Graph domination and reconfiguration problems

Thesis presentation

Under the supervision of Hamamache Kheddouci and Nicolas Bousquet

Alice Joffard

November 25, 2020

Graph: (V,E)

Graph: (V,E)

Dominating set D of G: for any $v \in V$, $v \in D$ or there exists $u \in D$ with $uv \in E$

Dominating set D of G: for any $v \in V$, $v \in D$ or there exists $u \in D$ with $uv \in E$

Applications:

Network monitoring

Dominating set D of G: for any $v \in V$, $v \in D$ or there exists $u \in D$ with $uv \in E$

Applications:

Network monitoring

Dominating set D of G: for any $v \in V$, $v \in D$ or there exists $u \in D$ with $uv \in E$

Applications:

Network monitoring

Facility location

Dominating set D of G: for any $v \in V$, $v \in D$ or there exists $u \in D$ with $uv \in E$

Applications:

Network monitoring

Facility location

γ : minimum size of a dominating set of G

DOMINATING SET

 γ : minimum size of a dominating set of G

DOMINATING SET INPUT: A graph G, an integer k

 γ : minimum size of a dominating set of G

DOMINATING SET INPUT: A graph G, an integer k OUTPUT: TRUE iff $\gamma(G) \le k$

 γ : minimum size of a dominating set of G

DOMINATING SET INPUT: A graph G, an integer k OUTPUT: TRUE iff $\gamma(G) \le k$

DOMINATING SET is NP-complete (Garey & Johnson 79)

Reconfiguration graph \mathcal{R} : the vertices are the solutions, two solutions are adjacent if they are different by a single change

Reconfiguration graph \mathcal{R} : the vertices are the solutions, two solutions are adjacent if they are different by a single change

Reconfiguration graph \mathcal{R} : the vertices are the solutions, two solutions are adjacent if they are different by a single change

Reconfiguration graph \mathcal{R} : the vertices are the solutions, two solutions are adjacent if they are different by a single change

Questions:

• Given S_s and S_t , is there a path from S_s to S_t ?

Reconfiguration graph \mathcal{R} : the vertices are the solutions, two solutions are adjacent if they are different by a single change

- Given S_s and S_t , is there a path from S_s to S_t ?
- Given S_s and S_t , what is the minimum length of such a path ?

Reconfiguration graph \mathcal{R} : the vertices are the solutions, two solutions are adjacent if they are different by a single change

- Given S_s and S_t , is there a path from S_s to S_t ?
- Given S_s and S_t , what is the minimum length of such a path ?
- Is ${\mathcal R}$ connected ?

Reconfiguration graph \mathcal{R} : the vertices are the solutions, two solutions are adjacent if they are different by a single change

- Given S_s and S_t , is there a path from S_s to S_t ?
- Given S_s and S_t , what is the minimum length of such a path ?
- Is ${\mathcal R}$ connected ?
- What is the diameter of ${\cal R}$?

Adjacency rules:

Adjacency rules:

Adjacency rules:

Adjacency rules:

- Token Addition-Removal (TAR):
- Token Jumping (TJ):

- Token Addition-Removal (TAR):
- Token Jumping (TJ):

- Token Addition-Removal (TAR):
- Token Jumping (TJ):

Reconfiguration of tokens on a graph

Adjacency rules:

- Token Addition-Removal (TAR):
- Token Jumping (TJ):
- Token Sliding (TS):

Reconfiguration of tokens on a graph

Adjacency rules:

- Token Addition-Removal (TAR):
- Token Jumping (TJ):
- Token Sliding (TS):

Reconfiguration of tokens on a graph

Adjacency rules:

- Token Addition-Removal (TAR):
- Token Jumping (TJ):
- Token Sliding (TS):

Can we transform D_s into D_t with a sequence of vertex additions/removals keeping *G* dominated ?

 \mathcal{R} : the vertices are the dominating sets, two dominating sets are adjacent if they differ by a vertex addition/deletion

Can we transform D_s into D_t with a sequence of vertex additions/removals keeping *G* dominated ?

 \mathcal{R} : the vertices are the dominating sets, two dominating sets are adjacent if they differ by a vertex addition/deletion

Can we transform D_s into D_t with a sequence of vertex additions/removals keeping *G* dominated ?

 \mathcal{R} : the vertices are the dominating sets, two dominating sets are adjacent if they differ by a vertex addition/deletion

Is \mathcal{R} connected ? What is its diameter ?

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold: maximum size k of the dominating sets in $\mathcal{R}_k(G)$

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold: maximum size k of the dominating sets in $\mathcal{R}_k(G)$ Remark: $\mathcal{R}_k(G)$ connected $\neq \mathcal{R}_{k+1}(G)$ connected:

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold: maximum size k of the dominating sets in $\mathcal{R}_k(G)$

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold: maximum size k of the dominating sets in $\mathcal{R}_k(G)$

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold: maximum size k of the dominating sets in $\mathcal{R}_k(G)$

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold: maximum size k of the dominating sets in $\mathcal{R}_k(G)$

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold: maximum size k of the dominating sets in $\mathcal{R}_k(G)$

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold: maximum size k of the dominating sets in $\mathcal{R}_k(G)$

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold: maximum size k of the dominating sets in $\mathcal{R}_k(G)$

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold: maximum size k of the dominating sets in $\mathcal{R}_k(G)$

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold: maximum size k of the dominating sets in $\mathcal{R}_k(G)$

If $\mathcal{R}(G)$ contains all the dominating sets, it is connected:

Threshold: maximum size k of the dominating sets in $\mathcal{R}_k(G)$

Remark: $\mathcal{R}_k(G)$ connected $\neq \mathcal{R}_{k+1}(G)$ connected:

What is the smallest d_0 s.t. $\mathcal{R}_k(G)$ is connected for any $k \ge d_0$?

 d_0 : min value s.t. for any $k \ge d_0$, $\mathcal{R}_k(G)$ is connected

 d_0 : min value s.t. for any $k \ge d_0$, $\mathcal{R}_k(G)$ is connected

 $\Gamma:$ maximum size of a minimal dominating set

- d_0 : min value s.t. for any $k \ge d_0$, $\mathcal{R}_k(G)$ is connected
- $\Gamma:$ maximum size of a minimal dominating set
 - Lower bounds:

- d_0 : min value s.t. for any $k \ge d_0$, $\mathcal{R}_k(G)$ is connected
- $\Gamma:$ maximum size of a minimal dominating set
 - Lower bounds:
 - $d_0 > \Gamma$

- d_0 : min value s.t. for any $k \ge d_0$, $\mathcal{R}_k(G)$ is connected
- $\Gamma:$ maximum size of a minimal dominating set
 - Lower bounds:
 - $d_0 > \Gamma$
 - There exist graphs s.t. $d_0 > \Gamma + 1$ (Suzuki et al. 16)

- d_0 : min value s.t. for any $k \ge d_0$, $\mathcal{R}_k(G)$ is connected
- Γ : maximum size of a minimal dominating set
 - Lower bounds:
 - $d_0 > \Gamma$
 - There exist graphs s.t. $d_0 > \Gamma + 1$ (Suzuki et al. 16)
 - There exist graphs with arbitrary Γ and γ s.t. $d_0 \ge \Gamma + \gamma$ (Mynhardt et al. 19)

- d_0 : min value s.t. for any $k \ge d_0$, $\mathcal{R}_k(G)$ is connected
- Γ : maximum size of a minimal dominating set
 - Lower bounds:
 - $d_0 > \Gamma$
 - There exist graphs s.t. $d_0 > \Gamma + 1$ (Suzuki et al. 16)
 - There exist graphs with arbitrary Γ and γ s.t. $d_0 \ge \Gamma + \gamma$ (Mynhardt et al. 19)
 - Upper bounds:

- d_0 : min value s.t. for any $k \ge d_0$, $\mathcal{R}_k(G)$ is connected
- Γ : maximum size of a minimal dominating set
 - Lower bounds:
 - $d_0 > \Gamma$
 - There exist graphs s.t. $d_0 > \Gamma + 1$ (Suzuki et al. 16)
 - There exist graphs with arbitrary Γ and γ s.t. $d_0 \ge \Gamma + \gamma$ (Mynhardt et al. 19)
 - Upper bounds:
 - $k > \Gamma$, $\mathcal{R}_k(G)$ connected $\Rightarrow \mathcal{R}_{k+1}(G)$ connected (Haas & Seyffarth 14)

- d_0 : min value s.t. for any $k \ge d_0$, $\mathcal{R}_k(G)$ is connected
- Γ : maximum size of a minimal dominating set
 - Lower bounds:
 - $d_0 > \Gamma$
 - There exist graphs s.t. $d_0 > \Gamma + 1$ (Suzuki et al. 16)
 - There exist graphs with arbitrary Γ and γ s.t. $d_0 \ge \Gamma + \gamma$ (Mynhardt et al. 19)
 - Upper bounds:
 - $k > \Gamma$, $\mathcal{R}_k(G)$ connected $\Rightarrow \mathcal{R}_{k+1}(G)$ connected (Haas & Seyffarth 14)

 \rightarrow If $k > \Gamma$ and $\mathcal{R}_k(G)$ connected, then $d_0 \leq k$

- d_0 : min value s.t. for any $k \ge d_0$, $\mathcal{R}_k(G)$ is connected
- Γ : maximum size of a minimal dominating set
 - Lower bounds:
 - $d_0 > \Gamma$
 - There exist graphs s.t. $d_0 > \Gamma + 1$ (Suzuki et al. 16)
 - There exist graphs with arbitrary Γ and γ s.t. $d_0 \ge \Gamma + \gamma$ (Mynhardt et al. 19)
 - Upper bounds:
 - $k > \Gamma$, $\mathcal{R}_k(G)$ connected $\Rightarrow \mathcal{R}_{k+1}(G)$ connected (Haas & Seyffarth 14)
 - → If $k > \Gamma$ and $\mathcal{R}_k(G)$ connected, then $d_0 \le k$
 - If G has two independent edges, $d_0 \le \min\{n-1, \Gamma+\gamma\}$ (Haas & Seyffarth 14)

- d_0 : min value s.t. for any $k \ge d_0$, $\mathcal{R}_k(G)$ is connected
- Γ : maximum size of a minimal dominating set
 - Lower bounds:
 - $d_0 > \Gamma$
 - There exist graphs s.t. $d_0 > \Gamma + 1$ (Suzuki et al. 16)
 - There exist graphs with arbitrary Γ and γ s.t. $d_0 \ge \Gamma + \gamma$ (Mynhardt et al. 19)
 - Upper bounds:
 - $k > \Gamma$, $\mathcal{R}_k(G)$ connected $\Rightarrow \mathcal{R}_{k+1}(G)$ connected (Haas & Seyffarth 14)
 - → If $k > \Gamma$ and $\mathcal{R}_k(G)$ connected, then $d_0 \le k$
 - If G has two independent edges, $d_0 \le \min\{n-1, \Gamma+\gamma\}$ (Haas & Seyffarth 14)
 - If G is bipartite or chordal, $d_0 \leq \Gamma + 1$ (Haas & Seyffarth 14)

- d_0 : min value s.t. for any $k \ge d_0$, $\mathcal{R}_k(G)$ is connected
- Γ : maximum size of a minimal dominating set
 - Lower bounds:
 - $d_0 > \Gamma$
 - There exist graphs s.t. $d_0 > \Gamma + 1$ (Suzuki et al. 16)
 - There exist graphs with arbitrary Γ and γ s.t. $d_0 \ge \Gamma + \gamma$ (Mynhardt et al. 19)
 - Upper bounds:
 - $k > \Gamma$, $\mathcal{R}_k(G)$ connected $\Rightarrow \mathcal{R}_{k+1}(G)$ connected (Haas & Seyffarth 14)
 - → If $k > \Gamma$ and $\mathcal{R}_k(G)$ connected, then $d_0 \le k$
 - If G has two independent edges, $d_0 \le \min\{n-1, \Gamma + \gamma\}$ (Haas & Seyffarth 14)
 - If G is bipartite or chordal, $d_0 \leq \Gamma + 1$ (Haas & Seyffarth 14)
 - $d_0 \leq \Gamma + \alpha 1$ (Haas & Seyffarth 17)

• Linear diameter for $k \ge \Gamma + \alpha - 1$

- Linear diameter for $k \ge \Gamma + \alpha 1$
- Treewidth:

- Linear diameter for $k \ge \Gamma + \alpha 1$
- Treewidth:
 - $d_0 \leq \Gamma + tw + 1$

- Linear diameter for $k \ge \Gamma + \alpha 1$
- Treewidth:
 - $d_0 \leq \Gamma + tw + 1$
 - There exist graphs for which $\mathcal{R}_{\Gamma+tw-2}$ is disconnected

- Linear diameter for $k \ge \Gamma + \alpha 1$
- Treewidth:
 - $d_0 \leq \Gamma + tw + 1$
 - There exist graphs for which $\mathcal{R}_{\Gamma^+ tw^-2}$ is disconnected
- Minor-sparse graphs:

- Linear diameter for $k \ge \Gamma + \alpha 1$
- Treewidth:
 - $d_0 \leq \Gamma + tw + 1$
 - There exist graphs for which $\mathcal{R}_{\Gamma+tw-2}$ is disconnected
- Minor-sparse graphs:
 - For "*d*-minor sparse" graphs, $d_0 \leq \Gamma + d 1$
- Linear diameter for $k \ge \Gamma + \alpha 1$
- Treewidth:
 - $d_0 \leq \Gamma + tw + 1$
 - There exist graphs for which $\mathcal{R}_{\Gamma+tw-2}$ is disconnected
- Minor-sparse graphs:
 - For "*d*-minor sparse" graphs, $d_0 \leq \Gamma + d 1$
 - For K_{ℓ} -minor free graphs, $d_0 \leq \Gamma + O(\ell(\log \log \ell)^{18})$

- Linear diameter for $k \ge \Gamma + \alpha 1$
- Treewidth:
 - $d_0 \leq \Gamma + tw + 1$
 - There exist graphs for which $\mathcal{R}_{\Gamma+tw-2}$ is disconnected
- Minor-sparse graphs:
 - For "*d*-minor sparse" graphs, $d_0 \leq \Gamma + d 1$
 - For \mathcal{K}_{ℓ} -minor free graphs, $d_0 \leq \Gamma + O(\ell(\log \log \ell)^{18})$
 - For planar graphs, $d_0 \le \Gamma + 3$

- Linear diameter for $k \ge \Gamma + \alpha 1$
- Treewidth:
 - $d_0 \leq \Gamma + tw + 1$
 - There exist graphs for which $\mathcal{R}_{\Gamma+tw-2}$ is disconnected
- Minor-sparse graphs:
 - For "*d*-minor sparse" graphs, $d_0 \leq \Gamma + d 1$
 - For \mathcal{K}_{ℓ} -minor free graphs, $d_0 \leq \Gamma + O(\ell(\log \log \ell)^{18})$
 - For planar graphs, $d_0 \le \Gamma + 3$
- The connectivity proofs provide a sequence in polynomial time

- Linear diameter for $k \ge \Gamma + \alpha 1$
- Treewidth:
 - $d_0 \leq \Gamma + tw + 1$
 - There exist graphs for which $\mathcal{R}_{\Gamma+tw-2}$ is disconnected
- Minor-sparse graphs:
 - For "*d*-minor sparse" graphs, $d_0 \leq \Gamma + d 1$
 - For \mathcal{K}_{ℓ} -minor free graphs, $d_0 \leq \Gamma + O(\ell(\log \log \ell)^{18})$
 - For planar graphs, $d_0 \le \Gamma + 3$
- The connectivity proofs provide a sequence in polynomial time
- The sequences are linear $\rightarrow \mathcal{R}_k$ has linear diameter

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

d-minor sparse: bipartite minors have average degree less than d

7 vertices, 8 edges $\rightarrow d > \frac{16}{7}$

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

d-minor sparse: bipartite minors have average degree less than d

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

d-minor sparse: bipartite minors have average degree less than d

Theorem: Let G be a d-minor sparse graph. If $k = \Gamma(G) + d - 1$, then $\mathcal{R}_k(G)$ is connected and the diameter of $\mathcal{R}_k(G)$ is linear

• Assume $|D_s| = |D_t| = \Gamma$

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

d-minor sparse: bipartite minors have average degree less than d

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

d-minor sparse: bipartite minors have average degree less than d

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If $|D_t \setminus D_s| \le d-1$:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

d-minor sparse: bipartite minors have average degree less than d

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If $|D_t \setminus D_s| \le d-1$:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

d-minor sparse: bipartite minors have average degree less than d

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If $|D_t \setminus D_s| \le d-1$:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

d-minor sparse: bipartite minors have average degree less than d

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If $|D_t \setminus D_s| \le d-1$:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

d-minor sparse: bipartite minors have average degree less than d

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If $|D_t \setminus D_s| \le d-1$:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

d-minor sparse: bipartite minors have average degree less than d

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If $|D_t \setminus D_s| \le d-1$:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

d-minor sparse: bipartite minors have average degree less than d

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If $|D_t \setminus D_s| \le d-1$:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

d-minor sparse: bipartite minors have average degree less than d

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If $|D_t \setminus D_s| \le d-1$:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

d-minor sparse: bipartite minors have average degree less than d

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If $|D_t \setminus D_s| \ge d$:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

d-minor sparse: bipartite minors have average degree less than d

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If |D_t \ D_s| ≥ d: There exists a vertex of D_s \ D_t we can remove from D_s after adding d − 1 vertices of D_t \ D_s:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

d-minor sparse: bipartite minors have average degree less than d

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If |D_t \ D_s| ≥ d: There exists a vertex of D_s \ D_t we can remove from D_s after adding d − 1 vertices of D_t \ D_s:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

d-minor sparse: bipartite minors have average degree less than d

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If |D_t \ D_s| ≥ d: There exists a vertex of D_s \ D_t we can remove from D_s after adding d − 1 vertices of D_t \ D_s:

 $\mathsf{Minor:}\xspace$ obtained by contracting, deleting edges, and deleting isolated vertices

d-minor sparse: bipartite minors have average degree less than d

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:

 $\mathsf{Minor:}\xspace$ obtained by contracting, deleting edges, and deleting isolated vertices

d-minor sparse: bipartite minors have average degree less than d

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If |D_t \ D_s| ≥ d: There exists a vertex of D_s \ D_t we can remove from D_s after adding d − 1 vertices of D_t \ D_s:

 $\mathsf{Minor:}\xspace$ obtained by contracting, deleting edges, and deleting isolated vertices

d-minor sparse: bipartite minors have average degree less than d

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If |D_t \ D_s| ≥ d: There exists a vertex of D_s \ D_t we can remove from D_s after adding d − 1 vertices of D_t \ D_s:

 $\mathsf{Minor:}\xspace$ obtained by contracting, deleting edges, and deleting isolated vertices

d-minor sparse: bipartite minors have average degree less than d

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If |D_t \ D_s| ≥ d: There exists a vertex of D_s \ D_t we can remove from D_s after adding d − 1 vertices of D_t \ D_s:

 $\mathsf{Minor:}\xspace$ obtained by contracting, deleting edges, and deleting isolated vertices

d-minor sparse: bipartite minors have average degree less than d

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If |D_t \ D_s| ≥ d: There exists a vertex of D_s \ D_t we can remove from D_s after adding d − 1 vertices of D_t \ D_s:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

d-minor sparse: bipartite minors have average degree less than d

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If |D_t \ D_s| ≥ d: There exists a vertex of D_s \ D_t we can remove from D_s after adding d − 1 vertices of D_t \ D_s:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

d-minor sparse: bipartite minors have average degree less than d

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If |D_t \ D_s| ≥ d: There exists a vertex of D_s \ D_t we can remove from D_s after adding d − 1 vertices of D_t \ D_s:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

d-minor sparse: bipartite minors have average degree less than d

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If |D_t \ D_s| ≥ d: There exists a vertex of D_s \ D_t we can remove from D_s after adding d − 1 vertices of D_t \ D_s:

 $\mathsf{Minor:}\xspace$ obtained by contracting, deleting edges, and deleting isolated vertices

d-minor sparse: bipartite minors have average degree less than d

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If |D_t \ D_s| ≥ d: There exists a vertex of D_s \ D_t we can remove from D_s after adding d − 1 vertices of D_t \ D_s:

 $\mathsf{Minor:}\xspace$ obtained by contracting, deleting edges, and deleting isolated vertices

d-minor sparse: bipartite minors have average degree less than d

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If |D_t \ D_s| ≥ d: There exists a vertex of D_s \ D_t we can remove from D_s after adding d − 1 vertices of D_t \ D_s:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

d-minor sparse: bipartite minors have average degree less than d

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If |D_t \ D_s| ≥ d: There exists a vertex of D_s \ D_t we can remove from D_s after adding d − 1 vertices of D_t \ D_s:

 $\mathsf{Minor:}\xspace$ obtained by contracting, deleting edges, and deleting isolated vertices

d-minor sparse: bipartite minors have average degree less than d

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If |D_t \ D_s| ≥ d: There exists a vertex of D_s \ D_t we can remove from D_s after adding d − 1 vertices of D_t \ D_s:

Minor: obtained by contracting, deleting edges, and deleting isolated vertices

d-minor sparse: bipartite minors have average degree less than d

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If |D_t \ D_s| ≥ d: There exists a vertex of D_s \ D_t we can remove from D_s after adding d − 1 vertices of D_t \ D_s:

 $\mathsf{Minor:}\xspace$ obtained by contracting, deleting edges, and deleting isolated vertices

d-minor sparse: bipartite minors have average degree less than d

- Assume $|D_s| = |D_t| = \Gamma$
- By induction on $|D_t \setminus D_s|$:
 - If |D_t \ D_s| ≥ d: There exists a vertex of D_s \ D_t we can remove from D_s after adding d − 1 vertices of D_t \ D_s:

Theorem: For G K_{ℓ} -minor free, there exists C s.t. if $k \ge \Gamma(G) + C\ell(\log \log \ell)^{18}$ then $\mathcal{R}_k(G)$ is connected and has linear diameter

Theorem: For G K_{ℓ} -minor free, there exists C s.t. if $k \ge \Gamma(G) + C\ell(\log \log \ell)^{18}$ then $\mathcal{R}_k(G)$ is connected and has linear diameter

Proof: there exists C s.t. for every ℓ , any K_{ℓ} -minor free graph has average degree at most $C\ell(\log \log \ell)^{18}$ (Postle '20)

Theorem: For G K_{ℓ} -minor free, there exists C s.t. if $k \ge \Gamma(G) + C\ell(\log \log \ell)^{18}$ then $\mathcal{R}_k(G)$ is connected and has linear diameter

Proof: there exists C s.t. for every ℓ , any K_{ℓ} -minor free graph has average degree at most $C\ell(\log \log \ell)^{18}$ (Postle '20)

Theorem: For G planar, if $k \ge \Gamma(G) + 3$ then $\mathcal{R}_k(G)$ is connected and has linear diameter

Theorem: For G K_{ℓ} -minor free, there exists C s.t. if $k \ge \Gamma(G) + C\ell(\log \log \ell)^{18}$ then $\mathcal{R}_k(G)$ is connected and has linear diameter

Proof: there exists C s.t. for every ℓ , any K_{ℓ} -minor free graph has average degree at most $C\ell(\log \log \ell)^{18}$ (Postle '20)

Theorem: For G planar, if $k \ge \Gamma(G) + 3$ then $\mathcal{R}_k(G)$ is connected and has linear diameter

Proof: Bipartite planar have at most 2n-4 edges \rightarrow 4-minor sparse

• Close the gap for planar graphs:

- Close the gap for planar graphs:
 - $d_0 \leq \Gamma + 3$

- Close the gap for planar graphs:
 - $d_0 \leq \Gamma + 3$
 - There exist graphs for which $d_0 > \Gamma + 1$:

- Close the gap for planar graphs:
 - $d_0 \leq \Gamma + 3$
 - There exist graphs for which $d_0 > \Gamma + 1$:

- Close the gap for planar graphs:
 - $d_0 \leq \Gamma + 3$
 - There exist graphs for which $d_0 > \Gamma + 1$:

- Close the gap for planar graphs:
 - $d_0 \leq \Gamma + 3$
 - There exist graphs for which $d_0 > \Gamma + 1$:

- Close the gap for planar graphs:
 - $d_0 \leq \Gamma + 3$
 - There exist graphs for which $d_0 > \Gamma + 1$:

$$\Gamma = 3$$

- Close the gap for planar graphs:
 - $d_0 \leq \Gamma + 3$
 - There exist graphs for which $d_0 > \Gamma + 1$:

$$\Gamma = 3$$

- Close the gap for planar graphs:
 - $d_0 \leq \Gamma + 3$
 - There exist graphs for which $d_0 > \Gamma + 1$:

$$\Gamma = 3$$

- Close the gap for planar graphs:
 - $d_0 \leq \Gamma + 3$
 - There exist graphs for which $d_0 > \Gamma + 1$:

$$\Gamma = 3$$

- Close the gap for planar graphs:
 - $d_0 \leq \Gamma + 3$
 - There exist graphs for which $d_0 > \Gamma + 1$:

$$\Gamma = 3$$

Conjecture: For every planar graph G, $\mathcal{R}_{\Gamma(G)+2}(G)$ is connected

- Close the gap for planar graphs:
 - $d_0 \leq \Gamma + 3$
 - There exist graphs for which $d_0 > \Gamma + 1$:

$$\Gamma = 3$$

Conjecture: For every planar graph G, $\mathcal{R}_{\Gamma(G)+2}(G)$ is connected

• Close the gap for the bound depending on the treewidth:

- Close the gap for planar graphs:
 - $d_0 \leq \Gamma + 3$
 - There exist graphs for which $d_0 > \Gamma + 1$:

$$\Gamma = 3$$

Conjecture: For every planar graph G, $\mathcal{R}_{\Gamma(G)+2}(G)$ is connected

• Close the gap for the bound depending on the treewidth:

•
$$d_0 \leq \Gamma + tw + 1$$

- Close the gap for planar graphs:
 - $d_0 \leq \Gamma + 3$
 - There exist graphs for which $d_0 > \Gamma + 1$:

$$\Gamma = 3$$

Conjecture: For every planar graph G, $\mathcal{R}_{\Gamma(G)+2}(G)$ is connected

- Close the gap for the bound depending on the treewidth:
 - $d_0 \leq \Gamma + tw + 1$
 - There exist graphs for which $d_0 > \Gamma + tw 2$

- Close the gap for planar graphs:
 - $d_0 \leq \Gamma + 3$
 - There exist graphs for which $d_0 > \Gamma + 1$:

$$\Gamma = 3$$

Conjecture: For every planar graph G, $\mathcal{R}_{\Gamma(G)+2}(G)$ is connected

- Close the gap for the bound depending on the treewidth:
 - $d_0 \leq \Gamma + tw + 1$
 - There exist graphs for which $d_0 > \Gamma + tw 2$
- Find a better upper bound depending on the pathwidth and the bandwidth

Outline

Can we transform D_s into D_t with a sequence of slidings keeping *G* dominated ?

 \mathcal{R} : the vertices are the dominating sets, two dominating sets are adjacent if they differ by a sliding

Can we transform D_s into D_t with a sequence of slidings keeping *G* dominated ?

 \mathcal{R} : the vertices are the dominating sets, two dominating sets are adjacent if they differ by a sliding

Can we transform D_s into D_t with a sequence of slidings keeping *G* dominated ?

 \mathcal{R} : the vertices are the dominating sets, two dominating sets are adjacent if they differ by a sliding

Given D_s and D_t , what is the complexity of deciding if there is a path from D_s to D_t ?

TS-REACHABILITY

TS-REACHABILITY

INPUT: A graph G, two dominating sets D_s and D_t of G with $|D_s| = |D_t|$

TS-REACHABILITY

INPUT: A graph G, two dominating sets D_s and D_t of G with $|D_s| = |D_t|$

OUTPUT: TRUE iff there exists a reconfiguration sequence from D_s to D_t under TS

TS-REACHABILITY INPUT: A graph *G*, two dominating sets D_s and D_t of *G* with $|D_s| = |D_t|$ OUTPUT: TRUE iff there exists a reconfiguration sequence from D_s

to D_t under TS

• State of the art (Bonamy, Dorbec & Ouvrard '19):

- State of the art (Bonamy, Dorbec & Ouvrard '19):
 - PSPACE-complete, even when restricted to split, bipartite or bounded treewidth graphs

TS-REACHABILITY

- State of the art (Bonamy, Dorbec & Ouvrard '19):
 - PSPACE-complete, even when restricted to split, bipartite or bounded treewidth graphs
 - Polynomial time on dually chordal graphs and cographs

TS-REACHABILITY

- State of the art (Bonamy, Dorbec & Ouvrard '19):
 - PSPACE-complete, even when restricted to split, bipartite or bounded treewidth graphs
 - Polynomial time on dually chordal graphs and cographs
 - Open question: complexity on circle graphs and circular arc graphs

TS-REACHABILITY

- State of the art (Bonamy, Dorbec & Ouvrard '19):
 - PSPACE-complete, even when restricted to split, bipartite or bounded treewidth graphs
 - Polynomial time on dually chordal graphs and cographs
 - Open question: complexity on circle graphs and circular arc graphs
- Our results (Bousquet & Joffard '20+):

TS-REACHABILITY

- State of the art (Bonamy, Dorbec & Ouvrard '19):
 - PSPACE-complete, even when restricted to split, bipartite or bounded treewidth graphs
 - Polynomial time on dually chordal graphs and cographs
 - Open question: complexity on circle graphs and circular arc graphs
- Our results (Bousquet & Joffard '20+):
 - $\ensuremath{\operatorname{PSPACE}}$ -complete on circle graphs and $\ensuremath{\operatorname{P}}$ in circular arc graphs

TS-REACHABILITY

- State of the art (Bonamy, Dorbec & Ouvrard '19):
 - PSPACE-complete, even when restricted to split, bipartite or bounded treewidth graphs
 - Polynomial time on dually chordal graphs and cographs
 - Open question: complexity on circle graphs and circular arc graphs
- Our results (Bousquet & Joffard '20+):
 - $\ensuremath{\operatorname{PSPACE}}$ -complete on circle graphs and $\ensuremath{\operatorname{P}}$ in circular arc graphs
 - PSPACE-complete in three other classes

TS-REACHABILITY

- State of the art (Bonamy, Dorbec & Ouvrard '19):
 - PSPACE-complete, even when restricted to split, bipartite or bounded treewidth graphs
 - Polynomial time on dually chordal graphs and cographs
 - Open question: complexity on circle graphs and circular arc graphs
- Our results (Bousquet & Joffard '20+):
 - $\ensuremath{\operatorname{PSPACE}}$ -complete on circle graphs and $\ensuremath{\operatorname{P}}$ in circular arc graphs
 - PSPACE-complete in three other classes
- Open questions: complexity in *H*-free graphs

Outline

Can we eternally defend a graph ?

• Two players: A and D

- Two players: A and D
- D picks a set of vertices for his guards

- Two players: A and D
- D picks a set of vertices for his guards

- Two players: A and D
- D picks a set of vertices for his guards
- Each turn:

- Two players: A and D
- D picks a set of vertices for his guards
- Each turn:
 - A chooses a vertex to attack

- Two players: A and D
- D picks a set of vertices for his guards
- Each turn:
 - A chooses a vertex to attack

- Two players: A and D
- D picks a set of vertices for his guards
- Each turn:
 - A chooses a vertex to attack
 - D slides a guard along an edge onto the attack

- Two players: A and D
- D picks a set of vertices for his guards
- Each turn:
 - A chooses a vertex to attack
 - D slides a guard along an edge onto the attack

- Two players: A and D
- D picks a set of vertices for his guards
- Each turn:
 - A chooses a vertex to attack
 - D slides a guard along an edge onto the attack

- Two players: A and D
- D picks a set of vertices for his guards
- Each turn:
 - A chooses a vertex to attack
 - D slides a guard along an edge onto the attack

- Two players: A and D
- D picks a set of vertices for his guards
- Each turn:
 - A chooses a vertex to attack
 - D slides a guard along an edge onto the attack

- Two players: A and D
- D picks a set of vertices for his guards
- Each turn:
 - A chooses a vertex to attack
 - D slides a guard along an edge onto the attack

Eternal domination

Can we eternally defend a graph ?

- Two players: A and D
- D picks a set of vertices for his guards
- Each turn:
 - A chooses a vertex to attack
 - D slides a guard along an edge onto the attack
- D wins if he/she can defend against any infinite sequence of attacks

Eternal domination

Can we eternally defend a graph ?

- Two players: A and D
- D picks a set of vertices for his guards
- Each turn:
 - A chooses a vertex to attack
 - D slides a guard along an edge onto the attack
- D wins if he/she can defend against any infinite sequence of attacks

Eternal domination

Can we eternally defend a graph ?

- Two players: A and D
- D picks a set of vertices for his guards
- Each turn:
 - A chooses a vertex to attack
 - D slides a guard along an edge onto the attack
- D wins if he/she can defend against any infinite sequence of attacks

 $\gamma^{\infty}(G)$: min number of guards necessary for the defender to win

• State of the art:

- State of the art:
 - Value of γ^∞ known or bounded in many graph classes

- State of the art:
 - Value of γ^∞ known or bounded in many graph classes
 - $\alpha(G) \le \gamma^{\infty}(G) \le {\binom{\alpha(G)+1}{2}}$ (Klostermeyer & MacGillivray '07)

- State of the art:
 - Value of γ^∞ known or bounded in many graph classes
 - $\alpha(G) \le \gamma^{\infty}(G) \le {\binom{\alpha(G)+1}{2}}$ (Klostermeyer & MacGillivray '07)
- Our results (Bagan, Joffard & Kheddouci '20):

- State of the art:
 - Value of γ^∞ known or bounded in many graph classes
 - $\alpha(G) \le \gamma^{\infty}(G) \le {\binom{\alpha(G)+1}{2}}$ (Klostermeyer & MacGillivray '07)
- Our results (Bagan, Joffard & Kheddouci '20):
 - γ^∞ for digraphs, generalization of previous results

- State of the art:
 - Value of γ^∞ known or bounded in many graph classes
 - $\alpha(G) \le \gamma^{\infty}(G) \le {\binom{\alpha(G)+1}{2}}$ (Klostermeyer & MacGillivray '07)
- Our results (Bagan, Joffard & Kheddouci '20):
 - γ^∞ for digraphs, generalization of previous results
 - $\overrightarrow{\gamma^{\infty}}$: min γ^{∞} in any orientation of G

- State of the art:
 - Value of γ^∞ known or bounded in many graph classes
 - $\alpha(G) \le \gamma^{\infty}(G) \le {\alpha(G)+1 \choose 2}$ (Klostermeyer & MacGillivray '07)
- Our results (Bagan, Joffard & Kheddouci '20):
 - γ^∞ for digraphs, generalization of previous results
 - $\overrightarrow{\gamma^{\infty}}$: min γ^{∞} in any orientation of *G*
 - Value of $\overrightarrow{\gamma^{\infty}}$ in many graph classes

- State of the art:
 - Value of γ^∞ known or bounded in many graph classes
 - $\alpha(G) \le \gamma^{\infty}(G) \le {\alpha(G)+1 \choose 2}$ (Klostermeyer & MacGillivray '07)
- Our results (Bagan, Joffard & Kheddouci '20):
 - γ^∞ for digraphs, generalization of previous results
 - $\overrightarrow{\gamma^{\infty}}$: min γ^{∞} in any orientation of *G*
 - Value of $\overrightarrow{\gamma^{\infty}}$ in many graph classes
 - Deciding if $\overrightarrow{\gamma^{\infty}}(G) \leq k$ given k and G is conp-hard

Complexity result $\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

 $\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

 $\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

Theorem: For a given graph G and a given integer k, deciding if $\overrightarrow{\gamma^{\infty}}(G) \leq k$ is a conp-hard problem

Deciding if γ[∞](G) ≤ k is coNP-hard

 $\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

- Deciding if γ[∞](G) ≤ k is conp-hard
- Reduction:

 $\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

- Deciding if γ[∞](G) ≤ k is conp-hard
- Reduction:

 $\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

- Deciding if γ[∞](G) ≤ k is conp-hard
- Reduction:

 $\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

- Deciding if γ[∞](G) ≤ k is conp-hard
- Reduction:

 $\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

- Deciding if γ[∞](G) ≤ k is conp-hard
- Reduction:

 $\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

- Deciding if γ[∞](G) ≤ k is conP-hard
 Reduction: γ[∞](C(G)) = γ[∞](G) + m

 $\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

- Deciding if γ[∞](G) ≤ k is coNP-hard
- Reduction: $\gamma^{\infty}(G) \leq \overrightarrow{\gamma^{\infty}}(C(G)) m$

 $\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

- Deciding if γ[∞](G) ≤ k is coNP-hard
- Reduction: $\gamma^{\infty}(G) \leq \overrightarrow{\gamma^{\infty}}(C(G)) m$

 $\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

- Deciding if γ[∞](G) ≤ k is coNP-hard
- Reduction: $\gamma^{\infty}(G) \leq \overrightarrow{\gamma^{\infty}}(C(G)) m$

 $\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

- Deciding if γ[∞](G) ≤ k is coNP-hard
- Reduction: $\gamma^{\infty}(G) \leq \overrightarrow{\gamma^{\infty}}(C(G)) m$

 $\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

- Deciding if γ[∞](G) ≤ k is coNP-hard
- Reduction: $\gamma^{\infty}(G) \leq \overrightarrow{\gamma^{\infty}}(C(G)) m$

 $\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

- Deciding if γ[∞](G) ≤ k is coNP-hard
- Reduction: $\gamma^{\infty}(G) \leq \overrightarrow{\gamma^{\infty}}(C(G)) m$

 $\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

- Deciding if γ[∞](G) ≤ k is coNP-hard
- Reduction: $\gamma^{\infty}(G) \leq \overrightarrow{\gamma^{\infty}}(C(G)) m$

 $\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

- Deciding if γ[∞](G) ≤ k is coNP-hard
- Reduction: $\gamma^{\infty}(G) \leq \overrightarrow{\gamma^{\infty}}(C(G)) m$

 $\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

- Deciding if γ[∞](G) ≤ k is coNP-hard
- Reduction: $\gamma^{\infty}(G) \leq \overrightarrow{\gamma^{\infty}}(C(G)) m$

 $\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

- Deciding if γ[∞](G) ≤ k is coNP-hard
- Reduction: $\gamma^{\infty}(G) \leq \overrightarrow{\gamma^{\infty}}(C(G)) m$

 $\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

- Deciding if γ[∞](G) ≤ k is coNP-hard
- Reduction: $\gamma^{\infty}(G) \leq \overrightarrow{\gamma^{\infty}}(C(G)) m$

 $\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

- Deciding if γ[∞](G) ≤ k is coNP-hard
- Reduction: $\gamma^{\infty}(G) \leq \overrightarrow{\gamma^{\infty}}(C(G)) m$

 $\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

- Deciding if γ[∞](G) ≤ k is coNP-hard
- Reduction: $\gamma^{\infty}(G) \leq \overrightarrow{\gamma^{\infty}}(C(G)) m$

 $\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

- Deciding if γ[∞](G) ≤ k is coNP-hard
- Reduction: $\gamma^{\infty}(G) \leq \overrightarrow{\gamma^{\infty}}(C(G)) m$

$\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

- Deciding if γ[∞](G) ≤ k is coNP-hard
- Reduction: $\gamma^{\infty}(G) \leq \overrightarrow{\gamma^{\infty}}(C(G)) m$

 $\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

- Deciding if γ[∞](G) ≤ k is coNP-hard
- Reduction: $\gamma^{\infty}(G) \leq \overrightarrow{\gamma^{\infty}}(C(G)) m$

 $\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

- Deciding if γ[∞](G) ≤ k is coNP-hard
- Reduction: $\gamma^{\infty}(G) \leq \overrightarrow{\gamma^{\infty}}(C(G)) m$

 $\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

- Deciding if γ[∞](G) ≤ k is coNP-hard
- Reduction: $\gamma^{\infty}(G) \leq \overrightarrow{\gamma^{\infty}}(C(G)) m$

 $\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

- Deciding if γ[∞](G) ≤ k is coNP-hard
- Reduction: $\gamma^{\infty}(G) \leq \overrightarrow{\gamma^{\infty}}(C(G)) m$

 $\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

- Deciding if γ[∞](G) ≤ k is coNP-hard
- Reduction: $\gamma^{\infty}(G) \leq \overrightarrow{\gamma^{\infty}}(C(G)) m$

 $\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

- Deciding if γ[∞](G) ≤ k is coNP-hard
- Reduction: $\gamma^{\infty}(G) \leq \overrightarrow{\gamma^{\infty}}(C(G)) m$

 $\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

- Deciding if γ[∞](G) ≤ k is coNP-hard
- Reduction: $\gamma^{\infty}(G) \leq \overrightarrow{\gamma^{\infty}}(C(G)) m$

 $\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

- Deciding if γ[∞](G) ≤ k is coNP-hard
- Reduction: $\gamma^{\infty}(G) \leq \overrightarrow{\gamma^{\infty}}(C(G)) m$

 $\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

- Deciding if γ[∞](G) ≤ k is coNP-hard
- Reduction: $\gamma^{\infty}(G) \leq \overrightarrow{\gamma^{\infty}}(C(G)) m$

 $\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

- Deciding if γ[∞](G) ≤ k is coNP-hard
- Reduction: $\gamma^{\infty}(G) \leq \overrightarrow{\gamma^{\infty}}(C(G)) m$

 $\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

- Deciding if γ[∞](G) ≤ k is coNP-hard
- Reduction: $\gamma^{\infty}(G) \leq \overrightarrow{\gamma^{\infty}}(C(G)) m$

 $\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

- Deciding if γ[∞](G) ≤ k is coNP-hard
- Reduction: $\gamma^{\infty}(G) \leq \overrightarrow{\gamma^{\infty}}(C(G)) m$

 $\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

- Deciding if γ[∞](G) ≤ k is coNP-hard
- Reduction: $\gamma^{\infty}(G) \leq \overrightarrow{\gamma^{\infty}}(C(G)) m$

 $\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

- Deciding if γ[∞](G) ≤ k is coNP-hard
- Reduction: $\gamma^{\infty}(G) \leq \overrightarrow{\gamma^{\infty}}(C(G)) m$

 $\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

- Deciding if γ[∞](G) ≤ k is coNP-hard
- Reduction: $\gamma^{\infty}(G) \leq \overrightarrow{\gamma^{\infty}}(C(G)) m$

 $\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

- Deciding if γ[∞](G) ≤ k is coNP-hard
- Reduction: $\gamma^{\infty}(G) \leq \overrightarrow{\gamma^{\infty}}(C(G)) m$

 $\overrightarrow{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

- Deciding if γ[∞](G) ≤ k is coNP-hard
- Reduction: $\gamma^{\infty}(G) \leq \overrightarrow{\gamma^{\infty}}(C(G)) m$

 $\overline{\gamma^{\infty}}(G)$: minimum γ^{∞} over all the orientations of G

Theorem: For a given graph G and a given integer k, deciding if $\overrightarrow{\gamma^{\infty}}(G) \leq k$ is a conp-hard problem

- Deciding if γ[∞](G) ≤ k is coNP-hard
- Reduction: $\gamma^{\infty}(G) \leq \overrightarrow{\gamma^{\infty}}(C(G)) m$

Conjecture: Deciding if $\overrightarrow{\gamma^{\infty}}(G) \le k$ is a PSPACE-complete problem

Outline

SORTING BY REVERSALS (SBR)

SORTING BY REVERSALS (SBR)

INPUT: Two paths P, P' with same vertices and leaves, an integer k

SORTING BY REVERSALS (SBR)

INPUT: Two paths P,P' with same vertices and leaves, an integer k OUTPUT: TRUE iff there exists a sequence of at most k reversals that transforms P into P'

SORTING BY REVERSALS (SBR)

INPUT: Two paths P,P' with same vertices and leaves, an integer k OUTPUT: TRUE iff there exists a sequence of at most k reversals that transforms P into P'

SORTING BY REVERSALS (SBR)

INPUT: Two paths P, P' with same vertices and leaves, an integer k OUTPUT: TRUE iff there exists a sequence of at most k reversals that transforms P into P'

SORTING BY REVERSALS (SBR)

INPUT: Two paths P, P' with same vertices and leaves, an integer k OUTPUT: TRUE iff there exists a sequence of at most k reversals that transforms P into P'

SORTING BY REVERSALS (SBR)

INPUT: Two paths P, P' with same vertices and leaves, an integer k OUTPUT: TRUE iff there exists a sequence of at most k reversals that transforms P into P'

SORTING BY REVERSALS (SBR)

INPUT: Two paths P, P' with same vertices and leaves, an integer k OUTPUT: TRUE iff there exists a sequence of at most k reversals that transforms P into P'

SORTING BY REVERSALS (SBR)

INPUT: Two paths P, P' with same vertices and leaves, an integer k OUTPUT: TRUE iff there exists a sequence of at most k reversals that transforms P into P'

SORTING BY REVERSALS (SBR)

INPUT: Two paths P, P' with same vertices and leaves, an integer k OUTPUT: TRUE iff there exists a sequence of at most k reversals that transforms P into P'

SORTING BY REVERSALS (SBR)

INPUT: Two paths P, P' with same vertices and leaves, an integer k OUTPUT: TRUE iff there exists a sequence of at most k reversals that transforms P into P'

SORTING BY REVERSALS (SBR)

INPUT: Two paths P, P' with same vertices and leaves, an integer k OUTPUT: TRUE iff there exists a sequence of at most k reversals that transforms P into P'

Reversal: Inversion of a subpath

Application to the computation of genetic distance between species

SORTING BY REVERSALS (SBR)

INPUT: Two paths P, P' with same vertices and leaves, an integer k OUTPUT: TRUE iff there exists a sequence of at most k reversals that transforms P into P'

Reversal: Inversion of a subpath

Application to the computation of genetic distance between species

Flips

Remark: A reversal is equivalent to a flip that maintains connectivity:
Remark: A reversal is equivalent to a flip that maintains connectivity:

Remark: A reversal is equivalent to a flip that maintains connectivity:

Remark: A reversal is equivalent to a flip that maintains connectivity:

Flip:

Ρ

Remark: A reversal is equivalent to a flip that maintains connectivity:

Remark: A reversal is equivalent to a flip that maintains connectivity:

Remark: A reversal is equivalent to a flip that maintains connectivity:

Remark: A reversal is equivalent to a flip that maintains connectivity:

Remark: A reversal is equivalent to a flip that maintains connectivity:

Remark: A reversal is equivalent to a flip that maintains connectivity:

Remark: A reversal is equivalent to a flip that maintains connectivity:

SHORTEST CONNECTED GRAPH TRANSFORMATION (SCGT)

SHORTEST CONNECTED GRAPH TRANSFORMATION (SCGT) INPUT: Two connected multigraphs G, H with the same vertices and the same degree sequence, an integer k

SHORTEST CONNECTED GRAPH TRANSFORMATION (SCGT) INPUT: Two connected multigraphs G, H with the same vertices and the same degree sequence, an integer kOUTPUT: TRUE iff there exists a sequence of at most k flips that transforms G into H maintaining connectivity

Application to mass spectrometry

• State of the art for ${\rm SBR}{\rm :}$

- State of the art for SBR:
 - SBR is NP-complete (Caprara '97)

- State of the art for SBR:
 - SBR is NP-complete (Caprara '97)
 - 1.375-approximation algorithm for SBR (Berman et al. '02)

- State of the art for ${\rm SBR}{\rm :}$
 - SBR is NP-complete (Caprara '97)
 - 1.375-approximation algorithm for $_{\rm SBR}$ (Berman et al. '02)
- State of the art for SCGT :

- State of the art for ${\rm SBR}{\rm :}$
 - SBR is NP-complete (Caprara '97)
 - 1.375-approximation algorithm for SBR (Berman et al. '02)
- State of the art for $\ensuremath{\operatorname{SCGT}}$:
 - Always a transformation for $_{\rm SCGT}$ (Taylor '81)

- State of the art for ${\rm SBR}{\rm :}$
 - SBR is NP-complete (Caprara '97)
 - 1.375-approximation algorithm for SBR (Berman et al. '02)
- State of the art for SCGT :
 - Always a transformation for $_{\rm SCGT}$ (Taylor '81)
 - 4-approximation algorithm for SCGT (Bousquet & Mary '18)

- State of the art for ${\rm SBR}{\rm :}$
 - SBR is NP-complete (Caprara '97)
 - 1.375-approximation algorithm for SBR (Berman et al. '02)
- State of the art for SCGT :
 - Always a transformation for $_{\rm SCGT}$ (Taylor '81)
 - 4-approximation algorithm for SCGT (Bousquet & Mary '18)
- Our result (Bousquet & Joffard '19): 2.5-approximation algorithm for SCGT

Symmetric difference

• Symmetric difference $\Delta(G, H)$: $(G - H) \cup (H - G)$

• Remark: We can always partition Δ into alternating circuits

Symmetric difference

• Symmetric difference $\Delta(G, H)$: $(G - H) \cup (H - G)$

• Remark: We can always partition Δ into alternating circuits

• Remark: To transform G into H, we need at least $\frac{|\Delta|}{4}$ flips

• 4-approximation:

- 4-approximation:
 - Lower bound: $\frac{|\Delta|}{4}$

- 4-approximation:
 - Lower bound: $\frac{|\Delta|}{4}$
 - Upper bound: we can reduce $|\Delta|$ by 2 in 2 flips

- 4-approximation:
 - Lower bound: $\frac{|\Delta|}{4}$
 - Upper bound: we can reduce $|\Delta|$ by 2 in 2 flips

- 4-approximation:
 - Lower bound: $\frac{|\Delta|}{4}$
 - Upper bound: we can reduce $|\Delta|$ by 2 in 2 flips

- 4-approximation:
 - Lower bound: $\frac{|\Delta|}{4}$
 - Upper bound: we can reduce $|\Delta|$ by 2 in 2 flips

- 4-approximation:
 - Lower bound: $\frac{|\Delta|}{4}$
 - Upper bound: we can reduce $|\Delta|$ by 2 in 2 flips

- 4-approximation:
 - Lower bound: $\frac{|\Delta|}{4}$
 - Upper bound: we can reduce $|\Delta|$ by 2 in 2 flips

- 4-approximation:
 - Lower bound: $\frac{|\Delta|}{4}$
 - Upper bound: we can reduce $|\Delta|$ by 2 in 2 flips

- 4-approximation:
 - Lower bound: $\frac{|\Delta|}{4}$
 - Upper bound: we can reduce $|\Delta|$ by 2 in 2 flips

- 4-approximation:
 - Lower bound: $\frac{|\Delta|}{4}$
 - Upper bound: we can reduce $|\Delta|$ by 2 in 2 flips

- 4-approximation:
 - Lower bound: $\frac{|\Delta|}{4}$
 - Upper bound: we can reduce $|\Delta|$ by 2 in 2 flips

- 4-approximation:
 - Lower bound: $\frac{|\Delta|}{4}$
 - Upper bound: we can reduce $|\Delta|$ by 2 in 2 flips

- 4-approximation:
 - Lower bound: $\frac{|\Delta|}{4}$
 - Upper bound: we can reduce $|\Delta|$ by 2 in 2 flips

• 3-approximation:

- 4-approximation:
 - Lower bound: $\frac{|\Delta|}{4}$
 - Upper bound: we can reduce $|\Delta|$ by 2 in 2 flips

- 3-approximation:
 - Lower bound: $\frac{|\Delta|}{4}$

- 4-approximation:
 - Lower bound: $\frac{|\Delta|}{4}$
 - Upper bound: we can reduce $|\Delta|$ by 2 in 2 flips

- 3-approximation:
 - Lower bound: $\frac{|\Delta|}{4}$
 - Upper bound: we can reduce $|\Delta|$ by 4 in 3 flips

- 4-approximation:
 - Lower bound: $\frac{|\Delta|}{4}$
 - Upper bound: we can reduce $|\Delta|$ by 2 in 2 flips

- 3-approximation:
 - Lower bound: $\frac{|\Delta|}{4}$
 - Upper bound: we can reduce $|\Delta|$ by 4 in 3 flips
- 2.5-approximation:

- 4-approximation:
 - Lower bound: $\frac{|\Delta|}{4}$
 - Upper bound: we can reduce $|\Delta|$ by 2 in 2 flips

- 3-approximation:
 - Lower bound: $\frac{|\Delta|}{4}$
 - Upper bound: we can reduce $|\Delta|$ by 4 in 3 flips
- 2.5-approximation:
 - Lower bound: Exact formula for the case where we do not maintain connectivity (Will, 99)

- 4-approximation:
 - Lower bound: $\frac{|\Delta|}{4}$
 - Upper bound: we can reduce $|\Delta|$ by 2 in 2 flips

- 3-approximation:
 - Lower bound: $\frac{|\Delta|}{4}$
 - Upper bound: we can reduce $|\Delta|$ by 4 in 3 flips
- 2.5-approximation:
 - Lower bound: Exact formula for the case where we do not maintain connectivity (Will, 99)

- 4-approximation:
 - Lower bound: $\frac{|\Delta|}{4}$
 - Upper bound: we can reduce $|\Delta|$ by 2 in 2 flips

- 3-approximation:
 - Lower bound: $\frac{|\Delta|}{4}$
 - Upper bound: we can reduce $|\Delta|$ by 4 in 3 flips
- 2.5-approximation:
 - Lower bound: Exact formula for the case where we do not maintain connectivity (Will, 99)

- 4-approximation:
 - Lower bound: $\frac{|\Delta|}{4}$
 - Upper bound: we can reduce $|\Delta|$ by 2 in 2 flips

- 3-approximation:
 - Lower bound: $\frac{|\Delta|}{4}$
 - Upper bound: we can reduce $|\Delta|$ by 4 in 3 flips
- 2.5-approximation:
 - Lower bound: Exact formula for the case where we do not maintain connectivity (Will, 99)

- 4-approximation:
 - Lower bound: $\frac{|\Delta|}{4}$
 - Upper bound: we can reduce $|\Delta|$ by 2 in 2 flips

- 3-approximation:
 - Lower bound: $\frac{|\Delta|}{4}$
 - Upper bound: we can reduce $|\Delta|$ by 4 in 3 flips
- 2.5-approximation:
 - Lower bound: Exact formula for the case where we do not maintain connectivity (Will, 99)

• Improvement: Approximate the number of alternating C_4

Discussion about the lower bound

Discussion about the lower bound

 There exist G_k and H_k s.t. if we only flip edges of Δ, the number of flips to transform G_k into H_k while maintaining connectivity is at least 1.5 times Will's lower bound

Discussion about the lower bound

• There exist G_k and H_k s.t. if we only flip edges of Δ , the number of flips to transform G_k into H_k while maintaining connectivity is at least 1.5 times Will's lower bound

- Conjecture: The shortest transformation from G_k to H_k has length $\frac{|\Delta(G_k, H_k)|}{2} - 1$

- Conjecture: The shortest transformation from G_k to H_k has length $\frac{|\Delta(G_k, H_k)|}{2} 1$
 - \rightarrow True under some hypothesis

• Conjecture: The shortest transformation from G_k to H_k has length $\frac{|\Delta(G_k, H_k)|}{2} - 1$

 \rightarrow True under some hypothesis

• A shortest transformation from G to H only flips edges of $\Delta(G, H)$?

- Conjecture: The shortest transformation from G_k to H_k has length $\frac{|\Delta(G_k, H_k)|}{2} 1$
 - \rightarrow True under some hypothesis
- A shortest transformation from G to H only flips edges of $\Delta(G, H)$?
 - \rightarrow Open for paths

- Conjecture: The shortest transformation from G_k to H_k has length $\frac{|\Delta(G_k, H_k)|}{2} 1$
 - \rightarrow True under some hypothesis
- A shortest transformation from G to H only flips edges of $\Delta(G, H)$?
 - \rightarrow Open for paths
- Find a better lower bound to improve our approximation ratio

Summary of the thesis

Summary of the thesis

• Reconfiguration of dominating sets in the TAR model:
- Reconfiguration of dominating sets in the TAR model:
 - upper bounds on d_0 and linear diameters

- Reconfiguration of dominating sets in the TAR model:
 - upper bounds on d_0 and linear diameters
 - With N. Bousquet and P. Ouvrard, ISAAC 2020

- Reconfiguration of dominating sets in the TAR model:
 - upper bounds on d_0 and linear diameters
 - With N. Bousquet and P. Ouvrard, ISAAC 2020
- Reconfiguration of dominating sets in the TS model:

- Reconfiguration of dominating sets in the TAR model:
 - upper bounds on d_0 and linear diameters
 - With N. Bousquet and P. Ouvrard, ISAAC 2020
- Reconfiguration of dominating sets in the TS model:
 - Complexity of $\ensuremath{ \mathrm{TS-REACHABILITY}}$ in various graph classes

- Reconfiguration of dominating sets in the TAR model:
 - upper bounds on d_0 and linear diameters
 - With N. Bousquet and P. Ouvrard, ISAAC 2020
- Reconfiguration of dominating sets in the TS model:
 - Complexity of $\ensuremath{ \mathrm{TS-REACHABILITY}}$ in various graph classes
 - With N. Bousquet, 2020+

- Reconfiguration of dominating sets in the TAR model:
 - upper bounds on d_0 and linear diameters
 - With N. Bousquet and P. Ouvrard, ISAAC 2020
- Reconfiguration of dominating sets in the TS model:
 - Complexity of $\ensuremath{\operatorname{TS-REACHABILITY}}$ in various graph classes
 - With N. Bousquet, 2020+
- Eternal domination on digraphs and orientations of graphs:

- Reconfiguration of dominating sets in the TAR model:
 - upper bounds on d_0 and linear diameters
 - With N. Bousquet and P. Ouvrard, ISAAC 2020
- Reconfiguration of dominating sets in the TS model:
 - Complexity of $\ensuremath{ \mathrm{TS-REACHABILITY}}$ in various graph classes
 - With N. Bousquet, 2020+
- Eternal domination on digraphs and orientations of graphs:
 - new parameters, value in many graph classes, + complexity

- Reconfiguration of dominating sets in the TAR model:
 - upper bounds on d_0 and linear diameters
 - With N. Bousquet and P. Ouvrard, ISAAC 2020
- Reconfiguration of dominating sets in the TS model:
 - Complexity of $\ensuremath{ \mathrm{TS-REACHABILITY}}$ in various graph classes
 - With N. Bousquet, 2020+
- Eternal domination on digraphs and orientations of graphs:
 - new parameters, value in many graph classes, + complexity
 - With G. Bagan and H. Kheddouci, DAM, 2020

- Reconfiguration of dominating sets in the TAR model:
 - upper bounds on d_0 and linear diameters
 - With N. Bousquet and P. Ouvrard, ISAAC 2020
- Reconfiguration of dominating sets in the TS model:
 - Complexity of $\ensuremath{ \mathrm{TS-REACHABILITY}}$ in various graph classes
 - With N. Bousquet, 2020+
- Eternal domination on digraphs and orientations of graphs:
 - new parameters, value in many graph classes, + complexity
 - With G. Bagan and H. Kheddouci, DAM, 2020
- Reconfiguration of graphs with the same degree sequence:

- Reconfiguration of dominating sets in the TAR model:
 - upper bounds on d_0 and linear diameters
 - With N. Bousquet and P. Ouvrard, ISAAC 2020
- Reconfiguration of dominating sets in the TS model:
 - Complexity of $\ensuremath{\operatorname{TS-REACHABILITY}}$ in various graph classes
 - With N. Bousquet, 2020+
- Eternal domination on digraphs and orientations of graphs:
 - new parameters, value in many graph classes, + complexity
 - With G. Bagan and H. Kheddouci, DAM, 2020
- Reconfiguration of graphs with the same degree sequence:
 - 2.5-approximation algorithm

- Reconfiguration of dominating sets in the TAR model:
 - upper bounds on d_0 and linear diameters
 - With N. Bousquet and P. Ouvrard, ISAAC 2020
- Reconfiguration of dominating sets in the TS model:
 - Complexity of $\ensuremath{\operatorname{TS-REACHABILITY}}$ in various graph classes
 - With N. Bousquet, 2020+
- Eternal domination on digraphs and orientations of graphs:
 - new parameters, value in many graph classes, + complexity
 - With G. Bagan and H. Kheddouci, DAM, 2020
- Reconfiguration of graphs with the same degree sequence:
 - 2.5-approximation algorithm
 - With N. Bousquet, SOFSEM 2020

- Reconfiguration of dominating sets in the TAR model:
 - upper bounds on d_0 and linear diameters
 - With N. Bousquet and P. Ouvrard, ISAAC 2020
- Reconfiguration of dominating sets in the TS model:
 - Complexity of $\ensuremath{\operatorname{TS-REACHABILITY}}$ in various graph classes
 - With N. Bousquet, 2020+
- Eternal domination on digraphs and orientations of graphs:
 - new parameters, value in many graph classes, + complexity
 - With G. Bagan and H. Kheddouci, DAM, 2020
- Reconfiguration of graphs with the same degree sequence:
 - 2.5-approximation algorithm
 - With N. Bousquet, SOFSEM 2020
- Labeled packing of cycles: with H. Kheddouci, DMGT, 2020

- Reconfiguration of dominating sets in the TAR model:
 - upper bounds on d_0 and linear diameters
 - With N. Bousquet and P. Ouvrard, ISAAC 2020
- Reconfiguration of dominating sets in the TS model:
 - Complexity of $\ensuremath{\operatorname{TS-REACHABILITY}}$ in various graph classes
 - With N. Bousquet, 2020+
- Eternal domination on digraphs and orientations of graphs:
 - new parameters, value in many graph classes, + complexity
 - With G. Bagan and H. Kheddouci, DAM, 2020
- Reconfiguration of graphs with the same degree sequence:
 - 2.5-approximation algorithm
 - With N. Bousquet, SOFSEM 2020
- Labeled packing of cycles: with H. Kheddouci, DMGT, 2020
- Asymptotic results on simultaneous edge coloring: with G. Perarnau, 2020+

