## Eternal domination on digraphs and orientations of graphs

BGW 2019

Guillaume Bagan, <u>Alice Joffard</u>, Hamamache Kheddouci

#### October 29, 2019







Q: Can we eternally defend a graph ?

 On a graph G, two players: the defender (D), the attacker (A)

Q: Can we eternally defend a graph ?

 On a graph G, two players: the defender (D), the attacker (A)



- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.



- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.



- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.



- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.



- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards keep their positions.



- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards keep their positions.



- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards keep their positions.



- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards keep their positions.
- The attack and defense phases are repeated eternally.



- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards keep their positions.
- The attack and defense phases are repeated eternally.



- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards keep their positions.
- The attack and defense phases are repeated eternally.



- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards keep their positions.
- The attack and defense phases are repeated eternally.



- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards can move as well.
- The attack and defense phases are repeated eternally.



- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards can move as well.
- The attack and defense phases are repeated eternally.



- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards can move as well.
- The attack and defense phases are repeated eternally.



- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards can move as well.
- The attack and defense phases are repeated eternally.



- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards can move as well.
- The attack and defense phases are repeated eternally.



- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards can move as well.
- The attack and defense phases are repeated eternally.



- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards can move as well.
- The attack and defense phases are repeated eternally.



#### Definition

**Eternal (m-eternal) domination number**  $\gamma^{\infty}(G)$  ( $\gamma_m^{\infty}(G)$ ): min number of guards necessary for the defender to win.

#### Definition

# **Eternal (m-eternal) domination number** $\gamma^{\infty}(G)$ ( $\gamma^{\infty}_{m}(G)$ ): min number of guards necessary for the defender to win. **Example:**



## Definition

**Eternal (m-eternal) domination number**  $\gamma^{\infty}(G)$  ( $\gamma^{\infty}_{m}(G)$ ): min number of guards necessary for the defender to win.

#### Example:



## Definition

**Eternal (m-eternal) domination number**  $\gamma^{\infty}(G)$  ( $\gamma^{\infty}_{m}(G)$ ): min number of guards necessary for the defender to win.

#### Example:



## Definition

**Eternal (m-eternal) domination number**  $\gamma^{\infty}(G)$  ( $\gamma^{\infty}_{m}(G)$ ): min number of guards necessary for the defender to win.

#### Example:



## Definition

**Eternal (m-eternal) domination number**  $\gamma^{\infty}(G)$  ( $\gamma^{\infty}_{m}(G)$ ): min number of guards necessary for the defender to win.

#### Example:



## Definition

**Eternal (m-eternal) domination number**  $\gamma^{\infty}(G)$  ( $\gamma^{\infty}_{m}(G)$ ): min number of guards necessary for the defender to win.

#### Example:



## Definition

**Eternal (m-eternal) domination number**  $\gamma^{\infty}(G)$  ( $\gamma^{\infty}_{m}(G)$ ): min number of guards necessary for the defender to win.

#### Example:



## Definition

**Eternal (m-eternal) domination number**  $\gamma^{\infty}(G)$  ( $\gamma^{\infty}_{m}(G)$ ): min number of guards necessary for the defender to win.

#### Example:



## Definition

**Eternal (m-eternal) domination number**  $\gamma^{\infty}(G)$  ( $\gamma^{\infty}_{m}(G)$ ): min number of guards necessary for the defender to win.

#### Example:



## Definition

**Eternal (m-eternal) domination number**  $\gamma^{\infty}(G)$  ( $\gamma^{\infty}_{m}(G)$ ): min number of guards necessary for the defender to win.

#### Example:



## Definition

**Eternal (m-eternal) domination number**  $\gamma^{\infty}(G)$  ( $\gamma^{\infty}_{m}(G)$ ): min number of guards necessary for the defender to win.

#### Example:



### Definition

**Eternal (m-eternal) domination number**  $\gamma^{\infty}(G)$  ( $\gamma^{\infty}_{m}(G)$ ): min number of guards necessary for the defender to win.

#### Example:



### Definition

**Eternal (m-eternal) domination number**  $\gamma^{\infty}(G)$  ( $\gamma^{\infty}_{m}(G)$ ): min number of guards necessary for the defender to win.

#### Example:



### Definition

**Eternal (m-eternal) domination number**  $\gamma^{\infty}(G)$  ( $\gamma^{\infty}_{m}(G)$ ): min number of guards necessary for the defender to win.

#### Example:

eternal domination on  $C_5$  with 3 guards: D wins



### Definition

**Eternal (m-eternal) domination number**  $\gamma^{\infty}(G)$  ( $\gamma^{\infty}_{m}(G)$ ): min number of guards necessary for the defender to win.

#### Example:

eternal domination on  $C_5$  with 3 guards: D wins



### Definition

**Eternal (m-eternal) domination number**  $\gamma^{\infty}(G)$  ( $\gamma^{\infty}_{m}(G)$ ): min number of guards necessary for the defender to win.

#### Example:

m-eternal domination on  $C_5$  with 1 guards  $\rightarrow$  A wins



### Definition

**Eternal (m-eternal) domination number**  $\gamma^{\infty}(G)$  ( $\gamma^{\infty}_{m}(G)$ ): min number of guards necessary for the defender to win.

#### Example:



### Definition

**Eternal (m-eternal) domination number**  $\gamma^{\infty}(G)$  ( $\gamma^{\infty}_{m}(G)$ ): min number of guards necessary for the defender to win.

#### Example:



### Definition

**Eternal (m-eternal) domination number**  $\gamma^{\infty}(G)$  ( $\gamma^{\infty}_{m}(G)$ ): min number of guards necessary for the defender to win.

#### Example:



### Definition

**Eternal (m-eternal) domination number**  $\gamma^{\infty}(G)$  ( $\gamma^{\infty}_{m}(G)$ ): min number of guards necessary for the defender to win.

#### Example:



### Definition

**Eternal (m-eternal) domination number**  $\gamma^{\infty}(G)$  ( $\gamma^{\infty}_{m}(G)$ ): min number of guards necessary for the defender to win.

#### Example:



### Definition

**Eternal (m-eternal) domination number**  $\gamma^{\infty}(G)$  ( $\gamma^{\infty}_{m}(G)$ ): min number of guards necessary for the defender to win.

#### Example:



### Definition

**Eternal (m-eternal) domination number**  $\gamma^{\infty}(G)$  ( $\gamma^{\infty}_{m}(G)$ ): min number of guards necessary for the defender to win.

#### Example:



### Definition

**Eternal (m-eternal) domination number**  $\gamma^{\infty}(G)$  ( $\gamma^{\infty}_{m}(G)$ ): min number of guards necessary for the defender to win.

#### Example:



### Definition

**Eternal (m-eternal) domination number**  $\gamma^{\infty}(G)$  ( $\gamma^{\infty}_{m}(G)$ ): min number of guards necessary for the defender to win.

#### Example:



#### Definition

# Eternal (m-eternal) domination number $\gamma^{\infty}(G)$ ( $\gamma^{\infty}_{m}(G)$ ): min number of guards necessary for the defender to win. Example:



Introduction of the eternal domination: Burger et al, 2004.

- ► Introduction of the eternal domination: Burger et al, 2004.
- ▶ Introduction of the m-eternal domination: Goddard et al, 2005.

- Introduction of the eternal domination: Burger et al, 2004.
- Introduction of the m-eternal domination: Goddard et al, 2005.
- Studies on classes of graphs such as cliques, complete bipartite graphs, cycles and grids.

- Introduction of the eternal domination: Burger et al, 2004.
- Introduction of the m-eternal domination: Goddard et al, 2005.
- Studies on classes of graphs such as cliques, complete bipartite graphs, cycles and grids.
- General bounds for the two parameters:

Theorem (Burger 04, Goddard 05, Klostermeyer 07)  $\gamma(G) \leq \gamma_m^{\infty}(G) \leq \alpha(G) \leq \gamma^{\infty}(G) \leq {\binom{\alpha(G)+1}{2}}$  where  $\gamma$  is the domination number and  $\alpha$  the independent set number.

#### Theorem (Burger et al 04)

 $\gamma^{\infty}(G) \leq \theta(G)$  where  $\theta$  is the clique covering number.

















Definition

Definition



Definition



Definition



Definition

 $\alpha(D)$ : order of the greatest induced acyclic subgraph of D.



Theorem

$$\gamma(D) \le \gamma_m^{\infty}(D) \le \alpha(D) \le \gamma^{\infty}(D) \le {\alpha(D) + 1 \choose 2}.$$

Principle: Orient G to minimize its (m-)eternal domination number.

Principle: Orient G to minimize its (m-)eternal domination number. Definition  $\vec{\gamma^{\infty}}(G) = \min\{\gamma^{\infty}(\vec{G})\}, \ \vec{\gamma^{\infty}}_m(G) = \min\{\gamma^{\infty}_m(\vec{G})\}, \ \vec{\alpha}(G) = \min\{\alpha(\vec{G})\}$ 

Principle: Orient G to minimize its (m-)eternal domination number. Definition  $\vec{\gamma^{\infty}}(G) = \min\{\gamma^{\infty}(\vec{G})\}, \ \vec{\gamma^{\infty}}_{m}(G) = \min\{\gamma^{\infty}_{m}(\vec{G})\}, \ \vec{\alpha}(G) = \min\{\alpha(\vec{G})\}$ 



Principle: Orient G to minimize its (m-)eternal domination number. Definition  $\gamma^{\infty}(G) = \min\{\gamma^{\infty}(\vec{G})\}, \ \vec{\gamma}^{\infty}_{m}(G) = \min\{\gamma^{\infty}_{m}(\vec{G})\}, \ \vec{\alpha}(G) = \min\{\alpha(\vec{G})\}$ 



Principle: Orient G to minimize its (m-)eternal domination number. Definition  $\gamma^{\infty}(G) = \min\{\gamma^{\infty}(\vec{G})\}, \ \vec{\gamma}^{\infty}_{m}(G) = \min\{\gamma^{\infty}_{m}(\vec{G})\}, \ \vec{\alpha}(G) = \min\{\alpha(\vec{G})\}$ 



Principle: Orient G to minimize its (m-)eternal domination number. Definition  $\gamma^{\infty}(G) = \min\{\gamma^{\infty}(\vec{G})\}, \ \vec{\gamma}^{\infty}_{m}(G) = \min\{\gamma^{\infty}_{m}(\vec{G})\}, \ \vec{\alpha}(G) = \min\{\alpha(\vec{G})\}$ 



Principle: Orient G to minimize its (m-)eternal domination number. Definition  $\vec{\gamma^{\infty}}(G) = \min\{\gamma^{\infty}(\vec{G})\}, \ \vec{\gamma^{\infty}}_{m}(G) = \min\{\gamma^{\infty}_{m}(\vec{G})\}, \ \vec{\alpha}(G) = \min\{\alpha(\vec{G})\}$ 



Principle: Orient G to minimize its (m-)eternal domination number. Definition  $\gamma^{\infty}(G) = \min\{\gamma^{\infty}(\vec{G})\}, \ \vec{\gamma}^{\infty}_{m}(G) = \min\{\gamma^{\infty}_{m}(\vec{G})\}, \ \vec{\alpha}(G) = \min\{\alpha(\vec{G})\}$ 



Proposition

For G a graph with at least one edge,  $\gamma(G) \le \alpha(G) < \vec{\alpha}(G) \le \vec{\gamma^{\infty}}(G).$ 

#### Theorem

#### Theorem



#### Theorem



#### Theorem



#### Theorem



#### Theorem



#### Theorem



#### Theorem



#### Theorem



#### Theorem



#### Theorem



#### Theorem



Theorem  

$$\overrightarrow{\gamma^{\infty}}(C_n) = n-1 \text{ and } \overrightarrow{\gamma^{\infty}}(C_n) = \left\lceil \frac{n}{2} \right\rceil \text{ for every } n \ge 3.$$

## Theorem $\overrightarrow{\gamma^{\infty}}(C_n) = n-1 \text{ and } \overrightarrow{\gamma^{\infty}_m}(C_n) = \left\lceil \frac{n}{2} \right\rceil \text{ for every } n \ge 3.$ **Proof:**

## Theorem $\overrightarrow{\gamma^{\infty}}(C_n) = n-1 \text{ and } \overrightarrow{\gamma^{\infty}}(C_n) = \left\lceil \frac{n}{2} \right\rceil \text{ for every } n \ge 3.$ **Proof:**



## Theorem $\overrightarrow{\gamma^{\infty}}(C_n) = n-1 \text{ and } \overrightarrow{\gamma^{\infty}}(C_n) = \left\lceil \frac{n}{2} \right\rceil \text{ for every } n \ge 3.$ **Proof:**



## Theorem $\overrightarrow{\gamma^{\infty}}(C_n) = n-1 \text{ and } \overrightarrow{\gamma^{\infty}}(C_n) = \left\lceil \frac{n}{2} \right\rceil \text{ for every } n \ge 3.$ **Proof:** $\overrightarrow{\alpha}(C_n) = n-1$



### Theorem $\overrightarrow{\gamma^{\infty}}(C_n) = n-1 \text{ and } \overrightarrow{\gamma^{\infty}}(C_n) = \left\lceil \frac{n}{2} \right\rceil \text{ for every } n \ge 3.$ **Proof:** $\overrightarrow{\alpha}(C_n) = n-1$















## Theorem $\overrightarrow{\gamma^{\infty}}(C_n) = n-1 \text{ and } \overrightarrow{\gamma^{\infty}}(C_n) = \left\lceil \frac{n}{2} \right\rceil \text{ for every } n \ge 3.$ **Proof:**





#### Theorem $\overrightarrow{\gamma^{\infty}}(C_n) = n-1 \text{ and } \overrightarrow{\gamma^{\infty}}(C_n) = \left\lceil \frac{n}{2} \right\rceil \text{ for every } n \ge 3.$ **Proof:**

















Theorem Deciding whether  $\gamma^{\infty}(G) \leq k$  is coNP-hard.

Theorem Deciding whether  $\gamma^{\infty}(G) \le k$  is coNP-hard.

Theorem Deciding whether  $\alpha(G) \ge k$  is NP-hard.

Theorem Deciding whether  $\gamma^{\infty}(G) \leq k$  is coNP-hard.

Theorem Deciding whether  $\alpha(G) \ge k$  is NP-hard.

Theorem (Klostermeyer et al 07)

For every integer k > 0, there exists G such that  $\gamma^{\infty}(G) \ge \alpha(G) + k$ .

Theorem Deciding whether  $\gamma^{\infty}(G) \leq k$  is coNP-hard.

Theorem Deciding whether  $\alpha(G) \ge k$  is NP-hard.

#### Theorem (Klostermeyer et al 07)

For every integer k > 0, there exists G such that  $\gamma^{\infty}(G) \ge \alpha(G) + k$ .

#### Corollary

Deciding whether  $\overrightarrow{\gamma^{\infty}}(G) \leq k$  is coNP-hard.

Theorem Deciding whether  $\gamma^{\infty}(G) \leq k$  is coNP-hard.

Theorem Deciding whether  $\alpha(G) \ge k$  is NP-hard.

```
Theorem (Klostermeyer et al 07)
```

For every integer k > 0, there exists G such that  $\gamma^{\infty}(G) \ge \alpha(G) + k$ .

#### Corollary

Deciding whether  $\overrightarrow{\gamma^{\infty}}(G) \leq k$  is coNP-hard.

Corollary

Deciding whether  $\vec{\alpha}(G) \ge k$  is NP-hard.

Theorem Deciding whether  $\gamma^{\infty}(G) \le k$  is coNP-hard.

Theorem Deciding whether  $\alpha(G) \ge k$  is NP-hard.

```
Theorem (Klostermeyer et al 07)
```

For every integer k > 0, there exists G such that  $\gamma^{\infty}(G) \ge \alpha(G) + k$ .

#### Corollary

Deciding whether  $\overrightarrow{\gamma^{\infty}}(G) \leq k$  is coNP-hard.

#### Corollary

Deciding whether  $\overrightarrow{\alpha}(G) \ge k$  is NP-hard.

## Corollary

For every integer k > 0, there exists G such that  $\overline{\gamma^{\infty}}(G) \ge \overrightarrow{\alpha}(G) + k$ .

#### Definition

#### Definition



#### Definition



#### Definition



#### Definition

For G a graph, let C(G) be the graph obtained by adding to G a vertex per edge and connecting it to the two extremities.



#### Lemma

Let G be an undirected graph with m edges. Then,  $\overrightarrow{\gamma^{\infty}}(C(G)) = \gamma^{\infty}(G) + m$ , and  $\overrightarrow{\alpha}(C(G)) = \alpha(G) + m$ .

# Proof of $\overrightarrow{\gamma^{\infty}}(C(G)) = \gamma^{\infty}(G) + m$

Proof of  $\overrightarrow{\gamma^{\infty}}(C(G)) = \gamma^{\infty}(G) + m$ 



Proof of  $\overrightarrow{\gamma^{\infty}}(C(G)) = \gamma^{\infty}(G) + m$ 



Proof of  $\overrightarrow{\gamma^{\infty}}(C(G)) = \gamma^{\infty}(G) + m$ 



Proof of  $\overrightarrow{\gamma^{\infty}}(C(G)) = \gamma^{\infty}(G) + m$ 























# Proof of $\overrightarrow{\gamma^{\infty}}(C(G)) = \gamma^{\infty}(G) + m$ eternal domination on $\overrightarrow{C(G)}$ with $\gamma^{\infty}(G) + m$ guards: D wins



Proof of  $\overrightarrow{\gamma^{\infty}}(C(G)) = \gamma^{\infty}(G) + m$ 























• Complete characterization of the graphs for which  $\vec{\gamma_m^{\infty}}(G) = 2$  (including cliques).

- Complete characterization of the graphs for which  $\overrightarrow{\gamma_m^{\infty}}(G) = 2$  (including cliques).
- Exact value of both  $\overrightarrow{\gamma_m^{\infty}}$  and  $\overrightarrow{\gamma^{\infty}}$  for bicliques.

- Complete characterization of the graphs for which  $\overrightarrow{\gamma_m^{\infty}}(G) = 2$  (including cliques).
- Exact value of both  $\overrightarrow{\gamma_m^{\infty}}$  and  $\overrightarrow{\gamma^{\infty}}$  for bicliques.
- Tight bounds for  $\overrightarrow{\gamma^{\infty}}$  in grids

- Complete characterization of the graphs for which  $\overline{\gamma_m^{\infty}}(G) = 2$  (including cliques).
- Exact value of both  $\overrightarrow{\gamma_m^{\infty}}$  and  $\overrightarrow{\gamma^{\infty}}$  for bicliques.
- Tight bounds for  $\overrightarrow{\gamma^{\infty}}$  in grids
- Upper bounds for 
   <sup>γ</sup>m<sup>∞</sup> in grids, toroical grids, toroical hypergrids.

- Complete characterization of the graphs for which  $\overrightarrow{\gamma_m^{\infty}}(G) = 2$  (including cliques).
- Exact value of both  $\overrightarrow{\gamma_m^{\infty}}$  and  $\overrightarrow{\gamma^{\infty}}$  for bicliques.
- Tight bounds for  $\overrightarrow{\gamma^{\infty}}$  in grids
- Upper bounds for γ<sub>m</sub><sup>∞</sup> in grids, toroical grids, toroical hypergrids.
- Exact value of both parameters for king grids.

- Complete characterization of the graphs for which  $\overline{\gamma_m^{\infty}}(G) = 2$  (including cliques).
- Exact value of both  $\overrightarrow{\gamma_m^{\infty}}$  and  $\overrightarrow{\gamma^{\infty}}$  for bicliques.
- Tight bounds for  $\overrightarrow{\gamma^{\infty}}$  in grids
- Upper bounds for γ<sub>m</sub><sup>∞</sup> in grids, toroical grids, toroical hypergrids.
- Exact value of both parameters for king grids.
- Exact value of  $\overrightarrow{\gamma_m^{\infty}}$  in trivially perfect graphs.

Is there a natural parameter for digraphs that is an upper bound of γ<sup>∞</sup> as the clique covering number is for graphs?

Is there a natural parameter for digraphs that is an upper bound of γ<sup>∞</sup> as the clique covering number is for graphs?

• Characterize the graphs for which  $\overrightarrow{\gamma_m^{\infty}} = \gamma$ ?

- Is there a natural parameter for digraphs that is an upper bound of γ<sup>∞</sup> as the clique covering number is for graphs?
- Characterize the graphs for which  $\overrightarrow{\gamma_m^{\infty}} = \gamma$ ?
- Study the complexity of deciding whether  $\overrightarrow{\gamma_m^{\infty}}(G) \le k$  in the general case and when k is fixed.

- Is there a natural parameter for digraphs that is an upper bound of γ<sup>∞</sup> as the clique covering number is for graphs?
- Characterize the graphs for which  $\overrightarrow{\gamma_m^{\infty}} = \gamma$ ?
- Study the complexity of deciding whether  $\overrightarrow{\gamma_m^{\infty}}(G) \le k$  in the general case and when k is fixed.

