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Minimum dominating set

Y: minimum size of a dominating set of G

DOMINATING SET
INPUT: A graph G, an integer k
OUTPUT: TRUE iff y(G) < k

DOMINATING SET is NP-complete (Garey & Johnson 79)

5/34



Reconfiguration

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

Can we transform a solution of a problem into another by applying
a sequence of changes that maintain a solution ?

6/34



Reconfiguration

7/34



Reconfiguration

Reconfiguration graph R: the vertices are the solutions, two
solutions are adjacent if they are different by a single change

7/34



Reconfiguration

Reconfiguration graph R: the vertices are the solutions, two
solutions are adjacent if they are different by a single change

7/34



Reconfiguration

Reconfiguration graph R: the vertices are the solutions, two
solutions are adjacent if they are different by a single change

Questions:

7/34



Reconfiguration

Reconfiguration graph R: the vertices are the solutions, two
solutions are adjacent if they are different by a single change

Questions:

e Given Ss and S, is there a path from Ss to S; 7

7/34



Reconfiguration

Reconfiguration graph R: the vertices are the solutions, two
solutions are adjacent if they are different by a single change

Questions:

e Given Ss and S, is there a path from Ss to S; 7
o Given S and &¢, what is the minimum length of such a path 7

7/34



Reconfiguration

Reconfiguration graph R: the vertices are the solutions, two
solutions are adjacent if they are different by a single change

Questions:

e Given Ss and S, is there a path from Ss to S; 7
o Given S and &¢, what is the minimum length of such a path 7
e Is R connected ?

7/34



Reconfiguration

Reconfiguration graph R: the vertices are the solutions, two
solutions are adjacent if they are different by a single change

Questions:

e Given Ss and S, is there a path from Ss to S; 7

o Given S and &¢, what is the minimum length of such a path 7
e Is R connected ?

o What is the diameter of R 7
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Reconfiguration of dominating sets in the TAR model

Can we transform Ds into D; with
a sequence of vertex additions/removals
keeping G dominated 7

R: the vertices are the dominating sets, two dominating sets are
adjacent if they differ by a vertex addition/deletion

Is R connected ? What is its diameter ?
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If R(G) contains all the dominating sets, it is connected:

Dy
Threshold: maximum size k of the dominating sets in R(G)

Remark: Rk(G) connected # Ry+1(G) connected:

k=n—-2:Rk(Spn) is connected
k=n-1:Rk(Sp) is disconnected

What is the smallest dy s.t. Rx(G) is connected for any k=dp ?
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e Upper bounds:
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— If k>T and R,(G) connected, then dp < k

 If G has two independent edges, dp <min{n—1,T +7y} (Haas &
Seyffarth 14)

o If G is bipartite or chordal, do =T +1 (Haas & Seyffarth 14)

o do<T+a-1 (Haas & Seyffarth 17)
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« For K,-minor free graphs, do <T + O(¢(loglog ¢)'8)

o For planar graphs, dg<T'+3

o The connectivity proofs provide a sequence in polynomial time

o The sequences are linear — Ry has linear diameter
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Theorem: For G Ky-minor free, there exists C s.t. if k=T(G)+
C¢(loglog¢)'® then Ry(G) is connected and has linear diameter

Proof: there exists C s.t. for every ¢, any Ky-minor free graph has
average degree at most C¢(loglog¢)!® (Postle '20)

Theorem: For G planar, if k =T(G)+3 then Ri(G) is connected
and has linear diameter

Proof: Bipartite planar have at most 2n—4 edges — 4-minor sparse
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Open questions
o Close the gap for planar graphs:
o do<T+3
e There exist graphs for which dp >T +1:

r=3
Conjecture: For every planar graph G, Ry()+2(G) is connected

o Close the gap for the bound depending on the treewidth:
o dosT+tw+1
o There exist graphs for which do>T +tw -2
o Find a better upper bound depending on the pathwidth and
the bandwidth 16/34
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Reconfiguration of dominating sets in the TS model

Can we transform Ds into Dy
with a sequence of slidings
keeping G dominated 7

R: the vertices are the dominating sets, two dominating sets are
adjacent if they differ by a sliding

Given Ds and Dy, what is the complexity of deciding if there is a

path from Ds to D; 7
18/34
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o D picks a set of vertices for his guards

o Each turn:
* A chooses a vertex to attack
o D slides a guard along an edge onto the attack

« D wins if he/she can defend against any infinite sequence of

attacks

Y*°(G): min number of guards necessary for the defender to win
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* Deciding if y*°(G) < k is coNP-hard
» Reduction: y*°(G)=y*°(C(G))-m

C(G) G

Conjecture: Deciding if y_°>°(G) < k is a PSPACE-complete problem
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INPUT: Two connected multigraphs G,H with the same vertices and
the same degree sequence, an integer k
OUTPUT: TRUE iff there exists a sequence of at most k flips that
transforms G into H maintaining connectivity
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Application to mass spectrometry
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Results

e State of the art for SBR:

* SBR is NP-complete (Caprara '97)
o 1.375-approximation algorithm for SBR (Berman et al. '02)

o State of the art for SCGT:
» Always a transformation for scGT (Taylor '81)
o 4-approximation algorithm for scaT (Bousquet & Mary '18)
o Our result (Bousquet & Joffard '19): 2.5-approximation
algorithm for scGT
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o Symmetric difference A(G,H): (G-H)u(H-G)

vi vi vi
Vo Vo %)
Vo Vo Vo
V3 V3 V3
V4 V4 V4
G H A(G, H)

o Remark: We can always partition A into alternating circuits

o Remark: To transform G into H, we need at least % flips
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Approximation algorithms

e 4-approximation:
» Lower bound:
o Upper bound: we can reduce |A| by 2 in 2 flips

1Al
7

e 3-approximation:
e Lower bound: %
o Upper bound: we can reduce |A| by 4 in 3 flips

e 2.5-approximation:
e Lower bound: Exact formula for the case where we do not
maintain connectivity (Will, 99)

* Improvement: Approximate the number of alternating C4 30/34



Discussion about the lower bound

31/34



Discussion about the lower bound

o There exist Gy and H, s.t. if we only flip edges of A, the
number of flips to transform G into H) while maintaining
connectivity is at least 1.5 times Will's lower bound

31/34



Discussion about the lower bound

o There exist Gy and H, s.t. if we only flip edges of A, the
number of flips to transform G into H) while maintaining
connectivity is at least 1.5 times Will's lower bound

Gy Hy

A(Ga, Ha)
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o Conjecture: The shortest transformation from Gj to Hy has
IA( Gk, Hk)
length ———= -1

— True under some hypothesis

o A shortest transformation from G to H only flips edges of
A(G,H) ?
— Open for paths

o Find a better lower bound to improve our approximation ratio

32/34
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