IST-4-JAV Java Programming
Class 4 - Going graphic

Alice BRENON <alice.brenon@liris.cnrs.fr>

H INSTITUT NATIONAL
I I S DES SCIENCES
E

APPLIQUEES

@ Complexity
@ Asynchronous programs

® Graphical User Interfaces

Complexity
[]

Complexity

Complexity
0000000

Simple containers

Complexity

Implementing interfaces

Interface

Implementationl Implementation2 Implementation3

Figure 1: A common structure

One interface, several implementations.

Complexity
[e]e] lelele]e]

Two implementations

List
e g sef of functionalities

* g contract to prove a class can act as a list

Two implementations

e g sef of functionalities

* g contract to prove a class can act as a list
— an interface!

ArrayList LinkedList
Cell0 | Celll | Cell2 | (empty) | (empty) @ @ @
an array larger than the number a "head”: the element in the
of elements current cell
an index to remember where it a “queue”: the pointer to the

stops rest of the list

Complexity

Getting element at index i

ArrayList LinkedList
check the bounds: O(1) doesi == 07
return cell i: O(1) if yes, get the head:
= O(1) otherwise, get the i-1M

element of the queue
= O(n)

Complexity

00000800 o]

Prepending

ArrayList LinkedList

create a new cell with the new
element pointing to the existing
list: O(1)

= O(1)

New cell —>| Cell0 | Celll | Cell2

(empty) | (empty) ‘

create a new array large
enough: O(n)
write the new element: O(1)
copy all the other elements
after: O(n)

= O(n)

Complexity

Performance comparison

So which one is best?

if frequent random access is needed: ArrayList
if frequent modification is needed: LinkedList

= No "one-size-fits-all”, implementation should match the use

Complexity Asy OUS Programs Graphical User Int

In any case

Previously on IST-4-JAV (class 2). ..

notion of type variable

Complexity

In any case

Previously on IST-4-JAV (class 2). ..
notion of type variable

List<String> al = new ArrayList<String>();

Complexity

In any case

Previously on IST-4-JAV (class 2). ..

notion of type variable

List<String> al

List<String> 11

new ArrayList<String>();

new LinkedList<String>();

Complexity
@00000

Associating values to keys

Complexi

A common need

“white pages”, phone books. . .
Domain Name System

looking up users in a table by their ID
finding the selected action in a menu

interface Map<K, V> {

V get (Object k);

Complexi

Association list

class Pair<K, V> { class ArrayList<T> {
public K getKey () { ... }
public V getValue() { ... } }
}
1)

class PhoneBook<K, V> implements Map<K, V> {
private ArraylList<Pair<K, V>> records;
PhoneBook (int initialSize) {
this.records = new ArrayList<>(initialSize);

Complexi

Retrieving a number from a key

V get (Object k) {
for (Pair<K, V> record: this.records) {
if (record.getKey () .equals(k)) {
return record.getValue();
}
}

return null;

must walk the phonebook until found
on average, this.records.size() / 2
= O(n)

Complexity
[e]e 00

HashMaps

A bit of ArrayList and LinkedList!

.hashCodel()

- ~
P Foon -

P TN
,7h0 /1l > “<hn

-~

SR U | -

-
@ i empty \I . @
~ -

Figure 2: Structure of a HashMap

Complexity
O0000e

Properties

A clever implementation

® uses .hashCode () on the key: O(1)

e each list as long as the number of collisions (if . hashCode is good, then
few): O(c)

* (see birthday problem)

Conseqguences

* fast access
¢ fast insertion
* resizing costs when it gets too full (initial capacity / load factor)

Asynchronous programs
[]

Asynchronous programs

Principles

Asynchronous programs
[e] Jele]

A key distinction

Regular values Functions

data: raw types, objects. .. e structural unif

can be created dynamically * (similar to loops)
can be stored * no dynamic handling

passed to functions

Asynchronous prog phical User Int:

[efele]]

Program flow

imperative: “recipe”, sequence of instructions
object: “sections” in the program not executed linearly

— what about reactions to events?

could the program be in “several locations” at once?

how could each step anticipate everything that could happen? (and
always the same anyway)

check some central state once in a while?

Use cases

long (> 100 ms) calls: network
user interaction (games, anyone?)
graphical user interfaces (don’t want everything to freeze)

How to represent reactions?

Use cases

long (> 100 ms) calls: network
user interaction (games, anyone?)
graphical user interfaces (don’t want everything to freeze)

How to represent reactions?

Reactions are functions so... could we pass functions after all?

Asynchronous programs
0000000000000 0

Functions as values

Asynchronous programs

)O®000000000000

So what if we could. ..

store a function into a variable?
associate it fo a key? (menus. . .)
pass it to another function?

boolean isEven (int n) {
return n $ 2 == 0;

}

somelList.filter (isEven); // Error: cannot find symbol

Asynchronous programs

)OO®@00000000000

Interfaces!

classes can have (severall) methods
passing an object is a way to pass its methods
only need a convention to find the (unique) method

— this is called an inferface!

interface IntPredicate {
public boolean run(int input);

Asynchronous programs

0080000000000

Representing a function

special case: interface with only one method to implement
the class is a simple “wrapper” around it
conventional name to find it

(can have other methods but only 1 abstract)

— it's called a functional interface (pragma @FunctionalInterface) !

@QFunctionalInterface
interface IntPredicate {
public boolean run(int input);

Graphicc

Asynchronous programs
)O000@000000000

isEven QS AN IntPredicate

class IsEven implements IntPredicate {
public boolean run(int input) {

[o)

return input % 2 == 0;

IntPredicate isEven = new IsEven|();
isEven.run(2); // true
isEven.run(5); // false

Asynchronous programs

)O0000@00000000

Ad-hoc inheritance

abstract as a “debt” in methods

— “settle the bill”

you can build ad-hoc full-fledged classes from interfaces and
abstract ones!

Asynchronous programs

)O0000@00000000

Ad-hoc inheritance

abstract as a “debt” in methods

— “settle the bill”

you can build ad-hoc full-fledged classes from interfaces and
abstract ones!

IntPredicate isEven = new IntPredicate () {
public boolean run(int input) {
return input % 2 == 0;

}

isEven.run (6); // true

Asynchronous programs
0000008000000 0

Leaving without paying

IntPredicate isEven = new IntPredicate();

Asynchronous programs

)OO000000e0000000

Leaving without paying

IntPredicate isEven =

new IntPredicate();
Error:

IntPredicate is abstract;

|

| cannot be instantiated
| IntPredicate isEven =

|

new IntPredicate();

Graphical U

Inter

Asynchronous programs

)O000000@000000

Still longish

dropped the empty class shell
instantiate directly as we implement

but

still several imbricated { ...}
have to mind the keywords

we just want to map a <VARIABLE> O QN <EXPRESSION> (Of <STATEMENT>)

Asynchronous programs

0000008000000

Still longish

dropped the empty class shell
instantiate directly as we implement

but

still several imbricated { ...}
have to mind the keywords

we just want to map a <VARIABLE> O QN <EXPRESSION> (Of <STATEMENT>)
inline function, aka a “\” from A-calculus, (Alonzo Church, 1930s)

a —>5>b

Asynchronous programs
0000000e00000

assuming
(a, b, ...) isatuple of nvariables (parentheses optional when 1
only)
<VALUE> is an expression
<STATEMENT> is a statement (often of theform { ...; ...; ...; })
(a, b, ...) —> <EXPRESSION>
(a, b, ...) —> <STATEMENT>

are values for a given functional interface
Examples

(n, m) —-> n+m
x —> {System.out.println(x); return -x;}

Asynchronous programs

)O00000000e0000

A little bit shorter

The previous example becomes
IntPredicate isEven = n —> n % 2 ==

no mention of run any longer

aphical |

Asynchronous programs

)O00000000e0000

A little bit shorter

The previous example becomes

IntPredicate isEven = n —> n % 2 =

no mention of run any longer
but still have to mind it!

isEven (2);

// Error:

| cannot find symbol

| symbol: method isEven (int)

Asynchronous programs

)O00000000e0000

A little bit shorter

The previous example becomes

IntPredicate isEven = n -> n % 2

no mention of run any longer
but still have to mind it!

isEven (2);

// Error:

| cannot find symbol

| symbol: method isEven (int)

isEven.run(2);

// true

Asynchronous programs

)O000000000e000

Method reference

what about existing functions?
can be wrapped into a i, but boring:

n —> someObject.someMethod (n)

can’t invoke regular functions except to apply them
but you can referto a method with : :

Asynchronous programs

)O0000000000e00

Example

class Arithmetic {

public static boolean isEven (int input) {

return input % 2 == 0;
}
public static boolean isOdd(int input) { ... }

public static boolean isPrime (int input) { ... }

}

IntPredicate[] predicates = {Arithmetic::isEven,
Arithmetic::isPrime};

predicates[0] .run(2); // true
Arithmetic.isEven(2); // true

Asynchronous programs

)O00000000000e0

Generallzmg a bit

@QFunctionalInterface
interface Function<I, 0> {
public O run(I input);

class Multiple {

int i;
public Multiple (int i) {
this.i = i;

}
public boolean divisible (int j) {
return j % this.i == 0;

Asynchronous programs
0000000000000

Full example

Remember?

someList.filter (isEven); // Error: cannot find symbol

Asynchronous programs

)O000000000000e

Full example

Remember?
someList.filter (isEven); // Error: cannot find symbol

List<Integer> smallerThanl0 = new LinkedList<Integer>();
for(int 1 = 0; i < 10; i++) {
smallerThanlO.add (i) ;

Multiple by3 = new Multiple (3);
smallerThanlO.removelIf (by3::divisible)
smallerThanlO; // smallerThanl(Q ==> [1, 2, 4, 5, 7, 8]

Graphical User Interfaces
[]

Graphical User Interfaces

Graphical User Interfaces
@00000

Libraries

Basic tooling

older

events (key presses)
notion of Component
Graphics surface to draw
definition of Layout

import java.awt.x;
import java.awt.event. x;

Com

Swing

More advanced

more recent

heavily depends on AWT anyway
advanced widgets: dialogs, etc
easier styling

import javax.swing. x;
import javax.swing.colorchooser. x;
import javax.swing.plaf.x; // pluggable look—-and-feel

Graphical User Interfaces

[ele]e]e] Telele]

General idea

a tree of components

you plug components into containers (also components)
recursively up to the root window
components can appear only once

JFrame

Image component JPanel

Somelmage | JButton

| JTextField | ‘ JLabel

Figure 3: Example window structure

Graphical User Interfaces
0000e0

The 2D API

within AWT

useful for:
® geometric primitives
® tfext
® images

A different approach

* you implement Component
® O Graphics object is passed around in the paint method
* you draw to it

Graphical User Interfaces
00000e

Documentation

Packages

https://docs.oracle.com/javase/7/docs/api/overview-summary.html

Tutorials to AWT's 2D API
https://docs.oracle.com/javase/tutorial/2d/overview/index.html

Tutorials to Swing components

https://docs.oracle.com/javase/tutorial/uiswing/components/index.html

Swing examples

https://docs.oracle.com/javase/tutorial/uiswing/examples/components/in
dex.html

https://docs.oracle.com/javase/7/docs/api/overview-summary.html
https://docs.oracle.com/javase/tutorial/2d/overview/index.html
https://docs.oracle.com/javase/tutorial/uiswing/components/index.html
https://docs.oracle.com/javase/tutorial/uiswing/examples/components/index.html
https://docs.oracle.com/javase/tutorial/uiswing/examples/components/index.html

Graphical User Interfaces
@®00000000

Simple Swing example

ity o) Graphical User Interfaces

Minimal window

import javax.swing. x;
public class EmptyWindow {
private static void createAndShowGUI () {
JFrame frame = new JFrame ("Some window title");
frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE) ;
frame.pack () ;
frame.setVisible (true) ;
}
public static void main (String[] args) {
SwingUtilities.invokelater (() —-> createAndShowGUI())

Groph\col User Interfaces

)OO®@000000

Translation

access to
JFrame
SwingUfilities

import Jjavax.swing. x;

public class EmptyWindow {
a class for our program

Graphical User Interfaces

0O00e00000

Translation
private static void createAndShowGUI () {
JFrame frame = new JFrame ("Some window title");

frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE) ;
frame.pack () ;
frame.setVisible (true) ;

}
a function to draw our window

A window is a JFrame, seft its fitle

make the program end when the window closes
find a size that works for components

show the window (yes!)

Groph\col User Interfaces

)O000®@0000

Translation
public static void main(String[] args) {
SwingUtilities.invokeLater (() —-> createAndShowGUI ());

still a program like any other, needs the usual main
schedule a rendering (see the lambda?)
where did the conftrol flow go?

Groph\col User Interfaces

)O0000@000

With a panel

import java.awt.GridLayout;
private static void createAndShowGUI () {

JPanel jpanel = new JPanel (new GridLayout (2, 2));
frame.add (jpanel) ;

Groph\col User Interfaces

)O00000e00

With a Couple widgets

private static void createAndShowGUI () {

JLabel label = new JLabel ("Hey there!");
JTextField input = new JTextField();

JButton submit = new JButton ("click me");
jpanel.add (label) ;
jpanel .add (input) ;
jpanel.add (submit

4

)i

Groph\col User Interfaces

)O000000e0

Add reactions to events

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;

private static void createAndShowGUI () {
submit.addActionlListener (new ActionListener () {
public void actionPerformed (ActionEvent e) {

System.out .println ("Received " + e);

)i

Groph\col User Interfaces

)O0O000000e

Display image

import java.awt.x;
import java.awt.image.BufferedImage;
import java.io.x;
import javax.imageio.ImageIO;
class ImageViewer extends Component {
private BufferedImage img;
ImageViewer (String path) {
try {
img = ImagelIO.read(new File (path));
} catch (IOException e) {}
}
public void paint (Graphics g) {
g.drawImage (this.img, 0, 0, null);

