
Worksheet 3

Object design
In this section we will focus on class design to model objects for a game.

Pokemons
Suppose we want to implement a pokemon game in Java. You probably already
know the game but just in case, know that Pokemons are creatures which develop
and grow: they gain experience, or “XP”, which accumulate until they have
enough to gain a new “level” (a baby pokemon starts at level 1 and can climb
all the way to level 100, where they remain forever — but in earlier versions of
the game, some glitches allowed to encounter pokemons of a level higher than
100, but always strictly inferior to 255. . . if you managed to catch one and won
a fight with them they would immediately revert to level 100 or 1, different
accounts by different people gave different, hard to know which one was true
if any, given how easily a level 248 pokemon would effortlessly distroy all your
team of pokemons but I digress).

How would you describe one particular species, say Lapras?

• create a new class in an empty file named Lapras.java, to represent the
species itself, from which particular individual pokemons, the instances of
the class will be made

• think about the fields you need a pokemon to have: how would you name
them, what types should they be?

• implement a first constructor for the class

Each individual has a name which is by default the name of its species, but
which can be altered later in the game

• modify the fields in your Lapras class to support the name and the
constructor accordingly

New individuals of a given species are created in the game + as babies when a
pokemon cracks its egg + as a wild pokemon of a given level, usually randomized
in a range depending on the geographical zone within the game

1



• modify the existing constructor accordingly and add a new one to support
this new possibility

To gain experience pokemons fight, by throwing attacks at each others (“moves”
in Pokemon parlance) which can directly hurt the opponent or have various
effects on the game such as modifying their own status or the opponent’s in
good or in bad (there are several different ways to boost a pokemon or to reduce
its abilities, to make it sleep, or burn, or be poisoned. . . ). We won’t go into to
much detail about implementing attacks at first.

• create a class Move in a new Move.java file. Let’s say for now that an
attack is defined by its name, the damages it does and a possible effect,
which will only be printed to the player for now. Add the corresponding
fields and constructors

It should be noted that as they grow pokemon acquire new attacks based on
their level (each species spontaneously learns each move it can learn when it
reaches a specific level: for instance, all pokemons of the same species might
learn say growl at level 7, byte at level 15 and heal at level 27). But at any
time, a pokemon cannot know more than 4 moves (it can know less and often
starts with only 1 or 2 moves).

• how could we represent such a piece of data (the levels at which a given
species will try and learn new moves)?

• is that a trait tied to each individual or to the species itself? As a
consequence, would you make this property in the class static or not?

• implement a list of attacks for Lapras to learn based on the game data

Oh, and there are elemental types too: water - fire - plant — ground - rock
- eletrik (yeah they spelt it that way, go figure. . . ), psy. . . and a bunch of
others which you can probably look online. There is a intricate algebra of
efficiency/resistence a bit like rock/paper/scissors but on steroids. You can
probably look it up too, but it changed slightly across the versions so don’t
worry too much about it, just pick the types you want to support and try to get
some more or less plausible efficiencies (if water doesn’t extinguish fire which
burns plant which absorb water, I don’t wanna play your game. . . ). We will see
in next class a good feature of Java to represent (pokemon) types, so you can
just use String for now.

• make a new class in a separate file to handle types. Again, don’t worry too
much about their representation, but just focus on exposing the required
logic: how efficient an attack of a given type is on a pokemon based on its
type

Each move has an associated type, and each pokemon species also has at least
one type, and can have up to two. They needn’t always align — most pokemons
learn “normal” type moves, and can sometimes learn a couple moves out of their
type.

• Lapras is type “water”, so modify the class accordingly — again, ask

2



yourself whether this should be a property of each individual or of the
species as a whole and pick the field modifiers accordingly

• modify the Move class too to add a type

Ok, so far, we have done only composition by adding field of a given class to
another class, but it’s high time we enriched our game with other species (there
are hundreds of them after all). Let’s say we want to have Pikachu and Raichu.

• we are certainly not going to reimplement everything we did for Lapras
into each of the new classes: let’s take all the properties they should share
into a mother Pokemon class which all pokemon species should extend.
Create a new file for the class accordingly

• would it actually make sense to instanciate a Pokemon out of any particular
species? So what keyword should you use on that class?

• move all the code you want to share between your species into the new
class

• which common property or behaviour custom to each species should you
leave unimplemented? How would you do so?

Finally pokemons “evolve”: a given species will spontaneously turn into another
one when certain conditions are met. Most of the time, reaching a given level is
enough (and then, if evolution is blocked it will retry at each new level), but
sometimes a particular object (an evolution stone) is required as is the case for
a Pikachu to become a Raichu.

• update the Pokemon class to take this new ability into account
• update the implementations of Lapras, Pikachu and Raichu to reflect the

fact that both Lapras and Raichu can’t evolve, but that Pikachu can turn
into a Raichu when given a thunder stone.

• so in a sense, an individual pokemon can switch species (when evolving),
even though it keeps all the moves it already knows. What would be the
best way to represent this? There’s not necessarily a best way to do so,
maybe we could add a new constructor to the evolved species taking an
instance of the base species as argument, or maybe we should entirely
decorelate individuals from their species, and use composition: maybe the
species of a pokemon should have been only one field in a pokemon among
others?

Packaging
Now, the model described above will be used to implement a version of the game
itself, but it could also be extremely useful to create tools to help players learn
about the game, optimize their strategies, so that it could make sense to expose
the data encoded within the library as a web API.

For that reason, we are going to create a separate package for the pokemon
library encoding the game data, and other packages for the game and the API.

3



• create the corresponding structure in the directory where you work for this
practice

• move the files you’ve already created to the right place.

Let’s start implementing tools

• make a new executable program (Main class, main entry point etc.) lever-
aging the library to create a couple pokemons and make them fight, ideally
with some interaction from the user if you want your program to look like
a game (choose a move, see the result, handle damage. . . )

• make another executable to query information about the various species,
taking simple queries as input and displaying the relevant information
extracted from the library

• in the process, you should notice everything that you need to expose and
modify the visibility of the various fields you’ve introduced in your code
accordingly

4


	Object design
	Pokemons

	Packaging

