Linear transformations between dominating sets in the TAR-model

JGA 2020

Nicolas Bousquet, Alice Joffard and Paul Ouvrard

November 18, 2020

Reconfiguration of dominating sets in the TAR-model

Reconfiguration graph $\mathcal{R}(G)$: the vertices are the dominating sets of G, two dominating sets are adjacent if they differ by an addition/deletion

Reconfiguration graph $\mathcal{R}(G)$: the vertices are the dominating sets of G, two dominating sets are adjacent if they differ by an addition/deletion

Reconfiguration graph $\mathcal{R}(G)$: the vertices are the dominating sets of G, two dominating sets are adjacent if they differ by an addition/deletion

Is $\mathcal{R}(G)$ connected ? What is its diameter ?

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold: maximum size k of the dominating sets in $\mathcal{R}_k(G)$
If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold: maximum size k of the dominating sets in $\mathcal{R}_k(G)$ Remark: $\mathcal{R}_k(G)$ connected $\neq \mathcal{R}_{k+1}(G)$ connected:

What is the smallest d_0 s.t. $\mathcal{R}_k(G)$ is connected for any $k \ge d_0$?

 d_0 : min value s.t. for any $k \ge d_0$, $\mathcal{R}_k(G)$ is connected

 d_0 : min value s.t. for any $k \ge d_0$, $\mathcal{R}_k(G)$ is connected

 Γ : maximum size of a minimal dominating set

- d_0 : min value s.t. for any $k \ge d_0$, $\mathcal{R}_k(G)$ is connected
- $\Gamma :$ maximum size of a minimal dominating set
 - Lower bounds:

- d_0 : min value s.t. for any $k \ge d_0$, $\mathcal{R}_k(G)$ is connected
- $\Gamma :$ maximum size of a minimal dominating set
 - Lower bounds:
 - $d_0 > \Gamma$

- d_0 : min value s.t. for any $k \ge d_0$, $\mathcal{R}_k(G)$ is connected
- $\Gamma :$ maximum size of a minimal dominating set
 - Lower bounds:
 - $d_0 > \Gamma$
 - There exist graphs s.t. $d_0 > \Gamma + 1$ (Suzuki et al. 16)

- d_0 : min value s.t. for any $k \ge d_0$, $\mathcal{R}_k(G)$ is connected
- $\Gamma :$ maximum size of a minimal dominating set
 - Lower bounds:
 - $d_0 > \Gamma$
 - There exist graphs s.t. $d_0 > \Gamma + 1$ (Suzuki et al. 16)
 - There exist graphs with arbitrary Γ and γ s.t. $d_0 \ge \Gamma + \gamma$ (Mynhardt et al. 19)

- d_0 : min value s.t. for any $k \ge d_0$, $\mathcal{R}_k(G)$ is connected
- $\Gamma :$ maximum size of a minimal dominating set
 - Lower bounds:
 - $d_0 > \Gamma$
 - There exist graphs s.t. $d_0 > \Gamma + 1$ (Suzuki et al. 16)
 - There exist graphs with arbitrary Γ and γ s.t. $d_0 \ge \Gamma + \gamma$ (Mynhardt et al. 19)
 - Upper bounds:

- d_0 : min value s.t. for any $k \ge d_0$, $\mathcal{R}_k(G)$ is connected
- Γ : maximum size of a minimal dominating set
 - Lower bounds:
 - $d_0 > \Gamma$
 - There exist graphs s.t. $d_0 > \Gamma + 1$ (Suzuki et al. 16)
 - There exist graphs with arbitrary Γ and γ s.t. $d_0 \ge \Gamma + \gamma$ (Mynhardt et al. 19)
 - Upper bounds:
 - $k > \Gamma$, $\mathcal{R}_k(G)$ connected $\Rightarrow \mathcal{R}_{k+1}(G)$ connected (Haas & Seyffarth 14)

- d_0 : min value s.t. for any $k \ge d_0$, $\mathcal{R}_k(G)$ is connected
- Γ : maximum size of a minimal dominating set
 - Lower bounds:
 - $d_0 > \Gamma$
 - There exist graphs s.t. $d_0 > \Gamma + 1$ (Suzuki et al. 16)
 - There exist graphs with arbitrary Γ and γ s.t. $d_0 \ge \Gamma + \gamma$ (Mynhardt et al. 19)
 - Upper bounds:
 - $k > \Gamma$, $\mathcal{R}_k(G)$ connected $\Rightarrow \mathcal{R}_{k+1}(G)$ connected (Haas & Seyffarth 14)

 \rightarrow If $k > \Gamma$ and $\mathcal{R}_k(G)$ connected, then $d_0 \leq k$

- d_0 : min value s.t. for any $k \ge d_0$, $\mathcal{R}_k(G)$ is connected
- Γ : maximum size of a minimal dominating set
 - Lower bounds:
 - $d_0 > \Gamma$
 - There exist graphs s.t. $d_0 > \Gamma + 1$ (Suzuki et al. 16)
 - There exist graphs with arbitrary Γ and γ s.t. $d_0 \ge \Gamma + \gamma$ (Mynhardt et al. 19)
 - Upper bounds:
 - $k > \Gamma$, $\mathcal{R}_k(G)$ connected $\Rightarrow \mathcal{R}_{k+1}(G)$ connected (Haas & Seyffarth 14)
 - \rightarrow If $k > \Gamma$ and $\mathcal{R}_k(G)$ connected, then $d_0 \le k$
 - If G has two independent edges, d₀ ≤ min{n-1, Γ + γ} (Haas & Seyffarth 14)

- d_0 : min value s.t. for any $k \ge d_0$, $\mathcal{R}_k(G)$ is connected
- Γ : maximum size of a minimal dominating set
 - Lower bounds:
 - $d_0 > \Gamma$
 - There exist graphs s.t. $d_0 > \Gamma + 1$ (Suzuki et al. 16)
 - There exist graphs with arbitrary Γ and γ s.t. $d_0 \ge \Gamma + \gamma$ (Mynhardt et al. 19)
 - Upper bounds:
 - $k > \Gamma$, $\mathcal{R}_k(G)$ connected $\Rightarrow \mathcal{R}_{k+1}(G)$ connected (Haas & Seyffarth 14)
 - \rightarrow If $k > \Gamma$ and $\mathcal{R}_k(G)$ connected, then $d_0 \leq k$
 - If G has two independent edges, $d_0 \le \min\{n-1, \Gamma+\gamma\}$ (Haas & Seyffarth 14)
 - If G is bipartite or chordal, $d_0 \leq \Gamma + 1$ (Haas & Seyffarth 14)

- d_0 : min value s.t. for any $k \ge d_0$, $\mathcal{R}_k(G)$ is connected
- Γ : maximum size of a minimal dominating set
 - Lower bounds:
 - $d_0 > \Gamma$
 - There exist graphs s.t. $d_0 > \Gamma + 1$ (Suzuki et al. 16)
 - There exist graphs with arbitrary Γ and γ s.t. $d_0 \ge \Gamma + \gamma$ (Mynhardt et al. 19)
 - Upper bounds:
 - $k > \Gamma$, $\mathcal{R}_k(G)$ connected $\Rightarrow \mathcal{R}_{k+1}(G)$ connected (Haas & Seyffarth 14)
 - \rightarrow If $k > \Gamma$ and $\mathcal{R}_k(G)$ connected, then $d_0 \le k$
 - If G has two independent edges, $d_0 \le \min\{n-1, \Gamma+\gamma\}$ (Haas & Seyffarth 14)
 - If G is bipartite or chordal, $d_0 \leq \Gamma + 1$ (Haas & Seyffarth 14)
 - $d_0 \leq \Gamma + \alpha 1$ (Haas & Seyffarth 17)

• If $k \ge \Gamma + \alpha - 1$ then $\mathcal{R}_k(G)$ has linear diameter

- If $k \ge \Gamma + \alpha 1$ then $\mathcal{R}_k(G)$ has linear diameter
- Treewidth upper bound:

- If $k \ge \Gamma + \alpha 1$ then $\mathcal{R}_k(G)$ has linear diameter
- Treewidth upper bound:
 - $d_0 \leq \Gamma + tw + 1$

- If $k \ge \Gamma + \alpha 1$ then $\mathcal{R}_k(G)$ has linear diameter
- Treewidth upper bound:
 - $d_0 \leq \Gamma + tw + 1$
 - There exist graphs for which $\mathcal{R}_{\Gamma+tw-2}(G)$ is disconnected

- If $k \ge \Gamma + \alpha 1$ then $\mathcal{R}_k(G)$ has linear diameter
- Treewidth upper bound:
 - $d_0 \leq \Gamma + tw + 1$
 - There exist graphs for which $\mathcal{R}_{\Gamma+tw-2}(G)$ is disconnected
- Minor-sparse graphs:

- If $k \ge \Gamma + \alpha 1$ then $\mathcal{R}_k(G)$ has linear diameter
- Treewidth upper bound:
 - $d_0 \leq \Gamma + tw + 1$
 - There exist graphs for which $\mathcal{R}_{\Gamma+tw-2}(G)$ is disconnected
- Minor-sparse graphs:
 - For "d-minor sparse" graphs, $d_0 \leq \Gamma + d 1$

- If $k \ge \Gamma + \alpha 1$ then $\mathcal{R}_k(G)$ has linear diameter
- Treewidth upper bound:
 - $d_0 \leq \Gamma + tw + 1$
 - There exist graphs for which $\mathcal{R}_{\Gamma+tw-2}(G)$ is disconnected
- Minor-sparse graphs:
 - For "*d*-minor sparse" graphs, $d_0 \leq \Gamma + d 1$
 - For K_{ℓ} -minor free graphs, $d_0 \leq \Gamma + O(\ell \sqrt{\log \ell})$

- If $k \ge \Gamma + \alpha 1$ then $\mathcal{R}_k(G)$ has linear diameter
- Treewidth upper bound:
 - $d_0 \leq \Gamma + tw + 1$
 - There exist graphs for which $\mathcal{R}_{\Gamma+tw-2}(G)$ is disconnected
- Minor-sparse graphs:
 - For "d-minor sparse" graphs, $d_0 \leq \Gamma + d 1$
 - For K_{ℓ} -minor free graphs, $d_0 \leq \Gamma + O(\ell \sqrt{\log \ell})$
 - For planar graphs, $d_0 \leq \Gamma + 3$

- If $k \ge \Gamma + \alpha 1$ then $\mathcal{R}_k(G)$ has linear diameter
- Treewidth upper bound:
 - $d_0 \leq \Gamma + tw + 1$
 - There exist graphs for which $\mathcal{R}_{\Gamma+tw-2}(G)$ is disconnected
- Minor-sparse graphs:
 - For "*d*-minor sparse" graphs, $d_0 \leq \Gamma + d 1$
 - For K_{ℓ} -minor free graphs, $d_0 \leq \Gamma + O(\ell \sqrt{\log \ell})$
 - For planar graphs, $d_0 \leq \Gamma + 3$
- The connectivity proofs provide a sequence in polynomial time

- If $k \ge \Gamma + \alpha 1$ then $\mathcal{R}_k(G)$ has linear diameter
- Treewidth upper bound:
 - $d_0 \leq \Gamma + tw + 1$
 - There exist graphs for which $\mathcal{R}_{\Gamma+tw-2}(G)$ is disconnected
- Minor-sparse graphs:
 - For "*d*-minor sparse" graphs, $d_0 \leq \Gamma + d 1$
 - For K_{ℓ} -minor free graphs, $d_0 \leq \Gamma + O(\ell \sqrt{\log \ell})$
 - For planar graphs, $d_0 \leq \Gamma + 3$
- The connectivity proofs provide a sequence in polynomial time
- The sequences are linear $ightarrow \mathcal{R}_k(G)$ has linear diameter

Minor sparse graphs
Minor: obtained by contracting, deleting edges, and deleting isolated vertices

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

d-minor sparse: all bipartite minors have average degree less than d

7 vertices, 8 edges $\rightarrow d > \frac{16}{7}$

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

d-minor sparse: all bipartite minors have average degree less than *d* Theorem: Let *G* be a *d*-minor sparse graph. If $k = \Gamma(G) + d - 1$, then $\mathcal{R}_k(G)$ is connected and the diameter of $\mathcal{R}_k(G)$ is linear

• Assume $|D_s| = |D_t| = \Gamma$

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If $|D_t \setminus D_s| \le d-1$:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If $|D_t \setminus D_s| \le d-1$:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If $|D_t \setminus D_s| \le d-1$:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

d-minor sparse: all bipartite minors have average degree less than *d* Theorem: Let *G* be a *d*-minor sparse graph. If $k = \Gamma(G) + d - 1$, then $\mathcal{R}_k(G)$ is connected and the diameter of $\mathcal{R}_k(G)$ is linear

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If $|D_t \setminus D_s| \le d-1$:

7/9

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If $|D_t \setminus D_s| \le d-1$:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If $|D_t \setminus D_s| \le d-1$:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If $|D_t \setminus D_s| \le d-1$:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If $|D_t \setminus D_s| \le d-1$:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If $|D_t \setminus D_s| \ge d$:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If |D_t \ D_s| ≥ d: There exists a vertex of D_s \ D_t that we can remove from D_s after adding some d-1 vertices of D_t \ D_s:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If |D_t \ D_s| ≥ d: There exists a vertex of D_s \ D_t that we can remove from D_s after adding some d-1 vertices of D_t \ D_s:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If |D_t \ D_s| ≥ d: There exists a vertex of D_s \ D_t that we can remove from D_s after adding some d-1 vertices of D_t \ D_s:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If $|D_t \setminus D_s| \ge d$: There exists a vertex of $D_s \setminus D_t$ that we can remove from D_s after adding some d-1 vertices of $D_t \setminus D_s$:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If |D_t \ D_s| ≥ d: There exists a vertex of D_s \ D_t that we can remove from D_s after adding some d-1 vertices of D_t \ D_s:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If |D_t \ D_s| ≥ d: There exists a vertex of D_s \ D_t that we can remove from D_s after adding some d-1 vertices of D_t \ D_s:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If |D_t \ D_s| ≥ d: There exists a vertex of D_s \ D_t that we can remove from D_s after adding some d-1 vertices of D_t \ D_s:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If |D_t \ D_s| ≥ d: There exists a vertex of D_s \ D_t that we can remove from D_s after adding some d-1 vertices of D_t \ D_s:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If |D_t \ D_s| ≥ d: There exists a vertex of D_s \ D_t that we can remove from D_s after adding some d-1 vertices of D_t \ D_s:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If |D_t \ D_s| ≥ d: There exists a vertex of D_s \ D_t that we can remove from D_s after adding some d-1 vertices of D_t \ D_s:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If |D_t \ D_s| ≥ d: There exists a vertex of D_s \ D_t that we can remove from D_s after adding some d-1 vertices of D_t \ D_s:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If |D_t \ D_s| ≥ d: There exists a vertex of D_s \ D_t that we can remove from D_s after adding some d-1 vertices of D_t \ D_s:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If |D_t \ D_s| ≥ d: There exists a vertex of D_s \ D_t that we can remove from D_s after adding some d-1 vertices of D_t \ D_s:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If |D_t \ D_s| ≥ d: There exists a vertex of D_s \ D_t that we can remove from D_s after adding some d-1 vertices of D_t \ D_s:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If |D_t \ D_s| ≥ d: There exists a vertex of D_s \ D_t that we can remove from D_s after adding some d-1 vertices of D_t \ D_s:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If |D_t \ D_s| ≥ d: There exists a vertex of D_s \ D_t that we can remove from D_s after adding some d-1 vertices of D_t \ D_s:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If |D_t \ D_s| ≥ d: There exists a vertex of D_s \ D_t that we can remove from D_s after adding some d-1 vertices of D_t \ D_s:

Theorem: For G K_{ℓ} -minor free, there exists C s.t. if $k \ge \Gamma(G) + C\ell\sqrt{\log \ell}$ then $\mathcal{R}_k(G)$ is connected and has linear diameter

Theorem: For G K_{ℓ} -minor free, there exists C s.t. if $k \ge \Gamma(G) + C\ell\sqrt{\log \ell}$ then $\mathcal{R}_k(G)$ is connected and has linear diameter

Proof: there exists C s.t. for every ℓ , any K_{ℓ} -minor free graph has average degree at most $C\ell\sqrt{\log \ell}$ (Thomason 84)

Theorem: For G K_{ℓ} -minor free, there exists C s.t. if $k \ge \Gamma(G) + C\ell\sqrt{\log \ell}$ then $\mathcal{R}_k(G)$ is connected and has linear diameter

Proof: there exists C s.t. for every ℓ , any K_{ℓ} -minor free graph has average degree at most $C\ell\sqrt{\log \ell}$ (Thomason 84)

Theorem: For G planar, if $k \ge \Gamma(G) + 3$ then $\mathcal{R}_k(G)$ is connected and has linear diameter

Theorem: For G K_{ℓ} -minor free, there exists C s.t. if $k \ge \Gamma(G) + C\ell\sqrt{\log \ell}$ then $\mathcal{R}_k(G)$ is connected and has linear diameter

Proof: there exists C s.t. for every ℓ , any K_{ℓ} -minor free graph has average degree at most $C\ell\sqrt{\log \ell}$ (Thomason 84)

Theorem: For G planar, if $k \ge \Gamma(G) + 3$ then $\mathcal{R}_k(G)$ is connected and has linear diameter

Theorem: For G K_{ℓ} -minor free, there exists C s.t. if $k \ge \Gamma(G) + C\ell\sqrt{\log \ell}$ then $\mathcal{R}_k(G)$ is connected and has linear diameter

Proof: there exists C s.t. for every ℓ , any K_{ℓ} -minor free graph has average degree at most $C\ell\sqrt{\log \ell}$ (Thomason 84)

Theorem: For G planar, if $k \ge \Gamma(G) + 3$ then $\mathcal{R}_k(G)$ is connected and has linear diameter

Theorem: For G K_{ℓ} -minor free, there exists C s.t. if $k \ge \Gamma(G) + C\ell\sqrt{\log \ell}$ then $\mathcal{R}_k(G)$ is connected and has linear diameter

Proof: there exists C s.t. for every ℓ , any K_{ℓ} -minor free graph has average degree at most $C\ell\sqrt{\log \ell}$ (Thomason 84)

Theorem: For G planar, if $k \ge \Gamma(G) + 3$ then $\mathcal{R}_k(G)$ is connected and has linear diameter

Theorem: For G K_{ℓ} -minor free, there exists C s.t. if $k \ge \Gamma(G) + C\ell\sqrt{\log \ell}$ then $\mathcal{R}_k(G)$ is connected and has linear diameter

Proof: there exists C s.t. for every ℓ , any K_{ℓ} -minor free graph has average degree at most $C\ell\sqrt{\log \ell}$ (Thomason 84)

Theorem: For G planar, if $k \ge \Gamma(G) + 3$ then $\mathcal{R}_k(G)$ is connected and has linear diameter

Theorem: For G K_{ℓ} -minor free, there exists C s.t. if $k \ge \Gamma(G) + C\ell\sqrt{\log \ell}$ then $\mathcal{R}_k(G)$ is connected and has linear diameter

Proof: there exists C s.t. for every ℓ , any K_{ℓ} -minor free graph has average degree at most $C\ell\sqrt{\log \ell}$ (Thomason 84)

Theorem: For G planar, if $k \ge \Gamma(G) + 3$ then $\mathcal{R}_k(G)$ is connected and has linear diameter

Proof: Bipartite planar have at most 2n-4 edges \rightarrow 4-minor sparse

 $\Gamma = 3$

Theorem: For G K_{ℓ} -minor free, there exists C s.t. if $k \ge \Gamma(G) + C\ell\sqrt{\log \ell}$ then $\mathcal{R}_k(G)$ is connected and has linear diameter

Proof: there exists C s.t. for every ℓ , any K_{ℓ} -minor free graph has average degree at most $C\ell\sqrt{\log \ell}$ (Thomason 84)

Theorem: For G planar, if $k \ge \Gamma(G) + 3$ then $\mathcal{R}_k(G)$ is connected and has linear diameter

Theorem: For G K_{ℓ} -minor free, there exists C s.t. if $k \ge \Gamma(G) + C\ell\sqrt{\log \ell}$ then $\mathcal{R}_k(G)$ is connected and has linear diameter

Proof: there exists C s.t. for every ℓ , any K_{ℓ} -minor free graph has average degree at most $C\ell\sqrt{\log \ell}$ (Thomason 84)

Theorem: For G planar, if $k \ge \Gamma(G) + 3$ then $\mathcal{R}_k(G)$ is connected and has linear diameter

Theorem: For G K_{ℓ} -minor free, there exists C s.t. if $k \ge \Gamma(G) + C\ell\sqrt{\log \ell}$ then $\mathcal{R}_k(G)$ is connected and has linear diameter

Proof: there exists C s.t. for every ℓ , any K_{ℓ} -minor free graph has average degree at most $C\ell\sqrt{\log \ell}$ (Thomason 84)

Theorem: For G planar, if $k \ge \Gamma(G) + 3$ then $\mathcal{R}_k(G)$ is connected and has linear diameter

• Close the gap for planar graphs:

- Close the gap for planar graphs:
 - $d_0 \leq \Gamma + 3$

- Close the gap for planar graphs:
 - $d_0 \leq \Gamma + 3$
 - There exist graphs for which $d_0 > \Gamma + 1$

- Close the gap for planar graphs:
 - $d_0 \leq \Gamma + 3$
 - There exist graphs for which $d_0 > \Gamma + 1$

- Close the gap for planar graphs:
 - $d_0 \leq \Gamma + 3$
 - There exist graphs for which $d_0 > \Gamma + 1$

Conjecture: For every planar graph G, $\mathcal{R}_{\Gamma(G)+2}(G)$ is connected

• Close the gap for the bound depending on the treewidth:

- Close the gap for planar graphs:
 - $d_0 \leq \Gamma + 3$
 - There exist graphs for which $d_0 > \Gamma + 1$

- Close the gap for the bound depending on the treewidth:
 - $d_0 \leq \Gamma + tw + 1$

- Close the gap for planar graphs:
 - $d_0 \leq \Gamma + 3$
 - There exist graphs for which $d_0 > \Gamma + 1$

- Close the gap for the bound depending on the treewidth:
 - $d_0 \leq \Gamma + tw + 1$
 - There exist graphs for which $d_0 > \Gamma + tw 2$

- Close the gap for planar graphs:
 - $d_0 \leq \Gamma + 3$
 - There exist graphs for which $d_0 > \Gamma + 1$

- Close the gap for the bound depending on the treewidth:
 - $d_0 \leq \Gamma + tw + 1$
 - There exist graphs for which $d_0 > \Gamma + tw 2$
- Find a better upper bound depending on the pathwidth and the bandwidth

- Close the gap for planar graphs:
 - $d_0 \leq \Gamma + 3$
 - There exist graphs for which $d_0 > \Gamma + 1$

- Close the gap for the bound depending on the treewidth:
 - $d_0 \leq \Gamma + tw + 1$
 - There exist graphs for which $d_0 > \Gamma + tw 2$
- Find a better upper bound depending on the pathwidth and the bandwidth σ

