
Structuring objects Structuring code Structuring projects

IST-4-JAV Java Programming
Class 3 - Modeling the structure

Alice BRENON <alice.brenon@liris.cnrs.fr>



Structuring objects Structuring code Structuring projects

1 Structuring objects

2 Structuring code

3 Structuring projects



Structuring objects Structuring code Structuring projects

Structuring objects



Structuring objects Structuring code Structuring projects

Inheritance



Structuring objects Structuring code Structuring projects

Object composition

1st approach

• cartesian product (×)
• “tie” fields together

Example

Modeling a (video game) cat:

• age: a very small integer
• hit points: some small integer
• max hit points: some small integer
• rest level: decimal number ∈ [0, 1]



Structuring objects Structuring code Structuring projects

First draft of a Cat

class Cat {
byte age;
short hitPoints;
short maxHitPoints;
float restLevel;
static short babyMaxHitPoints = 3;
Cat() {

this.age = 0;
this.maxHitPoints = babyMaxHitPoints;
this.hitPoints = this.maxHitPoints;
this.restLevel = 1;

}
}



Structuring objects Structuring code Structuring projects

How about domestic cats ?

→ take a Cat, and add a name to it ?

class DomesticCat {
Cat innerCat;
String name;
DomesticCat(String name) {

this.name = name;
this.innerCat = new Cat();

}
}



Structuring objects Structuring code Structuring projects

Not everything is composition !

• innerCat ? sounds bad
• we’ll eventually add methods: feed, run. . . : how will it work for our
DomesticCat ?

void feed() {
this.innerCat.feed()

}
void run() {

this.innerCat.run();
}

⟹ with this definition a DomesticCat is not a Cat



Structuring objects Structuring code Structuring projects

Inheriting

conceptually differs from composition

• distinguish a “special case”
• useful when both classes model the same “kind” of real-world objects
• “A is a B”

⟹ perfect for our cats !

Programming: models for structures and behaviours, not just data



Structuring objects Structuring code Structuring projects

Example: Object

inheritance is not rare:

• any class has exactly 1 parent/mother/superclass
• except Object ! sits at the bottom
• actually. . . always inherits at least Object

Figure 1: Classes form a tree



Structuring objects Structuring code Structuring projects

Example: Exceptions

Figure 2: A taxonomy of trouble

• Throwable: anything that
can be thrown

• Error: serious “physical”
trouble

• Exception: recoverable
failure

• TimeoutException: give
up on blocking operation

• NullPointerException:
tried to dereference null



Structuring objects Structuring code Structuring projects

Syntax: extends

class DomesticCat extends Cat {
String name;
DomesticCat(String name) {

this.name = name;
}

}

declares a new class DomesticCat which inherits Cat: it has everything a
Cat has !

DomesticCat pangur = new DomesticCat("Pangur");
pangur.name; // == "Pangur"
pangur.age; // == 0
pangur.restLevel; // == 1.0



Structuring objects Structuring code Structuring projects

Wait ?!

• pangur.name got initialized: ok, we did that
• pangur.age and pangur.restLevel got initialized: why ? also how ?

magic happened: Java called the mother class constructor !

but what would’ve happened if an argument was needed. . . ?



Structuring objects Structuring code Structuring projects

Mother/child relationships



Structuring objects Structuring code Structuring projects

Yet another inheritance !

People start caring about the breed of their cats:

class PureBreedCat extends DomesticCat {
String breed;
PureBreedCat(String breed) {

this.breed = breed;
}

}
| Error:
| constructor DomesticCat in class DomesticCat cannot be applied to given types;
| required: java.lang.String
| found: no arguments
| reason: actual and formal argument lists differ in length



Structuring objects Structuring code Structuring projects

A hidden call !

new DomesticCat()
| Error:
| constructor DomesticCat in class DomesticCat cannot be applied to given types;
| required: java.lang.String
| found: no arguments
| reason: actual and formal argument lists differ in length
| new DomesticCat()

→ there was a (hidden) call to DomesticCat();



Structuring objects Structuring code Structuring projects

Calling the constructor

• the automatically added call takes no argument
• DomesticCat doesn’t have a constructor with no argument !
• we need to manually call the constructor “above”

class PureBreedCat extends DomesticCat {
String breed;
PureBreedCat(String name, String breed) {

super(name);
this.breed = breed;

}
}



Structuring objects Structuring code Structuring projects

super

• meta keyword, refer to a class
• depending on the context ! (∥ this)
• “the parent class”

Look !: call to a function, not a method



Structuring objects Structuring code Structuring projects

Fixed it !

PureBreedCat billy = new PureBreedCat("Billy", "siamese");
billy.name; // == "Billy"
billy.breed; // == "siamese"
billy.age; // == 0
billy.restLevel; // == 1.0

→ now we know where everything comes from !



Structuring objects Structuring code Structuring projects

Overriding

• inheriting methods is good
• but sometimes we want to change their behaviour
• @Override pragma: hint for javac

class Cat {
...
void feed() {

System.out.println(
"hunts"

);
}

}

class DomesticCat extends Cat {
...
@Override
void feed() {

System.out.println(
"mews until a human"
+ " feeds it"

);
}

}



Structuring objects Structuring code Structuring projects

Another use for super

• redeclaring a method in a child class “hides” the parent’s
implementation

• how to reuse the existing implementation ?
• super again !

class DomesticCat extends Cat {
...
void feed() {

if(isHumanAround()) {
System.out.println("mews a lot");

} else {
super.feed();

}
}

}



Structuring objects Structuring code Structuring projects

Example: Built-in methods

defined in Object (so all objects in Java have them)

• .equals: object comparison
• .toString: object representation
• .hashCode: at-a-glance comparison (fast, vs. accurate .equals)

→ all default implementations meant to be overridden

jshell> pangur
pangur ==> DomesticCat@723279cf

default .toString: Class name + @ + memory location



Structuring objects Structuring code Structuring projects

A nicer display

class DomesticCat extends Cat {
String toString() {

return this.name + ", a cat";
}

}
class PureBreedCat extends DomesticCat {

String toString() {
return this.name + ", a " + this.breed + " cat";

}
}
jshell> pangur
pangur => Pangur, a cat
jshell> billy
billy => Billy, a siamese cat



Structuring objects Structuring code Structuring projects

Overloading

Signature

• the number of arguments
• their order
• their type

Added, not replaced

Java finds functions by their name and signature
• classes can have several constructors
• methods can have several implementations
• they can have different output types
• the arguments + name must be unique (can’t rely on output)



Structuring objects Structuring code Structuring projects

Example: feeding

(assuming we never wrote the previous implementation with super)

class DomesticCat extends Cat {
void feed(Human h) {

System.out.println("mews until human feeds it");
}

}

• doesn’t replace the default implementation in Cat (hunting)
• in the context where a human is passed, mews instead
• a “conditional” without if or ternary operator.



Structuring objects Structuring code Structuring projects

Structuring code



Structuring objects Structuring code Structuring projects

Access control



Structuring objects Structuring code Structuring projects

Example: a cat’s name

can’t ask its name to a cat !

but

pangur.name; // returns a String ("Pangur")
pangur.name = "Marcel"; /* now Pangur has a different name ! */
pangur.name; // "Marcel"



Structuring objects Structuring code Structuring projects

Example: a cat’s name

can’t ask its name to a cat !

but

pangur.name; // returns a String ("Pangur")
pangur.name = "Marcel"; /* now Pangur has a different name ! */
pangur.name; // "Marcel"



Structuring objects Structuring code Structuring projects

The private keyword

class DomesticCat extends Cat {
private String name;

// but still can interact with it !
void call(String name) {

if(this.name.equals(name)) {
System.out.println("mews and comes");

} else {
System.out.println(

"looks away and yawns"
);

}
}

}



Structuring objects Structuring code Structuring projects

Why ?

• more realistic
• hides away implementation details
• avoid mistakes
• classes as an “area”
• (remember “structure”, not “data” ?)

→ abstraction



Structuring objects Structuring code Structuring projects

Another useful flag: final

Math.PI
Math.E

→
static final double

• prevent from changing a variable
• the variable itself (not what it may refer to ! remember graphs)
• again: numbers, objects. . .

Not for variables only

• On methods: cannot be overridden
• On class: cannot be extended



Structuring objects Structuring code Structuring projects

Getters

• by default variables are read-write
• read-only can be achieved by final
• “access control”: actually read-write, but can’t be changed from

outside
• notion of view (there doesn’t have to be a corresponding field)

class Cat {
private int age;
int getAge() {

return this.age;
}

}



Structuring objects Structuring code Structuring projects

Setters

• useful even for read-write !
• separates feature / implementation

class Cat {
private int age;
void setAge(int age) {

if(age > this.age) {
this.age = age;

}
}

void happyBirthday() {
this.age++;

}
}



Structuring objects Structuring code Structuring projects

Advanced setters

• side-effects
• control the flow

class MovingAnimal {
private float restLevel;
private Point at;
static float range;
void setAt(Point newAt) {

float distance = distance(this.at, newAt);
this.at = newAt;
this.restLevel *= Math.exp(-distance / range);

}
}



Structuring objects Structuring code Structuring projects

Building blocks



Structuring objects Structuring code Structuring projects

Abstract classes and methods

What’s a predator ?

• the Idea without a Form
• implements some behaviour
• can’t be instantiated, a “draft”
• exists only to be inherited (factorize code)



Structuring objects Structuring code Structuring projects

Abstract classes and methods

What’s a predator ?

• the Idea without a Form
• implements some behaviour
• can’t be instantiated, a “draft”
• exists only to be inherited (factorize code)



Structuring objects Structuring code Structuring projects

Syntax: abstract

• on the class itself
• on the methods without implementation
• incompatible with final !

abstract class Predator {
abstract protected void catchPrey();
protected void feed() {

this.catchPrey();
System.out.println("eats it");

}
}



Structuring objects Structuring code Structuring projects

Interfaces

• a “contract”: requirements
• a “definition” (→ flexible “type” for classes)
• not meant for instantiation either
• variables are all static and final

almost opposite of abstract classes

Abstract classes
• partial implementation (delay a

“choice”)
• really a class (inherited like any

other)
• (only one mother class,
abstract or not)

Interfaces
• what, not how
• not inherited, implemented
• (no restriction on number)



Structuring objects Structuring code Structuring projects

Syntax: interface then implements

interface Animal {
int getAge();
void feed();

}

“We call Animal any object
which. . . ”

class Cow implements Animal {
private int age;
int getAge() {

return this.age;
}
void feed() {

System.out.println("grazes");
}

}

“A cow is an Animal, and here’s the
proof”



Structuring objects Structuring code Structuring projects

Bridges between interfaces and abstract classes

Extending

• an interface can be inherited (extends, same syntax)
• sort of prerequisites, set inclusion: all birds are animals

Partial implementation

• a class may implement an interface but not all its methods
• makes unimplemented abstract ⟹ whole class abstract

Default implementation

• maybe confusing (≈ regular methods in abstract)
• perfect use case: augmenting interface backwards-compatibly



Structuring objects Structuring code Structuring projects

What about typing ?



Structuring objects Structuring code Structuring projects

Subtype vs. Derived type

Subtype

• substitutability
• T1 ≺ T2
• T1 can replace T2 everywhere
• ex: int ≺ long

Derived type

• inheritance (everything above)
• “special case”

subtype
?
⟺ derived type



Structuring objects Structuring code Structuring projects

Covariance / Contravariance

assuming A ≺ B

→
• if I have an A
• then I have a B
• covariance

←
• if I need an A
• a B might not be enough
• contravariance

• functions: left or right of↦ ?
• programs as games: “whose turn ?”

Contravariance reverses subtyping



Structuring objects Structuring code Structuring projects

Answer

• objects have methods
• methods are functions
• hence, can be contravariant

class Cat {
Cat mate(Cat partner) {

...
}

}

class PureBreedCat extends DomesticCat {
PureBreedCat mate(PureBreedCat partner) {

...
}

}

→ Not in general !



Structuring objects Structuring code Structuring projects

Structuring projects



Structuring objects Structuring code Structuring projects

Isolating parts



Structuring objects Structuring code Structuring projects

Packages

• applications start growing
• avoid name conflicts
• structuring things also document them
• reuse some parts
• developed by different organisations

→ packages



Structuring objects Structuring code Structuring projects

Creating: package

package name.of.the.package; statement must be added to each
file

• arbitrary names (usually “company”’s domain name)
• hierarchically left to right (opposite from internet domain names)
• all lowercase
• use _ to fix invalid names (reserved words, - and other special

characters)



Structuring objects Structuring code Structuring projects

Virtual Path / Filesystem Path

• path to files should reflect packages hierachy
• lowercase for packages→ directory
• CamelCase for classes→ files

Figure 3: Two example packages



Structuring objects Structuring code Structuring projects

Using: import

import name.of.the.package.SomeClass; // one class
import name.of.the.package.*; // all its classes

• you can only import classes, not packages
• no “subpackages”: prefix on names /⇒ anything on package
• * isn’t a regex, and (see above) will catch only classes



Structuring objects Structuring code Structuring projects

More about visibility



Structuring objects Structuring code Structuring projects

public, at last !

• control the boundaries at the package level
• default: nothing outside the package
• (jshell: same temporary package)

public: entirely visible protected: only in subclasses
(“backstage” access)



Structuring objects Structuring code Structuring projects

How ?

• modifiers applied to
• fields
• methods
• classes

Keywords / visibility

keyword class package subclass outside world
private Y N N N
(nothing) Y Y N N
protected Y Y Y N
public Y Y Y Y



Structuring objects Structuring code Structuring projects

Good practice

“Need to know” basis ⟹ start private, and grant access as needed

Model the reality

• who/what could get the information ?
• could it be changed from outside ?
• is it a convenience or something fundamental ?



Structuring objects Structuring code Structuring projects

A subtle remark

• private is very restrictive (the class to itself)
• →makes sense only inside a class

• protected differs from default only for inheritance
• →makes sense only inside a class



Structuring objects Structuring code Structuring projects

A subtle remark

• private is very restrictive (the class to itself)
• →makes sense only inside a class

• protected differs from default only for inheritance
• →makes sense only inside a class



Structuring objects Structuring code Structuring projects

Example



Structuring objects Structuring code Structuring projects

Source code

fr/insa_lyon/ist_4_jav/library/SomeLibrary.java

package fr.insa_lyon.ist_4_jav.library;

public class SomeLibrary {
public static String greet = "Hi there !";

}



Structuring objects Structuring code Structuring projects

Source code

fr/insa_lyon/ist_4_jav/class3/Main.java

package fr.insa_lyon.ist_4_jav.class3;
import fr.insa_lyon.ist_4_jav.library.SomeLibrary;

public class Main {
public static void main(String[] args) {

System.out.println(SomeLibrary.greet);
}

}



Structuring objects Structuring code Structuring projects

Compiling

• javac works on files
• java works on class names
• (use autocomplete to let java guide you)

$ javac fr/insa_lyon/ist_4_jav/class3/Main.java
$ java fr.insa_lyon.ist_4_jav.class3.Main
Hi there !


