
About programming Language basics Using it

IST-4-JAV Java Programming
Class 1 — (re ?)Discovering Java

Alice BRENON <alice.brenon@liris.cnrs.fr>

About programming Language basics Using it

Foreword: the IST-4-JAV course

About programming Language basics Using it

Timetable

20h: 5×4h-sessions
• 2023-10-02 8 a.m. (today!)
• 2023-10-04 2 p.m.
• 2023-10-06 8 a.m.
• 2023-10-11 2 p.m.
• 2023-10-13 8 a.m.
• (one class every other day this week, same last week

except monday)

Time repartition

• ~2h course
• (a break in-between)
• ~2h practice

About programming Language basics Using it

Course home

https://perso.liris.cnrs.fr/abrenon/IST-4-JAV.html

https://perso.liris.cnrs.fr/abrenon/IST-4-JAV.html

About programming Language basics Using it

How to pass this class ?

Evaluation

Game project demonstrating the object-oriented
concepts seen in class

Time-budget

• 20h together in class
• 20h at home

• 1h½ after each class
• 12h½ project

About programming Language basics Using it

1 About programming

2 Language basics

3 Using it

About programming Language basics Using it

About programming

About programming Language basics Using it

Modeling things

About programming Language basics Using it

Back to maths 101

What is a number ?

Let’s consider: 3
• △ (geometric property) ?
• {a,b,c} (set) ?
• succ(succ(succ(0)))

(Peano arithmetic) ?
• 51

17 (result of a computation)
?

Base b
• 11 (base 2)
• 3 (base 13)

∞

∑
i=0

ci ∗ bi

About programming Language basics Using it

Back to maths 101

What is a number ?
Let’s consider: 3
• △ (geometric property) ?

• {a,b,c} (set) ?
• succ(succ(succ(0)))

(Peano arithmetic) ?
• 51

17 (result of a computation)
?

Base b
• 11 (base 2)
• 3 (base 13)

∞

∑
i=0

ci ∗ bi

About programming Language basics Using it

Back to maths 101

What is a number ?
Let’s consider: 3
• △ (geometric property) ?
• {a,b,c} (set) ?

• succ(succ(succ(0)))
(Peano arithmetic) ?

• 51
17 (result of a computation)
?

Base b
• 11 (base 2)
• 3 (base 13)

∞

∑
i=0

ci ∗ bi

About programming Language basics Using it

Back to maths 101

What is a number ?
Let’s consider: 3
• △ (geometric property) ?
• {a,b,c} (set) ?
• succ(succ(succ(0)))

(Peano arithmetic) ?

• 51
17 (result of a computation)
?

Base b
• 11 (base 2)
• 3 (base 13)

∞

∑
i=0

ci ∗ bi

About programming Language basics Using it

Back to maths 101

What is a number ?
Let’s consider: 3
• △ (geometric property) ?
• {a,b,c} (set) ?
• succ(succ(succ(0)))

(Peano arithmetic) ?
• 51

17 (result of a computation)
?

Base b
• 11 (base 2)
• 3 (base 13)

∞

∑
i=0

ci ∗ bi

About programming Language basics Using it

Back to maths 101

What is a number ?
Let’s consider: 3
• △ (geometric property) ?
• {a,b,c} (set) ?
• succ(succ(succ(0)))

(Peano arithmetic) ?
• 51

17 (result of a computation)
?

Base b
• 11 (base 2)

• 3 (base 13)

∞

∑
i=0

ci ∗ bi

About programming Language basics Using it

Back to maths 101

What is a number ?
Let’s consider: 3
• △ (geometric property) ?
• {a,b,c} (set) ?
• succ(succ(succ(0)))

(Peano arithmetic) ?
• 51

17 (result of a computation)
?

Base b
• 11 (base 2)
• 3 (base 13)

∞

∑
i=0

ci ∗ bi

About programming Language basics Using it

Back to maths 101

What is a number ?
Let’s consider: 3
• △ (geometric property) ?
• {a,b,c} (set) ?
• succ(succ(succ(0)))

(Peano arithmetic) ?
• 51

17 (result of a computation)
?

Base b
• 11 (base 2)
• 3 (base 13)

∞

∑
i=0

ci ∗ bi

About programming Language basics Using it

Non-positional systems

Figure 1: Glagolitic numerals
(1280)

Figure 2: Roman numerals
(1909)

I + II = III easy!
I + IV = V uh ?

XCV + V = C haha good one romans ˆˆ

• hard to write addition rules
• not digits, numbers (‘X’ ≠ ‘C’ vs. ‘1’ in 10 = ’1’in 100)
• limited (no symbol > 1000)

About programming Language basics Using it

The advantage of positional systems

• finite set of simple
(“mechanical”) rules

• can represent any
number, even one
you’ve never even
considered

132 + 41 =??

. . . in base 5!

About programming Language basics Using it

The advantage of positional systems

• finite set of simple
(“mechanical”) rules

• can represent any
number, even one
you’ve never even
considered

132 + 41 =??

. . . in base 5!

About programming Language basics Using it

Back to elementary school!

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 +1 0
2 2 3 4 +1 0 +1 1
3 3 4 +1 0 +1 1 +1 2
4 4 +1 0 +1 1 +1 2 +1 3

1 3 2
+ 4 1

1 3 2
+ 4 1

3

1

1 3 2
+ 4 1

2 3

1

1 3 2
+ 4 1

2 2 3

About programming Language basics Using it

Back to elementary school!

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 +1 0
2 2 3 4 +1 0 +1 1
3 3 4 +1 0 +1 1 +1 2
4 4 +1 0 +1 1 +1 2 +1 3

1 3 2
+ 4 1

1 3 2
+ 4 1

3

1

1 3 2
+ 4 1

2 3

1

1 3 2
+ 4 1

2 2 3

About programming Language basics Using it

Back to elementary school!

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 +1 0
2 2 3 4 +1 0 +1 1
3 3 4 +1 0 +1 1 +1 2
4 4 +1 0 +1 1 +1 2 +1 3

1 3 2
+ 4 1

1 3 2
+ 4 1

3

1

1 3 2
+ 4 1

2 3

1

1 3 2
+ 4 1

2 2 3

About programming Language basics Using it

Back to elementary school!

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 +1 0
2 2 3 4 +1 0 +1 1
3 3 4 +1 0 +1 1 +1 2
4 4 +1 0 +1 1 +1 2 +1 3

1 3 2
+ 4 1

1 3 2
+ 4 1

3

1

1 3 2
+ 4 1

2 3

1

1 3 2
+ 4 1

2 2 3

About programming Language basics Using it

Let’s check!

132 = 2 ∗ 50
+ 3 ∗ 51

+ 1 ∗ 52
= 2 + 15 + 25 = 42

41 = 1 ∗ 50
+ 4 ∗ 51

= 1 + 20 = 21

223 = 3 ∗ 50
+ 2 ∗ 51

+ 2 ∗ 52
= 3 + 10 + 50 = 63

∖ˆθˆ∕

About programming Language basics Using it

A model of numbers

• a concept: numbers
• a representation: digits
• arithmetic rules to handle digits
• → know how to write a number with digits: encode
• ← know what number digits represent: decode

About programming Language basics Using it

General pattern

About programming Language basics Using it

General pattern

About programming Language basics Using it

General pattern

About programming Language basics Using it

General pattern

About programming Language basics Using it

The core of programming

• defining abstract concepts from a concrete
implementation (the right level)
• too complex: it’s slow
• too simple: it’s hard to use

• solve problems using the abstraction
• have a system translate it to the implementation
• repeat
• run

About programming Language basics Using it

Layers

• higher-level
languages

• C
• assembly
• machine binary

↕ compilation / interpretation

About programming Language basics Using it

Expressing computations

About programming Language basics Using it

Imperative

• “do things in a given
order”

• recipe
• implicit reference to a

state

for(int i = 0; i < 4; i++) {
a[i] += 1;

}

About programming Language basics Using it

Imperative

• “do things in a given
order”

• recipe
• implicit reference to a

state

for(int i = 0; i < 4; i++) {
a[i] += 1;

}

About programming Language basics Using it

Functional

• “describe the
computation itself”

• based on
lambda-calculus

• everything is a
function (⇒
higher-order)

fmap (+1) positions

About programming Language basics Using it

Functional

• “describe the
computation itself”

• based on
lambda-calculus

• everything is a
function (⇒
higher-order)

fmap (+1) positions

About programming Language basics Using it

Object

• “as a metaphor of a
physical object”

• associate data and
logic

• explicit reference to
an identified state

for(Cell cell : cells) {
cell.incr();

}

About programming Language basics Using it

Anything else ?

• logic:

sum(s(a), b) :- sum(a, s(b))

• concatenative:

: fac 1 swap 1+ 1 ?do i * loop ;

• (machine learning ?)

About programming Language basics Using it

Anything else ?

• logic:

sum(s(a), b) :- sum(a, s(b))

• concatenative:

: fac 1 swap 1+ 1 ?do i * loop ;

• (machine learning ?)

About programming Language basics Using it

Anything else ?

• logic:

sum(s(a), b) :- sum(a, s(b))

• concatenative:

: fac 1 swap 1+ 1 ?do i * loop ;

• (machine learning ?)

About programming Language basics Using it

Anything else ?

• logic:

sum(s(a), b) :- sum(a, s(b))

• concatenative:

: fac 1 swap 1+ 1 ?do i * loop ;

• (machine learning ?)

About programming Language basics Using it

Compiling vs. Interpreting

Compiler
• generate low-level from

high-level
• optimized, fast

Interpreter
• translated on the fly

(duality program /
data)

• generally slower (+
loading time)

• portable!

About programming Language basics Using it

Typing

Labels on things in the memory:

• “strong” or “weak”
• explicit or implicit
• static or runtime
• more or less expressive

• void*
• (G)ADT
• entire logic system

About programming Language basics Using it

Actually running them

About programming Language basics Using it

A finite memory

• hopefully “big enough”
• representing numbers

Figure 3: An
abacus

Figure 4: A modern
Pascal’s calculator Figure 5: The

Analytical Engine

• which can represent things

About programming Language basics Using it

A finite memory

• hopefully “big enough”
• representing numbers

Figure 3: An
abacus

Figure 4: A modern
Pascal’s calculator Figure 5: The

Analytical Engine

• which can represent things

About programming Language basics Using it

A finite memory

• hopefully “big enough”
• representing numbers

Figure 3: An
abacus

Figure 4: A modern
Pascal’s calculator Figure 5: The

Analytical Engine

• which can represent things

About programming Language basics Using it

Anything is a number

Directly (“native”)

• Truth value True or False, 2 values → 1, 0
• Numbers obvious but overflow
• Characters

• very natural (remember non-positional systems ?)
• known for very long (before Cæsar)!
• → encodings (ASCII, UTF-8. . .)

As a sequence

• notion of address
• special strategies: “stop” symbol vs. length
• “large” numbers
• text
• multimedia

About programming Language basics Using it

The right word

An atomic number ≐ a word

How to choose the right bits size

• too large is painful to build
• too small is painful to use (slow)

About programming Language basics Using it

Instructions

• the paths in the circuit
• at the electrical level
• hardwired operations

• sum
• multiplication
• bit shift
• xor
• . . .

About programming Language basics Using it

Architecture

word size + set of instructions = a “machine”

Examples

• x86_64
• arm64
• i686
• riscv64

About programming Language basics Using it

Virtual architecture

• data: numbers
• operations: numbers

⇒ we can have programs pretending to be machines (see
Turing machines)

About programming Language basics Using it

Java

About programming Language basics Using it

Concepts

Compiled or interpreted ?

• compiles to a binary: bytecode. . .
• but for a virtual machine! “JVM”
• “Write Once Run Anywhere”

Features

• Object-Oriented (+ Imperative)
• strictly typed: forget that “anything is a number”
• rich collection of built-ins for data structures, I/O. . .
• automatic memory handling (garbage collector)

About programming Language basics Using it

History

Context

• released in 1995 (32-bits architectures)
• after the Eternal September!

Internet oriented

• support from Netscape
• the .com frenzy
• applets, “servlets” (e-commerce, administrations. . .)

(Big) Business

• created by Sun Microsystem, bought by Oracle
• IDE (NetBeans, Eclipse), “easy”, “predictible”

(developer as a “worker”)
• a Java “Enterprise Edition” (vs. JSE)
• a lot of marketing, “Java” meant “cool” (→

“javascript”)
• → second life in mobile / handheld

About programming Language basics Using it

Language basics

About programming Language basics Using it

Language basics

Contains real bits of Java.

• this is for actual valid code
• <THIS> is for meta bits of code (templating)
• mind the case, the quotes, etc.

About programming Language basics Using it

Types

About programming Language basics Using it

What they are

How to navigate the “everything is a number” soup ?

→ flags

• boundaries (size)
• purpose, intention
• ∼ sets in maths
• prevent (some) errors

About programming Language basics Using it

What they are

How to navigate the “everything is a number” soup ?

→ flags

• boundaries (size)
• purpose, intention
• ∼ sets in maths
• prevent (some) errors

About programming Language basics Using it

Usage

Convention
• native (lowercase)
• sequences (uppercase-first)
• void

Every value or function

must be annotated with its type (Java does it too and
compares)

About programming Language basics Using it

A REPL!

In jshell1 (Read - Eval - Print Loop) type

• /vars : to print the known variables with their type
• /set feedback verbose : to include the type of

expressions in the evaluation output

This is not Java! only special commands for the interpreter

1https://tryjshell.org/

https://tryjshell.org/

About programming Language basics Using it

Data structures

About programming Language basics Using it

“native” numbers

Truth values
• boolean useful for conditionals

Examples

• true
• false

About programming Language basics Using it

Integers

• byte 8 bits integers → [−128, 127]
• int 32 bits integers → [−2147483648, 2147483647]
• short 16 bits integers → [−32768, 32767]
• long 64 bits integers → [−263

, 263]

Examples

• 0
• -1
• 1347 (not for byte)
• 0b11 (binary), 046 (octal), 0xa3 (hexadecimal)

About programming Language basics Using it

Decimal numbers
• float 32 bits decimal numbers, scientific notation,

significand/exponent
• double same with 64 bits (+ precision)

Examples

• the previous (since N ⊂ R)
• 1.03, -0.47, 320.
• 314e-2, -1.21E7
• 1f, 2.0d, -1.237e12F

About programming Language basics Using it

Unicode characters
• char 16 bits, UTF-16, written between simple quotes

Examples

• 'a', 'b', '0', '!', '@', 'é'. . .
• '\n', '\r', '\t'. . .
• '\'', '\\'
• '\u00e9' (code point)
• 10, 0x27

About programming Language basics Using it

“sequences” = objects

“Arbitrary” precision

• BigInteger large integers
• BigDecimal large decimal numbers

Text
• String immutable sequences of characters

Examples

• ""
• "Some text"
• "first line\nsecond line\n"

About programming Language basics Using it

Values

About programming Language basics Using it

Constants

• (everything we’ve just seen)
• “magic” values, not all explicitly defined (because:
long, String)

• a very special constant only for objects: null

Problems with constants
• “Don’t Repeat Yourself”
• they don’t carry any intention (“beware of names”

said I!!)
• “constants” change sometimes (e.g. exchange rate)

About programming Language basics Using it

Variables

Concept

• give a meaningful name to a value
• absolutely abstract, will need to refer to a place in the

memory
• a “wire”, “bringing” the value (no copy)

Valid names
• must start by: a letter ([a-zA-Z]), $ or _
• may contain any above and digits [0-9]
• except reserved keywords: if, else, for, while,
return, try, catch, static, final. . .

• usually: full uppercase for “constant” variables,
camelCase for the rest

About programming Language basics Using it

Built-in (final) variables

• streams: System.in, System.out
• maths: Math.PI, Math.E

About programming Language basics Using it

Comments

About programming Language basics Using it

Comments

• clarify intent
• not a remedy for bad naming
• not needed to caption the obvious
• can contain the documentation (javadoc)

About programming Language basics Using it

Syntax

Rest of line

// this is a comment
4 // it doesn't have to start with the line
// but it ends it so this is not a number: 17

General comments

/* these comment can start on a line
and end on another one */

/* Since they have an end, this is a number: */ 4
/** two asterisks like this for a Javadoc string */

About programming Language basics Using it

Functions and Procedures (built-ins only today)

About programming Language basics Using it

Functions

• abstracts a computation by isolating its inputs
• name it (“beware of names”!)
• has several input types (for its arguments) and one

output type (for its result)
• its arguments are written within parentheses (both in

declaration and call)

Built-in functions examples

• type conversions Integer.parseInt,
Integer.toString. . .

• maths toolbox Math.max, Math.min, Math.exp. . .
• . . .

About programming Language basics Using it

Procedures

• simply “do” something
• no result
• (actually has special output “type” void)

Built-in procedures

• Thread.sleep (pause execution)
• System.exit (quit the program)

About programming Language basics Using it

Operators (all built-ins)

• special functions with an infix notation
• name: a few punctuation/typographic characters

Unary

• ~, !

Binary

• numbers: *, -, /, %
• numbers and Strings: +
• boolean: ||, &&
• bitwise: |, &, >>, <<, ˆ
• comparisons: ==, !=, >, <, >=, <=

About programming Language basics Using it

Methods

• functions or procedures
• tied to an object by a .
• names need not be unique

Examples

• System.out.println
• "some string".length
• userName.charAt
• password.equals

About programming Language basics Using it

About the memory

Value is just a (JVM, not physical) word

• “Numbers” → their direct value
• objects → address in memory
• (can be nested, so it’s just a graph of pointers)
• no direct access but: binary operators, variables

Consequences

• only objects can be null
• but null isn’t an object
• == / != on objects compare addresses

About programming Language basics Using it

Expressions and Statements

About programming Language basics Using it

Simple bricks (“atoms”)

Expressions

• compute a value
• constants
• variables (in a context where they are defined —

“plugged wire”)
• any other type

Statements
• do something (change state)
• only “atomic” statement: variable declaration
• type void

About programming Language basics Using it

Declaring a variable

• reserve space in memory
• tag it with a given type
• can be set with an initial value, but always initialized

• “numbers”: to the equivalent of 0
• objects: to null

Examples

int messageLength;
String userName;
char firstLetter = 'a';

About programming Language basics Using it

Nesting

Expressions

• if e is an expression, so is (e)
• (useful for operators priority)

Statements
• if s1 and s2 are statements, s1; s2 is a statement
• semantics: s1 then s2
• in practice, wrap all the list within {. . .}

{ s1; s2; s3; ... ; sn }

About programming Language basics Using it

Casts

Use
• force a conversion between types
• may lose information (beware of truncation)
• (give hints to Java)

assuming

• t is a type
• <VALUE> is an expression

(t) <VALUE>

is an expression of type t with value “projected” from
<VALUE>

About programming Language basics Using it

Casts examples

(short) 4 // still 4, but coded on 16 bits
(byte) 'c' // == 99
(float) (2.5 / 2) // still 1.25, but as a float
(int) 7.2 // truncates to 7
(int) 7.9 // 7, it truncates and doesn't round
(float) ((int) 7.2) // still 7.0, information was

// lost

About programming Language basics Using it

Function application

• a call to a function or an operator is an expression
• a call to a procedure is a statement

Syntax

• function or procedure: its name followed by the
comma-separated arguments between parentheses

• operators: the symbol before, between or after its
argument(s)

Examples

!false
total / count
"Hello, " + "world!"
Math.pow(Math.E, -1)
System.out.println(someMessage);

About programming Language basics Using it

Variable assignment

an expression which

• changes a value in the memory
• returns a value

assuming

• a is a variable of type t
• <VALUE> is an expression of type t

a = <VALUE>

is an expression wich assigns the value of <VALUE> to a
and has the same value

About programming Language basics Using it

Assignment operators

• Binary the previous binary (except boolean) operators
followed by = (+=, *=, /=, |=, <<=. . .)

• Unary
• shortcuts for the pattern a = a · 1 (· : ‘+’ or ‘-’)
• increment: ++ / decrement: --
• before or after the variable: value after or before the

change

int a = 4;
++a; // a is now 5, the line evaluates to 5
--a; // a is back to 4, the line evaluates to 4
int b = a++; // read then increment: a is now 5

// b is 4
a--; // a is back to 4 again, the line evaluates

// to 5

About programming Language basics Using it

Control structures 101

About programming Language basics Using it

Conditional statement

assuming

• <TEST> is an expression of type boolean
• <WHEN_TRUE> and <WHEN_FALSE> are statements

if(<TEST>) {
<WHEN_TRUE>

} else {
<WHEN_FALSE>

}

if(<TEST>) {
<WHEN_TRUE>

}

are statements which:

• if <TEST> evaluates to true, execute <WHEN_TRUE>
• otherwise execute <WHEN_FALSE> (or nothing for the

shorter form)

About programming Language basics Using it

Conditional expression

assuming

• <TEST> is an expression of type boolean
• <WHEN_TRUE> and <WHEN_FALSE> are expressions

<TEST> ? <WHEN_TRUE> : <WHEN_FALSE>

is an expression which value is:

• <WHEN_TRUE> if <TEST> evaluates to true
• <WHEN_FALSE> otherwise

About programming Language basics Using it

for loops

assuming

• <INITIALIZE>, <ITERATE> and <BLOCK> are
statements

• <TEST> is an expression of type boolean

for(<INITIALIZE>; <TEST>; <ITERATE>) {
<BLOCK>

}

is a statement which:

• executes <INITIALIZE>
• if <TEST> evaluates to true, executes <BLOCK> then
<ITERATE> then start over from this line

• otherwise stops

About programming Language basics Using it

while loops

assuming

• <TEST> is an expression of type boolean
• <BLOCK> is a statement

while(<TEST>) {
<BLOCK>

}

is a statement which:

• if <TEST> evaluates to true, executes <BLOCK> and
start over from this line

• otherwise stops

About programming Language basics Using it

Using it

About programming Language basics Using it

How things work in general

About programming Language basics Using it

Reminder

• hybrid between compiled and interpreted
• compiles (“source”) code to binary
• binary is not for the physical architecture but for the

Java Virtual Machine

About programming Language basics Using it

Java projects

• organized in packages (folders)
• packages contain classes (files)
• classes contain “code”

• values
• methods

About programming Language basics Using it

Names

The Operating System

• file system path
• separated by /
• .java extension

Java
• package / classes
• separated by .
• no extension

About programming Language basics Using it

Compilation

Operating System → Java

• static
• .java extension
• compiled into bytecode .class
• may catch some mistakes

javac [OPTIONS] PATH_TO_SOURCE_FILE

About programming Language basics Using it

Execution

• dynamic, runtime
• the .class run by the JVM
• may catch some other errors

java [OPTIONS] PATH_TO_BYTECODE

About programming Language basics Using it

For today

About programming Language basics Using it

Read the documentation

Main page of the official Java documentation

https://docs.oracle.com/en/java/javase/19/docs/api/ind
ex.html

Some particularly interesting modules and packages
to start
• java.base
• java.lang

https://docs.oracle.com/en/java/javase/19/docs/api/index.html
https://docs.oracle.com/en/java/javase/19/docs/api/index.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/module-summary.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/package-summary.html

About programming Language basics Using it

Example

String

https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/String.html

About programming Language basics Using it

JShell documentation

https://cr.openjdk.org/~rfield/tutorial/JShellTutorial.html

https://cr.openjdk.org/~rfield/tutorial/JShellTutorial.html

About programming Language basics Using it

Time for practice :)

https://perso.liris.cnrs.fr/abrenon/IST-4-JAV.html

https://perso.liris.cnrs.fr/abrenon/IST-4-JAV.html

