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Abstract. To close the gap between knowledge level and symbol level,
the MODEL-K language allows to specify KADS conceptual models and to
refine them to operational systems. Since both activities may be arbitrarily
interleaved, early prototyping is supported at the highest level. Systems
written in MODEL-K contain their conceptual model, making them more
transparent, easier to communicate to the expert, to explain to the user,
and to maintain by the knowledge engineer.

The strategy layer of KADS is supposed to control and possibly repair
the activities being modeled by the lower layers. MODEL-K views this
kind of strategic reasoning as a meta-activity. In the REFLECT project,
we came to view meta-activities like resource-management or competence
assessment as ordinary problem solving methods, that in turn can be de-
scribed using KADS. Correspondingly, we extended MODEL-K to model
and operationalize such meta-activities. In particular, the lower three layers
and the system they model are automatically kept consistent due to the
construction of MODEL-K1.

1 Motivation

Combining modeling and rapid prototyping In the development of
knowledge-based systems there is a recognizable shift from the traditional ra-
pid prototyping approach to model-based approaches. The need for explicit and
higher-level descriptions of problem solving methods arose in knowledge acqui-
sition [40] [20], in attempts to reuse knowledge bases [5] and in research on
explanations [22] and tutoring [9]. Newell [23] argued that the ”knowledge level”
is the right level for these purposes.

All model-based approaches to problem solving fall into one of two categories:
Either they provide a universal framework to specify arbitrary problem solving

1 This work is part of a research project partially funded by the Esprit Basic Rese-
arch Programme of the Commission of the European Communities as project number
3178. The partners in this project are the University of Amsterdam (NL), the German
National Research Institute for Computer-Science GMD (D), the Netherlands Energy
Research Foundation ECN (NL), and BSR-Consulting(D).



    

methods which are not operational, or they provide a specialized but operatio-
nal framework (for a detailed comparison see [17]). As a representative of the
first category, KADS [40] [4] proposed a strict separation between knowledge
analysis and implementation. The output of the first phase is a (paper-based) 4-
layered conceptual model describing the expertise. To implement such a model, a
completely separate design model is to be developed. As a consequence, the mo-
del of the analysis phase and the implementation are completely disconnected.
Therefore it may be difficult to recognize the model in the system, to transfer
modifications from the model to the system or vice versa, and to explain the
behaviour of the system in terms of the model.

Representatives of the second category are operational systems having an
underlying model of the special task they perform. Examples are SALT, MORE
and others described in [20], the generic task languages CSRL for diagnosis [6]
and DSPL for design [7], shells like MED2/D3 [25] and the knowledge acquisition
tool generator of [21]. As their models are mostly described verbally, it is difficult
to compare the suitability of these systems for the problem at hand. Moreover,
the systems can hardly be adapted or combined, since the paradigms are different
and the knowledge level model is not exactly reflected.

What we need is both, a framework which allows us to conceptualize our
very first ideas on how to approach an arbitrary problem, and to refine these
ideas stepwise to the extent as our pervasion of the problems grows until all
operational details are filled in. Thus an operational model is obtained by suc-
cessive refinements of the conceptual description. This allows prototyping cycles
as early as any partial model is executable.

The idea of operational descriptions is not completely new. In conventional
software engineering, the executable specifications serve a similar purpose: a very
abstract, formal specification is stepwise refined until an executable algorithmic
specification or rewrite system is obtained [3]. The advantages of prototyping in
software development are described in [13].

The MODEL-K language to be presented in this article allows to model and
operationalize KADS’ models of expertise. Several such languages have been put
forward by now. ML2 [33] and FORKADS [38] are logic-based, KARL [12] maps
into entity relationship descriptions, logic, and an ordinary control language.
OMOS [18], like MODEL-K, translates into BABYLON [8]. Not for KADS, but
for the components of expertise approach, [34] developed an architecture on top
of KRS that establishes a close correspondence between a knowledge level model
and its operationalization. In fact, this approach inspired us to more clearly
distinguish between the conceptual model and its operational refinement.

Strategic and meta-reasoning The need for meta-reasoning in knowledge
based systems was recognized very early in the AI community [31] [10], [11].
Strategic control, assessing and improving one’s own competence, detecting dea-
dends in problem solving, tutoring about, or explaining a knowledge based sy-
stem are typical meta-activities. Although specific systems like HACKER [31],
TERESIAS [11], REASON [28], MOLGEN [30] and PDP [16] were built, a ge-



   

neral framework for incorporating meta-reasoning into knowledge-based systems
is missing.

KADS introduced the strategy layer in its conceptual models in order to cope
with this kind of knowledge. However, the notions at this level were so vague
that it was hardly ever used and was often mixed up with the task layer. Since
the strategy layer dynamically reasons about, controls and possibly repairs the
lower layers, these layers must be causally connected to their implementation,
the so-called object system. A causal connection is a mechanism guaranteeing
consistency between the object system and its model. In particular, any progress
in the object system must be reflected upwards, and any modifications of the
model by the strategic layer must be reflected downwards [19].

An object system built in MODEL-K ideally suits these purposes, since the
running system incorporates its own model. Thus consistency between object
model and object system is automatically guaranteed by the MODEL-K inter-
preter.

Other than in computational reflection, the object model consisting of the
three lower KADS layers hides any implementation details. They are irrelevant
since the kind of meta-reasoning going on at the strategic layer is at the know-
ledge level [2]. In fact, our work in the REFLECT project [37] [27] revealed that
meta-activities like competence assessment and improvement or resource mana-
gement, although having another computational system as their domain, can be
interpreted as generic problem solving methods and can be modeled like any or-
dinary object level methods. For example, competence assessment can basically
be regarded as a diagnosis task.

In the REFLECT project we elaborated these ideas into a framework for
”knowledge level reflection”. Not only did we extend KADS models of expertise
to include a meta-model at the strategy layer, but we also extended MODEL-K
to interwovenly specify and implement such meta-models. In fact, the necessary
additions were almost straightforward and involved only a few important design
decisions.

In the following sections, we will first describe ”ordinary MODEL-K” using
an office room allocation problem, and later discuss the strategy layer and the
meta-level extensions.

2 MODEL-K for object systems

Figure 1 sketches the MODEL-K framework. We distinguish the conceptual mo-
del and its operational refinement. Both are described on three layers: domain,
inference and control layers. In the conceptual model, the domain layer descri-
bes the domain structure in terms of concepts and relations, the inference layer
determines the inference structure in terms of knowledge sources, i.e. basic ope-
rators and metaclasses, and the control layer specifies the control structure in
terms of tasks. In the operational refinement, concepts are supplemented by
their instances, relations by their tuples, knowledge sources by their bodies,
i.e. executable pieces of code, and tasks by their control statements. For the
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connection between inference and domain layer, the same distinction is made
with built-in default operational refinements. Although syntactically separated,
conceptual modelling and operational refinement can be arbitrarily interwoven
during knowledge engineering.

Beside the static description of the problem-solver, MODEL-K provides an
explicit representation of the dynamic status of system while problem solving:
an agenda contains the pending tasks, and the metaclasses contain the variable
data that are manipulated by the knowledge sources

Fig. 1. The MODEL-K framework.

MODEL-K has strongly been influenced by the conceptual models of the
KADS knowledge acquisition methodology [4]. In contrast to KADS, MODEL-
K separates the definition of concepts and their specific instances, of relations
and their tuples, and of tasks and their control statements. KADS models neither
have a precise syntax nor are they executable at all. Consequently, any dynamic
aspects of problem solving are ignored either. Like KADS, MODEL-K supports
the exchange of individual layers. In particular, splitting off the domain layer
yields a generic model or system, respectively. In the Esprit Basic Research
Action REFLECT [27] [1] we extended both, KADS models of expertise and
MODEL-K to incorporate strategic reasoning at a meta-level. This will be the
topic of the second part of this article.

MODEL-K is implemented on top of BABYLON, GMD’s hybrid knowledge
representation workbench which provides – beside prolog and lisp – rule, frame,
and constraint formalisms for the definition of the operational parts [8].

2.1 The office allocation application

Planning the arrangement of employees on a floor is a time-consuming process,
especially if personnel movement is high as in research institutes. To reach a
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satisfactory solution all criteria for a fertile working climate should be conside-
red, e.g. dense communications between projects, proximity of central services,
equipment requirements and personal characteristics like smoker aversion.

Given a floorplan with a partial assignment of possible rooms to some em-
ployees, and a set of requirements, the office allocation task consists of assigning
rooms to all employees satisfying all requirements.

Fig. 2. An office allocation problem.

We treat the problem as an assignment problem where a set of objects, the
employees, have to be assigned to another set, the rooms, so as to satisfy the gi-
ven requirements. We successively match requirements with employees obtaining
a constraint network with employees as variables and possible rooms as their va-
lues. Global propagation followed by a filtering yields all possible solutions, in
case the problem is not overspecified.

The conceptual model of the office allocation problem can be transferred to
other domains. For example, in hotel room reservation, the components are the
guests and the slots are hotel rooms, in hospital bed allocation the components
are the patients and the slots are beds, and in school time table construction,
the components are the instruction units and the slots are time intervals.

2.2 The conceptual model

The control layer

At the control layer the flow of control between the knowledge sources is defi-
ned in terms of tasks. Tasks may be decomposed into subtasks and knowledge
sources. For documentation purposes, a precondition and a goal may be speci-
fied. The main task of OFFICE-PLAN consists of an initialize step to select the
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components and slots, a step to generate conditions from the generic require-
ments and an subtask to solve the conditions. Figure 3 shows the entire task
decomposition tree.

(TASK office-plan

WITH PRECONDITION = true

GOAL = find-an-arrangement

SUBTASKS = (initialize integrate-component))

Fig. 3. Task decomposition of OFFICE-PLAN.

The inference layer

At the inference layer, basic inference steps are specified in terms of knowledge
sources operating on metaclasses. Both together constitute a graph, the so-called
inference structure. Figure 4 shows the one for OFFICE-PLAN.

metaclasses describe the roles domain concepts may play during problem sol-
ving. In the spirit of KADS, they achieve an abstraction from any specific
domain-layer. Thus, we speak of components instead of employees, and of assi-
gnment slots instead of rooms. In MODEL-K, a metaclass can be a structure
composed of domain concepts. ”set” is a predefined structure. To define others
like lists, multisets, stacks, queues or trees might is up to the user.

As an example, metaclass components-to-place is initially empty, but will
later contain the set of employees that have to be arranged. In other domains, it
might contain guests of hotel rooms, airplanes to gates, or of patients of hospital
beds. The actual relation between a metaclass and possible domain entries is
handled in the connection between inference and domain layer.

(METACLASS components-to-place-next-&-their-given-slots

WITH STRUCTURE = set)
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Fig. 4. The inference structure of OFFICE-PLAN.



    

Knowledge sources describe basic inferences or operations between metacl-
asses. They are split into a declaration and a definition part. The former spe-
cifies input and output metaclasses and the formal relations used in the body.
The formal relations keep the knowledge source domain-independent and will be
connected to domain-specific relations by separate connection statements. The
definition of a knowledge source, usually being quite implementation-biased, is
deferred to the operational refinement stage. For instance, knowledge source
abstract-components will generate component features given certain require-
ments without needing any domain relations.

(KNOWLEDGE-SOURCE abstract-components

WITH

DOCUMENTATION-STRING = ...

INPUT-METACLASSES = ((components-to-place-next-&-their-given-slots

already-arranged-components

component-specific-requirements))

OUTPUT-METACLASSES = (components-features))

REQUIRED-RELATIONS = nil)

In OFFICE-PLAN, there are knowledge sources for initialization; to select

the components to be integrated first according to the given heuristic; to
abstract essential component and slot features; to match the features against
the preconditions of requirements in order to instantiate their conditions to con-
straints; to add the newly generated conditions to the constraint network com-
puted formerly; to find all possible assignments of components to slots that
satisfy the instantiated conditions; to filter them by the slot-specific requi-
rements; and to analyze the result for proper termination respectively for the
next iteration.

The domain connection

One of the aims of KADS is to develop generic inference and task layers which
can be connected to different domain layers. MODEL-K provides language con-
structs for this connection. For example, the metaclass components-to-place

is connected to instances of the concept employee.

(CONNECT-MC components-to-place-next-&-their-given-slots

WITH DOMAIN-OBJECTS = ((employee))

UPDATE-UP = static)

To allow the synchronization between the contents of a metaclass and the
related objects on the domain layer update procedures can be applied at specific
points in time. For example, the metaclasses in a system monitoring a chemical
plant are kept consistent with the sensor data received at the domain layer via
dynamic updating. For office allocation a static connection upwards for initiali-
zation is sufficient.

The formal relations of the knowledge sources are always statically connected
to domain-specific relations by:



    

(CONNECT-KS-RELATION <formal-relation> WITH

DOMAIN-RELATION = <domain-relation>)

The domain layer

The domain layer specifies the ontology of the domain. In MODEL-K, the
domain-specific information is stated in terms of predefined basic types like string
or integer, user-defined enumeration types, concepts and instances, generic and
concrete relations. Together, they constitute the domain structure.

Enumeration Types are similar to the scalar types of procedural program-
ming languages. They define discrete sets with a linear ordering.

In OFFICE-PLAN, we use them to specify the roles, educations, groups,
projects, resources and themes. For example, the resources of computing
equipment are defined by:

(ENUMERATION resources

WITH values = ((sun macintosh qume symbolics siemens pc)))

Concepts are used to represent domain knowledge in an object-oriented way.
They may form inheritance hierarchies and describe structural characteristics of
domain objects by typed attributes (or slots). In order to suspend the closed-
world assumption, the values of a so-called ASSUMABLE attribute may expli-
citly be specified as to hold, not to hold or to be unknown (see section 2.3 for
further details).

In OFFICE-PLAN, employees, rooms, requirements, and conditions are
defined as concepts. For example, an office-room is described by its room
number, the number of square meters, the research group it belongs to, and the
resources it provides. The default value ”-” for each slot means that its value is
so far unknown.

(CONCEPT office-room

(SLOTS

(available-resources - :POSSIBLE-VALUES (:SOME-OF-ENUMERATION resources))

(belongs-to - :POSSIBLE-VALUES (:ONE-OF-ENUMERATION groups))

(room-number - :POSSIBLE-VALUES :NUMBER)

(size-of-room - :POSSIBLE-VALUES :NUMBER)

(ASSUMABLE

(available-resources size-of-room) :POSSIBLE-VALUES :ANY)))

A requirements is declared by a precondition based on features of employees
and a condition:

(CONCEPT requirement

(SLOTS (generic-feature - :POSSIBLE-VALUES :any)

(generic-condition - :POSSIBLE-VALUES

(:INSTANCE-OF employee-specific-condition))))



    

Relations define dependencies between objects of certain types. In the concep-
tual model, a relation is declared by its arity, i.e. the types of the components
in the tuples, and by properties like transitivity or reflectivity. To suspend the
closed-word assumption, ASSUMABLE relations allow to specify for which tu-
ples the relation holds, does not hold, or is unknown (more in section 2.3).

The following example declares a non-assumable, symmetric relation
meeting-often between two employees:

(RELATION meeting-often OF RELATION

WITH PROPERTIES = ((symmetric))

TYPE = ((employee employee))

ASSUMABLE = false)

Generic relations allow to build classes of relations. For instance, the most
important relation in OFFICE-PLAN is arrangement which describes arbitrary
assignments of employees to rooms. As a concrete instance of this generic re-
lation, init-arranged describes which employees are initially placed in which
rooms, and which employees are in the hall waiting for an assignment. Other ar-
rangement instances like the proposed solutions will be dynamically constructed
at the inference layer.

(GENERIC-RELATION arrangement

(SLOTS (TYPE (room employee))

(ASSUMABLE false)))

(RELATION init-arranged OF arrangement)

2.3 The operational refinement

The conceptual model is not yet operational. Concept instances, relation defi-
nitions, knowledge source bodies, control statements ordering the subtasks, and
connection procedures still have to be supplied. Being mainly a programming
task, this is done in the operational refinement.

The control layer

Control statements: In the control structure, each task specifies its constitu-
ent knowledge sources and subtasks. Now the flow of control between them is
specified by a control statement which may be composed of sequential, bran-
ching and loop statements. For example, the office-plan task once executes
initialize and then repeatedly calls integrate-component until there are no
more components to arrange.

(TASK-BODY office-plan ()

(SUBTASK initialize)

(WHILE (> 0 (length (<- components-to-arrange :GET-TRUE ’VALUE)) 0)

DO ((CALL integrate-component))))))



    

Below we show a trace of the main task in OFFICE-PLAN.

(<- office-plan :ACTIVATE :TRACE)

--> activating task ’OFFICE-PLAN’

it’s precondition ’TRUE’ is satisfied

--> STATEMENT

working on (CALL INITIALIZE)

--> activating task ’INITIALIZE’

it’s precondition ’TRUE’ is satisfied

--> STATEMENT

working on INIT

==> applying knowledge-source ’INIT’ ...

working on ABSTRACT-SLOTS

==> applying knowledge-source ’ABSTRACT-SLOTS’ ...

<-- STATEMENT

<-- ACTIVATE

...

The inference layer

Knowledge source bodies: The complexity of KADS knowledge sources may
vary considerably, from simple access or test functions to complete problem sol-
vers of their own. And often, they cannot be operationalized without taking
efficiency into account. This is why we offer the full BABYLON languages for
their definition: prolog, rules, constraints, message passing and lisp. As an exam-
ple, knowledge source assign was implemented to call BABYLON’s constraint
satisfaction interpreter with the network of instantiated conditions:

(KNOWLEDGE-SOURCE-BODY assign ()

(SATISFY current-net :GLOBALLY :WITH current-varibale-domains))

The domain connection

MODEL-K provides default connection procedures for metaclasses and formal
relations. If no user-defined connection procedure is given, a metaclass is connec-
ted statically. By default, a formal relation is connected to its domain relation
by matching the arguments position-wise.

(CONNECT-KS-RELATION-BODY <formal-task-name> ()

<body>)

(CONNECT-MC-UP-BODY <metaclass> ()

<body>)

(CONNECT-MC-DOWN-BODY <metaclass> ()

<body>)



    

The domain layer

Instances of concepts describe concrete objects in the domain. They inherit all
slots and default values from their concept. For instance, C5-121 is a particular
office room. It belongs to group xps, has a number, and has 10 square meters.
There are two Macintosh (for simplicity, we did not distinguish between indivi-
dual machines) and a Sun computer, but definitely no qume terminal. But it is
unknown whether there are any siemens terminals, symbolics machines, or pcs.

(CONCEPT-INSTANCE C5-121

OF office-room

WITH available-resources = (((:TRUE macintosh macintosh sun)

(:FALSE qume)))

belongs-to = xps

room-number = 121

size-of-room = 10)

The employee-specific requirements in OFFICE-PLAN are: ”The head of
group and the secretary should be in next-door rooms.” ”The head of group and
each head of project should be in near rooms.” ”A smoker and a non-smoker
should be in different rooms.” ”Two persons meeting often should be in different
rooms.” ”Persons with no common themes should be in different rooms.” For
example, the smoker requirement is modelled by:

(CONCEPT-INSTANCE smoker-and-not-smoker-aversion-respected

OF employee-specific-requirement

WITH generic-feature = ((smoker-and-not-smoker-pair _em1 _em2))

generic-condition = should-be-in-different-rooms)

Our resource-specific requirements are: ”A room should provide enough place
to its inhabitants.” ”A room should provide enough machines to its inhabitants.”
”Nobody should sit together with more fellow-lodgers than he can bear.” For
example, the requirement providing each employee with a large enough room is
defined by:

(CONCEPT-INSTANCE provide-space

OF resource-specific-requirement

WITH

generic-feature = ((needs-space _empl _num))

generic-condition = should-provide-space)

Relations are sets of tuples, which can be defined extensionally by enumera-
tion or intensionally by a characteristic predicate. Both alternatives promote
prolog as a suitable definition language. Since MODEL-K is implemented in
BABYLON, we use BABYLON’s special list-notation for Horn-clauses (c.f. [8,
p. 147ff]). For instance, the relation meeting-often is defined as follows:



    

(RELATION-BODY meeting-often

((meeting-often _em1 _em2) <- (close-friends _em1 _em2))

((meeting-often _em1 _em2) <- (are-in-same-projects _em1 _em2))

(meeting-often john-maier john-mayer))

Specifying missing knowledge: As in the example of room C5-121, know-
ledge may sometimes be incomplete. We definitely know that there are two Ma-
cintosh and one Sun in the room. But, under the closed-world assumption that
holds for ordinary slots and relations, we cannot express that there definitely
is no qume terminal while we do not know anything about the other machines.
For such situations, MODEL-K offers the ASSUMABLE attributes and relati-
ons. They allow to specify which objects are attribute values or relation tuples,
which are not, and which are unknown.

Assumable slots are usually multi-valued. They are interpreted as partial
multisets, i.e. as partially defined functions from their POSSIBLE-VALUES do-
main to the natural numbers. In the example of room C5-121, macintosh is
mapped to 2, sun to 1 and qume to 0. To ease the definition of assumable at-
tributes we added abbreviations for cases without unknown values. Moreover,
the set of unknown values can always be deduced and need not be specified.
To access and modify the values of assumable attributes under a specific truth
modality MODEL-K provides predefined methods. For example, after sending
the message (<- C5-121 :add-true ’available-resources ’(symbolics))

there will also be a Symbolics in the room. The consistence of the partial mul-
tiset is automatically maintained.

Assumable relations are implemented by extending the tuples by a boolean
argument. When adding a tuple its status has to be specified in the last compo-
nent. The example shows the tuples of an assumable relation close-friends.

(RELATION-BODY

((close-friends _em1 _em2 _truth) <- (married _em1 _em2 _truth))

((close-friends john-meier john-meyer false)))

Again, there are predefined methods to get all true, false or unknown tu-
ples. However, MODEL-K does not provide an interpreter for reasoning under
incomplete knowledge so that the knowledge engineer himself must implement
the correct inference procedures as was done in the first clause of the example
to propagate unknown knowledge.

Switching representation: Since logically the slots of an instance can be
viewed as binary relations, MODEL-K provides a uniform PROVE method for
both, concept attributes and relations, easing the transition between both re-
presentations during development.



       

For example, (PROVE ‘(initial-arrangement X ‘C5-121)) finds all per-
sons being seated in room C5-121. And (PROVE ‘(available-resources X

‘sun)) finds all office-room instances with a sun.
This gives the knowledge engineer the freedom to switch representation for-

malisms during development without having to change other parts of the de-
scription.

2.4 Supporting prototyping

Usually, knowledge sources are called from the control layer. For prototyping,
i.e. testing knowledge sources or simulating a not yet existing control layer, it
is useful to activate individual knowledge sources by hand. For that purpose,
the interpreter can execute (SUBTASK < task >) and (KS < knowledge −
source >) statements for activating tasks and knowledge sources, respectively.
For accessing and modifying the status of metaclasses during the development
process, a uniform protocol in terms of :GET, :RESET, :ADD and :REMOVE
methods is provided to inspect, reset and modify metaclasses.

3 The strategy layer: Meta-reasoning in MODEL-K

The strategy layer in KADS was only vaguely described and has hardly been
used in any KADS model. While strategic reasoning is usually concerned with
control issues [14], we would like to incorporate some more capabilities at the
strategic layer: checking the solvability and difficulty of a problem, predicting and
scheduling the resources for problem solving, problem simplification, detecting
deadends, and repairing impasses. All these tasks require reasoning about the
underlying system and thus are meta-activities.

Although the domain of these meta-activities is another knowledge-based
system, they can be described in terms of generic problem solving methods
like diagnosis, assessment or repair. That means the strategy layer is regarded
as another problem solver at the meta-level. Therefore, we can use the same
modelling scheme as for the lower three layers, namely another control, inference,
and domain layer. Control and inference layers describe the problem solving
method to be carried out at the meta-level, for example diagnosing the feasibility
of a problem. The domain layer contains the lower three layers to be reasoned
about and often special meta-knowledge, like the consistency of data in the
object system or necessary conditions to solve a problem.

Since the meta-system reasons about the lower three layers while they are
”running”, these layers and the object system they model must be kept con-
sistent. Any progress in the object system must be reflected upwards into the
model, and any modifications of the model must be propagated downwards into
the system. In the terminology of Maes, we need a causal connection, and the
object and meta-system together constitute a reflective system [19].

In MODEL-K, we need not worry about the causal connection. Since a system
is just an extension of its conceptual model, every object system incorporates
its model. You simply cannot change one without the other.
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As it turns out, we now have two systems: A meta-system implementing the
strategy layer and an object system representing the lower control, inference
and domain layers (c.f. figure 5) . This separation has the advantage that meta-
systems (and their conceptual models) can be kept generic and reusable for
other object systems. For example, predicting the complexity of a problem by
estimating the search space is applicable to a wide range of object systems.

In the REFLECT project, we focused on competence assessment, impro-
vement, and resource management. We came up with a range of generic meta-
behaviors, most of which we applied to the conceptual model of our office room
allocation system. Examples are feasibility studies to detect overcomplex or over-
specified problems, relaxing inconsistencies, removing redundancies, controlling
time restrictions, etc. [35] [36].

Fig. 5. Knowledge level view of reflective systems.

3.1 Design decisions

Though the idea to use MODEL-K for both, object system and meta-system,
seems to be straightforward, a few design decision had to be made which are left
open in the conceptual framework. One concerns consistency and the other the
control problem of switching between the two systems.

Consistency between the object system and its model

While solving a problem, the object system changes dynamically. For reasons
of consistency, these changes must be ”reflected” upwards into the model. Vice



  

versa, reflective problem solving operates on its model of the object system,
assuming that any changes are ”reflected” downwards. (Reflection upwards and
downwards are terms introduced by [39] in the context of the logical language
FOL). As an example, our time management system repeatedly invokes the
assign and filter tasks of OFFICE-PLAN. Based on the number of assignments
proposed or filtered, it then decides which task to call next for which time slice.
Thus, the number of assignments proposed or filtered has to be repeatedly passed
upwards, while the time slices must be passed downwards.

However, such a causal connection is only required if the object model is
separated from the object system, which is not the case with MODEL-K. In-
stead we encounter a similar synchronization problem between the object model
and the meta-inference layer. That is because the metaclasses here may contain
information from the object model which dynamically changes with the object
system. Therefore, the metaclasses at the meta-level must be kept consistent
with the object model. An example are the metaclasses for time management
which contain the time slices resp. the numbers of solutions. Vice versa, infor-
mation from meta-level metaclasses may have to be passed downwards into the
object model (and thus automatically into the object system).

To maintain consistency, we have three alternatives for both directions. We
can lazily update the object system, respectively its model, just before any data
item is accessed, we can eagerly propagate all changes directly, or we can pro-
pagate them before switching control between the two systems. For MODEL-K
we decided to propagate both the changes of the object system to the meta-level
metaclasses and vice versa at switching time as a default, reducing the num-
ber of update operations. For additional intermediate updates, explicit update
statements are provided at the meta-level task layer.

Independently of when we synchronize, we may either update the object sy-
stem respectively its model completely or incrementally. The former means more
copy operations, while the latter requires keeping track of what has changed.
For MODEL-K we decided to update incrementally, namely upwards everything
that is referenced in a meta-level input metaclass and downwards every output
metaclass.

Switching paradigm

Since we have two systems, we have to decide which one should be active and
when it should pass over control. For example, for time management we must so-
mewhere state that office planning must proceed up to the assign step. Similarly,
the time management system must first perform certain analyses before it can
start controlling the assign-filter phase. Afterwards, both systems must be run
to completion. In [32] and [27], different switching paradigms were suggested:

Meta-simulation: All control is with the meta-system. Whenever necessary, it
has the means to simulate the object system. This alternative requires more
knowledge about the object system than we have at the knowledge level.



  

Asynchronous communication: Meta- and object system run in parallel.
Thus it may happen that the conclusions of the meta-part have become
obsolete or no longer apply because of the progress in the object system.

Crisis management: The object system operates until it recognizes a crisis. It
then passes control to the meta-part, which may modify the object system
and then reactivate it. One problem with this paradigm is that the object
system must be able to recognize its own crises and deadends. Another pro-
blem is, that the meta-system has no chance to prevent any crises.

Reflect-and-act: After each elementary inference step, control is passed from
the object system to the meta-system. There the object system may be mo-
dified before control is returned. In this paradigm, the elementary inference
steps chosen define the grain size for reflection. In the KADS framework,
the knowledge sources are natural candidates, since we cannot inspect them
any deeper at the knowledge level. Control in the meta-system is necessarily
event-driven, which does not readily match with the KADS task structure.
As another disadvantage, control is switched more often than necessary.

Subtask management: The meta-system may activate its own tasks as well
as tasks in the object system. This paradigm nicely fits into the KADS
framework. A meta-task, instead of calling a meta-subtask, would be allowed
to call a task in the object system, which could then invoke further object
level subtasks. The problem with this alternative is, that there is only one
meta-system having exclusive control about the object system.

Instead of having one large meta-system we want to be able to develop small
specialists on top of the object system, each tackling an elementary meta-task,
like a feasibility expert, a relaxation expert, or a redundancies expert. They
should be collected in a library. Given a particular object system, we would
like to choose some meta-modules from the library and combine them. The
combination should involve minimal changes with the individual meta-systems
only.

External switching In order to overcome this problem with subtask manage-
ment, we came up with a new alternative. We introduced an external scheduler
that controls the switches both between the individual meta-specialists and bet-
ween them and the object system. That means it can call tasks that are defined
either at some meta-task layer or in the object system. The task layers of the
meta-specialists only contain local tasks. They need not be modified when being
combined with other meta-systems. Only the individual scheduling layers must
be replaced by a joint one.

Figure 6 shows the resulting scheme of extended MODEL-K. There is one
object system with only one model that is accessed from all meta-components.
Such a component may have additional meta-domain knowledge, inference and
task layers. The individual schedulers are replaced by one common scheduling
layer. Examples of meta-domain knowledge may be the pairs of redundant or
contradictory constraints, or knowledge about the importance of requirements,
constraints, or constraint variables like the employees in office planning.
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Fig. 6. Schema of extended MODEL-K

Since the scheduler should be generic, it must not directly refer to tasks of
the object system. For that reason we introduced formal task names that can be
connected to concrete ones when the scheduler is connected to a concrete object
system. These formal task names are comparable to the formal relation names
we already need in ordinary models. They are used by knowledge sources at
the inference layer to generically refer to relations defined at a concrete domain
layer.

Calling object system tasks from the scheduler is not always sufficient. So-
metimes a meta-knowledge source needs to control certain tasks in the object
system exclusively. For instance, the time management system has an inference
step invoking the assign and filter steps of the object system with fixed time
slices. As for the scheduler, these references are generically made via formal task
names.

3.2 Example: Predicting deadends in problem solving

We will motivate why contradictory conditions in office-planning problems can
occur at all and how they are removed by the meta-module CONTRA-C.

We will illustrate MODEL-K’s meta-approach to strategic reasoning by
CONTRA-C, a small competence specialist for OFFICE-PLAN. It prevents
the object system from running into a deadend by checking the solvability of
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a problem in advance and proposing amendments to make the problem sol-
vable. As already said, OFFICE-PLAN transforms requirements, like separate-
smoker-and non-smokers into a constraint network. Assume we obtain the fol-
lowing constraints: same-rooms (Monika, Uli), next-door-rooms (Thomas,

Monika), near-rooms(Thomas, Hans),

different-rooms (Monika, Uli), ... Obviously2 no consistent assignment
can be found because the constraints between Monika and Uli are contradictory.

As shown in figure 7, the task of the meta-module CONTRA-C is decom-
posed into subtasks for diagnosing (i.e. detecting) and repairing (i.e. removing)
contradictory conditions. Diagnosis consists of analyzing the object system and
interpreting the obtained findings according to fault categories. Repair consists
of proposing repairs and applying them.

Fig. 7. Task structure of the meta-module

Figure 8 shows the inference structure of CONTRA-C. metaclass
OS-component-conditions is filled with the relevant information from the
object model, which is the constraint network. It is inspected by know-
ledge source contra-c-analyze in order to detect pairs of contradictory
conditions. If contradictions have been found knowledge source contra-c-

-interpret adds the fact (inconsistent-knowledge true) to metaclass
ml-malfunctions. contra-c-propose then asks the user to remove one con-
dition from each pair of contradiction. The result is passed via metaclass
ml-repairs-remove-contra-c-result to contra-c-apply which removes the
chosen conditions from the network.

At its domain layer CONTRA-C needs knowledge about how to detect pair-
wise contradictory constraints, in its simplest form an opposite relation between
pairs of constraints.

We used MODEL-K to model and implement ten competence specialists
incorporating strategic knowledge to assess and improve the competence of
OFFICE-PLAN: FEASI detects unsolvable problems by comparing available and

2 Although this seems easy to detect for us, we should not forget that the words ’different’
and ’same’ have no meaning for the object problem solver.
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Fig. 8. Inference structure of the meta-module

required resources. CONTRA-R and CONTRA-C detect and remove contra-
dictory requirements from the original problem statement resp. contradictory
constraints from the internal representation. RED-R, RED-C, RED-CF, and
SIMPLE-D simplify the problem by removing redundancies between generic re-
quirements, between constraints, and by reducing the possible values of constrai-
ned variables. COMIC decomposes overcomplex problems and solves them while
reusing previously found partial solutions. It can return approximate solutions
by suitably composing solved subproblems. TACKLE-TIME allows to limit the
time and the number of solutions of the object system by scheduling time slices
between a generate and a test subtask (in our case propose and evaluate). One
of our partners, BSR-Consulting, built CASY which uses a library of complete
cases to shortcut the entire problem solving process.

3.3 Related work

Although our work concerning the strategic layer was influenced by the work on
computational reflection [19] [29], it differs in the kind of model used to reflect
upon. Whereas languages like KRS or 3-Lisp allow to access the implementation
and the run-time environment of programs like class-methods or the interpreter
stack, we stress an abstract, implementation-independent model of the under-
lying object system. We also abandoned the idea of infinite meta-level towers
generated by meta-circular interpreters, as we do not see how to acquire know-
ledge for a third or any higher levels. Work on reflection in logic has shown that a
clear separation between object- and meta-level ensures avoidance of paradoxes
[24].

ML2 [33] is a language to formalize KADS knowledge level models. It has
been used to explicitly represent the model to be reasoned about. Although
ML2 is in logic and hence more declarative than MODEL-K, the language lacks
operational support for the causal connection and the integration of different



   

reflective modules.
The meta-modules developed in MODEL-K are in line with ideas about meta-

level reasoning presented in [10], [15], or [37], and recently published work on
reasoning under resource limitations [26].

4 Summary

MODEL-K is a language for describing KADS knowledge level models as well
as their operational refinements. Since the resulting systems incorporate their
conceptual model, this language supports prototyping almost at the knowledge
level. Being so close to the knowledge level, the systems are easier to understand
by experts and users, they are easier to extend, maintain and explain. But not
only knowledge engineers and users profit from this transparency. Knowledge
based meta-systems will monitor, assess and improve object systems automati-
cally. The built-in conceptual model in MODEL-K defines the interface for the
meta-layer and provides access to the underlying system. Since the meta-system
is regarded as another problem solver, the MODEL-K modeling framework can
be applied to both, object- and meta-system.

Just like KADS strives at building a large library of knowledge level models,
we would like to collect corresponding operationalizations in MODEL-K. Other
than generic tasks [6] or the systems of McDermott’s group [20], the MODEL-K
systems should be easy to adapt and to combine, being written in the same
high level language. We are looking forward to results of the KADS II Esprit
project, where executable methods shall be developed for the models in the
KADS library. Like for object systems, we are aiming at a library of generic
meta-systems which can be supplied to classes of object systems.

With its interpretation of the strategic layer, MODEL-K provides a modeling
and implementation framework for meta-reasoning systems. To flesh it, more
meta-level knowledge and theories have to be acquired. Now the experts are
asked –programmers and knowledge engineers– to provide their knowledge about
how to assess and improve problem solvers.
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