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Eternal domination

Q: Can we eternally defend a graph ?

Ï On a graph G , two players: the defender

(D), the attacker (A)

Ï D picks a set of vertices for his guards.

Ï Attack: A chooses a vertex.

Ï Defense: D moves a guard to the attacked

vertex. The other guards keep their positions.

D: •
A: •

Ï The attack and defense phases are repeated eternally.
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m-Eternal domination

Q: Can we eternally defend a graph ?
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(D), the attacker (A)
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Ï Defense: D moves a guard to the attacked

vertex. The other guards can move as well.

D: •
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De�nitions

De�nition
Eternal (m-eternal) domination number γ∞(G ) (γ∞m (G )): min

number of guards necessary for the defender to win.

Example:

γ∞(C5)= 3

γ∞m (C5)= 2
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State of the art

Ï Introduction of the eternal domination: Burger et al, 2004.

Ï Introduction of the m-eternal domination: Goddard et al, 2005.

Ï Studies on classes of graphs such as cliques, complete bipartite

graphs, cycles and grids.

Ï General bounds for the two parameters:

Theorem (Burger 04, Goddard 05, Klostermeyer 07)

γ(G )≤ γ∞m (G )≤α(G )≤ γ∞(G )≤ (α(G)+1
2

)
where γ is the

domination number and α the independent set number.

Theorem (Burger et al 04)

γ∞(G )≤ θ(G ) where θ is the clique covering number.
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Eternal and m-eternal domination on digraphs

The guards move along the direction of the arcs.

D: •

A: •
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General bounds

De�nition
α(D): order of the greatest induced acyclic subgraph of D.

α(G )= 3

Theorem

γ(D)≤ γ∞m (D)≤α(D)≤ γ∞(D)≤
(
α(D)+1

2

)
.
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Oriented (m-)eternal domination

Principle: Orient G to minimize its (m-)eternal domination number.

De�nition−→
γ∞(G )=min{γ∞(

−→
G )},

−→
γ∞m (G )=min{γ∞m (

−→
G )}, −→α (G )=min{α(

−→
G )}

γ∞(
−→
G )= 5γ∞(
−→
G )= 4γ∞(
−→
G )= 4

−→
γ∞(G )= 4

Proposition

For G a graph with at least one edge,

γ(G )≤α(G )<−→α (G )≤−→
γ∞(G ).
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Hardness results

Theorem
Deciding whether γ∞(G )≤ k is coNP-hard.

Theorem
Deciding whether α(G )≥ k is NP-hard.

Theorem (Klostermeyer et al 07)

For every integer k > 0, there exists G such that γ∞(G )≥α(G )+k .

Corollary

Deciding whether
−→
γ∞(G )≤ k is coNP-hard.

Corollary

Deciding whether −→α (G )≥ k is NP-hard.

Corollary

For every integer k > 0, there exists G such that
−→
γ∞(G )≥−→α (G )+k .
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Reduction

De�nition
For G a graph, let C (G ) be the graph obtained by adding to G a

vertex per edge and connecting it to the two extremities.

v1

v2

v4 v5

v3

u4,5

u1,5u3,5

u1,2u2,3

u2,4

Lemma
Let G be an undirected graph with m edges. Then,−→
γ∞(C (G ))= γ∞(G )+m, and −→α (C (G ))=α(G )+m.
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Proof of
−→
γ∞(C (G ))= γ∞(G )+m
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Other results

Ï Complete characterization of the graphs for which
−→
γ∞m (G )= 2

(including cliques).

Ï Exact value of both
−→
γ∞m and

−→
γ∞ for bicliques.

Ï Tight bounds for
−→
γ∞ in grids

Ï Upper bounds for
−→
γ∞m in grids, toroical grids, toroical

hypergrids.

Ï Exact value of both parameters for king grids.

Ï Exact value of
−→
γ∞m in trivially perfect graphs.
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Open questions

Ï Is there a natural parameter for digraphs that is an upper

bound of γ∞ as the clique covering number is for graphs?

Ï Characterize the graphs for which
−→
γ∞m = γ?

Ï Study the complexity of deciding whether
−→
γ∞m (G )≤ k in the

general case and when k is �xed.
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