Linear transformations between dominating sets in

 the TAR-model$$
\text { JGA } 2020
$$

Nicolas Bousquet, Alice Joffard and Paul Ouvrard

November 18, 2020

Université
deBORDEAUX

LaBRI
 LIRİS

Reconfiguration of dominating sets in the TAR-model

Reconfiguration of dominating sets in the TAR-model
Dominating set D of $G: \forall v \in V, v \in D$ or $\exists u \in D$ with $u v \in E$

Reconfiguration of dominating sets in the TAR-model

Dominating set D of $G: \forall v \in V, v \in D$ or $\exists u \in D$ with $u v \in E$

Reconfiguration of dominating sets in the TAR-model

Dominating set D of $G: \forall v \in V, v \in D$ or $\exists u \in D$ with $u v \in E$

Reconfiguration of dominating sets in the TAR-model

Dominating set D of $G: \forall v \in V, v \in D$ or $\exists u \in D$ with $u v \in E$

Reconfiguration of dominating sets in the TAR-model

Dominating set D of $G: \forall v \in V, v \in D$ or $\exists u \in D$ with $u v \in E$

Can we transform D_{s} into D_{t} with a sequence of additions/removals keeping G dominated ?

Reconfiguration of dominating sets in the TAR-model

Dominating set D of $G: \forall v \in V, v \in D$ or $\exists u \in D$ with $u v \in E$

Can we transform D_{s} into D_{t} with a sequence of additions/removals keeping G dominated ?

Reconfiguration of dominating sets in the TAR-model

Dominating set D of $G: \forall v \in V, v \in D$ or $\exists u \in D$ with $u v \in E$

Can we transform D_{s} into D_{t} with a sequence of additions/removals keeping G dominated ?

Reconfiguration of dominating sets in the TAR-model

Dominating set D of $G: \forall v \in V, v \in D$ or $\exists u \in D$ with $u v \in E$

Can we transform D_{s} into D_{t} with a sequence of additions/removals keeping G dominated ?

D_{t}

Reconfiguration of dominating sets in the TAR-model

Dominating set D of $G: \forall v \in V, v \in D$ or $\exists u \in D$ with $u v \in E$

Can we transform D_{s} into D_{t} with a sequence of additions/removals keeping G dominated ?

Reconfiguration of dominating sets in the TAR-model

Dominating set D of $G: \forall v \in V, v \in D$ or $\exists u \in D$ with $u v \in E$

Can we transform D_{s} into D_{t} with a sequence of additions/removals keeping G dominated ?

Reconfiguration of dominating sets in the TAR-model

Dominating set D of $G: \forall v \in V, v \in D$ or $\exists u \in D$ with $u v \in E$

Can we transform D_{s} into D_{t} with a sequence of additions/removals keeping G dominated ?

Reconfiguration of dominating sets in the TAR-model

Dominating set D of $G: \forall v \in V, v \in D$ or $\exists u \in D$ with $u v \in E$

Can we transform D_{s} into D_{t} with a sequence of additions/removals keeping G dominated ?

Reconfiguration of dominating sets in the TAR-model

Dominating set D of $G: \forall v \in V, v \in D$ or $\exists u \in D$ with $u v \in E$

Can we transform D_{s} into D_{t} with a sequence of additions/removals keeping G dominated ?

D_{t}

Problematic

Problematic

Reconfiguration graph $\mathcal{R}(G)$: the vertices are the dominating sets of G, two dominating sets are adjacent if they differ by an addition/deletion

Problematic

Reconfiguration graph $\mathcal{R}(G)$: the vertices are the dominating sets of G, two dominating sets are adjacent if they differ by an addition/deletion

Problematic

Reconfiguration graph $\mathcal{R}(G)$: the vertices are the dominating sets of G, two dominating sets are adjacent if they differ by an addition/deletion

Is $\mathcal{R}(G)$ connected ? What is its diameter?

Threshold

Threshold

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold: maximum size k of the dominating sets in $\mathcal{R}_{k}(G)$

Threshold

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold: maximum size k of the dominating sets in $\mathcal{R}_{k}(G)$
Remark: $\mathcal{R}_{k}(G)$ connected $\nRightarrow \mathcal{R}_{k+1}(G)$ connected:

Threshold

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold: maximum size k of the dominating sets in $\mathcal{R}_{k}(G)$
Remark: $\mathcal{R}_{k}(G)$ connected $\nRightarrow \mathcal{R}_{k+1}(G)$ connected:

Threshold

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold: maximum size k of the dominating sets in $\mathcal{R}_{k}(G)$
Remark: $\mathcal{R}_{k}(G)$ connected $\nRightarrow \mathcal{R}_{k+1}(G)$ connected:

$$
k=n-2: \mathcal{R}_{k}\left(S_{n}\right) \text { is connected }
$$

Threshold

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold: maximum size k of the dominating sets in $\mathcal{R}_{k}(G)$
Remark: $\mathcal{R}_{k}(G)$ connected $\nRightarrow \mathcal{R}_{k+1}(G)$ connected:

$$
k=n-2: \mathcal{R}_{k}\left(S_{n}\right) \text { is connected }
$$

Threshold

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold: maximum size k of the dominating sets in $\mathcal{R}_{k}(G)$
Remark: $\mathcal{R}_{k}(G)$ connected $\nRightarrow \mathcal{R}_{k+1}(G)$ connected:

$$
k=n-2: \mathcal{R}_{k}\left(S_{n}\right) \text { is connected }
$$

Threshold

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold: maximum size k of the dominating sets in $\mathcal{R}_{k}(G)$
Remark: $\mathcal{R}_{k}(G)$ connected $\nRightarrow \mathcal{R}_{k+1}(G)$ connected:

$$
k=n-2: \mathcal{R}_{k}\left(S_{n}\right) \text { is connected }
$$

Threshold

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold: maximum size k of the dominating sets in $\mathcal{R}_{k}(G)$
Remark: $\mathcal{R}_{k}(G)$ connected $\nRightarrow \mathcal{R}_{k+1}(G)$ connected:

$$
k=n-2: \mathcal{R}_{k}\left(S_{n}\right) \text { is connected }
$$

Threshold

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold: maximum size k of the dominating sets in $\mathcal{R}_{k}(G)$
Remark: $\mathcal{R}_{k}(G)$ connected $\nRightarrow \mathcal{R}_{k+1}(G)$ connected:

$$
k=n-2: \mathcal{R}_{k}\left(S_{n}\right) \text { is connected }
$$

Threshold

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold: maximum size k of the dominating sets in $\mathcal{R}_{k}(G)$
Remark: $\mathcal{R}_{k}(G)$ connected $\nRightarrow \mathcal{R}_{k+1}(G)$ connected:

$$
\begin{gathered}
k=n-2: \mathcal{R}_{k}\left(S_{n}\right) \text { is connected } \\
k=n-1: \mathcal{R}_{k}\left(S_{n}\right) \text { is disconnected }
\end{gathered}
$$

Threshold

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold: maximum size k of the dominating sets in $\mathcal{R}_{k}(G)$
Remark: $\mathcal{R}_{k}(G)$ connected $\nRightarrow \mathcal{R}_{k+1}(G)$ connected:

$$
\begin{gathered}
k=n-2: \mathcal{R}_{k}\left(S_{n}\right) \text { is connected } \\
k=n-1: \mathcal{R}_{k}\left(S_{n}\right) \text { is disconnected }
\end{gathered}
$$

Threshold

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold: maximum size k of the dominating sets in $\mathcal{R}_{k}(G)$
Remark: $\mathcal{R}_{k}(G)$ connected $\nRightarrow \mathcal{R}_{k+1}(G)$ connected:

$$
\begin{gathered}
k=n-2: \mathcal{R}_{k}\left(S_{n}\right) \text { is connected } \\
k=n-1: \mathcal{R}_{k}\left(S_{n}\right) \text { is disconnected }
\end{gathered}
$$

What is the smallest d_{0} s.t. $\mathcal{R}_{k}(G)$ is connected for any $k \geq d_{0}$?

State of the art

State of the art

d_{0} : min value s.t. for any $k \geq d_{0}, \mathcal{R}_{k}(G)$ is connected

State of the art

$d_{0}: \min$ value s.t. for any $k \geq d_{0}, \mathcal{R}_{k}(G)$ is connected
Γ : maximum size of a minimal dominating set

State of the art

$d_{0}: \min$ value s.t. for any $k \geq d_{0}, \mathcal{R}_{k}(G)$ is connected
Γ : maximum size of a minimal dominating set

- Lower bounds:

State of the art

$d_{0}: \min$ value s.t. for any $k \geq d_{0}, \mathcal{R}_{k}(G)$ is connected
Γ : maximum size of a minimal dominating set

- Lower bounds:
- $d_{0}>\Gamma$

State of the art

$d_{0}: \min$ value s.t. for any $k \geq d_{0}, \mathcal{R}_{k}(G)$ is connected
Γ : maximum size of a minimal dominating set

- Lower bounds:
- $d_{0}>\Gamma$
- There exist graphs s.t. $d_{0}>\Gamma+1$ (Suzuki et al. 16)

State of the art

$d_{0}: \min$ value s.t. for any $k \geq d_{0}, \mathcal{R}_{k}(G)$ is connected
Γ : maximum size of a minimal dominating set

- Lower bounds:
- $d_{0}>\Gamma$
- There exist graphs s.t. $d_{0}>\Gamma+1$ (Suzuki et al. 16)
- There exist graphs with arbitrary Γ and γ s.t. $d_{0} \geq \Gamma+\gamma$ (Mynhardt et al. 19)

State of the art

$d_{0}: \min$ value s.t. for any $k \geq d_{0}, \mathcal{R}_{k}(G)$ is connected
Γ : maximum size of a minimal dominating set

- Lower bounds:
- $d_{0}>\Gamma$
- There exist graphs s.t. $d_{0}>\Gamma+1$ (Suzuki et al. 16)
- There exist graphs with arbitrary Γ and γ s.t. $d_{0} \geq \Gamma+\gamma$ (Mynhardt et al. 19)
- Upper bounds:

State of the art

$d_{0}: \min$ value s.t. for any $k \geq d_{0}, \mathcal{R}_{k}(G)$ is connected
Γ : maximum size of a minimal dominating set

- Lower bounds:
- $d_{0}>\Gamma$
- There exist graphs s.t. $d_{0}>\Gamma+1$ (Suzuki et al. 16)
- There exist graphs with arbitrary Γ and γ s.t. $d_{0} \geq \Gamma+\gamma$ (Mynhardt et al. 19)
- Upper bounds:
- $k>\Gamma, \mathcal{R}_{k}(G)$ connected $\Rightarrow \mathcal{R}_{k+1}(G)$ connected (Haas \& Seyffarth 14)

State of the art

$d_{0}: \min$ value s.t. for any $k \geq d_{0}, \mathcal{R}_{k}(G)$ is connected
Γ : maximum size of a minimal dominating set

- Lower bounds:
- $d_{0}>\Gamma$
- There exist graphs s.t. $d_{0}>\Gamma+1$ (Suzuki et al. 16)
- There exist graphs with arbitrary Γ and γ s.t. $d_{0} \geq \Gamma+\gamma$ (Mynhardt et al. 19)
- Upper bounds:
- $k>\Gamma, \mathcal{R}_{k}(G)$ connected $\Rightarrow \mathcal{R}_{k+1}(G)$ connected (Haas \& Seyffarth 14)
\rightarrow If $k>\Gamma$ and $\mathcal{R}_{k}(G)$ connected, then $d_{0} \leq k$

State of the art

$d_{0}: \min$ value s.t. for any $k \geq d_{0}, \mathcal{R}_{k}(G)$ is connected
Γ : maximum size of a minimal dominating set

- Lower bounds:
- $d_{0}>\Gamma$
- There exist graphs s.t. $d_{0}>\Gamma+1$ (Suzuki et al. 16)
- There exist graphs with arbitrary Γ and γ s.t. $d_{0} \geq \Gamma+\gamma$ (Mynhardt et al. 19)
- Upper bounds:
- $k>\Gamma, \mathcal{R}_{k}(G)$ connected $\Rightarrow \mathcal{R}_{k+1}(G)$ connected (Haas \& Seyffarth 14)
\rightarrow If $k>\Gamma$ and $\mathcal{R}_{k}(G)$ connected, then $d_{0} \leq k$
- If G has two independent edges, $d_{0} \leq \min \{n-1, \Gamma+\gamma\}$ (Haas \& Seyffarth 14)

State of the art

$d_{0}: \min$ value s.t. for any $k \geq d_{0}, \mathcal{R}_{k}(G)$ is connected
Γ : maximum size of a minimal dominating set

- Lower bounds:
- $d_{0}>\Gamma$
- There exist graphs s.t. $d_{0}>\Gamma+1$ (Suzuki et al. 16)
- There exist graphs with arbitrary Γ and γ s.t. $d_{0} \geq \Gamma+\gamma$ (Mynhardt et al. 19)
- Upper bounds:
- $k>\Gamma, \mathcal{R}_{k}(G)$ connected $\Rightarrow \mathcal{R}_{k+1}(G)$ connected (Haas \& Seyffarth 14)
\rightarrow If $k>\Gamma$ and $\mathcal{R}_{k}(G)$ connected, then $d_{0} \leq k$
- If G has two independent edges, $d_{0} \leq \min \{n-1, \Gamma+\gamma\}$ (Haas \& Seyffarth 14)
- If G is bipartite or chordal, $d_{0} \leq \Gamma+1$ (Haas \& Seyffarth 14)

State of the art

$d_{0}: \min$ value s.t. for any $k \geq d_{0}, \mathcal{R}_{k}(G)$ is connected
Γ : maximum size of a minimal dominating set

- Lower bounds:
- $d_{0}>\Gamma$
- There exist graphs s.t. $d_{0}>\Gamma+1$ (Suzuki et al. 16)
- There exist graphs with arbitrary Γ and γ s.t. $d_{0} \geq \Gamma+\gamma$ (Mynhardt et al. 19)
- Upper bounds:
- $k>\Gamma, \mathcal{R}_{k}(G)$ connected $\Rightarrow \mathcal{R}_{k+1}(G)$ connected (Haas \& Seyffarth 14)
\rightarrow If $k>\Gamma$ and $\mathcal{R}_{k}(G)$ connected, then $d_{0} \leq k$
- If G has two independent edges, $d_{0} \leq \min \{n-1, \Gamma+\gamma\}$ (Haas \& Seyffarth 14)
- If G is bipartite or chordal, $d_{0} \leq \Gamma+1$ (Haas \& Seyffarth 14)
- $d_{0} \leq \Gamma+\alpha-1$ (Haas \& Seyffarth 17)

Our results

Our results

- If $k \geq \Gamma+\alpha-1$ then $\mathcal{R}_{k}(G)$ has linear diameter

Our results

- If $k \geq \Gamma+\alpha-1$ then $\mathcal{R}_{k}(G)$ has linear diameter
- Treewidth upper bound:

Our results

- If $k \geq \Gamma+\alpha-1$ then $\mathcal{R}_{k}(G)$ has linear diameter
- Treewidth upper bound:
- $d_{0} \leq \Gamma+t w+1$

Our results

- If $k \geq \Gamma+\alpha-1$ then $\mathcal{R}_{k}(G)$ has linear diameter
- Treewidth upper bound:
- $d_{0} \leq \Gamma+t w+1$
- There exist graphs for which $\mathcal{R}_{\Gamma+t w-2}(G)$ is disconnected

Our results

- If $k \geq \Gamma+\alpha-1$ then $\mathcal{R}_{k}(G)$ has linear diameter
- Treewidth upper bound:
- $d_{0} \leq \Gamma+t w+1$
- There exist graphs for which $\mathcal{R}_{\Gamma+t w-2}(G)$ is disconnected
- Minor-sparse graphs:

Our results

- If $k \geq \Gamma+\alpha-1$ then $\mathcal{R}_{k}(G)$ has linear diameter
- Treewidth upper bound:
- $d_{0} \leq \Gamma+t w+1$
- There exist graphs for which $\mathcal{R}_{\Gamma+t w-2}(G)$ is disconnected
- Minor-sparse graphs:
- For " d-minor sparse" graphs, $d_{0} \leq \Gamma+d-1$

Our results

- If $k \geq \Gamma+\alpha-1$ then $\mathcal{R}_{k}(G)$ has linear diameter
- Treewidth upper bound:
- $d_{0} \leq \Gamma+t w+1$
- There exist graphs for which $\mathcal{R}_{\Gamma+t w-2}(G)$ is disconnected
- Minor-sparse graphs:
- For " d-minor sparse" graphs, $d_{0} \leq \Gamma+d-1$
- For K_{ℓ}-minor free graphs, $d_{0} \leq \Gamma+O(\ell \sqrt{\log \ell})$

Our results

- If $k \geq \Gamma+\alpha-1$ then $\mathcal{R}_{k}(G)$ has linear diameter
- Treewidth upper bound:
- $d_{0} \leq \Gamma+t w+1$
- There exist graphs for which $\mathcal{R}_{\Gamma+t w-2}(G)$ is disconnected
- Minor-sparse graphs:
- For " d-minor sparse" graphs, $d_{0} \leq \Gamma+d-1$
- For K_{ℓ}-minor free graphs, $d_{0} \leq \Gamma+O(\ell \sqrt{\log \ell})$
- For planar graphs, $d_{0} \leq \Gamma+3$

Our results

- If $k \geq \Gamma+\alpha-1$ then $\mathcal{R}_{k}(G)$ has linear diameter
- Treewidth upper bound:
- $d_{0} \leq \Gamma+t w+1$
- There exist graphs for which $\mathcal{R}_{\Gamma+t w-2}(G)$ is disconnected
- Minor-sparse graphs:
- For " d-minor sparse" graphs, $d_{0} \leq \Gamma+d-1$
- For K_{ℓ}-minor free graphs, $d_{0} \leq \Gamma+O(\ell \sqrt{\log \ell})$
- For planar graphs, $d_{0} \leq \Gamma+3$
- The connectivity proofs provide a sequence in polynomial time

Our results

- If $k \geq \Gamma+\alpha-1$ then $\mathcal{R}_{k}(G)$ has linear diameter
- Treewidth upper bound:
- $d_{0} \leq \Gamma+t w+1$
- There exist graphs for which $\mathcal{R}_{\Gamma+t w-2}(G)$ is disconnected
- Minor-sparse graphs:
- For " d-minor sparse" graphs, $d_{0} \leq \Gamma+d-1$
- For K_{ℓ}-minor free graphs, $d_{0} \leq \Gamma+O(\ell \sqrt{\log \ell})$
- For planar graphs, $d_{0} \leq \Gamma+3$
- The connectivity proofs provide a sequence in polynomial time
- The sequences are linear $\rightarrow \mathcal{R}_{k}(G)$ has linear diameter

Minor sparse graphs

Minor sparse graphs

Minor. obtained by contracting, deleting edges, and deleting isolated vertices

Minor sparse graphs

Minor: obtained by contracting, deleting edges, and deleting isolated vertices
d-minor sparse: all bipartite minors have average degree less than d

Minor sparse graphs

Minor: obtained by contracting, deleting edges, and deleting isolated vertices
d-minor sparse: all bipartite minors have average degree less than d

Minor sparse graphs

Minor: obtained by contracting, deleting edges, and deleting isolated vertices
d-minor sparse: all bipartite minors have average degree less than d

Minor sparse graphs

Minor: obtained by contracting, deleting edges, and deleting isolated vertices
d-minor sparse: all bipartite minors have average degree less than d

Minor sparse graphs

Minor: obtained by contracting, deleting edges, and deleting isolated vertices
d-minor sparse: all bipartite minors have average degree less than d

Minor sparse graphs

Minor: obtained by contracting, deleting edges, and deleting isolated vertices
d-minor sparse: all bipartite minors have average degree less than d

Minor sparse graphs

Minor: obtained by contracting, deleting edges, and deleting isolated vertices
d-minor sparse: all bipartite minors have average degree less than d

Minor sparse graphs

Minor: obtained by contracting, deleting edges, and deleting isolated vertices
d-minor sparse: all bipartite minors have average degree less than d

Minor sparse graphs

Minor. obtained by contracting, deleting edges, and deleting isolated vertices
d-minor sparse: all bipartite minors have average degree less than d

Minor sparse graphs

Minor. obtained by contracting, deleting edges, and deleting isolated vertices
d-minor sparse: all bipartite minors have average degree less than d

7 vertices, 8 edges $\rightarrow d>\frac{16}{7}$

Minor sparse graphs

Minor: obtained by contracting, deleting edges, and deleting isolated vertices
d-minor sparse: all bipartite minors have average degree less than d Theorem: Let G be a d-minor sparse graph. If $k=\Gamma(G)+d-1$, then $\mathcal{R}_{k}(G)$ is connected and the diameter of $\mathcal{R}_{k}(G)$ is linear

Minor sparse graphs

Minor: obtained by contracting, deleting edges, and deleting isolated vertices
d-minor sparse: all bipartite minors have average degree less than d Theorem: Let G be a d-minor sparse graph. If $k=\Gamma(G)+d-1$, then $\mathcal{R}_{k}(G)$ is connected and the diameter of $\mathcal{R}_{k}(G)$ is linear

- Assume $\left|D_{s}\right|=\left|D_{t}\right|=\Gamma$

Minor sparse graphs

Minor: obtained by contracting, deleting edges, and deleting isolated vertices
d-minor sparse: all bipartite minors have average degree less than d Theorem: Let G be a d-minor sparse graph. If $k=\Gamma(G)+d-1$, then $\mathcal{R}_{k}(G)$ is connected and the diameter of $\mathcal{R}_{k}(G)$ is linear

- Assume $\left|D_{s}\right|=\left|D_{t}\right|=\Gamma$
- By induction on $\left|D_{t} \backslash D_{s}\right|$:

Minor sparse graphs

Minor: obtained by contracting, deleting edges, and deleting isolated vertices
d-minor sparse: all bipartite minors have average degree less than d Theorem: Let G be a d-minor sparse graph. If $k=\Gamma(G)+d-1$, then $\mathcal{R}_{k}(G)$ is connected and the diameter of $\mathcal{R}_{k}(G)$ is linear

- Assume $\left|D_{s}\right|=\left|D_{t}\right|=\Gamma$
- By induction on $\left|D_{t} \backslash D_{s}\right|$:
- If $\left|D_{t} \backslash D_{s}\right| \leq d-1$:

Minor sparse graphs

Minor: obtained by contracting, deleting edges, and deleting isolated vertices
d-minor sparse: all bipartite minors have average degree less than d
Theorem: Let G be a d-minor sparse graph. If $k=\Gamma(G)+d-1$, then $\mathcal{R}_{k}(G)$ is connected and the diameter of $\mathcal{R}_{k}(G)$ is linear

- Assume $\left|D_{s}\right|=\left|D_{t}\right|=\Gamma$
- By induction on $\left|D_{t} \backslash D_{s}\right|$:
- If $\left|D_{t} \backslash D_{s}\right| \leq d-1$:

Minor sparse graphs

Minor: obtained by contracting, deleting edges, and deleting isolated vertices
d-minor sparse: all bipartite minors have average degree less than d
Theorem: Let G be a d-minor sparse graph. If $k=\Gamma(G)+d-1$, then $\mathcal{R}_{k}(G)$ is connected and the diameter of $\mathcal{R}_{k}(G)$ is linear

- Assume $\left|D_{s}\right|=\left|D_{t}\right|=\Gamma$
- By induction on $\left|D_{t} \backslash D_{s}\right|$:
- If $\left|D_{t} \backslash D_{s}\right| \leq d-1$:

D_{s}

Minor sparse graphs

Minor: obtained by contracting, deleting edges, and deleting isolated vertices
d-minor sparse: all bipartite minors have average degree less than d
Theorem: Let G be a d-minor sparse graph. If $k=\Gamma(G)+d-1$, then $\mathcal{R}_{k}(G)$ is connected and the diameter of $\mathcal{R}_{k}(G)$ is linear

- Assume $\left|D_{s}\right|=\left|D_{t}\right|=\Gamma$
- By induction on $\left|D_{t} \backslash D_{s}\right|$:
- If $\left|D_{t} \backslash D_{s}\right| \leq d-1$:

D_{t}

Minor sparse graphs

Minor: obtained by contracting, deleting edges, and deleting isolated vertices
d-minor sparse: all bipartite minors have average degree less than d
Theorem: Let G be a d-minor sparse graph. If $k=\Gamma(G)+d-1$, then $\mathcal{R}_{k}(G)$ is connected and the diameter of $\mathcal{R}_{k}(G)$ is linear

- Assume $\left|D_{s}\right|=\left|D_{t}\right|=\Gamma$
- By induction on $\left|D_{t} \backslash D_{s}\right|$:
- If $\left|D_{t} \backslash D_{s}\right| \leq d-1$:

D_{2}

Minor sparse graphs

Minor: obtained by contracting, deleting edges, and deleting isolated vertices
d-minor sparse: all bipartite minors have average degree less than d
Theorem: Let G be a d-minor sparse graph. If $k=\Gamma(G)+d-1$, then $\mathcal{R}_{k}(G)$ is connected and the diameter of $\mathcal{R}_{k}(G)$ is linear

- Assume $\left|D_{s}\right|=\left|D_{t}\right|=\Gamma$
- By induction on $\left|D_{t} \backslash D_{s}\right|$:
- If $\left|D_{t} \backslash D_{s}\right| \leq d-1$:

D_{3}

Minor sparse graphs

Minor: obtained by contracting, deleting edges, and deleting isolated vertices
d-minor sparse: all bipartite minors have average degree less than d
Theorem: Let G be a d-minor sparse graph. If $k=\Gamma(G)+d-1$, then $\mathcal{R}_{k}(G)$ is connected and the diameter of $\mathcal{R}_{k}(G)$ is linear

- Assume $\left|D_{s}\right|=\left|D_{t}\right|=\Gamma$
- By induction on $\left|D_{t} \backslash D_{s}\right|$:
- If $\left|D_{t} \backslash D_{s}\right| \leq d-1$:

D_{4}

Minor sparse graphs

Minor: obtained by contracting, deleting edges, and deleting isolated vertices
d-minor sparse: all bipartite minors have average degree less than d
Theorem: Let G be a d-minor sparse graph. If $k=\Gamma(G)+d-1$, then $\mathcal{R}_{k}(G)$ is connected and the diameter of $\mathcal{R}_{k}(G)$ is linear

- Assume $\left|D_{s}\right|=\left|D_{t}\right|=\Gamma$
- By induction on $\left|D_{t} \backslash D_{s}\right|$:
- If $\left|D_{t} \backslash D_{s}\right| \leq d-1$:

D_{t}

Minor sparse graphs

Minor: obtained by contracting, deleting edges, and deleting isolated vertices
d-minor sparse: all bipartite minors have average degree less than d Theorem: Let G be a d-minor sparse graph. If $k=\Gamma(G)+d-1$, then $\mathcal{R}_{k}(G)$ is connected and the diameter of $\mathcal{R}_{k}(G)$ is linear

- Assume $\left|D_{s}\right|=\left|D_{t}\right|=\Gamma$
- By induction on $\left|D_{t} \backslash D_{s}\right|$:
- If $\left|D_{t} \backslash D_{s}\right| \geq d$:

Minor sparse graphs

Minor: obtained by contracting, deleting edges, and deleting isolated vertices
d-minor sparse: all bipartite minors have average degree less than d
Theorem: Let G be a d-minor sparse graph. If $k=\Gamma(G)+d-1$, then $\mathcal{R}_{k}(G)$ is connected and the diameter of $\mathcal{R}_{k}(G)$ is linear

- Assume $\left|D_{s}\right|=\left|D_{t}\right|=\Gamma$
- By induction on $\left|D_{t} \backslash D_{s}\right|$:
- If $\left|D_{t} \backslash D_{s}\right| \geq d$: There exists a vertex of $D_{s} \backslash D_{t}$ that we can remove from D_{s} after adding some $d-1$ vertices of $D_{t} \backslash D_{s}$:

Minor sparse graphs

Minor: obtained by contracting, deleting edges, and deleting isolated vertices
d-minor sparse: all bipartite minors have average degree less than d Theorem: Let G be a d-minor sparse graph. If $k=\Gamma(G)+d-1$, then $\mathcal{R}_{k}(G)$ is connected and the diameter of $\mathcal{R}_{k}(G)$ is linear

- Assume $\left|D_{s}\right|=\left|D_{t}\right|=\Gamma$
- By induction on $\left|D_{t} \backslash D_{s}\right|$:
- If $\left|D_{t} \backslash D_{s}\right| \geq d$: There exists a vertex of $D_{s} \backslash D_{t}$ that we can remove from D_{s} after adding some $d-1$ vertices of $D_{t} \backslash D_{s}$:

$D_{s} \backslash D_{t}$

Minor sparse graphs

Minor: obtained by contracting, deleting edges, and deleting isolated vertices
d-minor sparse: all bipartite minors have average degree less than d Theorem: Let G be a d-minor sparse graph. If $k=\Gamma(G)+d-1$, then $\mathcal{R}_{k}(G)$ is connected and the diameter of $\mathcal{R}_{k}(G)$ is linear

- Assume $\left|D_{s}\right|=\left|D_{t}\right|=\Gamma$
- By induction on $\left|D_{t} \backslash D_{s}\right|$:
- If $\left|D_{t} \backslash D_{s}\right| \geq d$: There exists a vertex of $D_{s} \backslash D_{t}$ that we can remove from D_{s} after adding some $d-1$ vertices of $D_{t} \backslash D_{s}$:

Minor sparse graphs

Minor: obtained by contracting, deleting edges, and deleting isolated vertices
d-minor sparse: all bipartite minors have average degree less than d Theorem: Let G be a d-minor sparse graph. If $k=\Gamma(G)+d-1$, then $\mathcal{R}_{k}(G)$ is connected and the diameter of $\mathcal{R}_{k}(G)$ is linear

- Assume $\left|D_{s}\right|=\left|D_{t}\right|=\Gamma$
- By induction on $\left|D_{t} \backslash D_{s}\right|$:
- If $\left|D_{t} \backslash D_{s}\right| \geq d$: There exists a vertex of $D_{s} \backslash D_{t}$ that we can remove from D_{s} after adding some $d-1$ vertices of $D_{t} \backslash D_{s}$:

Minor sparse graphs

Minor: obtained by contracting, deleting edges, and deleting isolated vertices
d-minor sparse: all bipartite minors have average degree less than d Theorem: Let G be a d-minor sparse graph. If $k=\Gamma(G)+d-1$, then $\mathcal{R}_{k}(G)$ is connected and the diameter of $\mathcal{R}_{k}(G)$ is linear

- Assume $\left|D_{s}\right|=\left|D_{t}\right|=\Gamma$
- By induction on $\left|D_{t} \backslash D_{s}\right|$:
- If $\left|D_{t} \backslash D_{s}\right| \geq d$: There exists a vertex of $D_{s} \backslash D_{t}$ that we can remove from D_{s} after adding some $d-1$ vertices of $D_{t} \backslash D_{s}$:

Minor sparse graphs

Minor: obtained by contracting, deleting edges, and deleting isolated vertices
d-minor sparse: all bipartite minors have average degree less than d Theorem: Let G be a d-minor sparse graph. If $k=\Gamma(G)+d-1$, then $\mathcal{R}_{k}(G)$ is connected and the diameter of $\mathcal{R}_{k}(G)$ is linear

- Assume $\left|D_{s}\right|=\left|D_{t}\right|=\Gamma$
- By induction on $\left|D_{t} \backslash D_{s}\right|$:
- If $\left|D_{t} \backslash D_{s}\right| \geq d$: There exists a vertex of $D_{s} \backslash D_{t}$ that we can remove from D_{s} after adding some $d-1$ vertices of $D_{t} \backslash D_{s}$:

Minor sparse graphs

Minor: obtained by contracting, deleting edges, and deleting isolated vertices
d-minor sparse: all bipartite minors have average degree less than d Theorem: Let G be a d-minor sparse graph. If $k=\Gamma(G)+d-1$, then $\mathcal{R}_{k}(G)$ is connected and the diameter of $\mathcal{R}_{k}(G)$ is linear

- Assume $\left|D_{s}\right|=\left|D_{t}\right|=\Gamma$
- By induction on $\left|D_{t} \backslash D_{s}\right|$:
- If $\left|D_{t} \backslash D_{s}\right| \geq d$: There exists a vertex of $D_{s} \backslash D_{t}$ that we can remove from D_{s} after adding some $d-1$ vertices of $D_{t} \backslash D_{s}$:

Minor sparse graphs

Minor: obtained by contracting, deleting edges, and deleting isolated vertices
d-minor sparse: all bipartite minors have average degree less than d Theorem: Let G be a d-minor sparse graph. If $k=\Gamma(G)+d-1$, then $\mathcal{R}_{k}(G)$ is connected and the diameter of $\mathcal{R}_{k}(G)$ is linear

- Assume $\left|D_{s}\right|=\left|D_{t}\right|=\Gamma$
- By induction on $\left|D_{t} \backslash D_{s}\right|$:
- If $\left|D_{t} \backslash D_{s}\right| \geq d$: There exists a vertex of $D_{s} \backslash D_{t}$ that we can remove from D_{s} after adding some $d-1$ vertices of $D_{t} \backslash D_{s}$:

Minor sparse graphs

Minor: obtained by contracting, deleting edges, and deleting isolated vertices
d-minor sparse: all bipartite minors have average degree less than d Theorem: Let G be a d-minor sparse graph. If $k=\Gamma(G)+d-1$, then $\mathcal{R}_{k}(G)$ is connected and the diameter of $\mathcal{R}_{k}(G)$ is linear

- Assume $\left|D_{s}\right|=\left|D_{t}\right|=\Gamma$
- By induction on $\left|D_{t} \backslash D_{s}\right|$:
- If $\left|D_{t} \backslash D_{s}\right| \geq d$: There exists a vertex of $D_{s} \backslash D_{t}$ that we can remove from D_{s} after adding some $d-1$ vertices of $D_{t} \backslash D_{s}$:

Minor sparse graphs

Minor: obtained by contracting, deleting edges, and deleting isolated vertices
d-minor sparse: all bipartite minors have average degree less than d Theorem: Let G be a d-minor sparse graph. If $k=\Gamma(G)+d-1$, then $\mathcal{R}_{k}(G)$ is connected and the diameter of $\mathcal{R}_{k}(G)$ is linear

- Assume $\left|D_{s}\right|=\left|D_{t}\right|=\Gamma$
- By induction on $\left|D_{t} \backslash D_{s}\right|$:
- If $\left|D_{t} \backslash D_{s}\right| \geq d$: There exists a vertex of $D_{s} \backslash D_{t}$ that we can remove from D_{s} after adding some $d-1$ vertices of $D_{t} \backslash D_{s}$:

Minor sparse graphs

Minor: obtained by contracting, deleting edges, and deleting isolated vertices
d-minor sparse: all bipartite minors have average degree less than d Theorem: Let G be a d-minor sparse graph. If $k=\Gamma(G)+d-1$, then $\mathcal{R}_{k}(G)$ is connected and the diameter of $\mathcal{R}_{k}(G)$ is linear

- Assume $\left|D_{s}\right|=\left|D_{t}\right|=\Gamma$
- By induction on $\left|D_{t} \backslash D_{s}\right|$:
- If $\left|D_{t} \backslash D_{s}\right| \geq d$: There exists a vertex of $D_{s} \backslash D_{t}$ that we can remove from D_{s} after adding some $d-1$ vertices of $D_{t} \backslash D_{s}$:

Minor sparse graphs

Minor: obtained by contracting, deleting edges, and deleting isolated vertices
d-minor sparse: all bipartite minors have average degree less than d Theorem: Let G be a d-minor sparse graph. If $k=\Gamma(G)+d-1$, then $\mathcal{R}_{k}(G)$ is connected and the diameter of $\mathcal{R}_{k}(G)$ is linear

- Assume $\left|D_{s}\right|=\left|D_{t}\right|=\Gamma$
- By induction on $\left|D_{t} \backslash D_{s}\right|$:
- If $\left|D_{t} \backslash D_{s}\right| \geq d$: There exists a vertex of $D_{s} \backslash D_{t}$ that we can remove from D_{s} after adding some $d-1$ vertices of $D_{t} \backslash D_{s}$:

Minor sparse graphs

Minor: obtained by contracting, deleting edges, and deleting isolated vertices
d-minor sparse: all bipartite minors have average degree less than d Theorem: Let G be a d-minor sparse graph. If $k=\Gamma(G)+d-1$, then $\mathcal{R}_{k}(G)$ is connected and the diameter of $\mathcal{R}_{k}(G)$ is linear

- Assume $\left|D_{s}\right|=\left|D_{t}\right|=\Gamma$
- By induction on $\left|D_{t} \backslash D_{s}\right|$:
- If $\left|D_{t} \backslash D_{s}\right| \geq d$: There exists a vertex of $D_{s} \backslash D_{t}$ that we can remove from D_{s} after adding some $d-1$ vertices of $D_{t} \backslash D_{s}$:

Minor sparse graphs

Minor: obtained by contracting, deleting edges, and deleting isolated vertices
d-minor sparse: all bipartite minors have average degree less than d Theorem: Let G be a d-minor sparse graph. If $k=\Gamma(G)+d-1$, then $\mathcal{R}_{k}(G)$ is connected and the diameter of $\mathcal{R}_{k}(G)$ is linear

- Assume $\left|D_{s}\right|=\left|D_{t}\right|=\Gamma$
- By induction on $\left|D_{t} \backslash D_{s}\right|$:
- If $\left|D_{t} \backslash D_{s}\right| \geq d$: There exists a vertex of $D_{s} \backslash D_{t}$ that we can remove from D_{s} after adding some $d-1$ vertices of $D_{t} \backslash D_{s}$:

Minor sparse graphs

Minor: obtained by contracting, deleting edges, and deleting isolated vertices
d-minor sparse: all bipartite minors have average degree less than d Theorem: Let G be a d-minor sparse graph. If $k=\Gamma(G)+d-1$, then $\mathcal{R}_{k}(G)$ is connected and the diameter of $\mathcal{R}_{k}(G)$ is linear

- Assume $\left|D_{s}\right|=\left|D_{t}\right|=\Gamma$
- By induction on $\left|D_{t} \backslash D_{s}\right|$:
- If $\left|D_{t} \backslash D_{s}\right| \geq d$: There exists a vertex of $D_{s} \backslash D_{t}$ that we can remove from D_{s} after adding some $d-1$ vertices of $D_{t} \backslash D_{s}$:

Minor sparse graphs

Minor: obtained by contracting, deleting edges, and deleting isolated vertices
d-minor sparse: all bipartite minors have average degree less than d Theorem: Let G be a d-minor sparse graph. If $k=\Gamma(G)+d-1$, then $\mathcal{R}_{k}(G)$ is connected and the diameter of $\mathcal{R}_{k}(G)$ is linear

- Assume $\left|D_{s}\right|=\left|D_{t}\right|=\Gamma$
- By induction on $\left|D_{t} \backslash D_{s}\right|$:
- If $\left|D_{t} \backslash D_{s}\right| \geq d$: There exists a vertex of $D_{s} \backslash D_{t}$ that we can remove from D_{s} after adding some $d-1$ vertices of $D_{t} \backslash D_{s}$:

Minor sparse graphs

Minor: obtained by contracting, deleting edges, and deleting isolated vertices
d-minor sparse: all bipartite minors have average degree less than d Theorem: Let G be a d-minor sparse graph. If $k=\Gamma(G)+d-1$, then $\mathcal{R}_{k}(G)$ is connected and the diameter of $\mathcal{R}_{k}(G)$ is linear

- Assume $\left|D_{s}\right|=\left|D_{t}\right|=\Gamma$
- By induction on $\left|D_{t} \backslash D_{s}\right|$:
- If $\left|D_{t} \backslash D_{s}\right| \geq d$: There exists a vertex of $D_{s} \backslash D_{t}$ that we can remove from D_{s} after adding some $d-1$ vertices of $D_{t} \backslash D_{s}$:

K_{ℓ}-minor free graphs and planar graphs

K_{ℓ}-minor free graphs and planar graphs

Theorem: For $G K_{\ell}$-minor free, there exists C s.t. if $k \geq \Gamma(G)+$ $C \ell \sqrt{\log \ell}$ then $\mathcal{R}_{k}(G)$ is connected and has linear diameter

K_{ℓ}-minor free graphs and planar graphs

Theorem: For $G K_{\ell}$-minor free, there exists C s.t. if $k \geq \Gamma(G)+$ $C \ell \sqrt{\log \ell}$ then $\mathcal{R}_{k}(G)$ is connected and has linear diameter

Proof: there exists C s.t. for every ℓ, any K_{ℓ}-minor free graph has average degree at most $C \ell \sqrt{\log \ell}$ (Thomason 84)

K_{ℓ}-minor free graphs and planar graphs

Theorem: For $G K_{\ell}$-minor free, there exists C s.t. if $k \geq \Gamma(G)+$ $C \ell \sqrt{\log \ell}$ then $\mathcal{R}_{k}(G)$ is connected and has linear diameter

Proof: there exists C s.t. for every ℓ, any K_{ℓ}-minor free graph has average degree at most $C \ell \sqrt{\log \ell}$ (Thomason 84)

Theorem: For G planar, if $k \geq \Gamma(G)+3$ then $\mathcal{R}_{k}(G)$ is connected and has linear diameter

K_{ℓ}-minor free graphs and planar graphs

Theorem: For $G K_{\ell}$-minor free, there exists C s.t. if $k \geq \Gamma(G)+$ $C \ell \sqrt{\log \ell}$ then $\mathcal{R}_{k}(G)$ is connected and has linear diameter

Proof: there exists C s.t. for every ℓ, any K_{ℓ}-minor free graph has average degree at most $C \ell \sqrt{\log \ell}$ (Thomason 84)

Theorem: For G planar, if $k \geq \Gamma(G)+3$ then $\mathcal{R}_{k}(G)$ is connected and has linear diameter

Proof: Bipartite planar have at most $2 n-4$ edges $\rightarrow 4$-minor sparse

K_{ℓ}-minor free graphs and planar graphs

Theorem: For $G K_{\ell}$-minor free, there exists C s.t. if $k \geq \Gamma(G)+$ $C \ell \sqrt{\log \ell}$ then $\mathcal{R}_{k}(G)$ is connected and has linear diameter

Proof: there exists C s.t. for every ℓ, any K_{ℓ}-minor free graph has average degree at most $C \ell \sqrt{\log \ell}$ (Thomason 84)

Theorem: For G planar, if $k \geq \Gamma(G)+3$ then $\mathcal{R}_{k}(G)$ is connected and has linear diameter

Proof: Bipartite planar have at most $2 n-4$ edges $\rightarrow 4$-minor sparse

K_{ℓ}-minor free graphs and planar graphs

Theorem: For $G K_{\ell}$-minor free, there exists C s.t. if $k \geq \Gamma(G)+$ $C \ell \sqrt{\log \ell}$ then $\mathcal{R}_{k}(G)$ is connected and has linear diameter

Proof: there exists C s.t. for every ℓ, any K_{ℓ}-minor free graph has average degree at most $C \ell \sqrt{\log \ell}$ (Thomason 84)

Theorem: For G planar, if $k \geq \Gamma(G)+3$ then $\mathcal{R}_{k}(G)$ is connected and has linear diameter

Proof: Bipartite planar have at most $2 n-4$ edges $\rightarrow 4$-minor sparse

K_{ℓ}-minor free graphs and planar graphs

Theorem: For $G K_{\ell}$-minor free, there exists C s.t. if $k \geq \Gamma(G)+$ $C \ell \sqrt{\log \ell}$ then $\mathcal{R}_{k}(G)$ is connected and has linear diameter

Proof: there exists C s.t. for every ℓ, any K_{ℓ}-minor free graph has average degree at most $C \ell \sqrt{\log \ell}$ (Thomason 84)

Theorem: For G planar, if $k \geq \Gamma(G)+3$ then $\mathcal{R}_{k}(G)$ is connected and has linear diameter

Proof: Bipartite planar have at most $2 n-4$ edges $\rightarrow 4$-minor sparse

K_{ℓ}-minor free graphs and planar graphs

Theorem: For $G K_{\ell}$-minor free, there exists C s.t. if $k \geq \Gamma(G)+$ $C \ell \sqrt{\log \ell}$ then $\mathcal{R}_{k}(G)$ is connected and has linear diameter

Proof: there exists C s.t. for every ℓ, any K_{ℓ}-minor free graph has average degree at most $C \ell \sqrt{\log \ell}$ (Thomason 84)

Theorem: For G planar, if $k \geq \Gamma(G)+3$ then $\mathcal{R}_{k}(G)$ is connected and has linear diameter

Proof: Bipartite planar have at most $2 n-4$ edges $\rightarrow 4$-minor sparse

$$
\Gamma=3
$$

K_{ℓ}-minor free graphs and planar graphs

Theorem: For $G K_{\ell}$-minor free, there exists C s.t. if $k \geq \Gamma(G)+$ $C \ell \sqrt{\log \ell}$ then $\mathcal{R}_{k}(G)$ is connected and has linear diameter

Proof: there exists C s.t. for every ℓ, any K_{ℓ}-minor free graph has average degree at most $C \ell \sqrt{\log \ell}$ (Thomason 84)

Theorem: For G planar, if $k \geq \Gamma(G)+3$ then $\mathcal{R}_{k}(G)$ is connected and has linear diameter

Proof: Bipartite planar have at most $2 n-4$ edges $\rightarrow 4$-minor sparse

$$
\Gamma=3
$$

K_{ℓ}-minor free graphs and planar graphs

Theorem: For $G K_{\ell}$-minor free, there exists C s.t. if $k \geq \Gamma(G)+$ $C \ell \sqrt{\log \ell}$ then $\mathcal{R}_{k}(G)$ is connected and has linear diameter

Proof: there exists C s.t. for every ℓ, any K_{ℓ}-minor free graph has average degree at most $C \ell \sqrt{\log \ell}$ (Thomason 84)

Theorem: For G planar, if $k \geq \Gamma(G)+3$ then $\mathcal{R}_{k}(G)$ is connected and has linear diameter

Proof: Bipartite planar have at most $2 n-4$ edges $\rightarrow 4$-minor sparse

$$
\Gamma=3
$$

K_{ℓ}-minor free graphs and planar graphs

Theorem: For $G K_{\ell}$-minor free, there exists C s.t. if $k \geq \Gamma(G)+$ $C \ell \sqrt{\log \ell}$ then $\mathcal{R}_{k}(G)$ is connected and has linear diameter

Proof: there exists C s.t. for every ℓ, any K_{ℓ}-minor free graph has average degree at most $C \ell \sqrt{\log \ell}$ (Thomason 84)

Theorem: For G planar, if $k \geq \Gamma(G)+3$ then $\mathcal{R}_{k}(G)$ is connected and has linear diameter

Proof: Bipartite planar have at most $2 n-4$ edges $\rightarrow 4$-minor sparse

$$
\Gamma=3
$$

Open questions

Open questions

- Close the gap for planar graphs:

Open questions

- Close the gap for planar graphs:
- $d_{0} \leq \Gamma+3$

Open questions

- Close the gap for planar graphs:
- $d_{0} \leq \Gamma+3$
- There exist graphs for which $d_{0}>\Gamma+1$

Open questions

- Close the gap for planar graphs:
- $d_{0} \leq \Gamma+3$
- There exist graphs for which $d_{0}>\Gamma+1$

Conjecture: For every planar graph $G, \mathcal{R}_{\Gamma(G)+2}(G)$ is connected

Open questions

- Close the gap for planar graphs:
- $d_{0} \leq \Gamma+3$
- There exist graphs for which $d_{0}>\Gamma+1$

Conjecture: For every planar graph $G, \mathcal{R}_{\Gamma(G)+2}(G)$ is connected

- Close the gap for the bound depending on the treewidth:

Open questions

- Close the gap for planar graphs:
- $d_{0} \leq \Gamma+3$
- There exist graphs for which $d_{0}>\Gamma+1$

Conjecture: For every planar graph $G, \mathcal{R}_{\Gamma(G)+2}(G)$ is connected

- Close the gap for the bound depending on the treewidth:
- $d_{0} \leq \Gamma+t w+1$

Open questions

- Close the gap for planar graphs:
- $d_{0} \leq \Gamma+3$
- There exist graphs for which $d_{0}>\Gamma+1$

Conjecture: For every planar graph $G, \mathcal{R}_{\Gamma(G)+2}(G)$ is connected

- Close the gap for the bound depending on the treewidth:
- $d_{0} \leq \Gamma+t w+1$
- There exist graphs for which $d_{0}>\Gamma+t w-2$

Open questions

- Close the gap for planar graphs:
- $d_{0} \leq \Gamma+3$
- There exist graphs for which $d_{0}>\Gamma+1$

Conjecture: For every planar graph $G, \mathcal{R}_{\Gamma(G)+2}(G)$ is connected

- Close the gap for the bound depending on the treewidth:
- $d_{0} \leq \Gamma+t w+1$
- There exist graphs for which $d_{0}>\Gamma+t w-2$
- Find a better upper bound depending on the pathwidth and the bandwidth

Open questions

- Close the gap for planar graphs:
- $d_{0} \leq \Gamma+3$
- There exist graphs for which $d_{0}>\Gamma+1$

Conjecture: For every planar graph $G, \mathcal{R}_{\Gamma(G)+2}(G)$ is connected

- Close the gap for the bound depending on the treewidth:
- $d_{0} \leq \Gamma+t w+1$
- There exist graphs for which $d_{0}>\Gamma+t w-2$
- Find a better upper bound depending on the pathwidth and the bandwidth

