. Inter-cropping techniques.

5. Soil preparation method.

6. Disease management method.

7. Weed management method.

8. Insect control method.

Thus a technical itinerary should be mainly composed of these describing
facts. The following is a snippet of the technical itinerary described in
Example 6.1.2.

FITK =



Soil(Soil1) Durum wheat(D1)

isOfV ariety(D1,Miradoux) V ariety(Miradoux)

isCultivatedOn(D1, Soil1) Seeding and sowing(Seeding1)

Seed(Seed1) useSeed(Seeding1, Seed1)

seedOf(Seed1, Durumw1) isAppliedOn(Seeding1, Soil1)

withDensity(Seeding1, Density1) Density(Density1)

Unit(grain mm) hasV alue(280)

V alue(280)

6.1.2.3 The rule-base

Rules in the rule-base encode general-purpose domain-specific knowledge.
For instance, consider the following rules:

Example 6.1.3 (Example of rules).

(a) If a Durum Wheat x has fusariosis disease y then there exists a my-
cotoxin z that has contaminated the Durum Wheat x.

∀x, y(Durum wheat(x) ∧ hasDisease(x, y) ∧ Fusariosis(y)→
∃z isContaminatedBy(x, z) ∧Mycotoxin(z))
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Figure 6.7: The rule (b) in the CGs framework.

(b) If the soil is rich of organic matters and it contains seeds of weed then
these seeds will develop in this soil.

∀x, y, z, w(Soil(x)∧Organic matter(y)∧richOf(x, y)∧contains(x, z)∧
Seed(z) ∧ seedOf(z, w) ∧Weed(w)→ developIn(w, x))

The mycotoxin z is unknown (it could be Aflatoxins, Deoxynivalenol,
etc.) but still the information that “there is necessarily a mycotoxin” is
present, which is an important information when it comes to risk man-
agement where a possible contamination by any mycotoxin is taken to be
critical. Moreover, the importance of such representation manifests also in
helping knowledge elicitation where the knowledge base can make use of in-
complete information and then be updated incrementally by identifying the
existential variables.

In conceptual graphs, rules (e.g. rule (b)) are composed of a hypothesis
(left) and a conclusion (right) which are conceptual graphs of facts with
generic markers (*). The dashed lines link those concepts that share the
same variables (called frontier variables). That means, variables that appear
in the hypothesis and in the conclusion. In the rule (b), the concept weed
in the hypothesis part shares the same variable with the concept weed in
the conclusion.

As it is explained in Chapter 3 in the existential rules framework, cer-
tain classes of existential rules render the inference undecidable. However,
there are some classes that ensure decidability. Most notably, FUS (Finite
Unification Set) and FES (Finite Expansion Set) classes.4 The online tool
Kiabora deploys syntactical and semantic analysis on any set of rules writ-

4For more information about the classes see Baget et al. (2011b).
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Figure 6.8: The negative constraint (c) in the CGs framework.

ten in the DLGP format.5 The tool, for a given rule-base, classifies all the
rules with respect to the known classes. From the analysis we found that
our rule-base lays within the decidable classes. Specifically, FUS and FES.

6.1.2.4 The negative constraints

Representing what cannot be allowed within certain domain of interest is
called negative constraint (or constraint). Consider the following negative
constraint:

Example 6.1.4 (Negative constraint).

(c) ∀x, y, z(Soil(x)∧Maize(y)∧Durum wheat(z)∧hasPrecedent(x, y)∧
isCultivatedOn(z, x)→ ⊥).

This negative constraint forbids using Maize as a precedent on a soil if
we want to cultivate Durum Wheat on this soil. Figure 6.8 represents the
CGs representation of this negative constraint.

Besides this type of constraints we have the banned types constraints.
These are particular forms of constraints that express concept disjointness.
For instance, a soil x cannot be a disease, ∀x(Soil(x) ∧ disease(x) → ⊥).
In the Durum Wheat knowledge base, all concepts are disjoint except those
concepts which have a generalization/specialization relations among them.

5Kiabora 0.1 website: http://www.lirmm.fr/~mugnier/graphik/kiabora/, see
Leclère et al. (2013) for a detailed explanation.
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6.2 The DALEK Prototype: Explain!

In this section we present the general guidelines that we followed to imple-
ment dialectical explanations. The dalek prototype implements meta-level
as well as object-level dialectical explanations. dalek is programmed in
a way that it captures a standalone argumentation dialogue. It engages a
User and the Reasoner in a dialogue about the entailment of any boolean
conjunctive query in inconsistent knowledge bases represented within the
language of existential rules. Moreover, dalek implements commitments
and understanding stores.

Dialogue Planner

Utterances generator

Strategy selector

Logical Model

Knowledge base

Argumentation 
framework

GRAAL library

Config Structure

Locutions and replies

Protocol parameters

Planner parameters

Semantics Structure

Replies index

Semantics handler

Dialogue Manager

Syntax and 
semantics
handler

Utterance dispatcher

History and replies

Stores

User System

User

GUI
Interacts

Communicate

Has Has

Communicate Communicate

Information flow
from the high level 

to the low level

GUI

Layer 3
(high layer)

Layer 0
(low layer)

Layer 2

Layer 1

Figure 6.9: Layered architecture of dalek.

Figure 6.9 presents the layered architecture of dalek. Each layer is
composed of modules and each module is composed of sub-modules. The
information flow passes from the layer 3 to layer 0 through the intermedi-
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Figure 6.10: The GUI of dalek while carrying out a dialogue with a user.
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ate layers using the “communicate” link between modules. The “has” link
symbolizes possession. Note that sub-modules intercommunicate by default.

• Layer 3 (high layer): the graphical user interface.

• Layer 2: dialogue manager, configuration structure and stores.

• Layer 1: dialogue planner and semantics structure.

• Layer 0 (low layer): logical model.

As depicted in Figure 6.9 when the User interacts with the GUI (Figure
6.10), the latter communicates with the dialogue manager which possesses
the configuration structure and the stores. Then, the dialogue manager, at
its turn, communicates with the semantics structure through the sub-module
“Syntax and semantics handler” and with the dialogue planner through the
sub-module “Utterance dispatcher”. Next, the dialogue planner and the
semantics structure communicate directly with the logical model that uses
the Datalog± GRAAL library Baget et al. (2015) to query the knowledge
base. In what follows we detail each module.

6.2.1 Graphical user interface

The graphical user interface (Figure 6.10) allows the user to load a knowl-
edge base written in DLGP format. It allows also to load the most recent
knowledge base. In the first case dalek compiles the knowledge base into
another structure that indexes the facts and their derivation paths. In the
second case, the structure is only loaded as it was already computed before.
Then we can put the query directly in the query box and ask for an expla-
nation. To know whether the query has an answer or not one can click on
Querying button and select the answer variables of the query and get the
results. The buttons Supporters, Attackers and All Explanations give the
set of supporters, attackers of the supporters and explanations of the query
(in the sense of Chapter 5, Definition 5.4.8).

After putting the query in the query box one can start a pure argumen-
tation dialogue using the button Why and Why not or a pure explanation
dialogue by clicking on Explain. To mix the two dialogues, one has to click
on Shift to another dialogue. After choosing the type of the dialogue, the
user can reply to the Reasoner responses either by choosing already com-
puted response or creating a new response through the Utterance Toolbox.
While doing the dialogue the user can visualize the history of the dialogue
by clicking on Dialogue Tree where the dialogue will be shown in form of a
tree.
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6.2.2 Configuration structure

This module is responsible for holding the information about the different
parameters of the dialogue. It specifies: (1) the set of allowed locutions
(e.g. attempt, positive, etc.) alongside with their legal replies, (2) the
parameters of the protocol, e.g. unique-move, multiple-move, unique-reply,
multiple-reply, the participants, etc. and (3) the parameters of the planner,
e.g. types of strategies, utterance selection criteria, etc. To facilitate interac-
tion with the User, the current version of dalek adapts a unique-move and
unique-reply protocol. These settings can be changed in the configuration
structure with additional minor modifications in the planner.

6.2.3 Stores

A commitment store is a set of formulas to which a participant is committed.
An understanding store is a set of formulas which a participant has not yet
understood. The stores are modified by certain utterances. This module
is responsible to manage these stores. They are kept in memory as small
knowledge bases. The store can also directly be consulted and altered by
the User.

6.2.4 Dialogue manager

The dialogue manager is the referee between the User and the Reasoner (i.e.
dialogue planner), it dispatches their utterances through the sub-module
“Utterance dispatcher” after ensuring their legality. To verify the legality,
the dialogue manager communicates with the module semantics structure
through the sub-module “Syntax and semantics handler” that makes use of
the stores. Here is a brief description of the verification steps.6

• Syntactical verification: It ensures the legality of any advanced
utterance with respect to : (1) legality of the utterance itself, and
(2) legality of the reply within the dialogue. The first one checks
whether it is the turn of the speaker or not and whether the id of the
utterance is correct. It also checks whether the used locution is correct.
The second one checks whether the utterance is a correct reply to the
previous one by checking membership in the “Locutions and replies”
of the configuration structure module.

6Each description is not necessarily exhaustive. However, it follows the protocol of
dialectical explanations shown in previous chapters.
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• Semantics verification: It ensures the legality of the utterances with
respect to the content. It checks whether the advanced utterance holds
a semantically valid content (e.g. explain should hold a why ques-
tion, attempt should hold an explanation, etc.) and it replies with a
semantically valid content. This procedure is ensured by the seman-
tics structure. A final verification is to check the understanding store
of the User to avoid circular explanations after playing the utterance
(this is ensured by “Syntax and semantics handler”). If the configu-
ration of the dialogue imposes consistency of commitment stores then
the semantics verification checks whether the commitment stores of
the participants will maintain consistency after playing the utterance.

Since the dialogue is asymmetric, that means the User does not have
the possibility to interact with the Reasoner using natural language. The
dialogue manager proposes to the user the possible reply that he/she can
use to respond to the Reasoner.

6.2.5 Semantics structure

This structure implements an operational semantics of the dialogue. It as-
sociates with each reply a procedure that should be called by the dialogue
manager to check the legality of the reply. For instance, when presented
with an utterance argue(U, 7, 4, b) that responds to argue(R, 4, 3, a), the
semantics structure first gets the corresponding procedure (i.e. argueToar-
gue reply procedure) then checks whether B is an argument, next it verifies
whether B attacks A by communicating with the logical model.

6.2.6 Dialogue planner

This module represents the Reasoner. It receives the utterances from the
User through the dialogue manager and plans the next utterance to ad-
vance. The planner in its current state follows a simple profile, a follow-
through strategy where it tries to answer User’s utterances as they come.
The planner also performs the following tasks (among others):

• Explanation computation: When an explanation is requested for
a query Q, the planer asks the logical model to retrieve the rules and
set of facts that can deduce the query in a backward-chaining manner.
Using such technique we can insure consistency and minimality of
explanations.
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• Argument computation: When there is the possibility to attack
an explanation or counterattack an argument, the Reasoner asks the
logical module to compute all possible arguments then it chooses one
of them according to a specific strategy. In our case we just use a
random selection function.

6.2.7 Logical model

Since the dalek prototype uses the existential rules language to represent
knowledge bases, we have used the GRAAL library (Baget et al., 2015) as
a underlying engine for reasoning. The sub-module “Argumentation frame-
work” uses GRAAL and computes argument, counterarguments in the fly
using query rewriting techniques. It is to be noted that the logical model
faces the problem of intractability when we scale up to bigger knowledge
bases.

• Minimal conflicts computation: This procedure takes the set of
negative constraints and find for each negative constraint the set of
facts that triggers it (i.e. a minimal conflict, c.f page 3.2.14, Definition
3.2.14). If there is such set, it stores it in a file called conflicts. This file
is in fact a physical representation of a hypergraph called the conflict
hypergraph (Chomicki et al., 2004).

• Argument generation: This task computes an argument given a
query Q. It computes by backward-chaining (using the rewriting algo-
rithm of (König et al., 2015)) the set of facts involved in the deduction
of Q. This derivation forms an argument for Q.

• Counterargument generation: This task receives an argument a
and computes its counterarguments. It proceeds by getting all ele-
ments of its hypothesis, then it looks up in the conflict hypergraph for
those subsets of the hypothesis that are involved in any conflict. If so,
the procedure constructs a counterargument from the conflict’s graph,
otherwise it returns an empty set.

In the next section we show how dalek is used in knowledge acquisition
within the domain of Durum Wheat sustainability improvement.

6.3 Conclusion

In Section 6.1 we have shown another contribution regarding to the project
DUR-DUR which consists of the a methodology of constructing domain-
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specific knowledge base about Durum Wheat. To show the implementability
of dialectical explanations and its use in real-world setting, we presented in
Section 6.2 the general guidelines of a prototype called dalek that imple-
ments dialectical explanations.
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7
Conclusion and Perspectives

This chapter concludes the thesis and presents several possible directions for
future work.

7.1 Conclusion

In the beginning of the thesis we set out the following research problem.

Research problem
How do we make Consistent Query Answering intelligible to the

end-user?

Our thesis is that:

Formal Argumentation can serve as a solution to this problem. More-
over, it provides an added explanatory value with respect to the state-
of-the-art approaches.

To validate the thesis we provided three main contributions within the
framework of logic-based argumentation under existential rules.

• One-shot Argument-based Explanations (Chapter 3).

• Meta-level Dialectical Explanations (Chapter 4).

• Object-level Dialectical Explanations (Chapter 5).

In the first contribution we first provided a study of logic-based argu-
mentation under existential rules which revealed interesting properties such
as finiteness, coherence, relative groundedness and non-triviality. We also
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characterized the outputs of this argumentation framework by relating uni-
versal acceptance to the concepts of blocks and proponent sets. A block is
an admissible set of arguments that attacks all the supporters. A propo-
nent set is a set of supporting arguments that are distributed over all the
extensions. We related the problem of finding a block or a proponent set to
the problem of finding hitting sets. We established a representation theorem
between the existence of a block (resp. proponent set) and the non-universal
(resp. universal) acceptance of a query. Since blocks and proponent sets are
necessary and sufficient reasons to determine (non-)universal acceptance we
considered them as One-shot Argument-based Explanations.

In the second contribution we have shown that logic-based argumenta-
tion can go further than other approaches. Indeed, by exploiting the equiv-
alence between CQA semantics and universal acceptance, logic-based argu-
mentation provides elaborated and engaging explanations called Meta-level
Dialectical Explanations. This type of explanations is based on a dialectical
proof theory that we proposed for universal acceptance. This makes the
contribution twofold:

• We proposed a new dialectical proof theory for logic-based argumen-
tation.

• We provided an explanation mechanism that overcomes the issues
raised about One-shot Argument-based explanations without the need
to change the framework, thanks to formal dialectics.

To investigate the real effect of such improvement we have conducted an
experimental evaluation on the impact of meta-level dialectical explanations
compared to one-shot argument-based explanations on users regarding the
following aspects:

• Accuracy: we looked whether meta-level dialectical explanations would
make the user better understand inconsistent situations. We made
the hypothesis that his/her accuracy would increase when asked new
queries about the inconsistent situation.

• Time: we looked whether meta-level dialectical explanations would
make the user faster in answering new queries.

• Appreciation: we looked what is better appreciated, meta-level di-
alectal explanations or one-shot argument-based explanations on a
scale of “not clear at all”, “not clear”, “clear”, “so-so”, “very clear”.
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On the accuracy aspect, the data have confirmed our hypothesis as we
found that those who received meta-level dialectical explanations were more
accurate than those who received one-shot argument-based explanations.
On the time aspect, results have shown no effects. It is to be noted that
the absence of effects is more likely to be the result of insufficient number
of subjects. On the appreciation aspect, we have found that meta-level
dialectal explanations are better appreciated than one-shot argument-based
explanations where the median of the former is “clear” and the one of the
latter is “so-so”.

The post-hoc analysis has shown interesting pattern of long and well-
structured justifications when the users1 are asked to justify their answers.
This post-hoc analysis can be further investigated in the future.

In the third contribution we provided an abstract dialogue model of ex-
planation. We have shown how it improves Walton’s model (Walton, 2011)
on different aspects. The instantiation of this model on the existential rules
framework yielded Object-level Dialectical Explanations. A use-case with
Agronomy experts has revealed interesting preliminary results on the utility
of this type of explanation regarding knowledge acquisition and inconsis-
tency resolution. The subject of the use-case was the Durum Wheat knowl-
edge base which we have built within the DUR-DUR project.

To show the feasibility of these explanations, we have described the archi-
tecture of a prototype called dalek that implements One-shot Argument-
based Explanation, Object-level Dialectical Explanations and certain as-
pects of Meta-level Dialectical Explanations.

7.2 Future work

In this section we present some directions for future work for our contribu-
tions.

Logic-based Argumentation in Existential Rules. In Chapter 3 we
have presented a logic-based instantiation of Dung’s abstract model in the
existential rules framework. Although interesting properties have been stud-
ied some issues are still to be investigated and handled. We present them
hereafter in a prioritized order:

• Algorithmic aspects: despite the fact that we do not compute argu-
ments and attacks in a brute-force way, optimization techniques are

1Users who received meta-level dialectical explanations.
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needed to facilitate reasoning in this kind of argumentation frame-
works. Thanks to the existential rules framework, arguments compu-
tation can be done on the fly in a backward manner using query rewrit-
ing techniques such as König et al. (2015). Attacks computation can
be done using an intermediate compilation step where a hypergraph
of conflicts is constructed (Chomicki et al., 2004) and then attacks
are computed based on this hypergraph. Optimization techniques are
needed to compute such hypergraph using heuristics that are based on
inconsistency measures (Hunter and Konieczny, 2005).

• Redundancy: when computing arguments we do not consider equiva-
lent arguments. Taking into account equivalence between arguments
would reduce redundancy, consequently making the computational
process less hard. Moreover, the interaction with the user would be
more sense-making.

One-shot Argument-based Explanations. In Chapter 3 we character-
ized universal acceptance using proponent sets and blocks. We propose the
following directions for future work in a prioritized order:

• Relation with causality in databases: in Meliou et al. (2010) causality
and responsibility have been used to provide a model of explanation
within the framework of Halpern and Pearl (2005) for query answering
in consistent databases. Causes are assigned degrees of responsibility
assigned to them based on their contributions. The idea is to investi-
gate how the concept of block and proponent set can be modeled in
the Halpern-Pearl’s framework. Moreover, investigating the notion of
responsibility would help in putting preferences between explanations
(Chockler and Halpern, 2004).

• Relation with BAF: blocks and proponent sets seem to have a rela-
tion with Bipolar Argumentation Frameworks (BAF) of Cayrol and
Lagasquie-Schiex (2005). Since the notion of supporting argument
can be defined between an argument and a query, one can generalize
it to cover support between arguments. If a correspondence is found
then the dialectical proof theory proposed in this thesis could be of
use in Bipolar Argumentation Frameworks.

• Characterization of other semantics: in Chapter 1, Section 1.3 we
have presented a list of inconsistency-handling mechanism (e.g. No-
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objection, Lazy, etc.). Investigating such semantics with respect to
argumentation semantics would reveal interesting results.

Meta-level Dialectical Explanations. In Chapter 4 we provided a di-
alectical proof theory that computes (non-)universal acceptance and whose
proofs are called Meta-level Dialectical Explanations. This work can be
further investigated in the following order:

• Computational complexity: no computational complexity results have
been provided as it was not the main focus of the thesis. However,
investigating such issue would shed light on many aspects, especially
algorithmic ones.

• Dialectical proofs generation: when it comes to explanation in general
we often look for short explanations. The dispute complexity studied
in this contribution can be combined with heuristics to provide short
proofs, consequently short explanations.

• Dialectical proofs for other semantics: this would be the result of
the last point of future work for One-shot Argument-based Explana-
tions. Providing dialectical proof theories for other semantics would
contribute to the improvement of their usability.

Object-level Dialectical Explanations. In Chapter 5 we provided a
dialogue model of explanation that handles the content-sensitivity of expla-
nations. The future directions are as follows with a prioritized order:

• Experimentation: in the thesis, we provided a preliminary evaluation
of Object-level Dialectical Explanations in form of a use-case. Scaling
up the experiment would give more conclusive results.

• General semantics of explanation dialogues: the dialogue model pro-
posed in this thesis was an instantiation of the one provided in Ari-
oua and Croitoru (2015); Walton (2011). For both, our and Walton’s
model, a general semantics is needed to broaden the use of such di-
alogues, especially in Multi-Agent Systems. The biggest obstacle, we
believe, would be the formal account of understanding. A interesting
and pragmatical starting point would be to consider the knowledge
account of understanding (Grimm, 2006), which has been addressed
by to many philosophers such as Achinstein, Kitcher, Lipton, Salmon,
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and Woodward.2 This view states that understanding is a species of
knowledge, more precisely causal knowledge (Lipton, 2003). In such
case the usual possible worlds semantics can be used to represent dif-
ferent understanding states.

• Extending the locutions: in the dialogue model, the explain locution
is understood as a why question. Extending the set of locutions to ac-
commodate other explanatory locutions as “What is?”, “How?”, “How
would be?” would improve the expressiveness of the dialogue model
and allow more usability functions.

DALEK and the Durum Wheat KB: we have provided an implemen-
tation of dialectical explanations. This implementation should be evaluated
with respect to usability through direct interactions with the users. This
urges the need to develop a natural language translator from/to First-order
Logic. The interesting thing in the existential rules framework is that if the
underlaying knowledge base is authored in the Conceptual Graph frame-
work then the translation to natural language would be straightforward as
CG are proposed in the first place for this particular problem. The trans-
lation is done by considering a subset of the English language called con-
trolled English (e.g. Kuhn (2014)) which can provide minimal linguistics
functionalities for dalek. Moreover, the Durum Wheat knowledge base can
be improved by integrating more multi-disciplinary knowledge from pasta
transformation and socio-economical knowledge. This would give more ma-
terial for analyzing explanation dialogues over real-world knowledge bases.

2A very useful discussion on the recent philosophical trends on understanding and
explanation can be found in (de Regt, 2013).

178





8
Appendix

8.1 Chapter 3

Example 8.1.1 (Pick two!). Table 8.2 contains all arguments of Example
3.3.4, page 53.
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a1 = ({project(P ), isfast(P ), ischeap(P )}, project(P ) ∧ isfast(P ) ∧ ischeap(P ))

a2 = ({project(P ), isfast(P ), isgood(P )}, project(P ) ∧ isfast(P ) ∧ isgood(P ))

a3 = ({project(P ), isgood(P ), ischeap(P )}, project(P ) ∧ isgood(P ) ∧ ischeap(P ))

a4 = ({project(P ), isfast(P ), ischeap(P )}, project(P ) ∧ isfast(P ))

a5 = ({project(P ), isfast(P ), ischeap(P )}, project(P ) ∧ ischeap(P ))

a6 = ({project(P ), isfast(P ), ischeap(P )}, isfast(P ) ∧ ischeap(P ))

a7 = ({project(P ), isgood(P ), ischeap(P )}, project(P ) ∧ isgood(P ))

a8 = ({project(P ), isgood(P ), ischeap(P )}, project(P ) ∧ ischeap(P ))

a9 = ({project(P ), isgood(P ), ischeap(P )}, isgood(P ) ∧ ischeap(P ))

a10 = ({project(P ), isfast(P ), isgood(P )}, project(P ) ∧ isfast(P ))

a11 = ({project(P ), isfast(P ), isgood(P )}, project(P ) ∧ isgood(P ))

a12 = ({project(P ), isfast(P ), isgood(P )}, isfast(P ) ∧ isgood(P ))

a13 = ({project(P ), isfast(P ), isgood(P )}, project(P ))

a14 = ({project(P ), isfast(P ), isgood(P )}, isfast(P ))

a15 = ({project(P ), isfast(P ), isgood(P )}, isgood(P ))

a16 = ({project(P ), isgood(P ), ischeap(P )}, project(P ))

a17 = ({project(P ), isgood(P ), ischeap(P )}, isgood(P ))

a18 = ({project(P ), isgood(P ), ischeap(P )}, ischeap(P ))

a19 = ({project(P ), isfast(P ), ischeap(P )}, project(P ))

a20 = ({project(P ), isfast(P ), ischeap(P )}, isfast(P ))

a21 = ({project(P ), isfast(P ), ischeap(P )}, ischeap(P ))

a22 = ({project(P ), isfast(P )}, project(P ) ∧ isfast(P ))

a23 = ({project(P ), isgood(P )}, project(P ) ∧ isgood(P ))

a24 = ({isgood(P ), ischeap(P )}, isgood(P ) ∧ ischeap(P ))

a25 = ({project(P ), ischeap(P )}, project(P ) ∧ ischeap(P ))

a26 = ({isfast(P ), ischeap(P )}, isfast(P ) ∧ ischeap(P ))

a27 = ({isfast(P ), isgood(P )}, isfast(P ) ∧ isgood(P ))

a28 = ({project(P ), isgood(P )}, project(P ))

a29 = ({project(P ), isgood(P )}, isgood(P ))

a30 = ({isgood(P ), ischeap(P )}, isgood(P ))

a31 = ({isgood(P ), ischeap(P )}, ischeap(P ))

a32 = ({project(P ), isfast(P )}, project(P ))

a33 = ({project(P ), isfast(P )}, isfast(P ))

a34 = ({project(P ), ischeap(P )}, project(P ))

a35 = ({project(P ), ischeap(P )}, ischeap(P ))

a36 = ({isfast(P ), ischeap(P )}, isfast(P ))

a37 = ({isfast(P ), ischeap(P )}, ischeap(P ))

a38 = ({isfast(P ), isgood(P )}, isfast(P ))

a39 = ({isfast(P ), isgood(P )}, isgood(P ))

a40 = ({project(P )}, project(P ))

a41 = ({isfast(P )}, isfast(P ))

a42 = ({ischeap(P )}, ischeap(P ))

a43 = ({isgood(P )}, isgood(P ))

a44 = ({isfast(P )}, isfast(P ))

a45 = ({project(P ), isfast(P ), isgood(P )}, project(P ) ∧ isfast(P ) ∧ isgood(P ) ∧ isexpensive(P ))

Table 8.1: Arguments from 1 to 45.
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a46 = ({project(P ), isfast(P ), isgood(P )}, isfast(P ) ∧ isgood(P ) ∧ isexpensive(P ))

a47 = ({project(P ), isfast(P ), isgood(P )}, project(P ) ∧ isexpensive(P ))

a48 = ({project(P ), isfast(P ), isgood(P )}, isfast(P ) ∧ isexpensive(P ))

a49 = ({project(P ), isfast(P ), isgood(P )}, isgood(P ) ∧ isexpensive(P ))

a50 = ({isfast(P ), isgood(P )}, isfast(P ) ∧ isgood(P ) ∧ isexpensive(P ))

a51 = ({project(P ), isfast(P ), isgood(P )}, isexpensive(P ))

a52 = ({isfast(P ), isgood(P )}, isfast(P ) ∧ isexpensive(P ))

a53 = ({isfast(P ), isgood(P )}, isgood(P ) ∧ isexpensive(P ))

a54 = ({isfast(P ), isgood(P )}, isexpensive(P ))

Table 8.2: Arguments from 46 to 54.
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