
Worksheet 4

Memoization
Naive Fibonacci

• As a reminder, the Fibonacci sequence is defined by

f0 = 1
f1 = 1

fn+2 = fn+1 + fn

implement a function returning the nth term of the sequence with the
following signature:

long fibonacci(int n);

• Test your function on “small” inputs (< 10). Now use it to find the value
of f40 and note the time it takes. Try 45 if you’re feeling particularly
daring today. What is going on?

Let’s add some logging
• Modify the previous function to log its argument each time it is called.
• Retry the previous calls with the small values. What do you notice?

Keeping answers
A simple way to address the issue we have just evidenced is memoization: we
trade a little space (in memory) against some time (to run the algorithm). If
our program could somehow “remember” the answers it gives it wouldn’t have
to compute the same sums over and over.

• We’ll need a place to store terms, so let’s create a class Fibonacci with a
static array named cache to hold all the terms already found. Regarding
its type, as we’ve seen, terms around f40 are already quite large, so we are
likely to hit the long overflow if we consider terms for indices too high
so may want to limit ourselves to a hundred terms, and dimension this
cache accordingly. Don’t forget to initialize the first two cells of the cache

1



for f0 and f1 (hint: the value for this static field could be returned by a
static function).

• Add your previous function as a static method of this new class, renaming
it from fibonacci to get (so we can write Fibonacci.get and it kind of
makes sense).

• Now modify get to check if the result is missing from the cache first,
compute the sum and store it only in that case, and finally return the
content of the cache.

• Compute values you’ve computed before to check the results. What do you
observe regarding logging messages? In particular, what happens when
you compute the same term twice?

Graphical User Interface
Let us now create a graphical widget to expose the model of the Fibonacci
sequence we have previously implemented.

The Window
• Starting from the Swing example in the class, create a new file

FiboGUI.java containing a FiboGUI class to hold the be the entry point
of your program. Make it create an empty window for now.

• As in the example on the slide, create a second static method called
createAndShowGUI to populate the window.

• Add a JPanel to structure the view and use a GridLayout for it as in the
example in the slides (2×2 should be enough). Remember that adding
components should go before calling .pack().

• Then add two components to the JPanel:
– a JLabel to print a message describing the expected input
– a second JLabel to print the result

Number input
Now we’ll create a JSpinner to let the user pick a number. This requires quite
some work so instead of creating it directly inline, we will create a separate class
named FiboInput to handle it. Create a new file holding this class which should
inherit JSpinner.

• The constructor for the parent class JSpinner requires a SpinnerModel.
We will use the SpinnerNumberModel which requires four Integer values:

– an initial value
– a minimum value
– a maximum value
– a step value to say by how much to increase or decrease the current

value each time an arrow is pressed

2

https://docs.oracle.com/javase/7/docs/api/javax/swing/SpinnerModel.html
https://docs.oracle.com/javase/7/docs/api/javax/swing/SpinnerNumberModel.html


• However, when calling super in a constructor, it should be the first line so
we’ll need to create our SpinnerModel in one fell swoop. Add a static
method called getRange to return a SpinnerModel. It should create
four Integer variables as above, initialize them with sensible values, and
return a call to the constructor for SpinnerNumberModel on the four
previous variables. Why can the method return type SpinnerModel and
not SpinnerNumberModel (type returned by the call to the constructor)?

• Implement FiboInput’s constructor by simply passing the result of
getRange to the super constructor.

• We can go back to createAndShowGUI, add a FiboInput variable called
input. Add it (as in panel.add(...)) between both JLabels (intuitively,
I expect the input to be next to the label describing it and the label
presenting the result to come after, but this is my layout choice, you can
design your application differently).

Wiring the logic
• Create a file named Fibonacci.java in the same directory as your appli-

cation and fill it with the previous class for your memoized code (you can
remove the debug lines, we don’t need them any more).

• We will now need to modify the FiboInput to react to input: update the
header of the class to make it implement the ChangeListener interface.
In order to respect this “contract”, a class needs to have a public void
stateChanged(ChangeEvent e) method. Add one to the class and have
it log the event e to the console. Register it to the Swing engine by calling
the addChangeListener on super in the constructor. What argument
should be passed to this method?

• Recompile your application, run it, play with the number input and look
at the lines getting logged to the console.

• Now we’d like something more useful to happen when the value is changed:
we’ll need access to the JLabel output from an instance of FiboInput.
Add a corresponding (private) field to the class and an argument to
the constructor which you’ll use to set it. Update the code of the
stateChanged handler to write something to this.output. Don’t forget
to update createAndShowGUI in FiboGUI to call the modified constructor
for FiboInput properly.

• All that remains is to have the handler use Fibonacci.get from the first
part. Retrieve the rank from the value of the FiboInput (remember:
FiboInput is a JSpinner, we made it inherit the class for this reason!
what method could be useful to retrieve its current value? read the
documentation carefully: what type does it return? what could we do
about it ?). Pass it to Fibonacci.get, convert the (long) result to String
and set the output to that.

Recompile everything. We got ourselves a simple but efficient Fibonacci sequence
calculator!

3

https://docs.oracle.com/javase/7/docs/api/javax/swing/event/ChangeListener.html

	Memoization
	Naive Fibonacci
	Let’s add some logging
	Keeping answers

	Graphical User Interface
	The Window
	Number input
	Wiring the logic


