Eternal domination on digraphs and orientations of graphs

BGW 2019

Guillaume Bagan, Alice Joffard, Hamamache Kheddouci

October 29, 2019

LERIS

Eternal domination

Eternal domination

Q: Can we eternally defend a graph ?

Eternal domination

Q: Can we eternally defend a graph ?

- On a graph G, two players: the defender (D), the attacker (A)

Eternal domination

Q: Can we eternally defend a graph ?

- On a graph G, two players: the defender (D), the attacker (A)

Eternal domination

Q: Can we eternally defend a graph ?

- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.

Eternal domination

Q: Can we eternally defend a graph ?

- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.

Eternal domination

Q: Can we eternally defend a graph ?

- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.

Eternal domination

Q: Can we eternally defend a graph ?

- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.

Eternal domination

Q: Can we eternally defend a graph ?

- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards keep their positions.

Eternal domination

Q: Can we eternally defend a graph ?

- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards keep their positions.

Eternal domination

Q: Can we eternally defend a graph ?

- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards keep their positions.

Eternal domination

Q: Can we eternally defend a graph ?

- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards keep their positions.

- The attack and defense phases are repeated eternally.

Eternal domination

Q: Can we eternally defend a graph ?

- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards keep their positions.

- The attack and defense phases are repeated eternally.

Eternal domination

Q: Can we eternally defend a graph ?

- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards keep their positions.

- The attack and defense phases are repeated eternally.

Eternal domination

Q: Can we eternally defend a graph ?

- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards keep their positions.

- The attack and defense phases are repeated eternally.

m-Eternal domination

Q: Can we eternally defend a graph ?

- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards can move as well.

- The attack and defense phases are repeated eternally.

m-Eternal domination

Q: Can we eternally defend a graph ?

- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards can move as well.

- The attack and defense phases are repeated eternally.

m-Eternal domination

Q: Can we eternally defend a graph ?

- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards can move as well.

- The attack and defense phases are repeated eternally.

m-Eternal domination

Q: Can we eternally defend a graph ?

- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards can move as well.

- The attack and defense phases are repeated eternally.

m-Eternal domination

Q: Can we eternally defend a graph ?

- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards can move as well.

- The attack and defense phases are repeated eternally.

m-Eternal domination

Q: Can we eternally defend a graph ?

- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards can move as well.

- The attack and defense phases are repeated eternally.

m-Eternal domination

Q: Can we eternally defend a graph ?

- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards can move as well.

- The attack and defense phases are repeated eternally.

Definitions

Definitions

Definition
 Eternal (m-eternal) domination number $\gamma^{\infty}(G)\left(\gamma_{m}^{\infty}(G)\right)$: min number of guards necessary for the defender to win.

Definitions

Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)\left(\gamma_{m}^{\infty}(G)\right)$: min number of guards necessary for the defender to win.

Example:

Definitions

Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)\left(\gamma_{m}^{\infty}(G)\right)$: min number of guards necessary for the defender to win.

Example:

eternal domination on C_{5} with 2 guards

Definitions

Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)\left(\gamma_{m}^{\infty}(G)\right)$: min number of guards necessary for the defender to win.

Example:

eternal domination on C_{5} with 2 guards

Definitions

Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)\left(\gamma_{m}^{\infty}(G)\right)$: min number of guards necessary for the defender to win.

Example:

eternal domination on C_{5} with 2 guards

Definitions

Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)\left(\gamma_{m}^{\infty}(G)\right)$: min number of guards necessary for the defender to win.

Example:

eternal domination on C_{5} with 2 guards

Definitions

Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)\left(\gamma_{m}^{\infty}(G)\right)$: min number of guards necessary for the defender to win.

Example:

eternal domination on C_{5} with 2 guards

Definitions

Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)\left(\gamma_{m}^{\infty}(G)\right)$: min number of guards necessary for the defender to win.

Example:

eternal domination on C_{5} with 2 guards

Definitions

Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)\left(\gamma_{m}^{\infty}(G)\right)$: min number of guards necessary for the defender to win.

Example:

eternal domination on C_{5} with 2 guards: A wins

Definitions

Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)\left(\gamma_{m}^{\infty}(G)\right)$: min number of guards necessary for the defender to win.

Example:

eternal domination on C_{5} with 3 guards

Definitions

Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)\left(\gamma_{m}^{\infty}(G)\right)$: min number of guards necessary for the defender to win.

Example:

eternal domination on C_{5} with 3 guards

Definitions

Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)\left(\gamma_{m}^{\infty}(G)\right)$: min number of guards necessary for the defender to win.

Example:

eternal domination on C_{5} with 3 guards

Definitions

Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)\left(\gamma_{m}^{\infty}(G)\right)$: min number of guards necessary for the defender to win.

Example:

eternal domination on C_{5} with 3 guards

Definitions

Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)\left(\gamma_{m}^{\infty}(G)\right)$: min number of guards necessary for the defender to win.

Example:

eternal domination on C_{5} with 3 guards

Definitions

Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)\left(\gamma_{m}^{\infty}(G)\right)$: min number of guards necessary for the defender to win.

Example:

eternal domination on C_{5} with 3 guards: D wins

Definitions

Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)\left(\gamma_{m}^{\infty}(G)\right)$: min number of guards necessary for the defender to win.

Example:

eternal domination on C_{5} with 3 guards: D wins

$$
\gamma^{\infty}\left(C_{5}\right)=3
$$

Definitions

Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)\left(\gamma_{m}^{\infty}(G)\right)$: min number of guards necessary for the defender to win.

Example:

m-eternal domination on C_{5} with 1 guards $\rightarrow \mathrm{A}$ wins

$$
\gamma^{\infty}\left(C_{5}\right)=3
$$

Definitions

Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)\left(\gamma_{m}^{\infty}(G)\right)$: min number of guards necessary for the defender to win.

Example:

m-eternal domination on C_{5} with 2 guards

$$
\gamma^{\infty}\left(C_{5}\right)=3
$$

Definitions

Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)\left(\gamma_{m}^{\infty}(G)\right)$: min number of guards necessary for the defender to win.

Example:

m-eternal domination on C_{5} with 2 guards

Definitions

Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)\left(\gamma_{m}^{\infty}(G)\right)$: min number of guards necessary for the defender to win.

Example:

m-eternal domination on C_{5} with 2 guards

Definitions

Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)\left(\gamma_{m}^{\infty}(G)\right)$: min number of guards necessary for the defender to win.

Example:

m-eternal domination on C_{5} with 2 guards

Definitions

Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)\left(\gamma_{m}^{\infty}(G)\right)$: min number of guards necessary for the defender to win.

Example:

m-eternal domination on C_{5} with 2 guards

Definitions

Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)\left(\gamma_{m}^{\infty}(G)\right)$: min number of guards necessary for the defender to win.

Example:

m-eternal domination on C_{5} with 2 guards

$$
\gamma^{\infty}\left(C_{5}\right)=3
$$

Definitions

Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)\left(\gamma_{m}^{\infty}(G)\right)$: min number of guards necessary for the defender to win.

Example:

m-eternal domination on C_{5} with 2 guards

$$
\gamma^{\infty}\left(C_{5}\right)=3
$$

Definitions

Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)\left(\gamma_{m}^{\infty}(G)\right)$: min number of guards necessary for the defender to win.

Example:

m-eternal domination on C_{5} with 2 guards

$$
\gamma^{\infty}\left(C_{5}\right)=3
$$

Definitions

Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)\left(\gamma_{m}^{\infty}(G)\right)$: min number of guards necessary for the defender to win.

Example:

m-eternal domination on C_{5} with 2 guards: D wins

$$
\gamma^{\infty}\left(C_{5}\right)=3
$$

Definitions

Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)\left(\gamma_{m}^{\infty}(G)\right)$: min number of guards necessary for the defender to win.

Example:

$$
\begin{aligned}
& \gamma^{\infty}\left(C_{5}\right)=3 \\
& \gamma_{m}^{\infty}\left(C_{5}\right)=2
\end{aligned}
$$

State of the art

State of the art

- Introduction of the eternal domination: Burger et al, 2004.

State of the art

- Introduction of the eternal domination: Burger et al, 2004.
- Introduction of the m-eternal domination: Goddard et al, 2005.

State of the art

- Introduction of the eternal domination: Burger et al, 2004.
- Introduction of the m-eternal domination: Goddard et al, 2005.
- Studies on classes of graphs such as cliques, complete bipartite graphs, cycles and grids.

State of the art

- Introduction of the eternal domination: Burger et al, 2004.
- Introduction of the m-eternal domination: Goddard et al, 2005.
- Studies on classes of graphs such as cliques, complete bipartite graphs, cycles and grids.
- General bounds for the two parameters:

Theorem (Burger 04, Goddard 05, Klostermeyer 07) $\gamma(G) \leq \gamma_{m}^{\infty}(G) \leq \alpha(G) \leq \gamma^{\infty}(G) \leq\binom{\alpha(G)+1}{2}$ where γ is the domination number and α the independent set number.

Theorem (Burger et al 04)
$r^{\infty}(G) \leq \theta(G)$ where θ is the clique covering number.

Eternal and m-eternal domination on digraphs

Eternal and m-eternal domination on digraphs

The guards move along the direction of the arcs.

Eternal and m-eternal domination on digraphs

The guards move along the direction of the arcs.

Eternal and m-eternal domination on digraphs

The guards move along the direction of the arcs.

Eternal and m-eternal domination on digraphs

The guards move along the direction of the arcs.

Eternal and m-eternal domination on digraphs

The guards move along the direction of the arcs.

Eternal and m-eternal domination on digraphs

The guards move along the direction of the arcs.

Eternal and m-eternal domination on digraphs

The guards move along the direction of the arcs.

Eternal and m-eternal domination on digraphs

The guards move along the direction of the arcs.

Eternal and m-eternal domination on digraphs

The guards move along the direction of the arcs.

General bounds

General bounds

Definition
 $\alpha(D)$: order of the greatest induced acyclic subgraph of D.

General bounds

Definition

$\alpha(D)$: order of the greatest induced acyclic subgraph of D.

General bounds

Definition

$\alpha(D)$: order of the greatest induced acyclic subgraph of D.

General bounds

Definition

$\alpha(D)$: order of the greatest induced acyclic subgraph of D.

General bounds

Definition

$\alpha(D)$: order of the greatest induced acyclic subgraph of D.

Theorem

$$
\gamma(D) \leq \gamma_{m}^{\infty}(D) \leq \alpha(D) \leq \gamma^{\infty}(D) \leq\binom{\alpha(D)+1}{2}
$$

Oriented (m-)eternal domination

Oriented (m-)eternal domination

Principle: Orient G to minimize its (m-) eternal domination number.

Oriented (m-)eternal domination

Principle: Orient G to minimize its (m -)eternal domination number.
Definition
$\overrightarrow{\gamma^{\infty}}(G)=\min \left\{\gamma^{\infty}(\vec{G})\right\}, \overrightarrow{\gamma_{m}^{\infty}}(G)=\min \left\{\gamma_{m}^{\infty}(\vec{G})\right\}, \vec{\alpha}(G)=\min \{\alpha(\vec{G})\}$

Oriented (m-)eternal domination

Principle: Orient G to minimize its (m -)eternal domination number.

Definition

$\overrightarrow{\gamma^{\infty}}(G)=\min \left\{\gamma^{\infty}(\vec{G})\right\}, \overrightarrow{\gamma_{m}^{\infty}}(G)=\min \left\{\gamma_{m}^{\infty}(\vec{G})\right\}, \vec{\alpha}(G)=\min \{\alpha(\vec{G})\}$

Oriented (m-)eternal domination

Principle: Orient G to minimize its (m -)eternal domination number.

Definition

$\overrightarrow{\gamma^{\infty}}(G)=\min \left\{\gamma^{\infty}(\vec{G})\right\}, \overrightarrow{\gamma_{m}^{\infty}}(G)=\min \left\{\gamma_{m}^{\infty}(\vec{G})\right\}, \vec{\alpha}(G)=\min \{\alpha(\vec{G})\}$

$$
\gamma^{\infty}(\vec{G})=5
$$

Oriented (m-)eternal domination

Principle: Orient G to minimize its (m -)eternal domination number.

Definition

$\overrightarrow{\gamma^{\infty}}(G)=\min \left\{\gamma^{\infty}(\vec{G})\right\}, \overrightarrow{\gamma_{m}^{\infty}}(G)=\min \left\{\gamma_{m}^{\infty}(\vec{G})\right\}, \vec{\alpha}(G)=\min \{\alpha(\vec{G})\}$

$$
\gamma^{\infty}(\vec{G})=4
$$

Oriented (m-)eternal domination

Principle: Orient G to minimize its (m -)eternal domination number.

Definition

$\overrightarrow{\gamma^{\infty}}(G)=\min \left\{\gamma^{\infty}(\vec{G})\right\}, \overrightarrow{\gamma_{m}^{\infty}}(G)=\min \left\{\gamma_{m}^{\infty}(\vec{G})\right\}, \vec{\alpha}(G)=\min \{\alpha(\vec{G})\}$

$$
\gamma^{\infty}(\vec{G})=4
$$

Oriented (m-)eternal domination

Principle: Orient G to minimize its (m -)eternal domination number.

Definition

$\overrightarrow{\gamma^{\infty}}(G)=\min \left\{\gamma^{\infty}(\vec{G})\right\}, \overrightarrow{\gamma_{m}^{\infty}}(G)=\min \left\{\gamma_{m}^{\infty}(\vec{G})\right\}, \vec{\alpha}(G)=\min \{\alpha(\vec{G})\}$

$$
\overrightarrow{\gamma^{\infty}}(G)=4
$$

Oriented (m-)eternal domination

Principle: Orient G to minimize its (m-)eternal domination number.

Definition

$\overrightarrow{\gamma^{\infty}}(G)=\min \left\{\gamma^{\infty}(\vec{G})\right\}, \overrightarrow{\gamma_{m}^{\infty}}(G)=\min \left\{\gamma_{m}^{\infty}(\vec{G})\right\}, \vec{\alpha}(G)=\min \{\alpha(\vec{G})\}$

Proposition

For G a graph with at least one edge,
$\gamma(G) \leq \alpha(G)<\vec{\alpha}(G) \leq \overrightarrow{\gamma^{\infty}}(G)$.

Forests

Forests

Theorem
Let G be a graph with order n. Then, $\overrightarrow{\gamma^{\infty}}(G)=n$ iff $\overrightarrow{\gamma_{m}^{\infty}}(G)=n$ iff G is a forest.

Forests

Theorem
Let G be a graph with order n. Then, $\overrightarrow{\gamma^{\infty}}(G)=n$ iff $\overrightarrow{\gamma_{m}^{\infty}}(G)=n$ iff G is a forest.

Forests

Theorem
Let G be a graph with order n. Then, $\overrightarrow{\gamma^{\infty}}(G)=n$ iff $\overrightarrow{\gamma_{m}^{\infty}}(G)=n$ iff G is a forest.

Forests

Theorem
Let G be a graph with order n. Then, $\overrightarrow{\gamma^{\infty}}(G)=n$ iff $\overrightarrow{\gamma_{m}^{\infty}}(G)=n$ iff G is a forest.

Forests

Theorem
Let G be a graph with order n. Then, $\overrightarrow{\gamma^{\infty}}(G)=n$ iff $\overrightarrow{\gamma_{m}^{\infty}}(G)=n$ iff G is a forest.

Forests

Theorem
Let G be a graph with order n. Then, $\overrightarrow{\gamma^{\infty}}(G)=n$ iff $\overrightarrow{\gamma_{m}^{\infty}}(G)=n$ iff G is a forest.

Forests

Theorem
Let G be a graph with order n. Then, $\overrightarrow{\gamma^{\infty}}(G)=n$ iff $\overrightarrow{\gamma_{m}^{\infty}}(G)=n$ iff G is a forest.

Forests

Theorem
Let G be a graph with order n. Then, $\overrightarrow{\gamma^{\infty}}(G)=n$ iff $\overrightarrow{\gamma_{m}^{\infty}}(G)=n$ iff G is a forest.

Forests

Theorem
Let G be a graph with order n. Then, $\overrightarrow{\gamma^{\infty}}(G)=n$ iff $\overrightarrow{\gamma_{m}^{\infty}}(G)=n$ iff G is a forest.

Forests

Theorem
Let G be a graph with order n. Then, $\overrightarrow{\gamma^{\infty}}(G)=n$ iff $\overrightarrow{\gamma_{m}^{\infty}}(G)=n$ iff G is a forest.

Forests

Theorem
Let G be a graph with order n. Then, $\overrightarrow{\gamma^{\infty}}(G)=n$ iff $\overrightarrow{\gamma_{m}^{\infty}}(G)=n$ iff G is a forest.

Forests

Theorem
Let G be a graph with order n. Then, $\overrightarrow{\gamma^{\infty}}(G)=n$ iff $\overrightarrow{\gamma_{m}^{\infty}}(G)=n$ iff G is a forest.

Cycles

Cycles

Theorem
$\overrightarrow{\gamma^{\infty}}\left(C_{n}\right)=n-1$ and $\overrightarrow{\gamma_{m}^{\infty}}\left(C_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$ for every $n \geq 3$.

Cycles

Theorem
$\overrightarrow{\gamma^{\infty}}\left(C_{n}\right)=n-1$ and $\overrightarrow{\gamma_{m}^{\infty}}\left(C_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$ for every $n \geq 3$.
Proof:

Cycles

Theorem
$\overrightarrow{\gamma^{\infty}}\left(C_{n}\right)=n-1$ and $\overrightarrow{\gamma_{m}^{\infty}}\left(C_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$ for every $n \geq 3$.
Proof:

Cycles

Theorem
$\overrightarrow{\gamma^{\infty}}\left(C_{n}\right)=n-1$ and $\overrightarrow{\gamma_{m}^{\infty}}\left(C_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$ for every $n \geq 3$.
Proof:

Cycles

Theorem
$\overrightarrow{\gamma^{\infty}}\left(C_{n}\right)=n-1$ and $\overrightarrow{\gamma_{m}^{\infty}}\left(C_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$ for every $n \geq 3$.
$\xrightarrow{\vec{\alpha}\left(C_{n}\right)}=n-1$

Cycles

Theorem
$\overrightarrow{\gamma^{\infty}}\left(C_{n}\right)=n-1$ and $\overrightarrow{\gamma_{m}^{\infty}}\left(C_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$ for every $n \geq 3$.
$\xrightarrow{\vec{\alpha}\left(C_{n}\right)}=n-1$

Cycles

Theorem
$\overrightarrow{\gamma^{\infty}}\left(C_{n}\right)=n-1$ and $\overrightarrow{\gamma_{m}^{\infty}}\left(C_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$ for every $n \geq 3$.

Proof:

eternal domination on $\overrightarrow{C_{n}}$ with $n-1$ guards

Cycles

Theorem
$\overrightarrow{\gamma^{\infty}}\left(C_{n}\right)=n-1$ and $\overrightarrow{\gamma_{m}^{\infty}}\left(C_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$ for every $n \geq 3$.

Proof:

eternal domination on $\overrightarrow{C_{n}}$ with $n-1$ guards

Cycles

Theorem
$\overrightarrow{\gamma^{\infty}}\left(C_{n}\right)=n-1$ and $\overrightarrow{\gamma_{m}^{\infty}}\left(C_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$ for every $n \geq 3$.

Proof:

eternal domination on $\overrightarrow{C_{n}}$ with $n-1$ guards

Cycles

Theorem
$\overrightarrow{\gamma^{\infty}}\left(C_{n}\right)=n-1$ and $\overrightarrow{\gamma_{m}^{\infty}}\left(C_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$ for every $n \geq 3$.

Proof:

eternal domination on $\overrightarrow{C_{n}}$ with $n-1$ guards

Cycles

Theorem
$\overrightarrow{\gamma^{\infty}}\left(C_{n}\right)=n-1$ and $\overrightarrow{\gamma_{m}^{\infty}}\left(C_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$ for every $n \geq 3$.

Proof:

eternal domination on $\overrightarrow{C_{n}}$ with $n-1$ guards

Cycles

Theorem
$\overrightarrow{\gamma^{\infty}}\left(C_{n}\right)=n-1$ and $\overrightarrow{\gamma_{m}^{\infty}}\left(C_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$ for every $n \geq 3$.

Proof:

eternal domination on $\overrightarrow{C_{n}}$ with $n-1$ guards: D wins

Cycles

Theorem
$\overrightarrow{\gamma^{\infty}}\left(C_{n}\right)=n-1$ and $\overrightarrow{\gamma_{m}^{\infty}}\left(C_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$ for every $n \geq 3$.
Proof:

Cycles

Theorem
$\overrightarrow{\gamma^{\infty}}\left(C_{n}\right)=n-1$ and $\overrightarrow{\gamma_{m}^{\infty}}\left(C_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$ for every $n \geq 3$.

Proof:

$\gamma\left(\overrightarrow{C_{n}}\right)=\left\lceil\frac{n}{2}\right\rceil$

Cycles

Theorem
$\overrightarrow{\gamma^{\infty}}\left(C_{n}\right)=n-1$ and $\overrightarrow{\gamma_{m}^{\infty}}\left(C_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$ for every $n \geq 3$.
Proof:

Cycles

Theorem
$\overrightarrow{\gamma^{\infty}}\left(C_{n}\right)=n-1$ and $\overrightarrow{\gamma_{m}^{\infty}}\left(C_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$ for every $n \geq 3$.

Proof:

m-eternal domination on \vec{C}_{n} with $\left\lceil\frac{n}{2}\right\rceil$ guards

Cycles

Theorem
$\overrightarrow{\gamma^{\infty}}\left(C_{n}\right)=n-1$ and $\overrightarrow{\gamma_{m}^{\infty}}\left(C_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$ for every $n \geq 3$.

Proof:

m-eternal domination on \vec{C}_{n} with $\left\lceil\frac{n}{2}\right\rceil$ guards

Cycles

Theorem
$\overrightarrow{\gamma^{\infty}}\left(C_{n}\right)=n-1$ and $\overrightarrow{\gamma_{m}^{\infty}}\left(C_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$ for every $n \geq 3$.

Proof:

m-eternal domination on \vec{C}_{n} with $\left\lceil\frac{n}{2}\right\rceil$ guards

Cycles

Theorem
$\overrightarrow{\gamma^{\infty}}\left(C_{n}\right)=n-1$ and $\overrightarrow{\gamma_{m}^{\infty}}\left(C_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$ for every $n \geq 3$.

Proof:

m-eternal domination on \vec{C}_{n} with $\left\lceil\frac{n}{2}\right\rceil$ guards

Cycles

Theorem
$\overrightarrow{\gamma^{\infty}}\left(C_{n}\right)=n-1$ and $\overrightarrow{\gamma_{m}^{\infty}}\left(C_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$ for every $n \geq 3$.

Proof:

m-eternal domination on \vec{C}_{n} with $\left\lceil\frac{n}{2}\right\rceil$ guards

Cycles

Theorem
$\overrightarrow{\gamma^{\infty}}\left(C_{n}\right)=n-1$ and $\overrightarrow{\gamma_{m}^{\infty}}\left(C_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$ for every $n \geq 3$.

Proof:

m-eternal domination on \vec{C}_{n} with $\left\lceil\frac{n}{2}\right\rceil$ guards: D wins

Cycles

Theorem
$\overrightarrow{\gamma^{\infty}}\left(C_{n}\right)=n-1$ and $\overrightarrow{\gamma_{m}^{\infty}}\left(C_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$ for every $n \geq 3$.

Proof:

m-eternal domination on \vec{C}_{n} with $\left\lceil\frac{n}{2}\right\rceil$ guards: D wins

Hardness results

Hardness results

Theorem
Deciding whether $\gamma^{\infty}(G) \leq k$ is coNP-hard.

Hardness results

Theorem
Deciding whether $\gamma^{\infty}(G) \leq k$ is coNP-hard.
Theorem
Deciding whether $\alpha(G) \geq k$ is NP-hard.

Hardness results

Theorem
Deciding whether $\gamma^{\infty}(G) \leq k$ is coNP-hard.
Theorem
Deciding whether $\alpha(G) \geq k$ is NP-hard.
Theorem (Klostermeyer et al 07)
For every integer $k>0$, there exists G such that $\gamma^{\infty}(G) \geq \alpha(G)+k$.

Hardness results

Theorem
Deciding whether $\gamma^{\infty}(G) \leq k$ is coNP-hard.
Theorem
Deciding whether $\alpha(G) \geq k$ is NP-hard.
Theorem (Klostermeyer et al 07)
For every integer $k>0$, there exists G such that $\gamma^{\infty}(G) \geq \alpha(G)+k$.
Corollary
Deciding whether $\overrightarrow{\gamma^{\infty}}(G) \leq k$ is coNP-hard.

Hardness results

Theorem
Deciding whether $\gamma^{\infty}(G) \leq k$ is coNP-hard.
Theorem
Deciding whether $\alpha(G) \geq k$ is NP-hard.
Theorem (Klostermeyer et al 07)
For every integer $k>0$, there exists G such that $\gamma^{\infty}(G) \geq \alpha(G)+k$.
Corollary
Deciding whether $\overrightarrow{\gamma^{\infty}}(G) \leq k$ is coNP-hard.
Corollary
Deciding whether $\vec{\alpha}(G) \geq k$ is NP-hard.

Hardness results

Theorem
Deciding whether $\gamma^{\infty}(G) \leq k$ is coNP-hard.
Theorem
Deciding whether $\alpha(G) \geq k$ is NP-hard.
Theorem (Klostermeyer et al 07)
For every integer $k>0$, there exists G such that $\gamma^{\infty}(G) \geq \alpha(G)+k$.
Corollary
Deciding whether $\overrightarrow{\gamma^{\infty}}(G) \leq k$ is coNP-hard.
Corollary
Deciding whether $\vec{\alpha}(G) \geq k$ is NP-hard.
Corollary
For every integer $k>0$, there exists G such that $\overrightarrow{\gamma^{\infty}}(G) \geq \vec{\alpha}(G)+k$.

Reduction

Reduction

Definition
For G a graph, let $C(G)$ be the graph obtained by adding to G a vertex per edge and connecting it to the two extremities.

Reduction

Definition

For G a graph, let $C(G)$ be the graph obtained by adding to G a vertex per edge and connecting it to the two extremities.

Reduction

Definition

For G a graph, let $C(G)$ be the graph obtained by adding to G a vertex per edge and connecting it to the two extremities.

Reduction

Definition

For G a graph, let $C(G)$ be the graph obtained by adding to G a vertex per edge and connecting it to the two extremities.

Reduction

Definition

For G a graph, let $C(G)$ be the graph obtained by adding to G a vertex per edge and connecting it to the two extremities.

Lemma
Let G be an undirected graph with m edges. Then, $\overrightarrow{\gamma^{\infty}}(C(G))=\gamma^{\infty}(G)+m$, and $\vec{\alpha}(C(G))=\alpha(G)+m$.

Proof of $\overrightarrow{\gamma^{\infty}}(C(G))=\gamma^{\infty}(G)+m$

Proof of $\overrightarrow{\gamma^{\infty}}(C(G))=\gamma^{\infty}(G)+m$

Proof of $\overrightarrow{\gamma^{\infty}}(C(G))=\gamma^{\infty}(G)+m$

Proof of $\overrightarrow{\gamma^{\infty}}(C(G))=\gamma^{\infty}(G)+m$

Proof of $\overrightarrow{\gamma^{\infty}}(C(G))=\gamma^{\infty}(G)+m$

Proof of $\overrightarrow{\gamma^{\infty}}(C(G))=\gamma^{\infty}(G)+m$

eternal domination on $\overrightarrow{C(G)}$ with $\gamma^{\infty}(G)+m$ guards

Proof of $\overrightarrow{\gamma^{\infty}}(C(G))=\gamma^{\infty}(G)+m$

eternal domination on $\overrightarrow{C(G)}$ with $\gamma^{\infty}(G)+m$ guards

Proof of $\overrightarrow{\gamma^{\infty}}(C(G))=\gamma^{\infty}(G)+m$

eternal domination on $\overrightarrow{C(G)}$ with $\gamma^{\infty}(G)+m$ guards

Proof of $\overrightarrow{\gamma^{\infty}}(C(G))=\gamma^{\infty}(G)+m$

eternal domination on $\overrightarrow{C(G)}$ with $\gamma^{\infty}(G)+m$ guards

Proof of $\overrightarrow{\gamma^{\infty}}(C(G))=\gamma^{\infty}(G)+m$

eternal domination on $\overrightarrow{C(G)}$ with $\gamma^{\infty}(G)+m$ guards

Proof of $\overrightarrow{\gamma^{\infty}}(C(G))=\gamma^{\infty}(G)+m$

eternal domination on $\overrightarrow{C(G)}$ with $\gamma^{\infty}(G)+m$ guards

Proof of $\overrightarrow{\gamma^{\infty}}(C(G))=\gamma^{\infty}(G)+m$

eternal domination on $\overrightarrow{C(G)}$ with $\gamma^{\infty}(G)+m$ guards

Proof of $\overrightarrow{\gamma^{\infty}}(C(G))=\gamma^{\infty}(G)+m$

eternal domination on $\overrightarrow{C(G)}$ with $\gamma^{\infty}(G)+m$ guards

Proof of $\overrightarrow{\gamma^{\infty}}(C(G))=\gamma^{\infty}(G)+m$

eternal domination on $\overrightarrow{C(G)}$ with $\gamma^{\infty}(G)+m$ guards

Proof of $\overrightarrow{\gamma^{\infty}}(C(G))=\gamma^{\infty}(G)+m$

eternal domination on $\overrightarrow{C(G)}$ with $\gamma^{\infty}(G)+m$ guards

Proof of $\overrightarrow{\gamma^{\infty}}(C(G))=\gamma^{\infty}(G)+m$

eternal domination on $\overrightarrow{C(G)}$ with $\gamma^{\infty}(G)+m$ guards: D wins

Proof of $\overrightarrow{\gamma^{\infty}}(C(G))=\gamma^{\infty}(G)+m$

Proof of $\overrightarrow{\gamma^{\infty}}(C(G))=\gamma^{\infty}(G)+m$

eternal domination on G with $\overrightarrow{\gamma^{\infty}}(C(G))-m$ guards

Proof of $\overrightarrow{\gamma^{\infty}}(C(G))=\gamma^{\infty}(G)+m$

eternal domination on G with $\overrightarrow{\gamma^{\infty}}(C(G))-m$ guards

Proof of $\overrightarrow{\gamma^{\infty}}(C(G))=\gamma^{\infty}(G)+m$

eternal domination on G with $\overrightarrow{\gamma^{\infty}}(C(G))-m$ guards

Proof of $\overrightarrow{\gamma^{\infty}}(C(G))=\gamma^{\infty}(G)+m$

eternal domination on G with $\overrightarrow{\gamma^{\infty}}(C(G))-m$ guards

Proof of $\overrightarrow{\gamma^{\infty}}(C(G))=\gamma^{\infty}(G)+m$

eternal domination on G with $\overrightarrow{\gamma^{\infty}}(C(G))-m$ guards

Proof of $\overrightarrow{\gamma^{\infty}}(C(G))=\gamma^{\infty}(G)+m$

eternal domination on G with $\overrightarrow{\gamma^{\infty}}(C(G))-m$ guards

Proof of $\overrightarrow{\gamma^{\infty}}(C(G))=\gamma^{\infty}(G)+m$

eternal domination on G with $\overrightarrow{\gamma^{\infty}}(C(G))-m$ guards

Proof of $\overrightarrow{\gamma^{\infty}}(C(G))=\gamma^{\infty}(G)+m$

eternal domination on G with $\overrightarrow{\gamma^{\infty}}(C(G))-m$ guards

Proof of $\overrightarrow{\gamma^{\infty}}(C(G))=\gamma^{\infty}(G)+m$

eternal domination on G with $\overrightarrow{\gamma^{\infty}}(C(G))-m$ guards

Proof of $\overrightarrow{\gamma^{\infty}}(C(G))=\gamma^{\infty}(G)+m$

eternal domination on G with $\overrightarrow{\gamma^{\infty}}(C(G))-m$ guards: D wins

Other results

Other results

- Complete characterization of the graphs for which $\overrightarrow{\gamma_{m}^{\infty}}(G)=2$ (including cliques).

Other results

- Complete characterization of the graphs for which $\overrightarrow{\gamma_{m}^{\circ}}(G)=2$ (including cliques).
- Exact value of both $\overrightarrow{\gamma_{m}^{\infty}}$ and $\overrightarrow{\gamma^{\infty}}$ for bicliques.

Other results

- Complete characterization of the graphs for which $\overrightarrow{\gamma_{m}^{\circ}}(G)=2$ (including cliques).
- Exact value of both $\overrightarrow{\gamma_{m}^{\infty}}$ and $\overrightarrow{\gamma^{\infty}}$ for bicliques.
- Tight bounds for $\overrightarrow{\gamma^{\infty}}$ in grids

Other results

- Complete characterization of the graphs for which $\overrightarrow{\gamma_{m}^{\infty}}(G)=2$ (including cliques).
- Exact value of both $\overrightarrow{\gamma_{m}^{\infty}}$ and $\overrightarrow{\gamma^{\infty}}$ for bicliques.
- Tight bounds for $\vec{\gamma}^{\infty}$ in grids
- Upper bounds for $\overrightarrow{\gamma_{m}^{\infty}}$ in grids, toroical grids, toroical hypergrids.

Other results

- Complete characterization of the graphs for which $\overrightarrow{\gamma_{m}^{\infty}}(G)=2$ (including cliques).
- Exact value of both $\overrightarrow{\gamma_{m}^{\infty}}$ and $\overrightarrow{\gamma^{\infty}}$ for bicliques.
- Tight bounds for $\vec{\gamma}^{\infty}$ in grids
- Upper bounds for $\overrightarrow{\gamma_{m}^{\infty}}$ in grids, toroical grids, toroical hypergrids.
- Exact value of both parameters for king grids.

Other results

- Complete characterization of the graphs for which $\overrightarrow{\gamma_{m}^{\circ}}(G)=2$ (including cliques).
- Exact value of both $\overrightarrow{\gamma_{m}^{\infty}}$ and $\overrightarrow{\gamma^{\infty}}$ for bicliques.
- Tight bounds for $\vec{\gamma}^{\infty}$ in grids
- Upper bounds for $\overrightarrow{\gamma_{m}^{\infty}}$ in grids, toroical grids, toroical hypergrids.
- Exact value of both parameters for king grids.
- Exact value of $\overrightarrow{\gamma_{m}^{\infty}}$ in trivially perfect graphs.

Open questions

Open questions

- Is there a natural parameter for digraphs that is an upper bound of γ^{∞} as the clique covering number is for graphs?

Open questions

- Is there a natural parameter for digraphs that is an upper bound of γ^{∞} as the clique covering number is for graphs?
- Characterize the graphs for which $\overrightarrow{\gamma_{m}^{\infty}}=\gamma$?

Open questions

- Is there a natural parameter for digraphs that is an upper bound of γ^{∞} as the clique covering number is for graphs?
- Characterize the graphs for which $\overrightarrow{\gamma_{m}^{\infty}}=\gamma$?
- Study the complexity of deciding whether $\overrightarrow{\gamma_{m}^{\infty}}(G) \leq k$ in the general case and when k is fixed.

Open questions

- Is there a natural parameter for digraphs that is an upper bound of γ^{∞} as the clique covering number is for graphs?
- Characterize the graphs for which $\overrightarrow{\gamma_{m}^{\infty}}=\gamma$?
- Study the complexity of deciding whether $\overrightarrow{\gamma_{m}^{\infty}}(G) \leq k$ in the general case and when k is fixed.

