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Recon�guration of dominating sets in the TAR-model

Dominating set D of G : ∀v ∈V , v ∈D or ∃u ∈D with uv ∈E

Can we transform Ds into Dt with a sequence of

additions/removals keeping G dominated ?
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Problematic

Recon�guration graph R(G ): the vertices are the dominating sets

of G , two dominating sets are adjacent if they di�er by an

addition/deletion

Is R(G ) connected ? What is its diameter ?

3/9



Problematic

Recon�guration graph R(G ): the vertices are the dominating sets

of G , two dominating sets are adjacent if they di�er by an

addition/deletion

Is R(G ) connected ? What is its diameter ?

3/9



Problematic

Recon�guration graph R(G ): the vertices are the dominating sets

of G , two dominating sets are adjacent if they di�er by an

addition/deletion

Is R(G ) connected ? What is its diameter ?

3/9



Problematic

Recon�guration graph R(G ): the vertices are the dominating sets

of G , two dominating sets are adjacent if they di�er by an

addition/deletion

Is R(G ) connected ? What is its diameter ?
3/9



Threshold

If R(G ) contains all the dominating sets, it is connected:

DsD2D3D4D5D6D7D8D9D10D11D12Dt

Threshold: maximum size k of the dominating sets in Rk(G )

Remark: Rk(G ) connected 6⇒Rk+1(G ) connected:

k = n−2 :Rk(Sn) is connected

DsD2D3D4Dt

k = n−1 :Rk(Sn) is disconnected

What is the smallest d0 s.t. Rk(G ) is connected for any k ≥ d0 ?
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State of the art

d0: min value s.t. for any k ≥ d0, Rk(G ) is connected

Γ: maximum size of a minimal dominating set

• Lower bounds:

• d0 > Γ

• There exist graphs s.t. d0 > Γ+1 (Suzuki et al. 16)

• There exist graphs with arbitrary Γ and γ s.t. d0 ≥ Γ+γ
(Mynhardt et al. 19)

• Upper bounds:

• k > Γ, Rk(G ) connected ⇒Rk+1(G ) connected (Haas &

Sey�arth 14)

→ If k > Γ and Rk(G ) connected, then d0 ≤ k

• If G has two independent edges, d0 ≤min{n−1,Γ+γ} (Haas &

Sey�arth 14)

• If G is bipartite or chordal, d0 ≤ Γ+1 (Haas & Sey�arth 14)

• d0 ≤ Γ+α−1 (Haas & Sey�arth 17)
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Our results

• If k ≥ Γ+α−1 then Rk(G ) has linear diameter

• Treewidth upper bound:

• d0 ≤ Γ+ tw +1

• There exist graphs for which RΓ+tw−2(G ) is disconnected

• Minor-sparse graphs:

• For �d-minor sparse� graphs, d0 ≤ Γ+d −1

• For K`-minor free graphs, d0 ≤ Γ+O(`
√
log`)

• For planar graphs, d0 ≤ Γ+3

• The connectivity proofs provide a sequence in polynomial time

• The sequences are linear →Rk(G ) has linear diameter
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Minor sparse graphs

Minor: obtained by contracting, deleting edges, and deleting

isolated vertices

d-minor sparse: all bipartite minors have average degree less than d

Theorem: Let G be a d-minor sparse graph. If k = Γ(G )+d−1, then
Rk(G ) is connected and the diameter of Rk(G ) is linear

• Assume |Ds | = |Dt | = Γ

• By induction on |Dt \Ds |:
• If

• .

DsDtD2D3D4Dt
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K`-minor free graphs and planar graphs

Theorem: For G K`-minor free, there exists C s.t. if k ≥ Γ(G )+
C`

√
log` then Rk(G ) is connected and has linear diameter

Proof: there exists C s.t. for every `, any K`-minor free graph has

average degree at most C`
√
log` (Thomason 84)

Theorem: For G planar, if k ≥ Γ(G )+3 then Rk(G ) is connected

and has linear diameter

Proof: Bipartite planar have at most 2n−4 edges → 4-minor sparse

Γ= 3
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Open questions

• Close the gap for planar graphs:
• d0 ≤ Γ+3

• There exist graphs for which d0 > Γ+1

Conjecture: For every planar graph G , RΓ(G)+2(G ) is connected

• Close the gap for the bound depending on the treewidth:
• d0 ≤ Γ+ tw +1

• There exist graphs for which d0 > Γ+ tw −2

• Find a better upper bound depending on the pathwidth and

the bandwidth
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