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Simple containers
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Implementing interfaces

Interface

Implementationl Implementation2 Implementation3

Figure 1: A common structure

One interface, several implementations.
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Two implementations

List
e g sef of functionalities

* g contract to prove a class can act as a list




Two implementations

e g sef of functionalities

* g contract to prove a class can act as a list
— an interface!

ArrayList LinkedList
Cell0 | Celll | Cell2 | (empty) | (empty) @ @ @
an array larger than the number a "head”: the element in the
of elements current cell
an index to remember where it a “queue”: the pointer to the

stops rest of the list
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Getting element at index i

ArrayList LinkedList
check the bounds: O(1) doesi == 07
return cell i: O(1) if yes, get the head:
= O(1) otherwise, get the i-1M

element of the queue
= O(n)
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Prepending

ArrayList LinkedList

create a new cell with the new
element pointing to the existing
list: O(1)

= O(1)

New cell —>| Cell0 | Celll | Cell2

(empty) | (empty) ‘

create a new array large
enough: O(n)
write the new element: O(1)
copy all the other elements
after: O(n)

= O(n)
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Performance comparison

So which one is best?

if frequent random access is needed: ArrayList
if frequent modification is needed: LinkedList

= No "one-size-fits-all”, implementation should match the use
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In any case

Previously on IST-4-JAV (class 2). ..

notion of type variable
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In any case

Previously on IST-4-JAV (class 2). ..
notion of type variable

List<String> al = new ArrayList<String>();
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In any case

Previously on IST-4-JAV (class 2). ..

notion of type variable

List<String> al

List<String> 11

new ArrayList<String>();

new LinkedList<String>();
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Associating values to keys
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A common need

“white pages”, phone books. . .
Domain Name System

looking up users in a table by their ID
finding the selected action in a menu

interface Map<K, V> {

V get (Object k);
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Association list

class Pair<K, V> { class ArrayList<T> {
public K getKey () { ... }
public V getValue() { ... } }
}
1)

class PhoneBook<K, V> implements Map<K, V> {
private ArraylList<Pair<K, V>> records;
PhoneBook (int initialSize) {
this.records = new ArrayList<>(initialSize);
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Retrieving a number from a key

V get (Object k) {
for (Pair<K, V> record: this.records) {
if (record.getKey () .equals(k)) {
return record.getValue();
}
}

return null;

must walk the phonebook until found
on average, this.records.size() / 2
= O(n)
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HashMaps

A bit of ArrayList and LinkedList!

.hashCodel()

- ~
P Foon -

P TN
,7h0 /1l > “<hn

-~

SR U | -

-
@ i empty \I . @
~ -

Figure 2: Structure of a HashMap
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Properties

A clever implementation

® uses .hashCode () on the key: O(1)

e each list as long as the number of collisions (if . hashCode is good, then
few): O(c)

* (see birthday problem)

Conseqguences

* fast access
¢ fast insertion
* resizing costs when it gets too full (initial capacity / load factor)
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Principles
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A key distinction

Regular values Functions

data: raw types, objects. .. e structural unif

can be created dynamically * (similar to loops)
can be stored * no dynamic handling

passed to functions
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Program flow

imperative: “recipe”, sequence of instructions
object: “sections” in the program not executed linearly

— what about reactions to events?

could the program be in “several locations” at once?

how could each step anticipate everything that could happen? (and
always the same anyway)

check some central state once in a while?



Use cases

long (> 100 ms) calls: network
user interaction (games, anyone?)
graphical user interfaces (don’t want everything to freeze)

How to represent reactions?



Use cases

long (> 100 ms) calls: network
user interaction (games, anyone?)
graphical user interfaces (don’t want everything to freeze)

How to represent reactions?

Reactions are functions so... could we pass functions after all?
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Functions as values
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So what if we could. ..

store a function into a variable?
associate it fo a key? (menus. . .)
pass it to another function?

boolean isEven (int n) {
return n $ 2 == 0;

}

somelList.filter (isEven); // Error: cannot find symbol
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Interfaces!

classes can have (severall) methods
passing an object is a way to pass its methods
only need a convention to find the (unique) method

— this is called an inferface!

interface IntPredicate {
public boolean run(int input);
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Representing a function

special case: interface with only one method to implement
the class is a simple “wrapper” around it
conventional name to find it

(can have other methods but only 1 abstract)

— it's called a functional interface (pragma @FunctionalInterface) !

@QFunctionalInterface
interface IntPredicate {
public boolean run(int input);



Graphicc
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isEven QS AN IntPredicate

class IsEven implements IntPredicate {
public boolean run(int input) {

[o)

return input % 2 == 0;

IntPredicate isEven = new IsEven|();
isEven.run(2); // true
isEven.run(5); // false
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Ad-hoc inheritance

abstract as a “debt” in methods

— “settle the bill”

you can build ad-hoc full-fledged classes from interfaces and
abstract ones!
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Ad-hoc inheritance

abstract as a “debt” in methods

— “settle the bill”

you can build ad-hoc full-fledged classes from interfaces and
abstract ones!

IntPredicate isEven = new IntPredicate () {
public boolean run(int input) {
return input % 2 == 0;

}

isEven.run (6); // true
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Leaving without paying

IntPredicate isEven = new IntPredicate();
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Leaving without paying

IntPredicate isEven =

new IntPredicate();
Error:

IntPredicate is abstract;

|

| cannot be instantiated
| IntPredicate isEven =

|

new IntPredicate();

Graphical U

Inter
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Still longish

dropped the empty class shell
instantiate directly as we implement

but

still several imbricated { ...}
have to mind the keywords

we just want to map a <VARIABLE> O QN <EXPRESSION> (Of <STATEMENT>)
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Still longish

dropped the empty class shell
instantiate directly as we implement

but

still several imbricated { ...}
have to mind the keywords

we just want to map a <VARIABLE> O QN <EXPRESSION> (Of <STATEMENT>)
inline function, aka a “\” from A-calculus, (Alonzo Church, 1930s)

a —>5>b
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assuming
(a, b, ...) isatuple of nvariables (parentheses optional when 1
only)
<VALUE> is an expression
<STATEMENT> is a statement (often of theform { ...; ...; ...; })
(a, b, ...) —> <EXPRESSION>
(a, b, ...) —> <STATEMENT>

are values for a given functional interface
Examples

(n, m) —-> n+m
x —> {System.out.println(x); return -x;}
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A little bit shorter

The previous example becomes
IntPredicate isEven = n —> n % 2 ==

no mention of run any longer

aphical |
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A little bit shorter

The previous example becomes

IntPredicate isEven = n —> n % 2 =

no mention of run any longer
but still have to mind it!

isEven (2);

// Error:

| cannot find symbol

| symbol: method isEven (int)
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A little bit shorter

The previous example becomes

IntPredicate isEven = n -> n % 2

no mention of run any longer
but still have to mind it!

isEven (2);

// Error:

| cannot find symbol

| symbol: method isEven (int)

isEven.run(2);

// true
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Method reference

what about existing functions?
can be wrapped into a i, but boring:

n —> someObject.someMethod (n)

can’t invoke regular functions except to apply them
but you can referto a method with : :



Asynchronous programs

)O0000000000e00

Example

class Arithmetic {

public static boolean isEven (int input) {

return input % 2 == 0;
}
public static boolean isOdd(int input) { ... }

public static boolean isPrime (int input) { ... }

}

IntPredicate[] predicates = {Arithmetic::isEven,
Arithmetic::isPrime};

predicates[0] .run(2); // true
Arithmetic.isEven(2); // true
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Generallzmg a bit

@QFunctionalInterface
interface Function<I, 0> {
public O run(I input);

class Multiple {

int i;
public Multiple (int i) {
this.i = i;

}
public boolean divisible (int j) {
return j % this.i == 0;
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Full example

Remember?

someList.filter (isEven); // Error: cannot find symbol
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Full example

Remember?
someList.filter (isEven); // Error: cannot find symbol

List<Integer> smallerThanl0 = new LinkedList<Integer>();
for(int 1 = 0; i < 10; i++) {
smallerThanlO.add (i) ;

Multiple by3 = new Multiple (3);
smallerThanlO.removelIf (by3::divisible)
smallerThanlO; // smallerThanl(Q ==> [1, 2, 4, 5, 7, 8]
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Libraries



Basic tooling

older

events (key presses)
notion of Component
Graphics surface to draw
definition of Layout

import java.awt.x;
import java.awt.event. x;



Com

Swing

More advanced

more recent

heavily depends on AWT anyway
advanced widgets: dialogs, etc
easier styling

import javax.swing. x;
import javax.swing.colorchooser. x;
import javax.swing.plaf.x; // pluggable look—-and-feel
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General idea

a tree of components

you plug components into containers (also components)
recursively up to the root window
components can appear only once

JFrame

Image component JPanel

Somelmage | JButton

| JTextField | ‘ JLabel

Figure 3: Example window structure
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The 2D API

within AWT

useful for:
® geometric primitives
® tfext
® images

A different approach

* you implement Component
® O Graphics object is passed around in the paint method
* you draw to it
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Documentation

Packages

https://docs.oracle.com/javase/7/docs/api/overview-summary.html

Tutorials to AWT's 2D API
https://docs.oracle.com/javase/tutorial/2d/overview/index.html

Tutorials to Swing components

https://docs.oracle.com/javase/tutorial/uiswing/components/index.html

Swing examples

https://docs.oracle.com/javase/tutorial/uiswing/examples/components/in
dex.html



https://docs.oracle.com/javase/7/docs/api/overview-summary.html
https://docs.oracle.com/javase/tutorial/2d/overview/index.html
https://docs.oracle.com/javase/tutorial/uiswing/components/index.html
https://docs.oracle.com/javase/tutorial/uiswing/examples/components/index.html
https://docs.oracle.com/javase/tutorial/uiswing/examples/components/index.html
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Simple Swing example
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Minimal window

import javax.swing. x;
public class EmptyWindow {
private static void createAndShowGUI () {
JFrame frame = new JFrame ("Some window title");
frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE) ;
frame.pack () ;
frame.setVisible (true) ;
}
public static void main (String[] args) {
SwingUtilities.invokelater (() —-> createAndShowGUI())
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Translation

access to
JFrame
SwingUfilities

import Jjavax.swing. x;

public class EmptyWindow {
a class for our program
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Translation
private static void createAndShowGUI () {
JFrame frame = new JFrame ("Some window title");

frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE) ;
frame.pack () ;
frame.setVisible (true) ;

}
a function to draw our window

A window is a JFrame, seft its fitle

make the program end when the window closes
find a size that works for components

show the window (yes!)
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Translation
public static void main(String[] args) {
SwingUtilities.invokeLater (() —-> createAndShowGUI ());

still a program like any other, needs the usual main
schedule a rendering (see the lambda?)
where did the conftrol flow go?
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With a panel

import java.awt.GridLayout;
private static void createAndShowGUI () {

JPanel jpanel = new JPanel (new GridLayout (2, 2));
frame.add (jpanel) ;
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With a Couple widgets

private static void createAndShowGUI () {

JLabel label = new JLabel ("Hey there!");
JTextField input = new JTextField();

JButton submit = new JButton ("click me");
jpanel.add (label) ;
jpanel .add (input) ;
jpanel.add (submit

4

)i
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Add reactions to events

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;

private static void createAndShowGUI () {
submit.addActionlListener (new ActionListener () {
public void actionPerformed (ActionEvent e) {

System.out .println ("Received " + e);

)i
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Display image

import java.awt.x;
import java.awt.image.BufferedImage;
import java.io.x;
import javax.imageio.ImageIO;
class ImageViewer extends Component {
private BufferedImage img;
ImageViewer (String path) {
try {
img = ImagelIO.read(new File (path));
} catch (IOException e) {}
}
public void paint (Graphics g) {
g.drawImage (this.img, 0, 0, null);



