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State of the art

> Introduction of the eternal domination: Burger et al, 2004.
> |Introduction of the m-eternal domination: Goddard et al, 2005.

» Studies on classes of graphs such as cliques, complete bipartite
graphs, cycles and grids.
> General bounds for the two parameters:

Theorem (Burger 04, Goddard 05, Klostermeyer 07)

Y(G) <¥32(6) < a(G) < y®(G) < (\9*1) where y is the
domination number and « the independent set number.

Theorem (Burger et al 04)
Y*°(G) <0(G) where 0 is the clique covering number.
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Oriented (m-)eternal domination

Principle: Orient G to minimize its (m-)eternal domination number.

%finition o _ _
Y*(G) =min{y®(G)}, Y(G) = min{yn(G)}, @(G)=minfa(G)}

Proposition

For G a graph with at least one edge,
¥(G)=a(G) < d(G)=y™(G).
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Deciding whether @ (G) = k is NP-hard.

Corollary

For every integer k >0, there exists G such that y*(G)=a (G)+k.
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Reduction

Definition
For G a graph, let C(G) be the graph obtained by adding to G a
vertex per edge and connecting it to the two extremities.

Lemma
Let G be an undirected graph with m edges. Then,
¥®(C(G))=y>(G)+m, and a@(C(G))=a(G)+m.
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Other results

> Complete characterization of the graphs for which y_‘,’,;o(G) =2
(including cliques).

> Exact value of both )?,;O and 7,_05 for bicliques.
» Tight bounds for )/_°)° in grids

» Upper bounds for )/—‘,’7;0 in grids, toroical grids, toroical
hypergrids.
> Exact value of both parameters for king grids.

> Exact value of ﬁo in trivially perfect graphs.
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