
Complexity Asynchronous programs Graphical User Interfaces

IST-4-JAV Java Programming
Class 4 - Going graphic

Alice BRENON <alice.brenon@liris.cnrs.fr>



Complexity Asynchronous programs Graphical User Interfaces

1 Complexity

2 Asynchronous programs

3 Graphical User Interfaces



Complexity Asynchronous programs Graphical User Interfaces

Complexity



Complexity Asynchronous programs Graphical User Interfaces

Simple containers



Complexity Asynchronous programs Graphical User Interfaces

Implementing interfaces

Figure 1: A common structure

One interface, several implementations.



Complexity Asynchronous programs Graphical User Interfaces

Two implementations

List
• a set of functionalities
• a contract to prove a class can act as a list

→ an interface!

ArrayList

• an array larger than the number
of elements

• an index to remember where it
stops

LinkedList

• a “head”: the element in the
current cell

• a “queue”: the pointer to the
rest of the list



Complexity Asynchronous programs Graphical User Interfaces

Two implementations

List
• a set of functionalities
• a contract to prove a class can act as a list

→ an interface!

ArrayList

• an array larger than the number
of elements

• an index to remember where it
stops

LinkedList

• a “head”: the element in the
current cell

• a “queue”: the pointer to the
rest of the list



Complexity Asynchronous programs Graphical User Interfaces

Getting element at index i

ArrayList

• check the bounds: O(1)
• return cell i: O(1)

⇒ O(1)

LinkedList

does i == 0?
• if yes, get the head:
• otherwise, get the i-1th

element of the queue
⇒ O(n)



Complexity Asynchronous programs Graphical User Interfaces

Prepending

ArrayList

• create a new array large
enough: O(n)

• write the new element: O(1)
• copy all the other elements

after: O(n)
⇒ O(n)

LinkedList

• create a new cell with the new
element pointing to the existing
list: O(1)

⇒ O(1)



Complexity Asynchronous programs Graphical User Interfaces

Performance comparison

So which one is best?

• if frequent random access is needed: ArrayList
• if frequent modification is needed: LinkedList

⇒ No “one-size-fits-all”, implementation should match the use



Complexity Asynchronous programs Graphical User Interfaces

In any case

Previously on IST-4-JAV (class 2). . .

notion of type variable

List<String> al = new ArrayList<String>();

List<String> ll = new LinkedList<String>();



Complexity Asynchronous programs Graphical User Interfaces

In any case

Previously on IST-4-JAV (class 2). . .

notion of type variable

List<String> al = new ArrayList<String>();

List<String> ll = new LinkedList<String>();



Complexity Asynchronous programs Graphical User Interfaces

In any case

Previously on IST-4-JAV (class 2). . .

notion of type variable

List<String> al = new ArrayList<String>();

List<String> ll = new LinkedList<String>();



Complexity Asynchronous programs Graphical User Interfaces

Associating values to keys



Complexity Asynchronous programs Graphical User Interfaces

A common need

• “white pages”, phone books. . .
• Domain Name System
• looking up users in a table by their ID
• finding the selected action in a menu

interface Map<K, V> {
...
V get(Object k);

}



Complexity Asynchronous programs Graphical User Interfaces

Association list

class Pair<K, V> {
public K getKey() { ... }
public V getValue() { ... }

}

class ArrayList<T> {
...

}

↓

class PhoneBook<K, V> implements Map<K,V> {
private ArrayList<Pair<K, V>> records;
PhoneBook (int initialSize) {

this.records = new ArrayList<>(initialSize);
}

}



Complexity Asynchronous programs Graphical User Interfaces

Retrieving a number from a key

...
V get(Object k) {

for(Pair<K, V> record: this.records) {
if(record.getKey().equals(k)) {

return record.getValue();
}

}
return null;

}

• must walk the phonebook until found
• on average, this.records.size() / 2
• ⇒ O(n)



Complexity Asynchronous programs Graphical User Interfaces

HashMaps

A bit of ArrayList and LinkedList!

Figure 2: Structure of a HashMap



Complexity Asynchronous programs Graphical User Interfaces

Properties

A clever implementation

• uses .hashCode() on the key: O(1)
• each list as long as the number of collisions (if .hashCode is good, then

few): O(c)
• (see birthday problem)

Consequences

• fast access
• fast insertion
• resizing costs when it gets too full (initial capacity / load factor)



Complexity Asynchronous programs Graphical User Interfaces

Asynchronous programs



Complexity Asynchronous programs Graphical User Interfaces

Principles



Complexity Asynchronous programs Graphical User Interfaces

A key distinction

Regular values

• data: raw types, objects. . .
• can be created dynamically
• can be stored
• passed to functions

Functions
• structural unit
• (similar to loops)
• no dynamic handling



Complexity Asynchronous programs Graphical User Interfaces

Program flow

• imperative: “recipe”, sequence of instructions
• object: “sections” in the program not executed linearly

→ what about reactions to events?

• could the program be in “several locations” at once?
• how could each step anticipate everything that could happen? (and

always the same anyway)
• check some central state once in a while?



Complexity Asynchronous programs Graphical User Interfaces

Use cases

• long (> 100 ms) calls: network
• user interaction (games, anyone?)
• graphical user interfaces (don’t want everything to freeze)

How to represent reactions?

Reactions are functions so. . . could we pass functions after all?



Complexity Asynchronous programs Graphical User Interfaces

Use cases

• long (> 100 ms) calls: network
• user interaction (games, anyone?)
• graphical user interfaces (don’t want everything to freeze)

How to represent reactions?

Reactions are functions so. . . could we pass functions after all?



Complexity Asynchronous programs Graphical User Interfaces

Functions as values



Complexity Asynchronous programs Graphical User Interfaces

So what if we could. . .

• store a function into a variable?
• associate it to a key? (menus. . . )
• pass it to another function?

boolean isEven(int n) {
return n % 2 == 0;

}
someList.filter(isEven); // Error: cannot find symbol



Complexity Asynchronous programs Graphical User Interfaces

Interfaces!

• classes can have (several!) methods
• passing an object is a way to pass its methods
• only need a convention to find the (unique) method

→ this is called an interface!

interface IntPredicate {
public boolean run(int input);

}



Complexity Asynchronous programs Graphical User Interfaces

Representing a function

• special case: interface with only one method to implement
• the class is a simple “wrapper” around it
• conventional name to find it
• (can have other methods but only 1 abstract)

→ it’s called a functional interface (pragma @FunctionalInterface) !

@FunctionalInterface
interface IntPredicate {

public boolean run(int input);
}



Complexity Asynchronous programs Graphical User Interfaces

isEven as an IntPredicate

class IsEven implements IntPredicate {
public boolean run(int input) {

return input % 2 == 0;
}

}

IntPredicate isEven = new IsEven();
isEven.run(2); // true
isEven.run(5); // false



Complexity Asynchronous programs Graphical User Interfaces

Ad-hoc inheritance

• abstract as a “debt” in methods
• → “settle the bill”
• you can build ad-hoc full-fledged classes from interfaces and
abstract ones!

IntPredicate isEven = new IntPredicate() {
public boolean run(int input) {

return input % 2 == 0;
}

}
isEven.run(6); // true



Complexity Asynchronous programs Graphical User Interfaces

Ad-hoc inheritance

• abstract as a “debt” in methods
• → “settle the bill”
• you can build ad-hoc full-fledged classes from interfaces and
abstract ones!

IntPredicate isEven = new IntPredicate() {
public boolean run(int input) {

return input % 2 == 0;
}

}
isEven.run(6); // true



Complexity Asynchronous programs Graphical User Interfaces

Leaving without paying

IntPredicate isEven = new IntPredicate();

| Error:
| IntPredicate is abstract; cannot be instantiated
| IntPredicate isEven = new IntPredicate();
| ^----------------^



Complexity Asynchronous programs Graphical User Interfaces

Leaving without paying

IntPredicate isEven = new IntPredicate();

| Error:
| IntPredicate is abstract; cannot be instantiated
| IntPredicate isEven = new IntPredicate();
| ^----------------^



Complexity Asynchronous programs Graphical User Interfaces

Still longish

• dropped the empty class shell
• instantiate directly as we implement

but

• still several imbricated {...}
• have to mind the keywords

we just want to map a <VARIABLE> to an <EXPRESSION> (or <STATEMENT>)

inline function, aka a “λ” from λ-calculus, (Alonzo Church, 1930s)

a -> b



Complexity Asynchronous programs Graphical User Interfaces

Still longish

• dropped the empty class shell
• instantiate directly as we implement

but

• still several imbricated {...}
• have to mind the keywords

we just want to map a <VARIABLE> to an <EXPRESSION> (or <STATEMENT>)

inline function, aka a “λ” from λ-calculus, (Alonzo Church, 1930s)

a -> b



Complexity Asynchronous programs Graphical User Interfaces

Syntax

assuming

• (a, b, ...) is a tuple of n variables (parentheses optional when 1
only)

• <VALUE> is an expression
• <STATEMENT> is a statement (often of the form { ...; ...; ...; })

(a, b, ...) -> <EXPRESSION>
(a, b, ...) -> <STATEMENT>

are values for a given functional interface

Examples

(n, m) -> n+m
x -> {System.out.println(x); return -x;}



Complexity Asynchronous programs Graphical User Interfaces

A little bit shorter

The previous example becomes

IntPredicate isEven = n -> n % 2 == 0

• no mention of run any longer

• but still have to mind it!

isEven(2);
// Error:
| cannot find symbol
| symbol: method isEven(int)

isEven.run(2); // true



Complexity Asynchronous programs Graphical User Interfaces

A little bit shorter

The previous example becomes

IntPredicate isEven = n -> n % 2 == 0

• no mention of run any longer

• but still have to mind it!

isEven(2);
// Error:
| cannot find symbol
| symbol: method isEven(int)

isEven.run(2); // true



Complexity Asynchronous programs Graphical User Interfaces

A little bit shorter

The previous example becomes

IntPredicate isEven = n -> n % 2 == 0

• no mention of run any longer

• but still have to mind it!

isEven(2);
// Error:
| cannot find symbol
| symbol: method isEven(int)

isEven.run(2); // true



Complexity Asynchronous programs Graphical User Interfaces

Method reference

• what about existing functions?
• can be wrapped into a λ, but boring:

n -> someObject.someMethod(n)

• can’t invoke regular functions except to apply them
• but you can refer to a method with ::



Complexity Asynchronous programs Graphical User Interfaces

Example

class Arithmetic {
...
public static boolean isEven(int input) {

return input % 2 == 0;
}
public static boolean isOdd(int input) { ... }
public static boolean isPrime(int input) { ... }
...

}
IntPredicate[] predicates = {Arithmetic::isEven,

Arithmetic::isPrime};
predicates[0].run(2); // true
Arithmetic.isEven(2); // true



Complexity Asynchronous programs Graphical User Interfaces

Generalizing a bit

@FunctionalInterface
interface Function<I, O> {

public O run(I input);
}

class Multiple {
int i;
public Multiple(int i) {

this.i = i;
}
public boolean divisible(int j) {

return j % this.i == 0;
}

}



Complexity Asynchronous programs Graphical User Interfaces

Full example

Remember?

someList.filter(isEven); // Error: cannot find symbol

List<Integer> smallerThan10 = new LinkedList<Integer>();
for(int i = 0; i < 10; i++) {

smallerThan10.add(i);
}

Multiple by3 = new Multiple(3);
smallerThan10.removeIf(by3::divisible)
smallerThan10; // smallerThan10 ==> [1, 2, 4, 5, 7, 8]



Complexity Asynchronous programs Graphical User Interfaces

Full example

Remember?

someList.filter(isEven); // Error: cannot find symbol

List<Integer> smallerThan10 = new LinkedList<Integer>();
for(int i = 0; i < 10; i++) {

smallerThan10.add(i);
}

Multiple by3 = new Multiple(3);
smallerThan10.removeIf(by3::divisible)
smallerThan10; // smallerThan10 ==> [1, 2, 4, 5, 7, 8]



Complexity Asynchronous programs Graphical User Interfaces

Graphical User Interfaces



Complexity Asynchronous programs Graphical User Interfaces

Libraries



Complexity Asynchronous programs Graphical User Interfaces

AWT

Basic tooling

• older
• events (key presses)
• notion of Component
• Graphics surface to draw
• definition of Layout

import java.awt.*;
import java.awt.event.*;
...



Complexity Asynchronous programs Graphical User Interfaces

Swing

More advanced

• more recent
• heavily depends on AWT anyway
• advanced widgets: dialogs, etc
• easier styling

import javax.swing.*;
import javax.swing.colorchooser.*;
import javax.swing.plaf.*; // pluggable look-and-feel



Complexity Asynchronous programs Graphical User Interfaces

General idea

a tree of components

• you plug components into containers (also components)
• recursively up to the root window
• components can appear only once

Figure 3: Example window structure



Complexity Asynchronous programs Graphical User Interfaces

The 2D API

• within AWT
• useful for:

• geometric primitives
• text
• images

A different approach

• you implement Component
• a Graphics object is passed around in the paint method
• you draw to it



Complexity Asynchronous programs Graphical User Interfaces

Documentation

Packages

https://docs.oracle.com/javase/7/docs/api/overview-summary.html

Tutorials to AWT’s 2D API
https://docs.oracle.com/javase/tutorial/2d/overview/index.html

Tutorials to Swing components

https://docs.oracle.com/javase/tutorial/uiswing/components/index.html

Swing examples

https://docs.oracle.com/javase/tutorial/uiswing/examples/components/in
dex.html

https://docs.oracle.com/javase/7/docs/api/overview-summary.html
https://docs.oracle.com/javase/tutorial/2d/overview/index.html
https://docs.oracle.com/javase/tutorial/uiswing/components/index.html
https://docs.oracle.com/javase/tutorial/uiswing/examples/components/index.html
https://docs.oracle.com/javase/tutorial/uiswing/examples/components/index.html


Complexity Asynchronous programs Graphical User Interfaces

Simple Swing example



Complexity Asynchronous programs Graphical User Interfaces

Minimal window

import javax.swing.*;
public class EmptyWindow {

private static void createAndShowGUI() {
JFrame frame = new JFrame("Some window title");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.pack();
frame.setVisible(true);

}
public static void main(String[] args) {
SwingUtilities.invokeLater(() -> createAndShowGUI());

}
}



Complexity Asynchronous programs Graphical User Interfaces

Translation

import javax.swing.*;

public class EmptyWindow {
. . .
}

access to
• JFrame
• SwingUtilities

a class for our program



Complexity Asynchronous programs Graphical User Interfaces

Translation

private static void createAndShowGUI() {
JFrame frame = new JFrame("Some window title");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.pack();
frame.setVisible(true);

}

a function to draw our window

• A window is a JFrame, set its title
• make the program end when the window closes
• find a size that works for components
• show the window (yes!)



Complexity Asynchronous programs Graphical User Interfaces

Translation

public static void main(String[] args) {
SwingUtilities.invokeLater(() -> createAndShowGUI());

}

• still a program like any other, needs the usual main
• schedule a rendering (see the lambda?)
• where did the control flow go?



Complexity Asynchronous programs Graphical User Interfaces

With a panel

import java.awt.GridLayout;
...
private static void createAndShowGUI() {
...
JPanel jpanel = new JPanel(new GridLayout(2, 2));
frame.add(jpanel);
...

}



Complexity Asynchronous programs Graphical User Interfaces

With a couple widgets

...
private static void createAndShowGUI() {
...
JLabel label = new JLabel("Hey there!");
JTextField input = new JTextField();
JButton submit = new JButton("click me");
jpanel.add(label);
jpanel.add(input);
jpanel.add(submit);
...

}



Complexity Asynchronous programs Graphical User Interfaces

Add reactions to events

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;

...
private static void createAndShowGUI() {
...
submit.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

System.out.println("Received " + e);
}

});
...

}



Complexity Asynchronous programs Graphical User Interfaces

Display image

import java.awt.*;
import java.awt.image.BufferedImage;
import java.io.*;
import javax.imageio.ImageIO;
class ImageViewer extends Component {
private BufferedImage img;
ImageViewer(String path) {
try {
img = ImageIO.read(new File(path));

} catch (IOException e) {}
}
public void paint(Graphics g) {
g.drawImage(this.img, 0, 0, null);

}
}


