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State of the art

d0: min value s.t. for any k ≥ d0, Rk(G) is connected
Γ: maximum size of a minimal dominating set

• Lower bounds:
• d0 > Γ
• There exist graphs s.t. d0 > Γ+1 (Suzuki et al. 16)
• There exist graphs with arbitrary Γ and γ s.t. d0 ≥ Γ+γ

(Mynhardt et al. 19)
• Upper bounds:

• k > Γ, Rk(G) connected ⇒Rk+1(G) connected (Haas &
Seyffarth 14)
→ If k > Γ and Rk(G) connected, then d0 ≤ k

• If G has two independent edges, d0 ≤min{n−1,Γ+γ} (Haas &
Seyffarth 14)

• If G is bipartite or chordal, d0 ≤ Γ+1 (Haas & Seyffarth 14)
• d0 ≤ Γ+α−1 (Haas & Seyffarth 17)
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Our results (Bousquet, Joffard & Ouvrard ‘20)

• Linear diameter for k ≥ Γ+α−1
• Treewidth:

• d0 ≤ Γ+ tw +1
• There exist graphs for which RΓ+tw−2 is disconnected

• Minor-sparse graphs:
• For ”d-minor sparse” graphs, d0 ≤ Γ+d −1
• For K`-minor free graphs, d0 ≤ Γ+O(`(log log`)18)
• For planar graphs, d0 ≤ Γ+3

• The connectivity proofs provide a sequence in polynomial time

• The sequences are linear →Rk has linear diameter
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Minor sparse graphs

Minor: obtained by contracting, deleting edges, and deleting
isolated vertices
d-minor sparse: bipartite minors have average degree less than d

Theorem: Let G be a d-minor sparse graph. If k = Γ(G)+d−1, then
Rk(G) is connected and the diameter of Rk(G) is linear

• Assume |Ds | = |Dt | = Γ
• By induction on |Dt \ Ds |:

• If

• .

DsDtD2D3D4Dt
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K`-minor free graphs and planar graphs

Theorem: For G K`-minor free, there exists C s.t. if k ≥ Γ(G)+
C`(log log`)18 then Rk(G) is connected and has linear diameter

Proof: there exists C s.t. for every `, any K`-minor free graph has
average degree at most C`(log log`)18 (Postle ’20)

Theorem: For G planar, if k ≥ Γ(G)+3 then Rk(G) is connected
and has linear diameter

Proof: Bipartite planar have at most 2n−4 edges → 4-minor sparse
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Open questions

• Close the gap for planar graphs:
• d0 ≤ Γ+3
• There exist graphs for which d0 > Γ+1:

Γ= 3

Conjecture: For every planar graph G , RΓ(G)+2(G) is connected

• Close the gap for the bound depending on the treewidth:
• d0 ≤ Γ+ tw +1
• There exist graphs for which d0 > Γ+ tw −2

• Find a better upper bound depending on the pathwidth and
the bandwidth
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Reconfiguration of dominating sets in the TS model

Can we transform Ds into Dt
with a sequence of slidings
keeping G dominated ?

DsDtDsD2D3D4Dt
R: the vertices are the dominating sets, two dominating sets are
adjacent if they differ by a sliding

Given Ds and Dt , what is the complexity of deciding if there is a
path from Ds to Dt ?

18/34



Reconfiguration of dominating sets in the TS model

Can we transform Ds into Dt
with a sequence of slidings
keeping G dominated ?

DsDtDsD2D3D4Dt
R: the vertices are the dominating sets, two dominating sets are
adjacent if they differ by a sliding

Given Ds and Dt , what is the complexity of deciding if there is a
path from Ds to Dt ?

18/34



Reconfiguration of dominating sets in the TS model

Can we transform Ds into Dt
with a sequence of slidings
keeping G dominated ?

DsDtDsD2D3D4Dt
R: the vertices are the dominating sets, two dominating sets are
adjacent if they differ by a sliding

Given Ds and Dt , what is the complexity of deciding if there is a
path from Ds to Dt ?

18/34



Reconfiguration of dominating sets in the TS model

Can we transform Ds into Dt
with a sequence of slidings
keeping G dominated ?

Ds

DtDsD2D3D4Dt
R: the vertices are the dominating sets, two dominating sets are
adjacent if they differ by a sliding

Given Ds and Dt , what is the complexity of deciding if there is a
path from Ds to Dt ?

18/34



Reconfiguration of dominating sets in the TS model

Can we transform Ds into Dt
with a sequence of slidings
keeping G dominated ?

Ds

Dt

DsD2D3D4Dt
R: the vertices are the dominating sets, two dominating sets are
adjacent if they differ by a sliding

Given Ds and Dt , what is the complexity of deciding if there is a
path from Ds to Dt ?

18/34



Reconfiguration of dominating sets in the TS model

Can we transform Ds into Dt
with a sequence of slidings
keeping G dominated ?

DsDt

Ds

D2D3D4Dt
R: the vertices are the dominating sets, two dominating sets are
adjacent if they differ by a sliding

Given Ds and Dt , what is the complexity of deciding if there is a
path from Ds to Dt ?

18/34



Reconfiguration of dominating sets in the TS model

Can we transform Ds into Dt
with a sequence of slidings
keeping G dominated ?

DsDtDs

D2

D3D4Dt
R: the vertices are the dominating sets, two dominating sets are
adjacent if they differ by a sliding

Given Ds and Dt , what is the complexity of deciding if there is a
path from Ds to Dt ?

18/34



Reconfiguration of dominating sets in the TS model

Can we transform Ds into Dt
with a sequence of slidings
keeping G dominated ?

DsDtDsD2

D3

D4Dt
R: the vertices are the dominating sets, two dominating sets are
adjacent if they differ by a sliding

Given Ds and Dt , what is the complexity of deciding if there is a
path from Ds to Dt ?

18/34



Reconfiguration of dominating sets in the TS model

Can we transform Ds into Dt
with a sequence of slidings
keeping G dominated ?

DsDtDsD2D3

D4

Dt
R: the vertices are the dominating sets, two dominating sets are
adjacent if they differ by a sliding

Given Ds and Dt , what is the complexity of deciding if there is a
path from Ds to Dt ?

18/34



Reconfiguration of dominating sets in the TS model

Can we transform Ds into Dt
with a sequence of slidings
keeping G dominated ?

DsDtDsD2D3D4

Dt

R: the vertices are the dominating sets, two dominating sets are
adjacent if they differ by a sliding

Given Ds and Dt , what is the complexity of deciding if there is a
path from Ds to Dt ?

18/34



Reconfiguration of dominating sets in the TS model

Can we transform Ds into Dt
with a sequence of slidings
keeping G dominated ?

DsDtDsD2D3D4Dt

R: the vertices are the dominating sets, two dominating sets are
adjacent if they differ by a sliding

Given Ds and Dt , what is the complexity of deciding if there is a
path from Ds to Dt ?

18/34



Reconfiguration of dominating sets in the TS model

Can we transform Ds into Dt
with a sequence of slidings
keeping G dominated ?

DsDtDsD2D3D4Dt

R: the vertices are the dominating sets, two dominating sets are
adjacent if they differ by a sliding

Given Ds and Dt , what is the complexity of deciding if there is a
path from Ds to Dt ?

18/34



Reconfiguration of dominating sets in the TS model

Can we transform Ds into Dt
with a sequence of slidings
keeping G dominated ?

DsDtDsD2D3D4Dt

R: the vertices are the dominating sets, two dominating sets are
adjacent if they differ by a sliding

Given Ds and Dt , what is the complexity of deciding if there is a
path from Ds to Dt ?

18/34



Results

ts-reachability

input: A graph G , two dominating sets Ds and Dt of G with
|Ds | = |Dt |
output: true iff there exists a reconfiguration sequence from Ds
to Dt under TS

• State of the art (Bonamy, Dorbec & Ouvrard ’19):
• pspace-complete, even when restricted to split, bipartite or

bounded treewidth graphs
• Polynomial time on dually chordal graphs and cographs
• Open question: complexity on circle graphs and circular arc

graphs
• Our results (Bousquet & Joffard ’20+):

• pspace-complete on circle graphs and p in circular arc graphs
• pspace-complete in three other classes

• Open questions: complexity in H-free graphs
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Eternal domination

Can we eternally defend a graph ?
• Two players: A and D
• D picks a set of vertices for his guards
• Each turn:

• A chooses a vertex to attack
• D slides a guard along an edge onto the attack

• D wins if he/she can defend against any infinite sequence of
attacks

γ∞(G): min number of guards necessary for the defender to win
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Results

• State of the art:
• Value of γ∞ known or bounded in many graph classes
• α(G)≤ γ∞(G)≤ (α(G)+1

2
)
(Klostermeyer & MacGillivray ’07)

• Our results (Bagan, Joffard & Kheddouci ’20):
• γ∞ for digraphs, generalization of previous results
• −→
γ∞: min γ∞ in any orientation of G

• Value of −→γ∞ in many graph classes
• Deciding if −→γ∞(G)≤ k given k and G is conp-hard
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Complexity result

−→
γ∞(G): minimum γ∞ over all the orientations of G

Theorem: For a given graph G and a given integer k, deciding if−→
γ∞(G)≤ k is a conp-hard problem

• Deciding if γ∞(G)≤ k is conp-hard
• Reduction: −→

γ∞(C(G))= γ∞(G)+m

C(G) G

Conjecture: Deciding if −→γ∞(G)≤ k is a pspace-complete problem
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Sorting by Reversals

sorting by reversals (sbr)

input: Two paths P,P ′ with same vertices and leaves, an integer k
output: true iff there exists a sequence of at most k reversals
that transforms P into P ′

Reversal: Inversion of a subpath

P
v1 v4 v3 v5 v2 v6v1 v4 v3 v6v5 v2v1 v4 v3 v6v2 v5v1 v4 v3 v2 v5 v6v1 v5 v6v4 v3 v2v2 v3 v4v1 v2 v3 v4 v5 v6

v1 v2 v3 v4 v5 v6
P ′

Application to the computation of genetic distance between species

A E D C B

A B C D E
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Flips

Remark: A reversal is equivalent to a flip that maintains
connectivity:
Flip:

a b

c d
→

(ab,cd)→ (ac ,bd)
a b

c d

a b

c d
→

(ab,cd)→ (ad ,bc)
a b

c d

P
v1 v4 v3 v5 v2 v6v1 v4 v3 v2 v5 v6v1 v4 v3 v2 v5 v6v1 v2 v3 v4 v5 v6

x xx x
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Shortest Connected Graph Transformation

shortest connected graph transformation (scgt)

input: Two connected multigraphs G ,H with the same vertices and
the same degree sequence, an integer k
output: true iff there exists a sequence of at most k flips that
transforms G into H maintaining connectivity

G

v0

v1
v2

v3
v4

H

v0

v1
v2

v3
v4

X
X

G

v0

v1
v2

v3
v4

X
X

G

v0

v1
v2

v3
v4

Application to mass spectrometry

H C C C O H
H H H

H
allyl alcohol C3H6O

C C
OC

H
H
H

H

H
H

oxetane C3H6O
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Results

• State of the art for sbr:
• sbr is np-complete (Caprara ’97)
• 1.375-approximation algorithm for sbr (Berman et al. ’02)

• State of the art for scgt:
• Always a transformation for scgt (Taylor ’81)
• 4-approximation algorithm for scgt (Bousquet & Mary ’18)

• Our result (Bousquet & Joffard ’19): 2.5-approximation
algorithm for scgt
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Symmetric difference

• Symmetric difference ∆(G ,H): (G −H)∪ (H −G)

H

v0

v1

v2

v3

v4

G

v0

v1

v2

v3

v4

v0

v1

v2

v3

v4

∆(G ,H)

v0

v1

v2

v3

v4

∆(G ,H)

• Remark: We can always partition ∆ into alternating circuits

• Remark: To transform G into H, we need at least |∆|
4 flips
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Approximation algorithms

• 4-approximation:
• Lower bound: |∆|

4
• Upper bound: we can reduce |∆| by 2 in 2 flips

++

+

x
++

+

x

• 3-approximation:
• Lower bound: |∆|

4
• Upper bound: we can reduce |∆| by 4 in 3 flips

• 2.5-approximation:
• Lower bound: Exact formula for the case where we do not

maintain connectivity (Will, 99)

X

X

• Improvement: Approximate the number of alternating C4
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Discussion about the lower bound

• There exist Gk and Hk s.t. if we only flip edges of ∆, the
number of flips to transform Gk into Hk while maintaining
connectivity is at least 1.5 times Will’s lower bound

G4 H4

∆(G4,H4)
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Open questions

• Conjecture: The shortest transformation from Gk to Hk has
length |∆(Gk ,Hk)|

2 −1

→ True under some hypothesis

• A shortest transformation from G to H only flips edges of
∆(G ,H) ?
→ Open for paths

• Find a better lower bound to improve our approximation ratio
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Summary of the thesis

• Reconfiguration of dominating sets in the TAR model:
• upper bounds on d0 and linear diameters
• With N. Bousquet and P. Ouvrard, ISAAC 2020

• Reconfiguration of dominating sets in the TS model:
• Complexity of ts-reachability in various graph classes
• With N. Bousquet, 2020+

• Eternal domination on digraphs and orientations of graphs:
• new parameters, value in many graph classes, + complexity
• With G. Bagan and H. Kheddouci, DAM, 2020

• Reconfiguration of graphs with the same degree sequence:
• 2.5-approximation algorithm
• With N. Bousquet, SOFSEM 2020

• Labeled packing of cycles: with H. Kheddouci, DMGT, 2020
• Asymptotic results on simultaneous edge coloring: with G.
Perarnau, 2020+
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