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Why?
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Previously on IST-4-JAV. . .

int initValue = 221;
while(initValue > 1) {

System.out.println(initValue);
if(initValue % 2 == 0) {

initValue /= 2;
} else {

initValue = 3*initValue + 1;
}

}

• initValue is modified!
• → need to reset it
• naming issue: at the end it’s actually the “final” value
• not reusable nor composable
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Functions as an interface

Documentation
• identifies what is needed
• partly document things through types
• beware of the naming though!

Local variables
• “What happens in a function stays in the function”
• variables defined within are not available outside
• can even reuse name (dangerous though)
• notion of scope
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How?
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Example: is a char contained in a String?

We know how to

• compare 2 chars (==)
• access a char at a given index in a String (.charAt)
• iterate over a String (for loop)

→ algorithm

for each index i within the input string s:
compare the char c with the one at index i
if they are equal

return true
otherwise

keep going
endfor
return false
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The head of a function

boolean contains(String haystack, char needle)

• boolean: output type
• contains: function name
• (..., ...): arguments are defined as a tuple
• String haystack: each argument is defined by its

type and its name→ variable
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A new statement: return

• only available in a function/method declaration
• stops the current function
• “eliminates” the value of an expression→ a statement
• must match the type of the function (like declaring a

variable)
• “closing the box”
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Examples

Correct use

return 4; // ok in an int, double, etc., function
return; // ok in a procedure (void function)

Incorrect use

int n = return 2; // bad! won't compile
someFunction(return 2); // bad! won't compile

// either
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The body

• “regular” (= imperative+object) code like in jshell
• “virtual” environment, “suspended” computation,

“assumption”
• can declare variables, use statements, call other

functions. . .
• every “exit” must be checked: return; by default,

but that is void
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Implementing the body

Context

• needle: the char we’re looking for
• haystack: the String where we’re searching

for(int i = 0; i < haystack.length(); i++) {
if(haystack.charAt(i) == needle) {

return true;
}

}
return false;
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Wrapping it up

boolean contains(String haystack, char needle) {
for(int i = 0; i < haystack.length(); i++) {

if(haystack.charAt(i) == needle) {
return true;

}
}
return false;

}
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Meditations
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Good practice

• give clear, meaningful names to your functions
• have them use rich types to clarify their purpose
• give clear, meaningful names to its arguments
• functions should do “one thing”
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Purity vs. side effects

Maths, again!

f ∶
A → B
x ↦ f(x)

• doesn’t “change” x
• stable: always returns

the same thing

Side effects
Sometimes programs need
to
• alter values
• interact with the outside

world
• notion of “state” of the

program
• void type
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Comparison with other loops

Similarities
• “canned” code
• the body within { . . .
}

• made of statements

Differences
• loops are directly

applied
• you can chose

function names
• they have a return

type
• applying them makes

expressions (function)
or statements
(procedure)
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More data!
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“Object-Oriented”



Making functions and procedures More data! More control structures! Our first program

The world of Ideas

Figure 1: A “duck” Figure 2: An other “duck”

Plato: the “Theory of Forms/Ideas”

• “true” reality of this world
• eternal, perfect
• they exist prior to particular concrete objects
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Classes

• the “idea”, a “mold” to cast objects
• also, a “factory” to create particular realization

In Java

• eternal: compile-time (static), “structure” of your
program

• prior to concrete objects: classes→ objects
• not values but can appear in some expressions
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The “Form”

• groups values together (≈ cartesian product, AND)

2DPoint = (N × N)

• defines a recipe for values: what and how
• defines the use of values
• similar to the type of “number” values (int, char. . . )
• you already know: String (mind the case!)



Making functions and procedures More data! More control structures! Our first program

Fields

• define the what, the “components”
• needn’t be of the same type (≠ String ≈ char ×
char × . . . × char)

• just like in jshell : may set a value or not (always a
default)

int room;
String building;



Making functions and procedures More data! More control structures! Our first program

A “constructor”

• define the how, the “mold” part
• it’s just a function! (can take parameters)
• both the return type and the name of the function
• usually initializes the fields
• always a default constructor: no arguments, does

nothing

ClassRoom(int room, String building) {
this.room = room;
this.building = building;

}
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Methods

• like regular functions
• but linked to the class: can see

• “inside” objects
• other methods in the same class

String view() {
return this.building.charAt(0)

+ "-" + this.room;
}
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All together now

class ClassRoom {
int room;
String building;

ClassRoom(int room, String building) {
this.room = room;
this.building = building;

}

String view() {
return this.building.charAt(0)

+ "-" + this.room;
}

}
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Objects

• concrete realization of classes (one particular duck)
• “instance” of classes (instantiate)

In Java

• runtime: created on the fly while programs run
• they are values: can be stored, passed to / returned

from functions
• instantiating an object takes memory
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Creating objects

ClassRoom javaLab = new ClassRoom(17, "Hopper");

• new tells Java we’re going to allocate some space
• the constructor tells Java which Class is needed
• an empty “box” is created
• the code for the constructor is called
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(What’s this? What’s this? I can’t believe my
eyes. . . )

Room(int room, String building) {
this.room = room;
this.building = building;

}

• the empty, fresh, “box”→ this
• refers to the current instance
• ≈ 1st person pronoun
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Using fields

javaLab.room // an int value (17)
javaLab.view() // a String value ("H-17")

assuming

• objectExpression is an expression of (object) type T
• field is exposed by class T as a property of type
output or a method

objectExpression.field

is either

• an expression of type output
• or a function or procedure
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static

• related to the “Form” itself, not to any of its instances
• shared space between instances
• ⟹ static code can refer to this!

Warning

fields and methods can be static ≠ constructors can
(obviously) not
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Syntax

static values can be initialized

• during declaration (preferred→ no constructors!)
• within a method (static or not)

class ClassRoom {
static String separator = "-";

. . .

String view() {
return this.building.charAt(0)

+ separator
+ this.room;

}
}
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Please note

• static values should only be accessed through the
class itself, not one of its instances (though it works).

Recommended

ClassRoom.separator;

Not recommended

javaLab.separator;
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Object tooling
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Wrappers around native types

• char→ Character
• int→ Integer
• double→ Double
• . . .

useful for their static methods

• Character.isLowerCase
• Integer.parseInt
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instanceof

assuming

• a is a variable of a class type
• ClassName is the name of an existing class

a instanceof ClassName

is an expression of type boolean which evaluates to true
if a belongs to ClassName, false otherwise.

Example

String s = "";
Integer n = 4;
s instanceof String // == true
n instanceof Integer // == true
s instanceof Integer // will break at compile time!
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Containers
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Arrays

• several values of the same type put together
• indexed by an int
• (∥ String)
• .length: special attribute but no methods
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Creation

• type: content type suffixed with []
• char[], double[], String[], ClassRoom[]

• value: either
• empty (size only): new char[5]
• pre-initialized: {'a', 'b', 'c'}

Warning

• pre-initialized form works only for declaration, not
update

• otherwise, initialized by default→ ≈ 0 (null for objects)
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Access

once an array a of length n exists in memory it’s like:

• n independent variables exist
• each at index i can be:

• read: a[i]
• written: a[i] = someNewValue;

• its length is stored and readable: a.length (= n)
• (but not writable!)

Warning

• indices range from 0 to n - 1
• accessing an array out of its bounds will cause an error
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Objects

• several pre-defined classes:
• ArrayList
• LinkedList
• Vector
• . . .

• different strategies to handle storage, grow, access,
etc.
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Creation

• type: content type between <>
• LinkedList<Integer>

• value: with new, like any objects, empty or from
another object

Vector<Integer> pages = new Vector<Integer>();
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Access

no “cell as a variable” but

• .get(int index) returns the value at index
• .set(int index, E element) replaces the value at
index

• .add(E element) appends (at the end)
• .size() (≠ .length!) the number of elements
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“Boxes”

• not “one” type, an (open) “family”
• notion of type “variable” (E)
• any type→ can be nested!

can be a “number” type or a class for arrays

int[] primes = new int[8];
String[] cheeseNames = {"camembert", "maroilles"};
int[][] matrix = new int[5][5];

must be a class for object containers

ArrayList<Integer> grades;
new LinkedList<String>()
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Mutability

On values
• String: .charAt() function result→ read-only
• arrays: [] variable→ read-write
• object containers: .get, .set→ read-write

On size
• String: can’t be changed
• arrays: .length is final (ro)
• object containers: .add
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More control structures!
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Switch / case
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Ififififif

String inFrench(int number) {
if(number == 0) {

return "zéro";
} else {

if(number == 1) {
return "un";

} else {
if(number == 2) {

return "deux";
} else {

if(number == 3) {
return "trois";

} else {
return "baguette";

}
}

}
}
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Slightly better

this is the one valid case when it’s ok to not use {...} (in
the else statement):

String inFrench(int number) {
if(number == 0) {

return "zéro";
} else if(number == 1) {

return "un";
} else if(number == 2) {

return "deux";
} else if(number == 3) {

return "trois";
} else {

return "baguette";
}

}
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A new construct!

• a block:

switch() {
...

}

• two inline tests:
• case x: where x must be a constant of the same type
• default: catch-all

case 0: ...
case 1: ...
default: ...
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Syntax

assuming

• e: an expression of type t
• c1, . . . , cn are constants of type t
• st1, . . . , stn(, stn+1) are statements

switch(e) {
case c1: s1;

. . .

case cn: sn;
default: stn+1; // optional

}

is a statement which

• finds i such that ci == e (or n+1)
• runs all statements from si to sn+1
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Example

String inFrench(int number) {
switch(number) {

case 0: return "zéro";
case 1: return "un";
case 2: return "deux";
case 3: return "trois";
default: return "baguette";

}
}
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break

the case lines are just labels

→ execution jumps and continues below from there

• like return, stops the current function
• no value, just stops
• actually, works in all loops
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Try / catch
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Errors happen

• complex program, dynamic behaviours
• → hard to anticipate
• → will fail

What to do?

• the program may recover
• exception error messages are “ugly”: users should

understand the cause if they can do something about
it
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Syntax

assuming s0, s1 and s2 are statements

try {
s0

} catch(Exception e) {
s1

} finally {
s2

}

is a statement which

• execute s0
• if an exception occurs, execute s1 (where variable e

may appear)
• (executes s2 whether s0 has failed or not)
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More on for
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Remember for?

for(<INITIALIZE>; <TEST>; <ITERATE>) {
<BLOCK>

}

Actually. . .

• <INITIALIZE> doesn’t have to start at 0
• <TEST> can be any expression, a call to a (boolean)

function
• <ITERATE> can be any statement (you can count up

or down, by arithmetic, geometric progression or any
function you want)
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A beautiful solution

int nextCollatz(int i) {
return i % 2 == 0? i / 2 : 3*i+1;

}

for(int i = 221; i > 1; i = nextCollatz(i)) {
System.out.println(i);

}
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The end of the loop
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do . . . while

• variant of while
• reverse block execution and test
• ⟹ block is always executed once
• (not conceptually different, just convenient sometimes)

int n = 4;
do {

n++;
} while(n < 2)

Now n is 5
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continue

• like break, stop the loop in the middle
• unlike break, will resume the loop normally

for(int i = 0; i < 4; i++) {
if(i % 2 == 0) {

continue;
}
System.out.println(i);

}

will print

1
3
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Our first program
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Code
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A class to represent the program

• in Java a program is made of classes
• represent an instance of the program running

(reflexivity)
• otherwise normal, choose the name you want, can

have attributes

class Main {
...

}
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A very special function: main

Requirements

• entry point of the program (“where do we start?”)
• no context yet, so can’t instantiate Main class
• ⟹ static, (public)

Types

• can’t return anything (no guaranty it will end): ⟹
output type void

• command-line arguments ⟹ input type String[]
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Example

class Main {
public static void main(String[] arguments) {

for(String argument : arguments) {
System.out.println(argument);

}
}

}
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Practice
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Compiling

the above saved in a file Main.java in current folder.

$ ls
Main.java
$ javac Main.java
$ ls
Main.class Main.java
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Running it

the java command expect a virtual path: to the class, not
to the file

$ java Main one two three four
one
two
three
four


