
Lecture Notes for 6.824, Arti�cial Intelligence
c
1992 David McAllester, all rights reserved Rev. November, 1994

Graph Search

and

STRIPS Planning

1 Introduction to Graph Search

Consider the eight puzzle show in �gure 1. This puzzle is played on a three

by three square board containing eight tiles and an empty square. Any tile

which is next to the empty square can be slid into the empty square leaving

an opening (empty square) in the place that used to be occupied by the

moved tile. Figure 1 shows how one state of the puzzle can be transformed

into another con�gure by sliding a tile into the empty square. Given an

initial state of the puzzle the objective is to �nd a sequence of legal moves

that transform the initial state into some desired goal state. Figure 2 also

shows a typical goal state.

The problem of �nding a sequence of moves that transforms a given initial

state into a given goal state can be formulated as a graph search problem.

The nodes of the graph are the possible states of the puzzle and the arcs of

the graph correspond to legal moves that transform one state into another.

The problem is to �nd a path in this graph from a given initial state to a

given goal state.

In the eight puzzle there are four types of legal moves. The empty square

can move up, move down, move right, or move left. This allows the puzzle

to be formulated in terms of four operations U , D, L, and R that move the

empty square up, down, right and left respectively. If the empty square is

already on the upper edge of the board then we de�ne the operation U to

1



1 4 7

5 3

2 6 8

1 4 7

5 3

2 6 8

Figure 1: A legal move in the eight puzzle.

1 4 7

5 3

2 6 8

INITIAL STATE GOAL STATE

1 2 3

4 5 6

7 8

Figure 2: A graph search problem.

2



leave the state unchanged and a similar convention is used for the operations

D, L, and R. Note that the entire graph search problem can be speci�ed by

a triple hs; g; fU;D;L;Rgi where s is an initial state, g is a goal state, and

fU;D;L;Rg is a set of operations that can be applied to states. The possible

states of the puzzle can be represented by simple Lisp data structures and

the operations by simple Lisp procedures on those data structures.

Consider a speci�cation of a graph search problem as an initial state, a goal

state (both represented by Lisp data structures), and set of legal operations

(represented by Lisp procedures). The speci�cation of the search problem is

usually much smaller than the implicitly represented graph | for the eight

puzzle the problem can be speci�ed with less than a page of Lisp code but

the implicitly represented graph contains over 100,000 nodes. If we consider

the natural generalization of the eight puzzle to n�n boards, the size of the

speci�cation grows as n2 but the size of the represented graph grows as (n2)!.

De�nition: A graph search problem consists of a set of an initial

state, a goal state, and a set of state transition operators, i.e.,

functions from states to states.1

Rubic's cube and the towers of Hanoi are two particularly well known exam-

ples of puzzles that can be speci�ed as an initial state, a goal state, and a

set of legal operations. As in the eight puzzle, the size of the graph involved

is vastly larger than the size of the problem speci�cation. Just as constraint

satisfaction problems correspond to the complexity class NP, graph search

problems speci�ed by a pair of states and allowed operations correspond to

the complexity class PSPACE. Game search also corresponds to PSPACE.

However, in practice the techniques that work well for game search are quite

1This de�nition does not specify how the states and operators are to be represented. In

practice, a state is usually represented by an array or list structure and the operations are

represented by computer programs, such as Lisp procedures. In order to formally capture

the intuition that graph search corresponds to the complexity class PSPACE the de�nition

of a graph search problem must be made more restrictive | the allowed representation

of states and operators must be speci�ed. The de�nition of a STRIPS planning problem

in section /refSTRIPS of this chapter can be viewed as a more restricted de�nition of a

graph search problem that is provably PSPACE complete.

3



di�erent from those that work well for graph search. Game search algorithms

are discussed in chapter eight.

The following sections present a series of algorithms for graph search. The

most pragmatically useful algorithm is IDA* presented in section 6. The

earlier algorithms provide insight into the history and range of possibilities

of algorithms for PSPACE complete graph search problems.

2 Depth First and Breadth First Search

In this section, and in sections, 3 through 6 of this chapter we assume a �xed

but arbitrary graph search problem hs; g; fo1; � � � ; obgi where s is the initial
state, g is the goal state, and fo1; � � � ; obg is the set of legal operations. I will
refer to states derived by repeated application of operations to the initial

state as \nodes" of the graph search problem. A sequence of operations will

be called a plan. Note that a plan (a sequence of operations) can be applied

to any node to give a new node.

This section presents a naive algorithm for graph search called \algorithm

zero". Algorithm zero uses a data structure called FRINGE which contains a

set of pairs hnP i where n is a node and P is a plan (sequence of operations)

that leads from the given initial node to the node n.

Graph search algorithm zero: This algorithm �nds a plan that leads

from s to g using the operations o1; � � � ; ob.

1. Initialize FRINGE to be the set containing the pair hs; ;i where s is the
initial node and ; is the empty plan.

2. Remove a pair hn; P i from FRINGE.

3. If n is the goal node g then terminate with success and return the plan

P .

4. For each of the operations o1; � � � ; ob add the pair hoi(n); P ; oii to FRINGE.

5. Go to step 2.

4



The behavior of algorithm zero is quite sensitive the way nodes are selected

at step 2. If one always removes the most recently added pair (in which case

FRINGE behaves as a stack) then the algorithm executes a depth �rst search.

If one always removes the oldest (earliest added) pair (in which case FRINGE

behaves as a queue) then the algorithm executes breadth �rst search.

Algorithm zero is not guaranteed to terminate | if there is no plan leading

from the initial node to the goal then the procedure will run forever. Even if

there is a solution, depth �rst search may run forever exploring some in�nite

unsuccessful plan. However, if there is a solution breadth �rst search will

always �nd a shortest plan that solves the problem.

3 Transposition Tables

Breadth �rst and depth �rst search can be modi�ed to guarantee termina-

tion whenever the graph being searched is �nite. The basic idea is to mark

previously visited nodes and to avoid placing previously visited nodes back

onto the fringe in step 4. Graph algorithms are often viewed as polynomial

time procedures that operate on explicitly given graphs. Given an explicit

representation of a graph, where each node is represented by, say, an integer

from 1 to the the number of nodes, there is no problem in \marking" nodes

as they are visited. However, when graph search is formalized as a PSPACE

complete problem we need to carefully consider how one marks previously

visited nodes. In PSPACE complete graph search problems nodes are rep-

resented by data structures such as arrays or list structures. When we say

that a newly generated node is \the same" as some previously visited node,

we do not mean that the newly generated data structure occupies the same

location in memory as the earlier data structure. If the two data structures

in question reside in di�erent parts of memory, then a mark in the earlier

data structure will not be visible in the new data structure. I will assume an

\intern function" I such that for any two data structures n and m, if n and

m represent the same node (e.g., the same state of eight puzzle) then I(n)

is identical to (in the same memory location as) I(m). The interned data

structure I(n) can be used to \carry side e�ects" between the distinct data

structures n and m. The intern function I can be computed using a hash

5



table or some other dictionary data structure.

The most common source of speedup frommarking is due to \transpositions".

Consider two operations oi and ok and a node n. It is often the case that

oi(ok(n)) equals ok(oi(n)) | we say that oi and oj can be transposed (alter-

natively, that they commute). Because transposition is a common source of

speedup from marking, the hash table used to implement the intern function

I is often called a transposition table.

Using a transposition table to recognize previously visited nodes we can con-

struct what is commonly called the breadth �rst search procedure.

Breadth First Search:

1. Initialize QUEUE to be the queue containing the pair hs; ;i where s is

the initial node and ; is the empty plan.

2. Remove the �rst pair hn; P i from QUEUE.

3. If I(n) is marked then go to step 2.

4. Mark I(n).

5. If n is the goal node g then terminate with success and return the plan

P .

6. For each of the operations o1; � � � ; ob add the pair hoi(n); P ; oii to the

end of QUEUE.

7. Go to step 2.

In most PSPACE complete graph search problems it is impossible to search

all the nodes of the graph. So we do not really care about termination |

if there is no solution then the procedure will run much longer than we are

willing to wait. However, in those cases where there is a solution path it is

important that the search procedure �nd the path quickly. In analyzing the

complexity of graph search procedures we assume that there is a solution

path and consider the time complexity of the algorithm as a function of the

path length d.

6



If there are b legal operations in a graph search problem then the breadth

�rst version of algorithm zero will always take order bd time to �nd a solu-

tion of length d. For certain graph search problems, marking can reduce this

from order bd to order d. Exactly how much savings is generated by mark-

ing depends, of course, on the structure of the particular search problem in

question. Let N(d) be the number of distinct nodes in the graph that can be

reached by a plan of length d. While the naive algorithm must take O(bd)

time, the marking algorithm takes order O(N(d)) time.2

4 Least Cost Plans

In this section we examine Dijkstra's shortest path algorithm [Dijkstra, 1959]

for �nding least cost plans. The graph search procedure can be viewed as

a planner | it is searching for a plan, a sequence of operations, that can

transform the initial state into the goal state. If the states represents states

of actual physical objects, such as a state of robots on an assembly line, then

we may wish to consider not only how hard it is to �nd a plan, but also

how di�cult it is to physically execute a plan. Each operation can oi can be

associated with a cost c(oi) which is the cost of physically executing oi. If

P is a plan then we de�ne c(P ) to be the sum of the costs of the operations

in P . Algorithm one shown below is guaranteed to �nd a least cost plan

whenever a plan exists.

Dijkstra's Shortest Path Algorithm

1. Initialize FRINGE to be the set containing the pair hs; ;i where s is the
initial node and ; is the empty plan.

2. If FRINGE is empty then terminate with failure.

3. Remove a pair hn; P i from FRINGE such that c(P ) is minimum over all

elements of FRINGE.

2This analysis assumes that the intern function I can be computed in unit time. This is

true on average for hash tables but not in the worst case. Using a dictionary data structure

with logN worst case lookup time, the procedure takes order N (d) logN (d) time.

7



4. If I(n) is marked then go to step 2.

5. Mark I(n).

6. If n is the goal node g then terminate with success and return the plan

P .

7. For each of the operations o1; � � � ; ob add the pair hoi(n); P ; oii to FRINGE.

8. Go to step 2.

A complexity analysis of Dijkstra's shortest path algorithm can be given in

terms of the following notations.

De�nition: R(c) is the set of nodes reachable from the start node

via a plan of cost c or less.

De�nition: N(c) is the number of nodes in R(c).

De�nition: F (c) is the set of fringe nodes at cost c, i.e., nodes

that are not in R(c) but are reachable by a single operation from

some element of R(c).

It is easy to see that the plans selected in step 3 of algorithm one have non-

decreasing costs | all pairs added to FRINGE have a cost larger than the last

pair removed. However, the algorithm may process several plans of the same

cost. The operation of the algorithm can be divided into \phases". First

we process plans of some cost c1, then we process plans of a larger cost c2,

and so on. Because of marking, the algorithm does not process all possible

plans. However, immediately after the algorithm �nishes process plans of

cost ci it will have marked all nodes in R(ci) and FRINGE will contain all

nodes in F (ci). Thus, if the procedure �nishes processing plans of cost c,

and no solution has been found, then there is no solution of cost c. Thus the

procedure is guaranteed to �nd a minimal cost solution.

8



Now we analyze the time taken by this procedure to �nd a plan of cost c.

If there exists a plan of cost c then the procedure will terminate by the

time it �nishes processing all plans of cost c. For a �xed branching factor

b, the number of nodes placed on FRINGE is proportional to N(c). In this

procedure, FRINGE can be implemented as a priority queue. To process n

items in a priority queue takes order n log n time. Thus the total time spent

adding and deleting elements from FRINGE is order N(c) logN(c). Since the

total number of items added to FRINGE is order N(c), there are at most order

N executions of step 2. Even if we allow for logN(c) time in computing the

dictionary lookup function I, the total time other than handling the priority

queue is also order N(c) logN(c). Thus this procedure can �nish processing

plans of cost c in order N(c) logN(c) total time. It is important to remember,

however, that N(c) usually grows exponentially in c.

5 The A* Algorithm

In this section we consider an algorithm, called A*, that exploits additional

information about distances in the graph. The A* algorithm is based on the

following de�nitions.

De�nition: h�(n) is the cost of a minimal cost plan that leads

from n to the goal node.

De�nition: An admissible heuristic function is a function h from

nodes to costs such that for any node n we have that h(n) �
h�(n).

An admissible heuristic function tells us, without searching, that the least

cost plan form the given node to the solution costs at least so much, i.e., we

are at least so far from the goal. For example, in the eight puzzle we can take

h(n) to be the number of tiles out of position at node n. Any solution must

move every tile, and we will need at least h(n) moves. Since we need at least

h(n) moves to solve the puzzle starting at node n, we have that h(n) � h�(n)

and h is an admissible heuristic.

9



In the remainder of this section, and in section 6, we assume a �xed but

arbitrary admissible heuristic function. In practice the algorithms in this

section can be used with heuristic functions that are not admissible, i.e., a

function h that heuristically approximates h� but which might be larger than

h�. The use of a heuristic function in selecting the next node for expansion

was introduced by Doran and Michie [Doran and Michie, 1966]. The concept

of an admissible heuristic function, and an early variant of the A* procedure

presented below, was introduced by Hart Nilsson and Raphael [Hart et al.,

1968].

The heuristic function h can be used to assign a \cost" to a plan.

De�nition:

The projected cost of a plan P is c(P )+h(n) where n is the node

reached by following P from the initial node.

Whenever h is admissible the projected cost of a plan P is a lower bound

on the cost of any solution that begins with P . Longer plans have larger

costs, and one might expect that longer plans also have larger projected

cost. However, there are \pathological" heuristic functions, which are still

admissible, under which an extension of a plan P can have smaller projected

cost than P . The following de�nition can be used to characterize the \well

behaved" admissible heuristic functions.

De�nition: An admissible heuristic h is called monotone if for

any node n and operation oi we have that c(oi)+h(oi(n)) � h(n).

It seems that most admissible heuristic functions are monotone. The A*

algorithm will �nd a least cost plan provided that the heuristic function is

both admissible and monotone.

A* Graph search algorithm.

1. Initialize FRINGE to be the set containing the pair hs; ;i where s is the
initial node and ; is the empty plan.

10



2. If FRINGE is empty then terminate with failure.

3. Remove a pair hn; P i from FRINGE which minimizes the projected cost

of P .

4. If I(n) is marked then go to step 2.

5. If n is the goal node g then terminate with success and return the plan

P .

6. Mark I(n).

7. For each of the operations o1; � � � ; ob add the pair hoi(n); P ; oii to FRINGE.

8. Go to step 2.

The only di�erence between A* and algorithm one is the method of selecting

the next pair at step 3. Since the projected cost of a plan can not decrease

as operations are added, the new pairs generated in step 7 involve plans

whose projected cost is at least as large as the projected cost of the last plan

removed in step 3. This implies that the projected cost of the plans removed

in step 3 is non-decreasing. To analyze both the correctness and the running

time of the above A* algorithm we use to following de�nitions.

De�nition: R�(c) is the set of nodes n such that there exists a

plan from the initial node to n with projected cost no larger than

c.

De�nition: F �(c) is the set of nodes that are not in R�(c) but

are reachable by a single operation from some element of R�(c).

De�nition: N�(c) is the number of nodes in R�(c).

The projected cost of a plan P is always at least as large as the classical cost

c(P ). So R�(c) is a subset of R(c) and N�(c) is less than or equal to N(c).

If the values of h are very large, then projected costs are much larger than

11



classical costs, R�(c) is a small subset of R(c), and N�(c) is much smaller

than N(c).

As previously mentioned, the monotonicity condition ensures that the plans

selected in step 3 have non-decreasing projected costs. Immediately after

the algorithm �nishes processing plans of projected cost c or less it will

have marked all nodes in R�(c) and FRINGE will contain all nodes in F �(c).

This implies that if the procedure �nishes processing plans of cost c, and

no solution has been found, then there is no solution of cost c. Thus the

procedure is guaranteed to �nd a minimal cost solution. By an argument

similar to that given for algorithm one, the procedure terminates in time

proportional to N�(c) logN�(c) where c is the cost of a minimal cost solution

plan.

6 Iterative Deepening and IDA*

Iterative deepening uses a bounded version of depth �rst search | a depth

�rst search which fails and backtracks whenever it generates a path longer

than the given bound. To ensure that any solution will eventually be found,

the depth �rst search is repeated with ever increasing bounds. Because the

number of nodes searched generally grows exponentially with the size of the

search, the time spent in early searches is negligible compared to the time

taken of the last search (or perhaps the last several searches). Iterative deep-

ening with admissible heuristic cuto� was �rst proposed and analyzed in the

context of graph search by Korf [Korf, 1985]. Prior to Korf's work iterative

deepening was recognized as an essential technique in the construction of

high performance computer chess programs.

In practice iterative deepening has dramatic advantages over all of the proce-

dures presented in the previous sections. First, iterative deepening is analyt-

ically superior | it runs in timeN�(c) rather than N�(c) logN�(c).3 Second,

iterative deepening, and depth �rst search in general, has the even more im-

portant pragmatic advantage that a transition from one node to the next

3This analysis requires the assumption that the search space grows exponentially and

that transposition table lookups take constant time.

12



in the search tree can be done by side e�ect rather than by copying. For

example, if the board of the eight puzzle is represented by an array then one

can move to the next position by setting values in that array. In depth �rst

search only one board position is needed at any given time and so copying is

unnecessary. In breadth �rst search or A* one must maintain a separate copy

of each node on the FRINGE data structure. A third advantage of iterative

deepening is reduced space requirements. If one does not use a transposition

table then the space required by iterative deepening is linear, rather than ex-

ponential, in the length of the solution path. Finally, iterative deepening is

easier to implement. The procedures described can be implemented directly

in nondeterministic lisp. Nondeterministic Lisp provides highly e�cient au-

tomatic backtracking and automatic backtrackable side e�ects.

In order to run in time proportional to N�(c) we must detect repeated visits

to the same node. As in the case of Algorithm one and A*, this can be done

with an intern function I. However, depth �rst search makes simple marking

insu�cient. Rather than remember whether I(n) is marked or unmarked, we

store a numberM(I(n)) in the data structure I(n). The numberM(I(n)) is

the value of the largest cost c such that there has been a call to the procedure

FIND-PLAN on node n and cost c. Recording this number prevents redundant

computations of the function FIND-PLAN.

To compute (FIND-PLAN n c) do the following:

1. If c < 0 then return failure.

2. If n is the solution node then return the empty plan.

3. If h(n) is greater than c then return failure.

4. If M(I(n)) has been set to a value greater than or equal to c then

return failure.

5. Set M(I(n)) to c.

6. If there is some operation oi such that (FIND-PLAN oi(n) c � c(oi))

returns a plan P , then return the plan oi;P .

7. Otherwise, return failure.

13



To analyze the time required to compute the value of FIND-PLAN we make

the following assumptions.

1. The functions h and I can be computed in unit time.

2. The cost of each operation oi is a positive integer.

3. N�(c) grows exponentially in c, i.e., there exists a minimum branching

factor B > 1 such that for all positive integer costs c > 1 we have

N�(c) � BN�(c� 1).

We now show that the total time required to compute (FIND-PLAN s c) is

order N�(c). Now consider computing (FIND-PLAN s c) where s is the initial

node and c is an integer. First, note that the total time taken by (FIND-PLAN

s c) is proportional to the total number of executions of step 6 | if there

are b operators then the total number of recursive calls to the procedure is

proportional to b times the number of executions of step 6. Because of the

�lter at step 4, step 6 will never be executed twice for the same value of n

and c. The total number of calls to step 6 can be no larger than the number

of pairs hn; c0i such that a recursive call (FIND-PLAN n c0) is generated and

such that the test at step 3 is passed, i.e., h(n) � c0. All recursive calls

generated by the procedure have the form (FIND-PLAN n c�c(P )) where P
is a plan from the initial node to n. If h(n) � c� c(P ) then C(p)+h(n) � c,

i.e., the projected cost of P must be no larger than c in order for step 6 to

be executed. For a �xed node n, the number of such values of c0 such that

a call of the form (FIND-PLAN n c0) is generated, and leads to an execution

of step 6, is equal to the number of distinct values of c(P ) where P is a plan

from s to n with projected cost no larger than c. These projected costs must

be in the interval [g(n) + h(n); c] where g(n) is the least cost plan from the

initial node to n. This interval is the set of values c00 such that n is a member

of R�(c00). The total number of executions of step 6 can be no larger than the

sum over all nodes n in R�(c) of the number of distinct values c00 � c that n

is a member of R�(c00). This implies that the total number of executions of

step 6 is less than or equal to

N�(c) +N�(c� 1) +N�(c� 2) + � � �+N�(0):

14



Given that that N�(c) � BN�(c), we now have that the total number of

executions of step 6 is less than or equal to

N�(c)(1 +
1

B
+

1

B2
+

1

B3
+ � � �) = N�(c)

B

B � 1
:

Note that the procedure FIND-PLAN may explore a given node more than

once, but the overhead due to repeated explorations of the same node results

in at most a factor of B

B�1
slow-down in the procedure. If the minimal

branching factor is large (say 2 or more) then this additional factor is quite

manageable and much smaller than logN�(c) for practical values of N�(c).

The procedure FIND-PLAN requires an a-priori upper bound on the cost of

allowed plans and returns the �rst plan it encounters that has an acceptable

cost. The following procedure can be used to �nd a least cost plan.

The algorithm IDA*.

1. Initialize c to 0.

2. If (FIND-PLAN s c) returns a plan P then return plan P .

3. Set c to c+ 1.

4. Go to 2.

Under the assumption that all costs are integers, this procedure returns a

least cost plan. Under the above assumptions that h and I take unit time, and

that N�(c) grows exponentially in c, we can show that the above procedure

takes order N�(c) time where c is the cost of a minimal cost plan from s to

the goal node. The time taken by this procedure is dominated by the time

taken by the calls to FIND-PLAN. Since (FIND-PLAN s c0) takes order N�(c0)

time the overall procedure takes time on the order of

N�(c) +N�(c� 1) +N�(c� 2) + � � �+N�(0):

Under the assumption that N�(c) grows exponentially in c, this sum is less

than or equal to

N�(c)(1 +
1

B
+

1

B2
+

1

B3
+ � � �) = N�(c)

B

B � 1
:

15



So the total time is order N�(c).

The overhead due to iterative deepening appears as the factor B
B�1

in the

analysis. For most values of B and N�(c) encountered in practice, the factor

of B

B�1
is much smaller than logN�(c). Depth �rst search also allows a host

of constant reducing optimizations not possible in breadth �rst search. In

practice, iterative deepening is much faster than queue-based approaches.

7 STRIPS Planning

Within arti�cial intelligence graph search has sometimes been used as a model

of common sense planning. Suppose that you want to have a barbecue. The

goal is to have certain people come to the house and to serve them (and

yourself) some good food. One might attempt to think of this as a graph

search problem where you are currently in some state of the world and you

want to select a sequence of actions that results in some desired state of the

world. Unfortunately, you do not know all aspects of the world | the world

is far too complex to represent in some simple data structure that you can

give to your favorite automatic graph search procedure. However, the world

can be partially described by stating properties of the world that are currently

true, such as you are currently at the o�ce, you currently have less than ten

dollars in your wallet, and so on. STRIPS planning is a method of solving

graph search problems using incomplete knowledge of the initial state.

We assume that each node of a graph search problem, i.e., each state of the

world or state of a puzzle, can be partially described in terms of propositions.

We assume a set of proposition symbols where each proposition symbol is

associated with a truth function on nodes | each proposition is either true

or false at each node. The behavior of the operators can be partially described

in terms of these propositions. We also assume that we a set � of proposition

symbols that are known to be true at the initial node. We further assume that

we are given a set 
 of \goal propositions". The planning problem is to �nd

a plan (sequence of operations) such that at any node where all propositions

in � are true, applying plan � results in a node where all propositions in 


are true. This desired property of the plan � can be expressed in dynamic

16



logic notation as follows.

De�nition: We say that the speci�cation � ! [�]
 holds in a

graph search problem if, at each node where every proposition

in � is true, applying the plan � results in a node where each

proposition in 
 is true.

STRIPS planning not only deals with partial information about nodes in

the search graph (states of the world), it also deals with partial information

about the behavior of operators. Partial information about each operator

can be phrased in terms of the proposition symbols used to describe nodes.

De�nition: A STRIPS operator speci�cation consists of a set of

operator symbols where each operator symbol is associated with

a prerequisite list, an add list and a delete list each of which is a

set of proposition symbols.

De�nition: A STRIPS operator speci�cation is said to hold (or

be valid) in a graph search problem if for each operator oi, and

each node n such that every prerequisite of oi is true at n, we

have the following conditions.

� All propositions on the add list of oi are true at the node

oi(n).

� If P is a proposition that is not on the delete list of oi, and

P is true at n, then P is true at oi(n).

If the prerequisites of an operator are met, then an application of that op-

erator is guaranteed to achieve (make true) the propositions on its add list.

Furthermore, if the prerequisites of an operator are met then any proposi-

tion not on the delete list of that operator is guaranteed to be \preserved"

in the sense that if it was true before then operation is applied then it is

true after the operation is applied. For example, suppose that each node of

the graph search problem is a pair of numbers hx; yi. Suppose that some of

the propositions are of the form P (x), i.e., they only depend on the value

17



of x, and other propositions are analogously of the form P (y). Furthermore

suppose that some operators are of the form x := f(x; y), i.e., the operator

may change the value of x but does not alter the value of y. In this case

any proposition of the form P (y) is preserved by an operator of the form

x := f(x; y). So no proposition of the form P (y) should be on the delete list

of x := f(x; y) | all propositions on the delete list of x := f(x; y) should

be propositions that depend on the value of x. As a more concrete example,

consider the operator x := x+ y and the proposition E(x) that is true just

in case x is an even number. Because there are nodes at which x := x + y

does not preserve E(x), the proposition E(x) must be included on the delete

list of the operator x := x+ y. E(x) must be on the delete list of x := x+ y

even though x := x + y can sometimes cause E(x) to go from false to true.

In the formulation of a STRIPS operator description we assume that all

propositions can be treated as simple atomic symbols. A more sophisticated

treatment of operators and propositions is discussed below.

De�nition: A STRIPS planning problem consists of a STRIPS

operator speci�cation, a set � of initial propositions and a set 


of goal propositions.

De�nition: A solution to a STRIPS planning problem is a plan

(sequence of operators) � such that, in every graph where the

STRIPS operator speci�cation holds, we have �! [�]
.

In a STRIPS planning problem we are given a STRIPS operator speci�cation

rather than a particular graph search problem. Since we are not given any

particular graph, the graph search methods described earlier can not be di-

rectly applied. Fortunately, any strips planning problem can be reduced to a

classical graph search problem by constructing a particular search graph from

the partial information given in the operator speci�cation. The free graph

of a STRIPS planning problem is a graph in which the nodes are subsets of

proposition symbols and in which the operators map sets of propositions to

sets of propositions in accordance with prerequisite lists, add lists and delete

lists of the operators. More precisely, we have the following de�nition.

De�nition: The free graph search problem of a STRIPS planning

problem is the graph search problem h�;
; ho1; � � � obii where �

18



is the given set of initial propositions, 
 is the given set of goal

propositions, and each operator oi maps a set of propositions � to

a set of propositions oi(�) in accordance with the following rules.

� If every prerequisite of oi is true in � then oi(�) equals �

minus the elements of the delete list of oi plus the elements

of the add list of oi.

� If some prerequisite of oi is not a member of � then oi(�) is

the empty set.

In the free graph search problem associated with a STRIPS planning problem

the nodes are sets of proposition symbols. A proposition symbol P is taken to

be true at a node � just in case � contains P . The free graph gives a concrete

graph search problem that can be searched using the standard graph search

techniques. The free graph search problem di�ers from the graph search

problems discussed earlier in that the goal is to �nd a plan that takes the

start node � to some node that contains the goal set 
 | a solution is not

required to take � precisely to the single node 
. The precise relationship

between the free graph and the original STRIPS planning problem is captured

in the following lemmas.

First Free Graph Lemma: If a plan � takes the node � in

the free graph search problem to some node that contains 
 then

� is a solution to the given STRIPS planning problem, i.e., the

statement �! [�]
 holds in all graph search problems for which

the given operator speci�cation holds.

Proof: Consider an arbitrary plan �. We de�ne the set of propo-

sitions �(�) the be the node in the free graph search problem that

results from applying the plan � to the initial node �. (If � is the

sequence o1; � � � ; ok then �(�) is the set ok(� � � o1(�))).) It can be

shown by induction on the number of operations in � that in any

graph where the given operator description holds, and any node

n in that graph where every proposition in � holds, every propo-

sition in �(�) holds at the node �(n). This equivalent to the

statement that � ! [�]�(�) holds in any graph where the given

19



operator speci�cation holds. Now if � is such that �(�) contains


, then �! [�]
 must hold in any graph search problem where

the given operator description holds.

Second Free Graph Lemma: If � is a solution to the STRIPS

planning problem then � takes the initial node � of the graph

search problem to a node that contains 
.

Proof: The operator speci�cation of a STRIPS planning problem

holds in the associated free graph search problem. Therefore any

plan � that is a solution to the STRIPS planning problem must

\work" in the free graph.

One can �nd a solution to a STRIPS planning problem by using standard

graph search techniques on the associated free free graph. The �rst free graph

lemma states that this method of �nding solutions is sound | any plan that

solves the free graph problem is indeed a solution to the original STRIPS

planning problem. The second lemma states that this method is complete |

if there is a solution to the STRIPS planning problem then it can be found

by searching the free graph.

The notion of a \free model" is a general method of converting problems

with incomplete information into problems with complete information. For

STRIPS planning we have converted the incomplete information in the op-

erator speci�cations into complete information about operations on the free

graph. Free models are most often discussed in the context of equational

theorem proving. Unfortunately, many problems involving incomplete infor-

mation can not be associated with a free model. For example, if we allow

disjunctions of propositions in the add lists of operators then no free graph

can be constructed.

We have reduced the STRIPS planning problem to the problem of �nding

a solution to a graph search problem of the type discussed earlier. This

implies that STRIPS planning is solvable using polynomial space. In fact, it

can shown that the STRIPS planning problem is PSPACE complete.

20



8 A Backward Chaining Planner

For the STRIPS planning problem one can construct a backward chaining

search procedure that searches back from the goal set 
. In many applications

the number of propositions known to hold at the initial node is very large. In

such cases the number of operators whose preconditions are met in the start

node can also be very large, resulting in a large initial branching factor in

the search. On the other hand, the number of propositions in the goal set 


can be quite small. If number of operators that add an element of 
 is much

smaller than the number of operators whose prerequisite list is a subset of �,

then a backward chaining search will have a smaller branching factor than a

forward chaining search. The backward chaining procedure is based on the

following de�nition.

De�nition: Let 
 be a set of goal propositions, let oi be an

operator, and let F be a new proposition symbol that is not men-

tioned in the operator speci�cation (the proposition F is false at

every node of the free graph). The weakest precondition for goal


 with respect to oi is de�ned by the following conditions.

� If 
 contains the special symbol F, or if some member of


 is deleted by oi, then the weakest precondition of 
 with

respect to oi is the set fFg.

� Otherwise, the weakest precondition of 
 with respect to oi
is the set 
 minus all the propositions added by oi plus all

prerequisites of oi.

Lemma: If � is the weakest precondition for 
 with respect to

oi then either � contains F and there is no set �0 such that oi(�
0)

contains 
, or � does not contain F in which case � is the least

set �0 such that oi(�
0) contains 
.

De�nition: The weakest precondition of a goal set 
 with re-

spect to a plan � is de�ned by induction on the number of steps

in � as follows.

� The weakest precondition of the empty plan is the goal set


.

21



� The weakest precondition of the plan oi;� equals the weakest

precondition of � with respect to oi where � is the weakest

precondition of 
 with respect to �.

Lemma: If � is the weakest precondition of goal set 
 with

respect to plan � then, either � contains F and there is no set

�0 such that �(�0) contains 
, or � is the least set �0 such that

�(�00) contains �.

Lemma: A plan � is a solution to a STRIPS planning problem

with initial propositions � and goal set 
 if and only if � contains

the weakest precondition of 
 with respect to �.

We can now de�ne a backward chaining procedure for solving STRIPS plan-

ning problems. We de�ne a procedure of four arguments FIND-PLAN(�, 
,

c, h) where � the initial set of propositions, 
 is a goal set, c is a cost

bound, and h is a heuristic function. The function h takes an initial propo-

sition set and a goal proposition set and returns a lower bound on the cost

of a solution plan. The procedure nondeterministically returns a plan that

solves the given problem and that has cost c or less. If there is no such plan

then the procedure fails.

Procedure for computing FIND-PLAN(�, 
, c, h):

1. If 
 is a subset of � then return the empty plan.

2. If h(�;
) > c, or c = 0, then fail.

3. Let oi be an operator satisfying the following two conditions.

(a) No element of the delete list of oi is a member of 
.

(b) Some element of the add list of oi is a member of 
.

4. Let 
0 be the weakest precondition of 
 with respect to oi.

5. Let � be FIND-PLAN(�, 
0, c� c(oi), h)

6. Return the plan �; oi.

22



The nondeterminism in this procedure arises form the nondeterministic choice

of operator in step 3. To prove that this procedure always �nds a plan of

cost c when such a plan exists we must show that if a plan of cost c exists

then there exists a solution plan of cost c whose last step is an operations

that passes the tests of step 3a and 3b. The last step of any solution plan

must satisfy 3a. However, there can exist solution plans whose last step does

not satisfy 3b. However, if �; oi is a solution plan where the step oi does not

satisfy 3b, then the plan � must also be a solution plan. By stripping o� all

steps at the end of � that do not satisfy 3b we can construct a (smaller cost)

plan whose last step does satisfy 3b. Thus, if there exists a solution plan of

cost c or less then there exists a solution plan of cost c or less whose last step

satis�es both 3a and 3b.

9 Problems

1. Consider a graph search problem for which the number of nodes reach-

able by paths of length n is linear in n (i.e., is less than or equal to cn for

some constant c). In this problem we compare iteratively deepened depth

�rst search with simple breadth �rst search. In both cases we assume dy-

namic programming so that the same node is not visited repeatedly. A node

at depth three will be visited exactly once by each phase of the iterative

deepening procedure that search to depth three or greater. In the following

questions we assume that the hashing operations used to determine if a node

has been visited before take constant time. What is the order of running time

of the iteratively deepened depth �rst procedure to �nd a solution of length

n? What is the order of growth of the time taken by the simple breadth �rst

procedure?

2. This problem considers the degree to which a heuristic function improves

the performance of a search problem. Consdider a graph search problem

with 2 operators (the search has branching factor 2). In this problem we will

ignore the posibility that any node can be reached by more than one path.

There are 2d di�erent nodes that can be reached by paths of length d. We

also assume that each operator has a cost of 2. We allow for more than one

goal node and for any node n we de�ne h�(n) to be the cost of the shortest

23



path from n to a goal node (which will be twice the number of operations

in the path). The de�nition of h� implies that at each node n one of the

operators must move one step closer to the goal, i.e., there is an operator o

such that h�(o(n)) is one less than h�(n). Such an operator will be called a

good move from the node n. In this problem we assume that there is only one

good move from n. The operator other than the good move will be called

the bad moves. We assume that the bad move does not change the distance

to the goal, i.e., if o0 is a bad move from n then h�(o0(n)) is one greater

than h�(n). We assume a heuristic function h such that for any node n we

have that h(n) = 1

2
h�(n). (This is unrealistic because in this case we could

get a perfect heuristic function by dividing h by c. However, this unrealistic

assumption may model more realistic cases where the expected value of h

is 1

2
h�.) Note that since h�(n) is always an even integer, h(n) is always an

integer. This heuristic function is monotone so the projected cost of a path

is just the cost of the operators (in this case just the number operators) in

the path plus h(n) where n is the �nal node in the path. We de�ne the added

cost of a path to be the projected cost of the path minus the projected cost

of the empty path.

Part a. Let G be the number of good moves in a path and let B be the

number of bad moves in a path. Give an expression for the added cost of a

path as a function of G and B.

Part b. LetM(k) be the number of nodes that can be reached by paths with

added cost of exactly k. The empty path has an added cost 0 so M(0) = 1.

Only the good move from the initial node results in a path of added cost

1 so M(1) = 1. Give a recurrence relation for M(k). In particular express

M(k+2) as a function of M(k+1) and M(k). (Hint: Draw a picture of the

search graph.)

Part c. Give the order of growth of M(k). (Hint: Solve the recurrance

relation from part b.)

Part d. Give the order of running time needed to �nd a path of length d

with breadth �rst search and with A� using the heuristic function h. Your

answer should indicate that A� with h can �nd paths roughly twice as long

as breadth �rst search. As the branching factor becomes larger (with only

one good move from a position) the performance of A� relative to breadth

24



�rst search becomes even better.

3. Consider a graph search problem in which each node is a non-negative

integer. Consider the following operations on numbers, viewed as operators

in a graph search problem.

� D (for \Double") D(n) is 2n.

� H (for \Half") H(n) is bn
2
c.

� S (for \Successor") S(n) is n+ 1.

� E (for \make-Even") If n is odd then E(n) is n� 1, else E(n), is n.

The plan (sequence of operations) H;E;D;E maps the number 11 to the

number 8 (H(11) = 5; E(5) = 4; D(4) = 8; and E(8) = 8).

Consider the following propositions about numbers.

� The proposition Even is true of a node n just in case n is even.

� The proposition Odd is true of a node n just in case n is Odd.

� The proposition One-Two is true of a number n just in case the prime

factorization of n contains a single factor of 2. For example One-

Two(6) is true but One-Two(12) is false.

Each operator can be applied at any node. In the following table each oper-

ator has been assigned an empty prerequisite list. Make a copy of this table

with the add lists and delete lists �lled in. Each add list and delete list should

be a subset of the propositions Even, Odd, and One-Two. The delete lists

should be as small as possible and the add lists as large as possible so that

the operator speci�cation holds of the actual operators.

Operator Prerequisite List Delete List Add List

25



D ;

H ;

S ;

E ;

In the following table each operator has been assigned prerequisites. Make a

copy of this table with minimal delete lists and maximal add lists inserted.

Operator Prerequisite List Delete List Add List

D Odd

H ;

S Even

E ;

4. GPS was developed in the late 50's by Simon and Newell as a model of

human problem solving. The GPS procedure for STRIPS planning is given

below.4

To �nd a plan � such that �! [�]
 do the following:

1. If � is a subset of 
 return the empty plan.

2. Select some operator oi such that some proposition on the add list of

oi is a member of � but not a member of 


4This speci�cation of the GPS procedure is derived from the description on page 153

of [Winston, 1984].

26



3. Let 
0 be the prerequisites of oi.

4. Recursively �nd a plan � such that � ! [�]
0.

5. Let �0 be the result of running the program �; oi from start state �,

i.e., �0 is the largest set of propositions such that �! [�; oi]�
0.

6. Recursively �nd a plan 
 such that �0 ! [
]
.

7. Return the procedure �; oi; 
.

Step 2 of the above procedure is non-deterministic. This allows for many

di�erent possible executions. An implementation of this procedure would

have to search the space of all possible executions.

We now consider the \blocks world". In a propositional STRIPS formulation

of a blocks world problem with n blocks there are order n propositions of

the form CLEAR(A) and order n2 propositions of the form ON(A,B). There

are order n3 operators of the form MOVE(A,B,C) which moves A from B to

C. MOVE(A,B,C) has prerequisites CLEAR(A), CLEAR(C), and ON(A,B). The

operation MOVE(A,B,C) deletes the propositions ON(A,B) and CLEAR(C) and

adds the propositions ON(A,C) and CLEAR(B).

The Sussman anomaly is a blocks world planning where the initial state is

given by the propositions

CLEAR(C), ON(C,A), ON(A,PLACE1)

CLEAR(B), ON(B,PLACE2), CLEAR(PLACE3)

and the goal consists of the two propositions ON(A,B), ON(B,C). Show that

there exists a three step plan that solves the Sussman anomaly but that no

execution of the GPS planning procedure can �nd this plan. Also give a

solution to the Sussman anomaly that can be found by GPS.

5. Give an example of a planning problem for which there exists a plan that

solves the problem but where GPS can not �nd a solution.

6. The FIND-PLAN procedure given in the notes can always �nd a minimal

length plan, so it can �nd the three step solution to the Sussman anomaly

27



described in problem 3. Give an example of an unachievable subgoal that

might be included in 
0 at step 4 of the top level application of the procedure

to the Sussman anomaly, i.e., a subgoal such that no sequence of operations

applied to the initial state can make that subgoal true. Describe a �lter that

could be used in blocks world planning to eliminate unachievable subgoals.

Such a �lter can be implemented as part of the heuristic function h.

References

[Dijkstra, 1959] E. W. Dijkstra. A note on two problems in connection with

graphs. Numerical Mathematics, 1:269{271, 1959.

[Doran and Michie, 1966] J. Doran and D. Michie. Experiments with the

graph traverser program. Proc. of the Royal Society of London, 294(2):235{

259, 1966.

[Hart et al., 1968] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis

for the heuristic determination of minimal cost paths. IEEE Trans. Syst.

Science and Cybernetics, 4(2):100{107, 1968.

[Korf, 1985] Richard E. Korf. Iterative-deepening: An optimal admissible

tree search. Arti�cial Intelligence, 27:100{107, 1985.

[Winston, 1984] Patrick Winston. Arti�cial Intelligence, Second Addition.

Addison Wesley, 1984.

28


