
Making functions and procedures More data! More control structures! Our first program

IST-4-JAV Java Programming
Class 2 - Enough to fly

Alice BRENON <alice.brenon@liris.cnrs.fr>



Making functions and procedures More data! More control structures! Our first program

1 Making functions and procedures

2 More data!

3 More control structures!

4 Our first program



Making functions and procedures More data! More control structures! Our first program

Making functions and procedures



Making functions and procedures More data! More control structures! Our first program

Why?



Making functions and procedures More data! More control structures! Our first program

Previously on IST-4-JAV. . .

int initValue = 221;
while(initValue > 1) {

System.out.println(initValue);
if(initValue % 2 == 0) {

initValue /= 2;
} else {

initValue = 3*initValue + 1;
}

}

• initValue is modified!
• → need to reset it
• naming issue: at the end it’s actually the “final” value
• not reusable nor composable



Making functions and procedures More data! More control structures! Our first program

Functions as an interface

Documentation
• identifies what is needed
• partly document things through types
• beware of the naming though!

Local variables
• “What happens in a function stays in the function”
• variables defined within are not available outside
• can even reuse name (dangerous though)
• notion of scope



Making functions and procedures More data! More control structures! Our first program

How?



Making functions and procedures More data! More control structures! Our first program

Example: is a char contained in a String?

We know how to

• compare 2 chars (==)
• access a char at a given index in a String (.charAt)
• iterate over a String (for loop)

→ algorithm

for each index i within the input string s:
compare the char c with the one at index i
if they are equal

return true
otherwise

keep going
endfor
return false



Making functions and procedures More data! More control structures! Our first program

Example: is a char contained in a String?

We know how to

• compare 2 chars (==)
• access a char at a given index in a String (.charAt)
• iterate over a String (for loop)

→ algorithm

for each index i within the input string s:
compare the char c with the one at index i
if they are equal

return true
otherwise

keep going
endfor
return false



Making functions and procedures More data! More control structures! Our first program

The head of a function

boolean contains(String haystack, char needle)

• boolean: output type
• contains: function name
• (..., ...): arguments are defined as a tuple
• String haystack: each argument is defined by its

type and its name→ variable



Making functions and procedures More data! More control structures! Our first program

A new statement: return

• only available in a function/method declaration
• stops the current function
• “eliminates” the value of an expression→ a statement
• must match the type of the function (like declaring a

variable)
• “closing the box”



Making functions and procedures More data! More control structures! Our first program

Examples

Correct use

return 4; // ok in an int, double, etc., function
return; // ok in a procedure (void function)

Incorrect use

int n = return 2; // bad! won't compile
someFunction(return 2); // bad! won't compile

// either



Making functions and procedures More data! More control structures! Our first program

The body

• “regular” (= imperative+object) code like in jshell
• “virtual” environment, “suspended” computation,

“assumption”
• can declare variables, use statements, call other

functions. . .
• every “exit” must be checked: return; by default,

but that is void



Making functions and procedures More data! More control structures! Our first program

Implementing the body

Context

• needle: the char we’re looking for
• haystack: the String where we’re searching

for(int i = 0; i < haystack.length(); i++) {
if(haystack.charAt(i) == needle) {

return true;
}

}
return false;



Making functions and procedures More data! More control structures! Our first program

Wrapping it up

boolean contains(String haystack, char needle) {
for(int i = 0; i < haystack.length(); i++) {

if(haystack.charAt(i) == needle) {
return true;

}
}
return false;

}



Making functions and procedures More data! More control structures! Our first program

Meditations



Making functions and procedures More data! More control structures! Our first program

Good practice

• give clear, meaningful names to your functions
• have them use rich types to clarify their purpose
• give clear, meaningful names to its arguments
• functions should do “one thing”



Making functions and procedures More data! More control structures! Our first program

Purity vs. side effects

Maths, again!

f ∶
A → B
x ↦ f(x)

• doesn’t “change” x
• stable: always returns

the same thing

Side effects
Sometimes programs need
to
• alter values
• interact with the outside

world
• notion of “state” of the

program
• void type



Making functions and procedures More data! More control structures! Our first program

Comparison with other loops

Similarities
• “canned” code
• the body within { . . .
}

• made of statements

Differences
• loops are directly

applied
• you can chose

function names
• they have a return

type
• applying them makes

expressions (function)
or statements
(procedure)



Making functions and procedures More data! More control structures! Our first program

More data!



Making functions and procedures More data! More control structures! Our first program

“Object-Oriented”



Making functions and procedures More data! More control structures! Our first program

The world of Ideas

Figure 1: A “duck” Figure 2: An other “duck”

Plato: the “Theory of Forms/Ideas”

• “true” reality of this world
• eternal, perfect
• they exist prior to particular concrete objects



Making functions and procedures More data! More control structures! Our first program

Classes

• the “idea”, a “mold” to cast objects
• also, a “factory” to create particular realization

In Java

• eternal: compile-time (static), “structure” of your
program

• prior to concrete objects: classes→ objects
• not values but can appear in some expressions



Making functions and procedures More data! More control structures! Our first program

The “Form”

• groups values together (≈ cartesian product, AND)

2DPoint = (N × N)

• defines a recipe for values: what and how
• defines the use of values
• similar to the type of “number” values (int, char. . . )
• you already know: String (mind the case!)



Making functions and procedures More data! More control structures! Our first program

Fields

• define the what, the “components”
• needn’t be of the same type (≠ String ≈ char ×
char × . . . × char)

• just like in jshell : may set a value or not (always a
default)

int room;
String building;



Making functions and procedures More data! More control structures! Our first program

A “constructor”

• define the how, the “mold” part
• it’s just a function! (can take parameters)
• both the return type and the name of the function
• usually initializes the fields
• always a default constructor: no arguments, does

nothing

ClassRoom(int room, String building) {
this.room = room;
this.building = building;

}



Making functions and procedures More data! More control structures! Our first program

Methods

• like regular functions
• but linked to the class: can see

• “inside” objects
• other methods in the same class

String view() {
return this.building.charAt(0)

+ "-" + this.room;
}



Making functions and procedures More data! More control structures! Our first program

All together now

class ClassRoom {
int room;
String building;

ClassRoom(int room, String building) {
this.room = room;
this.building = building;

}

String view() {
return this.building.charAt(0)

+ "-" + this.room;
}

}



Making functions and procedures More data! More control structures! Our first program

Objects

• concrete realization of classes (one particular duck)
• “instance” of classes (instantiate)

In Java

• runtime: created on the fly while programs run
• they are values: can be stored, passed to / returned

from functions
• instantiating an object takes memory



Making functions and procedures More data! More control structures! Our first program

Creating objects

ClassRoom javaLab = new ClassRoom(17, "Hopper");

• new tells Java we’re going to allocate some space
• the constructor tells Java which Class is needed
• an empty “box” is created
• the code for the constructor is called



Making functions and procedures More data! More control structures! Our first program

(What’s this? What’s this? I can’t believe my
eyes. . . )

Room(int room, String building) {
this.room = room;
this.building = building;

}

• the empty, fresh, “box”→ this
• refers to the current instance
• ≈ 1st person pronoun



Making functions and procedures More data! More control structures! Our first program

Using fields

javaLab.room // an int value (17)
javaLab.view() // a String value ("H-17")

assuming

• objectExpression is an expression of (object) type T
• field is exposed by class T as a property of type
output or a method

objectExpression.field

is either

• an expression of type output
• or a function or procedure



Making functions and procedures More data! More control structures! Our first program

static

• related to the “Form” itself, not to any of its instances
• shared space between instances
• ⟹ static code can refer to this!

Warning

fields and methods can be static ≠ constructors can
(obviously) not



Making functions and procedures More data! More control structures! Our first program

Syntax

static values can be initialized

• during declaration (preferred→ no constructors!)
• within a method (static or not)

class ClassRoom {
static String separator = "-";

. . .

String view() {
return this.building.charAt(0)

+ separator
+ this.room;

}
}



Making functions and procedures More data! More control structures! Our first program

Please note

• static values should only be accessed through the
class itself, not one of its instances (though it works).

Recommended

ClassRoom.separator;

Not recommended

javaLab.separator;



Making functions and procedures More data! More control structures! Our first program

Object tooling



Making functions and procedures More data! More control structures! Our first program

Wrappers around native types

• char→ Character
• int→ Integer
• double→ Double
• . . .

useful for their static methods

• Character.isLowerCase
• Integer.parseInt



Making functions and procedures More data! More control structures! Our first program

instanceof

assuming

• a is a variable of a class type
• ClassName is the name of an existing class

a instanceof ClassName

is an expression of type boolean which evaluates to true
if a belongs to ClassName, false otherwise.

Example

String s = "";
Integer n = 4;
s instanceof String // == true
n instanceof Integer // == true
s instanceof Integer // will break at compile time!



Making functions and procedures More data! More control structures! Our first program

Containers



Making functions and procedures More data! More control structures! Our first program

Arrays

• several values of the same type put together
• indexed by an int
• (∥ String)
• .length: special attribute but no methods



Making functions and procedures More data! More control structures! Our first program

Creation

• type: content type suffixed with []
• char[], double[], String[], ClassRoom[]

• value: either
• empty (size only): new char[5]
• pre-initialized: {'a', 'b', 'c'}

Warning

• pre-initialized form works only for declaration, not
update

• otherwise, initialized by default→ ≈ 0 (null for objects)



Making functions and procedures More data! More control structures! Our first program

Access

once an array a of length n exists in memory it’s like:

• n independent variables exist
• each at index i can be:

• read: a[i]
• written: a[i] = someNewValue;

• its length is stored and readable: a.length (= n)
• (but not writable!)

Warning

• indices range from 0 to n - 1
• accessing an array out of its bounds will cause an error



Making functions and procedures More data! More control structures! Our first program

Objects

• several pre-defined classes:
• ArrayList
• LinkedList
• Vector
• . . .

• different strategies to handle storage, grow, access,
etc.



Making functions and procedures More data! More control structures! Our first program

Creation

• type: content type between <>
• LinkedList<Integer>

• value: with new, like any objects, empty or from
another object

Vector<Integer> pages = new Vector<Integer>();



Making functions and procedures More data! More control structures! Our first program

Access

no “cell as a variable” but

• .get(int index) returns the value at index
• .set(int index, E element) replaces the value at
index

• .add(E element) appends (at the end)
• .size() (≠ .length!) the number of elements



Making functions and procedures More data! More control structures! Our first program

“Boxes”

• not “one” type, an (open) “family”
• notion of type “variable” (E)
• any type→ can be nested!

can be a “number” type or a class for arrays

int[] primes = new int[8];
String[] cheeseNames = {"camembert", "maroilles"};
int[][] matrix = new int[5][5];

must be a class for object containers

ArrayList<Integer> grades;
new LinkedList<String>()



Making functions and procedures More data! More control structures! Our first program

Mutability

On values
• String: .charAt() function result→ read-only
• arrays: [] variable→ read-write
• object containers: .get, .set→ read-write

On size
• String: can’t be changed
• arrays: .length is final (ro)
• object containers: .add



Making functions and procedures More data! More control structures! Our first program

More control structures!



Making functions and procedures More data! More control structures! Our first program

Switch / case



Making functions and procedures More data! More control structures! Our first program

Ififififif

String inFrench(int number) {
if(number == 0) {

return "zéro";
} else {

if(number == 1) {
return "un";

} else {
if(number == 2) {

return "deux";
} else {

if(number == 3) {
return "trois";

} else {
return "baguette";

}
}

}
}



Making functions and procedures More data! More control structures! Our first program

Slightly better

this is the one valid case when it’s ok to not use {...} (in
the else statement):

String inFrench(int number) {
if(number == 0) {

return "zéro";
} else if(number == 1) {

return "un";
} else if(number == 2) {

return "deux";
} else if(number == 3) {

return "trois";
} else {

return "baguette";
}

}



Making functions and procedures More data! More control structures! Our first program

A new construct!

• a block:

switch() {
...

}

• two inline tests:
• case x: where x must be a constant of the same type
• default: catch-all

case 0: ...
case 1: ...
default: ...



Making functions and procedures More data! More control structures! Our first program

Syntax

assuming

• e: an expression of type t
• c1, . . . , cn are constants of type t
• st1, . . . , stn(, stn+1) are statements

switch(e) {
case c1: s1;

. . .

case cn: sn;
default: stn+1; // optional

}

is a statement which

• finds i such that ci == e (or n+1)
• runs all statements from si to sn+1



Making functions and procedures More data! More control structures! Our first program

Example

String inFrench(int number) {
switch(number) {

case 0: return "zéro";
case 1: return "un";
case 2: return "deux";
case 3: return "trois";
default: return "baguette";

}
}



Making functions and procedures More data! More control structures! Our first program

break

the case lines are just labels

→ execution jumps and continues below from there

• like return, stops the current function
• no value, just stops
• actually, works in all loops



Making functions and procedures More data! More control structures! Our first program

Try / catch



Making functions and procedures More data! More control structures! Our first program

Errors happen

• complex program, dynamic behaviours
• → hard to anticipate
• → will fail

What to do?

• the program may recover
• exception error messages are “ugly”: users should

understand the cause if they can do something about
it



Making functions and procedures More data! More control structures! Our first program

Syntax

assuming s0, s1 and s2 are statements

try {
s0

} catch(Exception e) {
s1

} finally {
s2

}

is a statement which

• execute s0
• if an exception occurs, execute s1 (where variable e

may appear)
• (executes s2 whether s0 has failed or not)



Making functions and procedures More data! More control structures! Our first program

More on for



Making functions and procedures More data! More control structures! Our first program

Remember for?

for(<INITIALIZE>; <TEST>; <ITERATE>) {
<BLOCK>

}

Actually. . .

• <INITIALIZE> doesn’t have to start at 0
• <TEST> can be any expression, a call to a (boolean)

function
• <ITERATE> can be any statement (you can count up

or down, by arithmetic, geometric progression or any
function you want)



Making functions and procedures More data! More control structures! Our first program

A beautiful solution

int nextCollatz(int i) {
return i % 2 == 0? i / 2 : 3*i+1;

}

for(int i = 221; i > 1; i = nextCollatz(i)) {
System.out.println(i);

}



Making functions and procedures More data! More control structures! Our first program

A beautiful solution

int nextCollatz(int i) {
return i % 2 == 0? i / 2 : 3*i+1;

}

for(int i = 221; i > 1; i = nextCollatz(i)) {
System.out.println(i);

}



Making functions and procedures More data! More control structures! Our first program

The end of the loop



Making functions and procedures More data! More control structures! Our first program

do . . . while

• variant of while
• reverse block execution and test
• ⟹ block is always executed once
• (not conceptually different, just convenient sometimes)

int n = 4;
do {

n++;
} while(n < 2)

Now n is 5



Making functions and procedures More data! More control structures! Our first program

continue

• like break, stop the loop in the middle
• unlike break, will resume the loop normally

for(int i = 0; i < 4; i++) {
if(i % 2 == 0) {

continue;
}
System.out.println(i);

}

will print

1
3



Making functions and procedures More data! More control structures! Our first program

Our first program



Making functions and procedures More data! More control structures! Our first program

Code



Making functions and procedures More data! More control structures! Our first program

A class to represent the program

• in Java a program is made of classes
• represent an instance of the program running

(reflexivity)
• otherwise normal, choose the name you want, can

have attributes

class Main {
...

}



Making functions and procedures More data! More control structures! Our first program

A very special function: main

Requirements

• entry point of the program (“where do we start?”)
• no context yet, so can’t instantiate Main class
• ⟹ static, (public)

Types

• can’t return anything (no guaranty it will end): ⟹
output type void

• command-line arguments ⟹ input type String[]



Making functions and procedures More data! More control structures! Our first program

Example

class Main {
public static void main(String[] arguments) {

for(String argument : arguments) {
System.out.println(argument);

}
}

}



Making functions and procedures More data! More control structures! Our first program

Practice



Making functions and procedures More data! More control structures! Our first program

Compiling

the above saved in a file Main.java in current folder.

$ ls
Main.java
$ javac Main.java
$ ls
Main.class Main.java



Making functions and procedures More data! More control structures! Our first program

Running it

the java command expect a virtual path: to the class, not
to the file

$ java Main one two three four
one
two
three
four


