
Worksheet 2

Our first mini-game
We will now create our first command-line program, a very simple game in which
the player must guess a number.

A functional interface
Remember the conditional statement we wrote in the first worksheet to print
whether a guess was greater or lower than a secret ? It was enough to try it
just for once, but it wouldn’t be very convenient if we had to evaluate it several
times, having to alter the guess variable in between. Let’s wrap it into a proper
procedure (just write it in a text file, evaluate it and try it in jshell, it’ll become
a class very soon I promise).

• what inputs would this procedure take? what are their types (we can just
keep the same names we already had for the variables)?

• what should be its return type (hint, it’s a procedure, not a function)
• pick a proper name for this new function and implement it (its body should

just be the same code you wrote in the first worksheet, although today’s
class should allow you to write something a bit more elegant)

Towards object-oriented programming
During play, the secret isn’t supposed to change (or the game would become
suddenly much more difficult. . .). It is therefore a bit awkward to have to pass
the secret argument every time the function is called. Let’s create a class to
hold the contextual information that this secret is and make it available to our
function!

• create a new class called Game in a new file called Game.java in an empty
directory.

• make sure it has an int field to hold the secret that will replace the
corresponding variable

• implement its constructor
• now reuse and adapt the code of the previous function to become a method

in this new Game class.

1

Please note that even though a bit long, classes can still be evaluated by jshell.
With all the structure we have designed so far, playing should have become as
easy as:

1. Starting a game with Game game = new Game(<SOME SECRET HERE>);
2. Try a number with game.guess(13) (assuming you have named your

function guess)
3. Repeating step 2. adjusting your guess based on the feedback provided.

Once it works in jshell, make sure the class file also compiles with javac.

Ok, not bad but usually when we play a game we don’t have to manually type
commands to a Java prompt. Please meet the Scanner class (https://docs.oracl
e.com/en/java/javase/19/docs/api/java.base/java/util/Scanner.html)

• read about it, look at the examples provided
• try and reproduce them in jshell
• pay attention to what happens when the input doesn’t represent a proper

integer: what feature covered in today’s class could help us handle that?
• once you’re confortable enough with this new tool, turn it into a new

method of your Game class called prompt. Does it need to access any
context? Should you make it static or not?

• get rid of guess’s last parameter and call the new prompt method instead
to declare the (local) variable

Keep checking everything still compiles (hint: need an import? look at the
documentation). Next step will be to have Java call this method automatically
in a loop but. . . wait! How can we know when to stop?

• alter the type of your method to provide enough information to its caller
to know whether to stop or continue

• check it works by writing a very simple (so simple it may look suspicious)
loop using it in jshell

A command-line program
Now that we have all the logics for the game in a class, let’s expose it as a
command-line program to start the game.

• Create an empty Main class in a new Main.java file holding the structure
for an empty program (draw inspiration from the last section of the slides).
Verify you can compile it with javac and run it with java

• Running the game should be just: instanciating a new Game, then using it
in the same loop you have been practicing at the end of the previous part.
Implement the main function accordingly

We have made a very simple game!

2

https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/Scanner.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/Scanner.html

Suggested improvements
• the secret value is so far built into your game, once someone has guessed it

it has solved the game once and for all. Let’s make the game a little bit
more interesting by having the computer choose the secret itself. Please
meet the Random class (https://docs.oracle.com/en/java/javase/19/docs/a
pi/java.base/java/util/Random.html)

• again: try in jshell, look at the results returned, how could we leverage
that into something usable for our game?

• replace your built-in secret by a random one

One last thing: the range on which you play is still arbitrary. Let’s replace that
by a parameter on the command line.

• modify the main function of your class to
– make sure only one argument is passed to your program
– convert it to an int, not forgetting to handle the errors which may

arise
– use this value as the upper bound for your random number

We’re done! We have an actually playable game, and it doesn’t require its users
to type Java or to know anything about the jshell.

Extra fun for the Java enthuasiast
Namespace occupation
First draft

The euclidian norm in a 2D-space (“plane”) can be defined as a function of the
coordinates (xA, yA) of a given point A.

|A| =
√

x2
A + y2

A

Implement this as a function with signature: double norm(double x, double
y). You may have to browse the documentation to find functions to compute
the square and square root of a given input number.

Test it on some values where you know the result in advance: the origin (0,
0), the unit on respectively the x and y axis (1, 0) and (0, 1), the opposite
corner from the origin on the unit square (1, 1) (remember that

√
2 ≈ 1.414).

Now, let’s define the same function but for a 3D-space. Can you keep the same
name ? What do you suggest ?

Sharing the namespace

2D-Points

3

https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/Random.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/Random.html

• Declare a simple class Point2D to model a geometric point in the plane
(2D space). What fields must it contain ? What type will you use for them
?

• Add a norm method to compute the same metric as previously. How will
the signature differ from the signature of the function defined above ?

3D-Points

• Now create a new class to represent points in a 3D space.
• Add the corresponding norm method to it too. Is there any naming conflict

?

Pass by value / pass by reference
• Declare a short value age and assign it to 4.
• Create a (void) procedure called increment that increases the value of its

only (short) argument by 1 (modifies it without returning it).
• Apply it on age. Did you get any error? Was age modified?

A native value is nothing more than a (temporary) value in the processor. There’s
no memory location available. When a function is called in Java, it is passed a
copy of its arguments. They are “passed by value”. Passing by value is simpler
and closer to the mathematical intuition of functions, but it can be costly for
huge data structures.

We’re now going to define a special wrapper for the short type where we have
access to the inner value : RWShort (“read-write short”). This class should have
one field of type short named value.

• Declare a RWShort value called rwAge holding the same value 4.
• Modify increment so that it now works on RWShort and not short
• Use it on the rwAge. Is it modified now ? Why ?

Java passes arguments by value; but since the value of objects are their reference
in memory, this actually amounts to passing by reference ! We get the best of
both worlds. Again, understanding the duality in Java datastructures between
“what is directly a number” and “what is a complex data implented by a graph
of number values” helps us understand why things are working the way they do.

Automatically numbering instances with static

• Declare a class called Serial having only one long field and one constructor
taking as argument the number to “wrap” as a Serial.

• Now modify it to add a static field initialized to 0.
• Remove the argument to the constructor, and use the value of the static

field instead, while incrementing it. The static field is keeping track of the
highest number and “magically” guarantees to generate distinct numbers.

4

• Complete the class with an .olderThan method that takes another Serial
as argument and is able to return true if and only if it was created after
the target object (the one on which the method is applied).

This pattern can be very useful to keep track of objects created throughout an
application.

5

	Our first mini-game
	A functional interface
	Towards object-oriented programming
	A command-line program
	Suggested improvements

	Extra fun for the Java enthuasiast
	Namespace occupation
	First draft
	Sharing the namespace

	Pass by value / pass by reference
	Automatically numbering instances with static

