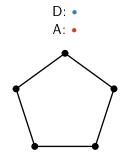
Eternal domination on digraphs and orientations of graphs

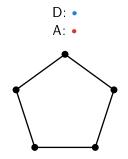
BGW 2019

Guillaume Bagan, <u>Alice Joffard</u>, Hamamache Kheddouci

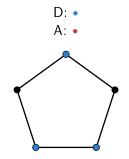
October 29, 2019

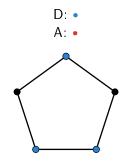


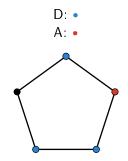
Q: Can we eternally defend a graph ?

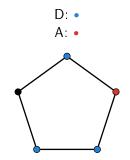

 On a graph G, two players: the defender (D), the attacker (A)

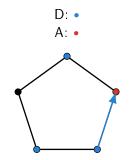
Q: Can we eternally defend a graph ?

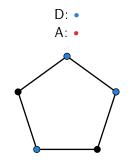

 On a graph G, two players: the defender (D), the attacker (A)

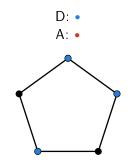

- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.

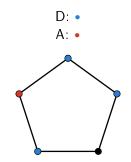

- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.

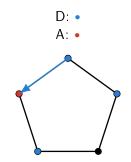

- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.

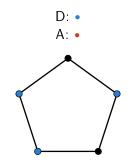

- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.

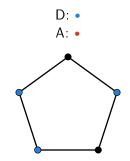

- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards keep their positions.

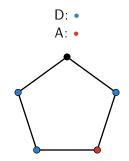

- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards keep their positions.

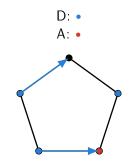

- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards keep their positions.

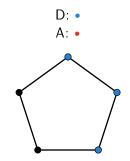

- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards keep their positions.
- The attack and defense phases are repeated eternally.

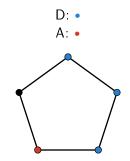

- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards keep their positions.
- The attack and defense phases are repeated eternally.

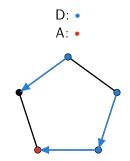

- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards keep their positions.
- The attack and defense phases are repeated eternally.

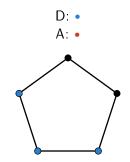

- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards keep their positions.
- The attack and defense phases are repeated eternally.


- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards can move as well.
- The attack and defense phases are repeated eternally.


- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards can move as well.
- The attack and defense phases are repeated eternally.

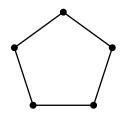

- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards can move as well.
- The attack and defense phases are repeated eternally.


- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards can move as well.
- The attack and defense phases are repeated eternally.


- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards can move as well.
- The attack and defense phases are repeated eternally.

- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards can move as well.
- The attack and defense phases are repeated eternally.

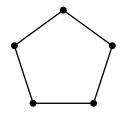
- On a graph G, two players: the defender (D), the attacker (A)
- D picks a set of vertices for his guards.
- Attack: A chooses a vertex.
- Defense: D moves a guard to the attacked vertex. The other guards can move as well.
- The attack and defense phases are repeated eternally.



Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)$ ($\gamma_m^{\infty}(G)$): min number of guards necessary for the defender to win.

Definition


Eternal (m-eternal) domination number $\gamma^{\infty}(G)$ ($\gamma^{\infty}_{m}(G)$): min number of guards necessary for the defender to win. **Example:**

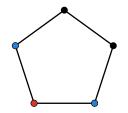
Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)$ ($\gamma^{\infty}_{m}(G)$): min number of guards necessary for the defender to win.

Example:

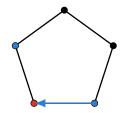
Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)$ ($\gamma^{\infty}_{m}(G)$): min number of guards necessary for the defender to win.


Example:

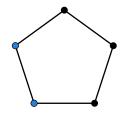
Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)$ ($\gamma^{\infty}_{m}(G)$): min number of guards necessary for the defender to win.


Example:

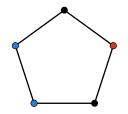
Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)$ ($\gamma^{\infty}_{m}(G)$): min number of guards necessary for the defender to win.


Example:

Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)$ ($\gamma^{\infty}_{m}(G)$): min number of guards necessary for the defender to win.


Example:

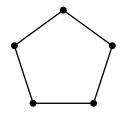
Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)$ ($\gamma^{\infty}_{m}(G)$): min number of guards necessary for the defender to win.

Example:

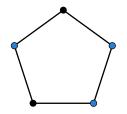
Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)$ ($\gamma^{\infty}_{m}(G)$): min number of guards necessary for the defender to win.


Example:

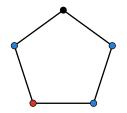
Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)$ ($\gamma^{\infty}_{m}(G)$): min number of guards necessary for the defender to win.


Example:

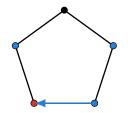
Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)$ ($\gamma^{\infty}_{m}(G)$): min number of guards necessary for the defender to win.


Example:

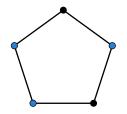
Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)$ ($\gamma^{\infty}_{m}(G)$): min number of guards necessary for the defender to win.


Example:

Definition

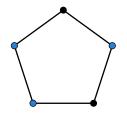
Eternal (m-eternal) domination number $\gamma^{\infty}(G)$ ($\gamma^{\infty}_{m}(G)$): min number of guards necessary for the defender to win.


Example:

Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)$ ($\gamma^{\infty}_{m}(G)$): min number of guards necessary for the defender to win.

Example:

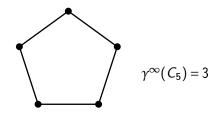


Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)$ ($\gamma^{\infty}_{m}(G)$): min number of guards necessary for the defender to win.

Example:

eternal domination on C_5 with 3 guards: D wins

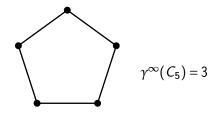


Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)$ ($\gamma^{\infty}_{m}(G)$): min number of guards necessary for the defender to win.

Example:

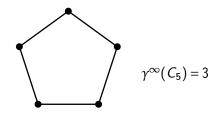
eternal domination on C_5 with 3 guards: D wins



Definition

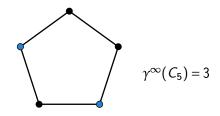
Eternal (m-eternal) domination number $\gamma^{\infty}(G)$ ($\gamma^{\infty}_{m}(G)$): min number of guards necessary for the defender to win.

Example:


m-eternal domination on C_5 with 1 guards \rightarrow A wins

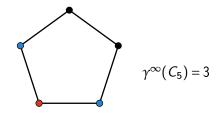
Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)$ ($\gamma^{\infty}_{m}(G)$): min number of guards necessary for the defender to win.


Example:

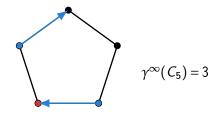
Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)$ ($\gamma^{\infty}_{m}(G)$): min number of guards necessary for the defender to win.


Example:

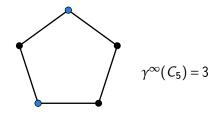
Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)$ ($\gamma^{\infty}_{m}(G)$): min number of guards necessary for the defender to win.


Example:

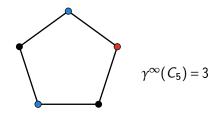
Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)$ ($\gamma^{\infty}_{m}(G)$): min number of guards necessary for the defender to win.


Example:

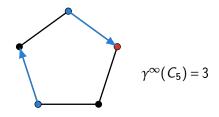
Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)$ ($\gamma^{\infty}_{m}(G)$): min number of guards necessary for the defender to win.


Example:

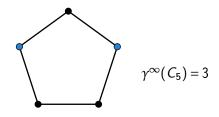
Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)$ ($\gamma^{\infty}_{m}(G)$): min number of guards necessary for the defender to win.


Example:

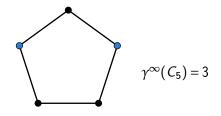
Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)$ ($\gamma^{\infty}_{m}(G)$): min number of guards necessary for the defender to win.

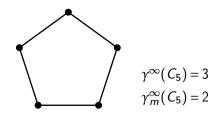

Example:

Definition

Eternal (m-eternal) domination number $\gamma^{\infty}(G)$ ($\gamma^{\infty}_{m}(G)$): min number of guards necessary for the defender to win.


Example:

Definition


Eternal (m-eternal) domination number $\gamma^{\infty}(G)$ ($\gamma^{\infty}_{m}(G)$): min number of guards necessary for the defender to win.

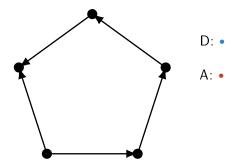
Example:

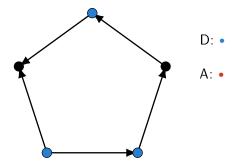
Definition

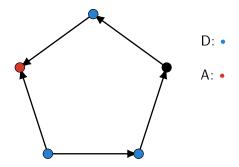
Eternal (m-eternal) domination number $\gamma^{\infty}(G)$ ($\gamma^{\infty}_{m}(G)$): min number of guards necessary for the defender to win. Example:

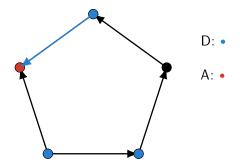
Introduction of the eternal domination: Burger et al, 2004.

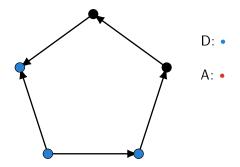
- ► Introduction of the eternal domination: Burger et al, 2004.
- ▶ Introduction of the m-eternal domination: Goddard et al, 2005.

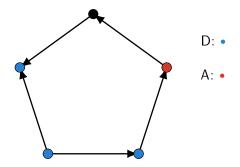

- Introduction of the eternal domination: Burger et al, 2004.
- Introduction of the m-eternal domination: Goddard et al, 2005.
- Studies on classes of graphs such as cliques, complete bipartite graphs, cycles and grids.

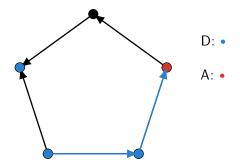

- Introduction of the eternal domination: Burger et al, 2004.
- Introduction of the m-eternal domination: Goddard et al, 2005.
- Studies on classes of graphs such as cliques, complete bipartite graphs, cycles and grids.
- General bounds for the two parameters:

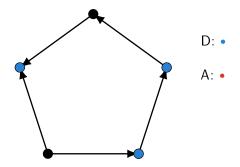

Theorem (Burger 04, Goddard 05, Klostermeyer 07) $\gamma(G) \leq \gamma_m^{\infty}(G) \leq \alpha(G) \leq \gamma^{\infty}(G) \leq {\binom{\alpha(G)+1}{2}}$ where γ is the domination number and α the independent set number.

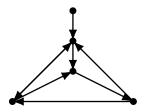

Theorem (Burger et al 04)

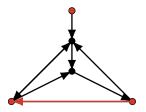

 $\gamma^{\infty}(G) \leq \theta(G)$ where θ is the clique covering number.



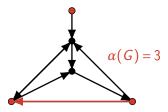




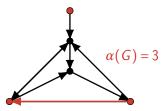




Definition


Definition

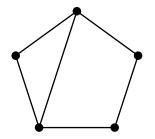
Definition



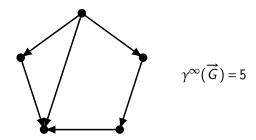
Definition

Definition

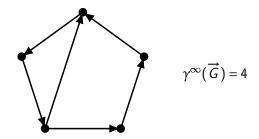
 $\alpha(D)$: order of the greatest induced acyclic subgraph of D.

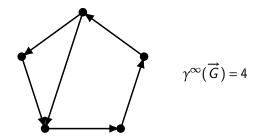

Theorem

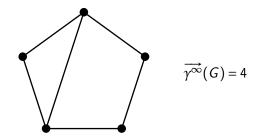
$$\gamma(D) \le \gamma_m^{\infty}(D) \le \alpha(D) \le \gamma^{\infty}(D) \le {\alpha(D) + 1 \choose 2}.$$

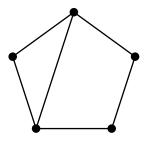

Principle: Orient G to minimize its (m-)eternal domination number.

Principle: Orient G to minimize its (m-)eternal domination number. Definition $\vec{\gamma^{\infty}}(G) = \min\{\gamma^{\infty}(\vec{G})\}, \ \vec{\gamma^{\infty}}_m(G) = \min\{\gamma^{\infty}_m(\vec{G})\}, \ \vec{\alpha}(G) = \min\{\alpha(\vec{G})\}$


Principle: Orient G to minimize its (m-)eternal domination number. Definition $\vec{\gamma^{\infty}}(G) = \min\{\gamma^{\infty}(\vec{G})\}, \ \vec{\gamma^{\infty}}_{m}(G) = \min\{\gamma^{\infty}_{m}(\vec{G})\}, \ \vec{\alpha}(G) = \min\{\alpha(\vec{G})\}$

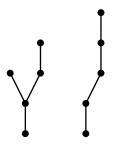

Principle: Orient G to minimize its (m-)eternal domination number. Definition $\gamma^{\infty}(G) = \min\{\gamma^{\infty}(\vec{G})\}, \ \vec{\gamma}^{\infty}_{m}(G) = \min\{\gamma^{\infty}_{m}(\vec{G})\}, \ \vec{\alpha}(G) = \min\{\alpha(\vec{G})\}$


Principle: Orient G to minimize its (m-)eternal domination number. Definition $\gamma^{\infty}(G) = \min\{\gamma^{\infty}(\vec{G})\}, \ \vec{\gamma}^{\infty}_{m}(G) = \min\{\gamma^{\infty}_{m}(\vec{G})\}, \ \vec{\alpha}(G) = \min\{\alpha(\vec{G})\}$

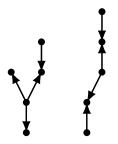

Principle: Orient G to minimize its (m-)eternal domination number. Definition $\gamma^{\infty}(G) = \min\{\gamma^{\infty}(\vec{G})\}, \ \vec{\gamma}^{\infty}_{m}(G) = \min\{\gamma^{\infty}_{m}(\vec{G})\}, \ \vec{\alpha}(G) = \min\{\alpha(\vec{G})\}$

Principle: Orient G to minimize its (m-)eternal domination number. Definition $\vec{\gamma^{\infty}}(G) = \min\{\gamma^{\infty}(\vec{G})\}, \ \vec{\gamma^{\infty}}_{m}(G) = \min\{\gamma^{\infty}_{m}(\vec{G})\}, \ \vec{\alpha}(G) = \min\{\alpha(\vec{G})\}$

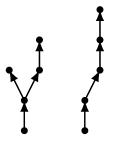
Principle: Orient G to minimize its (m-)eternal domination number. Definition $\gamma^{\infty}(G) = \min\{\gamma^{\infty}(\vec{G})\}, \ \vec{\gamma}^{\infty}_{m}(G) = \min\{\gamma^{\infty}_{m}(\vec{G})\}, \ \vec{\alpha}(G) = \min\{\alpha(\vec{G})\}$

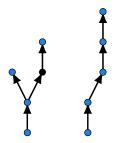


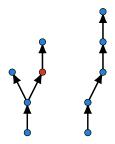
Proposition

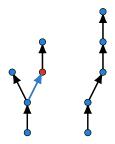

For G a graph with at least one edge, $\gamma(G) \le \alpha(G) < \vec{\alpha}(G) \le \vec{\gamma^{\infty}}(G).$

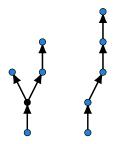
Theorem

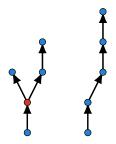

Theorem

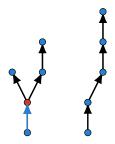

Theorem

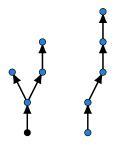

Theorem

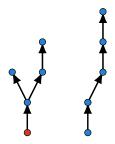

Theorem


Theorem


Theorem

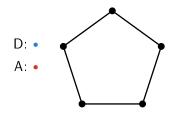

Theorem


Theorem

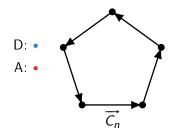

Theorem

Theorem

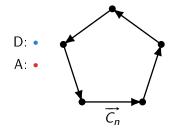
Theorem

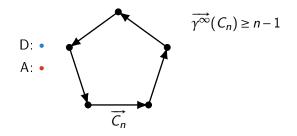


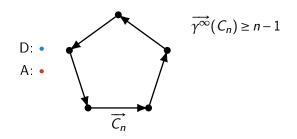
Theorem

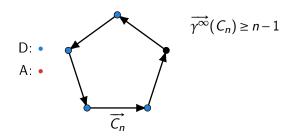

$$\overrightarrow{\gamma^{\infty}}(C_n) = n-1 \text{ and } \overrightarrow{\gamma^{\infty}}(C_n) = \left\lceil \frac{n}{2} \right\rceil \text{ for every } n \ge 3.$$

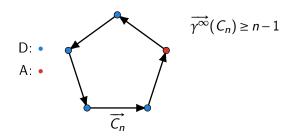
Theorem $\overrightarrow{\gamma^{\infty}}(C_n) = n-1 \text{ and } \overrightarrow{\gamma^{\infty}_m}(C_n) = \left\lceil \frac{n}{2} \right\rceil \text{ for every } n \ge 3.$ **Proof:**

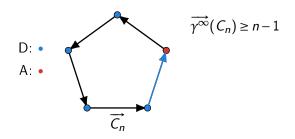

Theorem $\overrightarrow{\gamma^{\infty}}(C_n) = n-1 \text{ and } \overrightarrow{\gamma^{\infty}}(C_n) = \left\lceil \frac{n}{2} \right\rceil \text{ for every } n \ge 3.$ **Proof:**

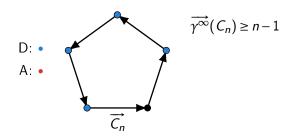

Theorem $\overrightarrow{\gamma^{\infty}}(C_n) = n-1 \text{ and } \overrightarrow{\gamma^{\infty}}(C_n) = \left\lceil \frac{n}{2} \right\rceil \text{ for every } n \ge 3.$ **Proof:**

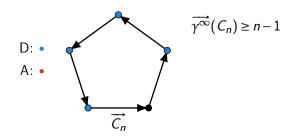


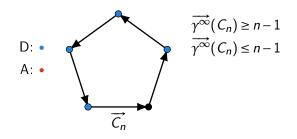

Theorem $\overrightarrow{\gamma^{\infty}}(C_n) = n-1 \text{ and } \overrightarrow{\gamma^{\infty}}(C_n) = \left\lceil \frac{n}{2} \right\rceil \text{ for every } n \ge 3.$ **Proof:** $\overrightarrow{\alpha}(C_n) = n-1$

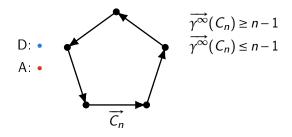


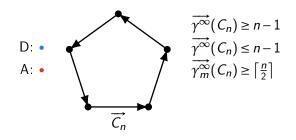

Theorem $\overrightarrow{\gamma^{\infty}}(C_n) = n-1 \text{ and } \overrightarrow{\gamma^{\infty}}(C_n) = \left\lceil \frac{n}{2} \right\rceil \text{ for every } n \ge 3.$ **Proof:** $\overrightarrow{\alpha}(C_n) = n-1$

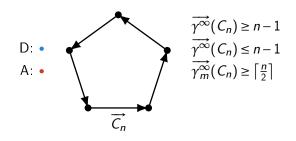


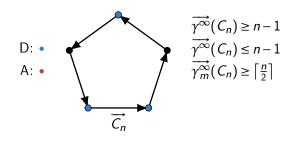


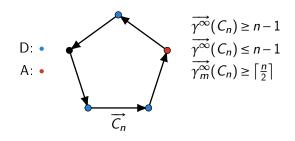


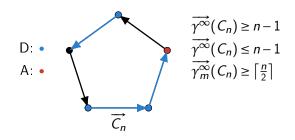


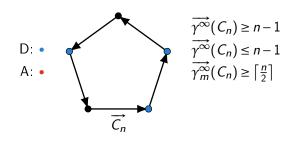


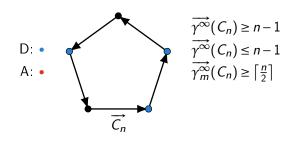

Theorem $\overrightarrow{\gamma^{\infty}}(C_n) = n-1 \text{ and } \overrightarrow{\gamma^{\infty}}(C_n) = \left\lceil \frac{n}{2} \right\rceil \text{ for every } n \ge 3.$ **Proof:**

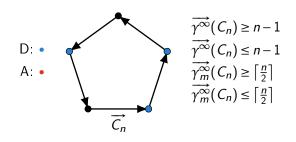





Theorem $\overrightarrow{\gamma^{\infty}}(C_n) = n-1 \text{ and } \overrightarrow{\gamma^{\infty}}(C_n) = \left\lceil \frac{n}{2} \right\rceil \text{ for every } n \ge 3.$ **Proof:**







Theorem Deciding whether $\gamma^{\infty}(G) \leq k$ is coNP-hard.

Theorem Deciding whether $\gamma^{\infty}(G) \le k$ is coNP-hard.

Theorem Deciding whether $\alpha(G) \ge k$ is NP-hard.

Theorem Deciding whether $\gamma^{\infty}(G) \leq k$ is coNP-hard.

Theorem Deciding whether $\alpha(G) \ge k$ is NP-hard.

Theorem (Klostermeyer et al 07)

For every integer k > 0, there exists G such that $\gamma^{\infty}(G) \ge \alpha(G) + k$.

Theorem Deciding whether $\gamma^{\infty}(G) \leq k$ is coNP-hard.

Theorem Deciding whether $\alpha(G) \ge k$ is NP-hard.

Theorem (Klostermeyer et al 07)

For every integer k > 0, there exists G such that $\gamma^{\infty}(G) \ge \alpha(G) + k$.

Corollary

Deciding whether $\overrightarrow{\gamma^{\infty}}(G) \leq k$ is coNP-hard.

Theorem Deciding whether $\gamma^{\infty}(G) \leq k$ is coNP-hard.

Theorem Deciding whether $\alpha(G) \ge k$ is NP-hard.

```
Theorem (Klostermeyer et al 07)
```

For every integer k > 0, there exists G such that $\gamma^{\infty}(G) \ge \alpha(G) + k$.

Corollary

Deciding whether $\overrightarrow{\gamma^{\infty}}(G) \leq k$ is coNP-hard.

Corollary

Deciding whether $\vec{\alpha}(G) \ge k$ is NP-hard.

Theorem Deciding whether $\gamma^{\infty}(G) \le k$ is coNP-hard.

Theorem Deciding whether $\alpha(G) \ge k$ is NP-hard.

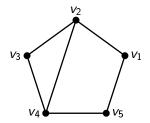
```
Theorem (Klostermeyer et al 07)
```

For every integer k > 0, there exists G such that $\gamma^{\infty}(G) \ge \alpha(G) + k$.

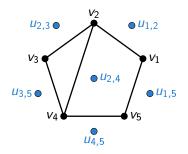
Corollary

Deciding whether $\overrightarrow{\gamma^{\infty}}(G) \leq k$ is coNP-hard.

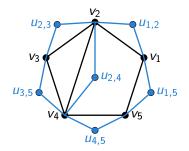
Corollary


Deciding whether $\overrightarrow{\alpha}(G) \ge k$ is NP-hard.

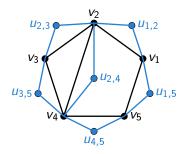
Corollary


For every integer k > 0, there exists G such that $\overline{\gamma^{\infty}}(G) \ge \overrightarrow{\alpha}(G) + k$.

Definition


Definition

Definition



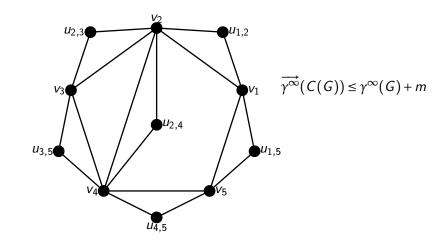
Definition

Definition

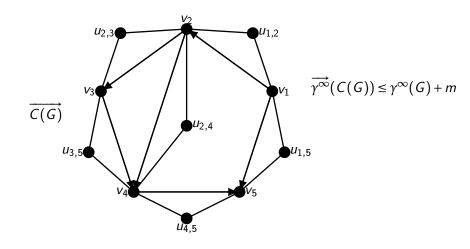
For G a graph, let C(G) be the graph obtained by adding to G a vertex per edge and connecting it to the two extremities.

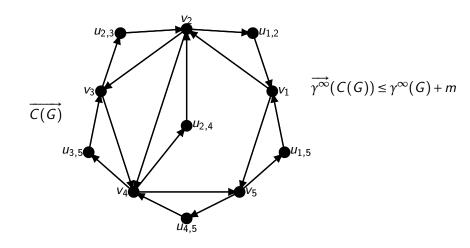


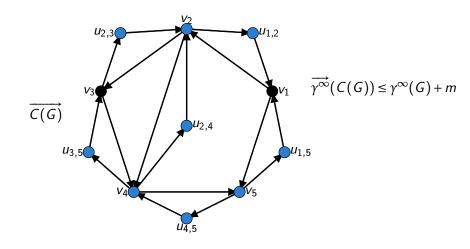
Lemma

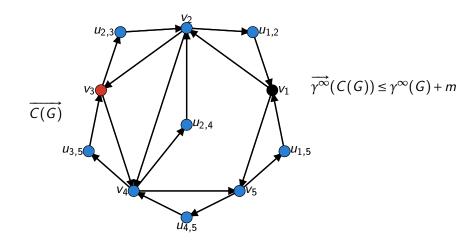

Let G be an undirected graph with m edges. Then, $\overrightarrow{\gamma^{\infty}}(C(G)) = \gamma^{\infty}(G) + m$, and $\overrightarrow{\alpha}(C(G)) = \alpha(G) + m$.

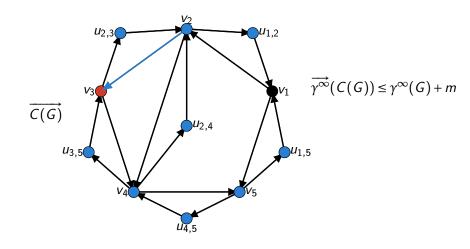
Proof of $\overrightarrow{\gamma^{\infty}}(C(G)) = \gamma^{\infty}(G) + m$

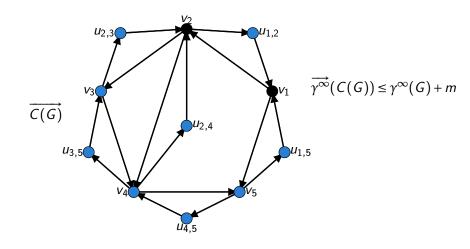

Proof of $\overrightarrow{\gamma^{\infty}}(C(G)) = \gamma^{\infty}(G) + m$

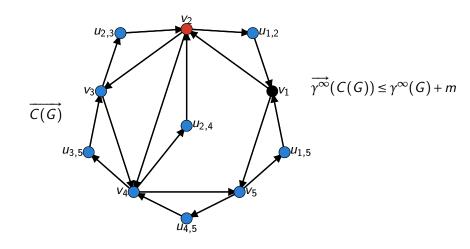

Proof of $\overrightarrow{\gamma^{\infty}}(C(G)) = \gamma^{\infty}(G) + m$

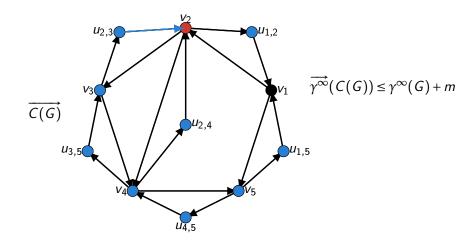


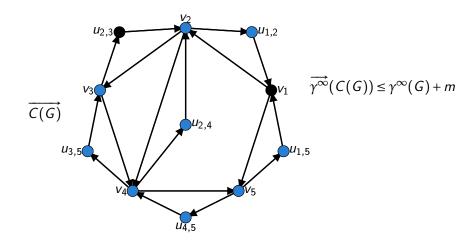

Proof of $\overrightarrow{\gamma^{\infty}}(C(G)) = \gamma^{\infty}(G) + m$

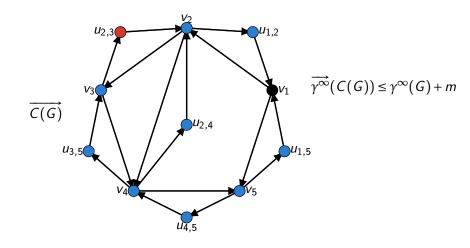


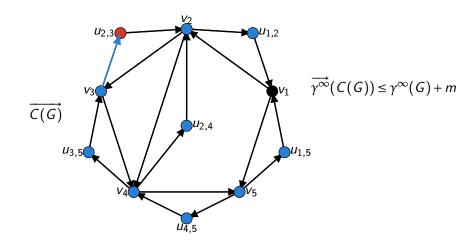

Proof of $\overrightarrow{\gamma^{\infty}}(C(G)) = \gamma^{\infty}(G) + m$

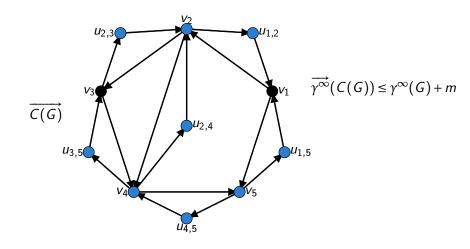


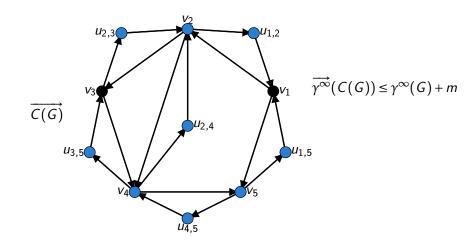


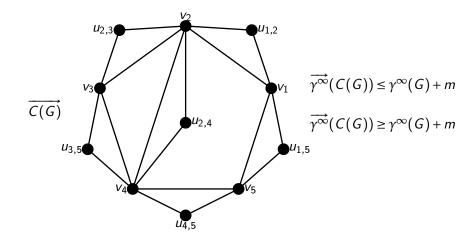


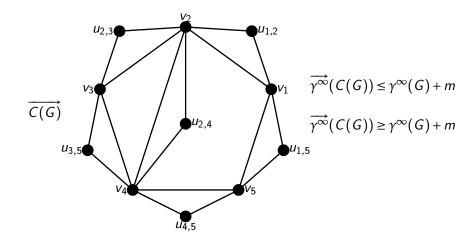


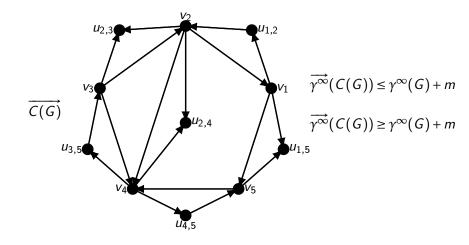


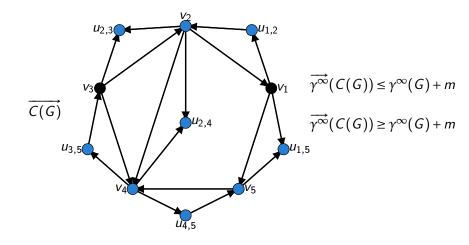


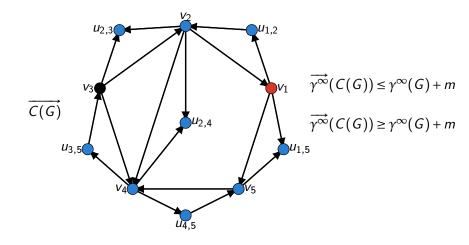


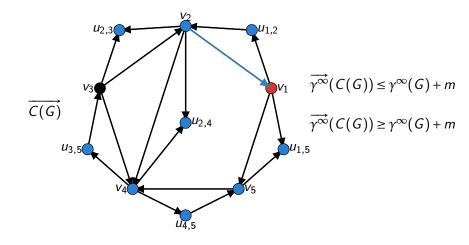


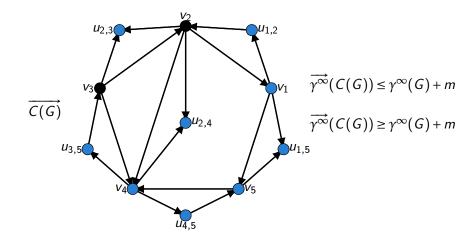


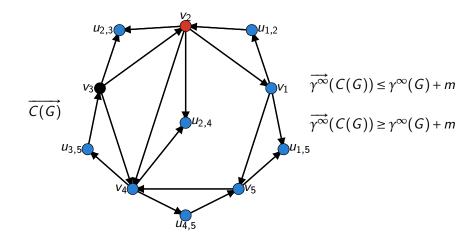

Proof of $\overrightarrow{\gamma^{\infty}}(C(G)) = \gamma^{\infty}(G) + m$ eternal domination on $\overrightarrow{C(G)}$ with $\gamma^{\infty}(G) + m$ guards: D wins

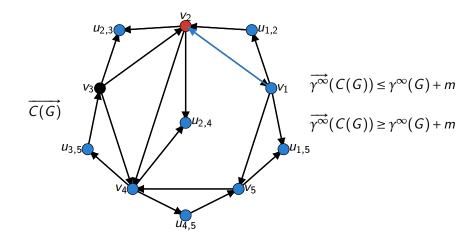


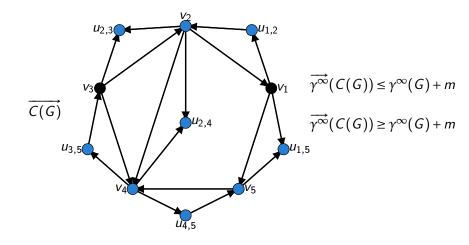

Proof of $\overrightarrow{\gamma^{\infty}}(C(G)) = \gamma^{\infty}(G) + m$

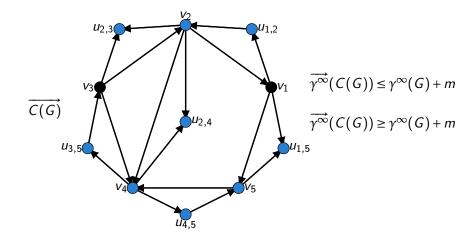












• Complete characterization of the graphs for which $\vec{\gamma_m^{\infty}}(G) = 2$ (including cliques).

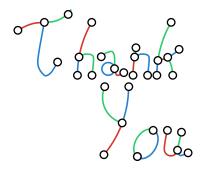
- Complete characterization of the graphs for which $\overrightarrow{\gamma_m^{\infty}}(G) = 2$ (including cliques).
- Exact value of both $\overrightarrow{\gamma_m^{\infty}}$ and $\overrightarrow{\gamma^{\infty}}$ for bicliques.

- Complete characterization of the graphs for which $\overrightarrow{\gamma_m^{\infty}}(G) = 2$ (including cliques).
- Exact value of both $\overrightarrow{\gamma_m^{\infty}}$ and $\overrightarrow{\gamma^{\infty}}$ for bicliques.
- Tight bounds for $\overrightarrow{\gamma^{\infty}}$ in grids

- Complete characterization of the graphs for which $\overline{\gamma_m^{\infty}}(G) = 2$ (including cliques).
- Exact value of both $\overrightarrow{\gamma_m^{\infty}}$ and $\overrightarrow{\gamma^{\infty}}$ for bicliques.
- Tight bounds for $\overrightarrow{\gamma^{\infty}}$ in grids
- Upper bounds for
 ^γm[∞] in grids, toroical grids, toroical hypergrids.

- Complete characterization of the graphs for which $\overrightarrow{\gamma_m^{\infty}}(G) = 2$ (including cliques).
- Exact value of both $\overrightarrow{\gamma_m^{\infty}}$ and $\overrightarrow{\gamma^{\infty}}$ for bicliques.
- Tight bounds for $\overrightarrow{\gamma^{\infty}}$ in grids
- Upper bounds for γ_m[∞] in grids, toroical grids, toroical hypergrids.
- Exact value of both parameters for king grids.

- Complete characterization of the graphs for which $\overline{\gamma_m^{\infty}}(G) = 2$ (including cliques).
- Exact value of both $\overrightarrow{\gamma_m^{\infty}}$ and $\overrightarrow{\gamma^{\infty}}$ for bicliques.
- Tight bounds for $\overrightarrow{\gamma^{\infty}}$ in grids
- Upper bounds for γ_m[∞] in grids, toroical grids, toroical hypergrids.
- Exact value of both parameters for king grids.
- Exact value of $\overrightarrow{\gamma_m^{\infty}}$ in trivially perfect graphs.


Is there a natural parameter for digraphs that is an upper bound of γ[∞] as the clique covering number is for graphs?

Is there a natural parameter for digraphs that is an upper bound of γ[∞] as the clique covering number is for graphs?

• Characterize the graphs for which $\overrightarrow{\gamma_m^{\infty}} = \gamma$?

- Is there a natural parameter for digraphs that is an upper bound of γ[∞] as the clique covering number is for graphs?
- Characterize the graphs for which $\overrightarrow{\gamma_m^{\infty}} = \gamma$?
- Study the complexity of deciding whether $\overrightarrow{\gamma_m^{\infty}}(G) \le k$ in the general case and when k is fixed.

- Is there a natural parameter for digraphs that is an upper bound of γ[∞] as the clique covering number is for graphs?
- Characterize the graphs for which $\overrightarrow{\gamma_m^{\infty}} = \gamma$?
- Study the complexity of deciding whether $\overrightarrow{\gamma_m^{\infty}}(G) \le k$ in the general case and when k is fixed.

