
RapidOWL - an Agile Knowledge Engineering Methodology

Sören Auer
University of Leipzig

Institute for Computer Science
Augustusplatz 10-11, 04109 Leipzig, Germany

auer@informatik.uni-leipzig.de

Abstract

Agile methodologies have recently gained growing success
in many economic and technical spheres. This is due to the
fact that flexibility, in particular fast and efficient reactions
to changed prerequisites, is becoming increasingly impor-
tant in the information society. To support adaptive, seman-
tic collaboration between domain experts and knowledge
engineers, a new, agile knowledge engineering methodol-
ogy, called RapidOWL is proposed. This methodology is
based on the idea of iterative refinement, annotation and
structuring of a knowledge base. A central paradigm for
the RapidOWL methodology is the concentration on small-
est possible information chunks. The collaborative aspect
comes into play, when those information chunks can be se-
lectively added, removed, annotated with comments or rat-
ings. Design rationales for the RapidOWL methodology are
to be light-weight, easy-to-implement, and support of spa-
tially distributed and highly collaborative scenarios.

1 Introduction

RapidOWL is an adaptive, light-weight methodology for
collaborative Knowledge Engineering. The major aim of
RapidOWL is to make the elicitation, structuring and pro-
cessing of knowledge and thus the cooperation of domain
experts and knowledge engineers more efficient. The Rapi-
dOWL methodology is based on the idea of iterative refine-
ment, annotation and structuring of a knowledge base. Cen-
tral to the paradigm for the RapidOWL methodology is the
attention given to the smallest possible information chunks
(i.e. RDF statements). The collaborative aspect comes into
it’s own by allowing those information chunks to be selec-
tively added, removed, or annotated with comments and/or
ratings. Design rationales for the RapidOWL methodology
are to be light-weight, easy-to-implement, and supportive
spatially distributed and highly collaborative scenarios.

RapidOWL is, on the one hand, inspired by the XP.K

methodology (eXtreme Programming of Knowledge-based
systems, [12]), which extends Extreme Programming to an
agile methodology for the development of knowledge-based
systems. On the other hand, RapidOWL is influenced by
the Wiki idea [13], which established agile practices for
collaborative text editing. However, contrary to XP.K the
RapidOWL methodology stresses the generic nature of a
knowledge base and thus focuses on development of knowl-
edge bases, whose final usage scenario is either not a priori
known or a single usage scenario is not easily definable.
This is usually the case for conceptualizations targeting at
information integration as well as for shared classification
systems and vocabularies. Different from the Wiki idea on
the other side RapidOWL’s artifacts are structured informa-
tion and knowledge represented in statements rather than
the Wiki’s unstructured text documents.

In this paper we will first clarify the notion of a knowl-
edge engineering methodology (Section 2), than we present
briefly approaches related to RapidOWL (Section 3). We
collect some specific knowledge engineering characteristics
which are, from our point of view, not adequately honored
by existing approaches (Section 4). Thereafter, we present
RapidOWL by exhibiting underlying paradigms (Section
5), its single process (Section 6) and finally discuss Rapi-
dOWL in the light of criteria for analyzing knowledge en-
gineering methodologies (Section 7).

2 Knowledge Engineering Methodology

Many definitions of methodology can be found in the lit-
erature (see [12, Page 9]). In this document we will (con-
sistent with [12]) adopt the view of Alistair Cockburn [6],
who defines a methodology as “an agreement of how mul-
tiple people will work together. It spells out what roles they
play, what decisions they must reach, how and what they
will communicate”.

Definition 1 Knowledge Engineering Methodology A
knowledge engineering methodology is an agreement



of how multiple people will work together. It defines a
process in which domain experts and knowledge engineers
will build a knowledge base. This knowledge base is
represented in a knowledge representation language with
suitable tools. Processes, languages and tools are based on
knowledge representation paradigms.

Figure 1. The way of portraying agile method-
ologies according to Alistair Cockburn.

The RapidOWL methodology is presented in this docu-
ment following other agile methodologies. Figure 1 sum-
marizes the important ingredients, i.e. people, paradigms,
processes, models and tools. RapidOWL is grounded on
paradigms (see Section 5). Paradigms influence the process
(see Section 6), they lay the foundation for the models, and
have to be internalized by people. Last but not least, tools
implement the collaboration processes between people on
the basis of the methodologies models. This document pri-
marily aims at sketching the agile Knowledge Engineering
process of RapidOWL (for a more detailed description see
[3]). In addition, a framework supporting RapidOWL tool
development exists [2] and it has also successfully applied
in practice [4].

3 Existing Approaches

Related approaches can be roughly classified into two
groups. Accompanied by the formation of knowledge
engineering as an independent field of research several
Knowledge Engineering methodologies were developed.
Most of them are much inspired by Software Engineering
methodologies. In the Software Engineering domain, in
the 90’s several Agile Software Engineering methodologies

emerged. Triggered by the fact that flexibility, in particu-
lar fast and efficient reactions on changed prerequisites, be-
comes increasingly important, agile methodologies recently
also appeared in other areas than Software Engineering.

Knowledge Engineering. The main goal of Knowledge
Engineering is to structure the development and use of
knowledge bases. For that purpose, the most widely
known Knowledge Engineering approaches (such as Com-
monKADS [15]) are based on the ontology paradigm [11].
The development of both ontologies and adequate reason-
ing algorithms is supported by various methodologies, the
phases and models of which resemble traditional Software
Engineering approaches. These Knowledge Engineering
methodologies now also reveal similar problems to tradi-
tional Software Engineering approaches. Significant initial
efforts are needed to make the purpose of the final ontology
explicit and to deduce an appropriate model. It is often hard
to estimate the required level of detail for the knowledge
structuring a priori. Changes to the knowledge structuring
are difficult and costly. For these reasons, methods from
Knowledge Engineering are often too expensive to apply
and rarely used in practice (cf. also [12, page 59]). How-
ever, for ontology construction the need for methodologies
supporting ontology evolution and the basis of interactive
collaboration between actors has been tackled by few ap-
proaches (e.g. [14]).

Agile Methodologies. Agile methodologies have recently
gained growing success in many economic and technical
spheres. This is due to the fact that flexibility, in partic-
ular fast and efficient reactions to changed prerequisites,
is becoming increasingly important in the information so-
ciety. This development started in Software Engineering
after the realization in the mid 1990’s that the traditional
“heavy” methodologies do not work well in settings where
requirements are uncertain and change frequently. Several
adaptive or agile Software Engineering methodologies sub-
sequently evolved (e.g. [5, 7, 16]). Agile methodologies
are especially suited for small co-located teams and for the
development of non life-threatening applications. Since the
problem of uncertain, changing requirements is not limited
to the Software Engineering domain, the idea of establish-
ing adaptive methodologies, which can react to changing
prerequisites, was also adopted by other domains than Soft-
ware Engineering. These include ‘The Wiki Way’ [13] for
Content Management, Rapid Prototyping [10] for Industrial
Engineering. Also, the Lean Management method was used
to some extent in the business management domain.



4 Specific Characteristics of Knowledge En-
gineering

Most of the existing knowledge engineering methodologies
adopt techniques and apply process models from software
engineering. However, in many scenarios required knowl-
edge engineering tasks reveal specific characteristics, which
an knowledge engineering methodology should be aware of.
In the following, we describe some specific characteristics
of Knowledge Engineering important for RapidOWL.

Knowledge Engineering is not a Business in itself.
There is no market for Knowledge Engineering as there is
for Software Development. This is not because Knowledge
Engineering is less important in the economic sphere, but
due to the fact that the flow of knowledge in most cases ac-
companies the development of products and services, rather
than being an economic asset itself. Hence, Knowledge
Engineering services are often required when spatially dis-
tributed users and communities have to collaborate on a se-
mantic level. For example, this is the case when a common
terminology has to be established, dispersed information
must be integrated, or when shared classification systems
and taxonomies have to be developed. This type of seman-
tic cooperation is for example often required for Virtual Or-
ganizations [1], Scientific communities or standardization
boards, or Intra-organizational use. Thus, the actors within
Knowledge Engineering processes are often not bound to-
gether by a legal contract, or the Knowledge Engineering
processes are not part of such a contract.

Lack of a Unique Knowledge Serialization. Agile
methodologies rely heavily on sophisticated versioning and
evolution strategies due to their focus on small incremen-
tal changes. However, agile methodologies, as well as their
respective versioning and evolutions strategies within soft-
ware development, do not seem to be reasonably applica-
ble to knowledge engineering. For example, contrary to
software development paradigms, most knowledge repre-
sentation paradigms do not provide unique serializations.
In other words, the ordering of statements or axioms in a
knowledge base is irrelevant, while the ordering of source-
code lines in software is fixed. Consequently, the use of
existing software versioning strategies (e.g. delta method)
and their respective implementations (e.g. CVS, Subver-
sion) would not be efficiently suitable.

Spatial Separation of Parties. Most agile Software De-
velopment methodologies assume a small team of program-
mers working closely (especially spatially) with domain ex-
perts. This is a reasonable assumption for commercial soft-
ware development, where a client requests software devel-
opers to implement a certain functionality. But when the

involved parties are spatially separated, the use of a formal,
tool-supported Knowledge Engineering becomes particu-
larly important. Furthermore, the knowledge engineering
tasks of establishing common classification systems, shared
vocabularies and conceptualizations are is especially impor-
tant in distributed settings. When teams are co-located im-
plicit knowledge representation in the form of text docu-
ments in conjunction with verbal communication turns out
to be more efficient and for a long time established.

Involvement of a Large Number of Parties. The grow-
ing together of the world by Internet and Web technolo-
gies enabled completely new mechanisms of collaboration.
Open source software projects as for example the Linux ker-
nel or collaborative content authoring projects as Wikipedia
demonstrate this power of scalable collaboration impres-
sively. However, knowledge engineering is especially chal-
lenging when a large number of domain experts have to
be integrated into the knowledge-engineering process. Ag-
ile software development methodologies claim to be best
suited for small to medium sized development scenarios.
This is mainly due to the accent on and need for instant
communication. On the other hand, the interlinking of peo-
ple and tools using internet technologies facilitates scal-
ing of agile cooperation scenarios. Knowledge Engineering
scenarios in most cases differ from software development
scenarios: it is usually not optional, but crucial to integrate
a large number of domain experts, knowledge engineers and
finally users of the knowledge bases.

5 Paradigms

The basic paradigms of conventional knowledge engi-
neering methodologies are the generic architecture of
knowledge-based systems, ontologies and problem-solving
methods. We argue that the paradigms of an agile knowl-
edge engineering methodology, with a focus on semantic-
web knowledge representation standards, must both reflect
the distributed interlinked nature of the Web and recog-
nize statements as being the smallest building blocks of
semantic-web knowledge bases. Hence, the vague knowl-
edge representation paradigm of ontologies is replaced by
knowledge representation grounded on the semantic-web
data model, i.e. RDF statement paradigm and the use of
web technologies is established as an additional paradigm.

6 Process

Conventional methodologies distinguish different phases
within the life-cycle of either software or knowledge. Ag-
ile methodologies give the importance of applying a change
a much higher value than being located in a certain stage



of the life cycle. Consequently agile methodologies do not
provide a phase model. Instead, they propose values from
which (on the basis of paradigms) principles are derived for
the engineering process in general, as well as practices for
establishing those principles in daily life. We will describe
RapidOWL along these dimensions in the following subsec-
tions, and then give an overview of how they can be com-
bined and applied in practice.

Values. RapidOWL adopts the values of eXtreme Pro-
gramming, namely Communication (to enable collabora-
tive ontology development), Feedback (to enable evolu-
tion), Simplicity (to increase knowledge base maintainabil-
ity) and Courage (to be able to escape modeling dead-ends).
However, RapidOWL combines the values of Communica-
tion and Feedback in it’s Community value. This includes
the social constructs that underly the communication and
subsumes feedback as a special form of communication. In
addition to XP’s values, RapidOWL includes the value of
Transparency. These values are explained below.

Principles. Based on the four values which represent
long-term goals, the RapidOWL development process is
guided in the mid-term by various principles. They are
partly inspired by Ward Cunningham’s design goals for the
first Wiki system [8]. The principles include an open-word
assumption, promotion of incremental changes, uniform au-
thoring methods for both modeling and instance acquisi-
tion, observable development and rapid feedback (see [3]
for details). The principles describe the single RapidOWL
process axiomatically in the sense that they define charac-
teristics the RapidOWL process should possess. Concrete
practices are derived from the principles aiming at achiev-
ing these desired characteristics in daily routine without
prescribing a rigid process.

Practices. The practices of RapidOWL are inspired by the
practices of eXtreme Programming (XP) and from Holger
Knublauchs modifications for software / knowledge base
co-design XP.K [12]. Due to the specific characteristics
of knowledge engineering (cf. Section 3) not all practices
from XP have an equivalent in RapidOWL and inversely.
They include among others: Joint Ontology Design (to
ease collaboration between knowledge engineers, domain
experts and users), Information Integration (to ground the
knowledge elicitation on existing information), View Gen-
eration (to provide domain specific views for human users
and software systems) and Ontology Evolution (enabling
the smooth adoption of modelings and corresponding in-
stance data migration). In contrast to software development,
where the team of full-time programmers can be easily in-
structed to put the values and principles of XP into daily

routine, RapidOWL aims to turn domain experts into part-
time knowledge engineers by keeping practices as simple as
possible and by proposing strategies to support them with
tools.

Figure 2. The building blocks of RapidOWL:
Values, Principles, Practices.

Putting it all together. The values, principles, and prac-
tices outlined in the previous paragraph are the major in-
gredients of the RapidOWL methodology. They are also
the main things that domain experts, knowledge engi-
neers and especially tool developers for RapidOWL enabled
knowledge engineering and management systems, should
be aware of. In contrast to systematic engineering method-
ologies, RapidOWL does not prescribe a sequence of mod-
eling activities that should be precisely followed. Further-
more, RapidOWL does not waste resources on comprehen-
sive analysis and design activities. Instead, it follows the
philosophy of agile methodologies, in which agility in the
face of changing requirements and knowledge models is
a major goal. The individual tasks and contributions of
prospectively involved parties in building a knowledge base
on the basis of the RapidOWL principles are presented in
the next paragraphs.

RapidOWL encourages domain experts to initially ex-
press all facts they assume as true and worth being, rep-
resented by means of statements. This can be simply the
adding of a statement which attaches an rdfs:label
or rdfs:documentation to a URI reference, to give
that URI reference an informal meaning. Or, instance data
can be gathered by importing existing documents (spread-
sheets, listings, text documents) into the knowledge base.
A spreadsheet containing structured information in tabu-
lar form, for example, can be interpreted as a class, where
columns indicate properties and rows usually represent in-
stances. This activity promotes a shallow learning curve,
since domain experts can instantly participate. As soon as
an expert starts working on such a knowledge representa-
tion, other experts can observe every single step. They
can add comments, vote about the usefulness of certain
representations, add their own knowledge fragments and/or
delete other ones.

More experienced domain experts assist in restructuring,
interlinking and consolidating the gathered data. Importing



information from legacy documents often results in dupli-
cates, because, for example, columns in different spread-
sheet documents representing the same information are not
labeled in a uniform manner. Such duplications have to
be detected and eliminated (e.g. by merging the respective
properties into one). To reduce the costs of such changes,
RapidOWL will rely on implemented wizards assisting in
the detection of frequent modeling errors and by providing
(semi-)automatic resolution to support evolution and migra-
tion. It might also be necessary to convert literal data, as,
for example, two properties to be merged can represent the
same information differently (e.g. names like “Auer, Sören”
or “Sören Auer”). This kind of consolidation activity also
includes the establishing of relationships which are not yet
represented.

Knowledge engineers can support such a community of
domain experts with advice for reasonable representation
methods and by providing ontology evolution and data mi-
gration strategies. Knowledge engineers can further enrich
the knowledge base with logical ontology axioms. This
includes property characteristics (e.g. transitivity) and re-
strictions (e.g. cardinality restrictions). Class descriptions
are refined with set operators (owl:intersectionOf,
owl:unionOf, owl:complementOf). The knowledge
engineer can also extract distinct parts or ‘slices’ of the
knowledge base adhering to the OWL species, DL and lite
to perform consistency checks by means of Description
Logic reasoner. Since RapidOWL does not restrict domain
experts in their usage of RDF it is likely that the knowledge
base does not fall into the OWL DL or OWL lite categories.
The species validation of an OWL reasoner, however, can
give hints about how the knowledge base has to be modified.
Another task is the testing of existing queries and views on
the knowledge base after changes have been incorporated.

RapidOWL focuses primarily on establishing concep-
tualizations for information integration as well as the es-
tablishing of shared classification systems and vocabular-
ies. Hence, tools supporting RapidOWL will have a rather
generic than domain specific nature. However, software de-
velopers participate in the collaboration by developing do-
main specific applications providing specific views onto the
knowledge base, or by assisting domain experts and knowl-
edge engineers in formulation more complex queries to the
knowledge base.

RapidOWL does not enforce a distinct succession, nei-
ther does it require all the just mentioned tasks and activities
to be accomplished by the respective parties. The quality of
the knowledge base, however, is determined by carefully
performing activities related to consolidation, restructuring
and modeling as well as consistency checking. Tools on the
other hand, can highly automatize and integrate these activ-
ities into the Gathering activity.

7 Conclusion

The purpose of RapidOWL is to bring about a stable state
of the knowledge base through small incremental changes
from a multiplicity of contributors. To achieve that, Rapid-
OWL applies various techniques and practices with the ex-
plicit goal of reducing the cost of change. Much of the as-
sumption that the cost of change can be reduced is based
on the value of Transparency. The practice Short Releases
for example promotes that ontologies are published quickly
and frequently, so that expensive misunderstandings can be
uncovered and eliminated early, when the costs of changing
them are still low. View Generation furthermore enables
domain experts to timely review the representations from
different perspectives. Joint Ontology Design and Commu-
nity Modeling promote communication between domain ex-
perts (and knowledge engineers) and thus help by detecting
errors earlier and spreading the knowledge. Ontology Evo-
lution enables to undo problematic changes and to estimate
prospective effects on instance data. Early Information Inte-
gration helps that the ontology really captures needed con-
ceptualizations adequately. The Simple Knowledge Model
of the statement based approach of semantic-web knowl-
edge representation standards is very easy to understand. In
conjunction with Modeling Standards domain experts are
thus enabled to efficiently contribute to a knowledge base,
even in absence of knowledge engineers. Finally, Consis-
tency Checking helps to build robust and terminologically
correct knowledge bases.

Although each of these practices have weaknesses when
applied individually, their benefits greatly outweigh their
weaknesses when they are used as a combined approach.
In other words, the practices of RapidOWL support one
and other. This analogous to other agile methodologies (cf.
[12, 5]) and due to the ‘axiomatic’ description of their single
process. An example for individual weaknesses and mu-
tual compensation of such is the interplay of the practices
of Short Releases and Ontology Evolution. Short Releases
of the ontologies may result in instabilities of the resulting
knowledge-based systems. However, Ontology Evolution
supports the early detection of prospective problems and
enables the revoke of individual problematic changes in a
simple way.

In [9] a number of criteria for analyzing methodologies
was proposed. In the following we discuss RapidOWL in
the light of these criteria.

Detail of the methodology. RapidOWL is a rather
lightweight methodology. This is primarily due to the
recognition that knowledge engineering is usually not a
business in itself and thus significant resources for evaluat-
ing the methodology and later controlling the compliance of
the processes with the methodology are not available. Rapi-



dOWL rather banks on tools supporting it than on exhaus-
tive documentation.

Recommendations for knowledge formalization. Rapi-
dOWL bases on representation of all knowledge in the form
of triples, i.e. RDF statements. A concrete degree of for-
malization is not prescribed. However, RapidOWL pro-
poses to justify the degree of formalization according to the
required querying and reasoning capabilities of the resulting
knowledge base.

Strategy for building ontologies. Regarding this criteria
it is questioned whether the strategy to develop ontologies is
(a) application-dependent, (b) application-semidependent,
or (c) application-independent. RapidOWL focuses on the
development of rather application-independent ontologies.
However, RapidOWL is primarily suited for information in-
tegration tasks and tasks related to the establishing of shared
classification systems, vocabularies and conceptualizations.

Strategy for identifying concepts. RapidOWL here fol-
lows a middle-out strategy, i.e. from the most relevant to the
most abstract and most concrete. By stressing the collect-
ing of example or instance data RapidOWL tries to abolish
knowledge elicitation by means of face-to-face communi-
cation between domain experts and knowledge engineers.

Recommended life cycle. Due to its adaptive nature
RapidOWL does not explicitly propose a rigid life cycle.
However, many aspects of stages in the life cycle of con-
ventional methodologies can be discovered in RapidOWL’s
single process.

Differences between the methodology and IEEE 1074-
1995. This criteria is related to the conviction that knowl-
edge engineering processes should be similar to conven-
tional software development processes. In this regard Rapi-
dOWL is different in two ways: Firstly it stresses the need
to react on changed prerequisites, i.e. being agile. Secondly
it assumes knowledge engineering to be fundamentally dif-
ferent from software engineering in certain scenarios.

Recommended techniques. RapidOWL stresses the im-
portance of providing concrete techniques for performing
the different practices of which the methodology is com-
posed. However, in the description of RapidOWL’s prac-
tices within this document only starting points on how to
put them into effect are mentioned.

Usage and Application. Due to the fact that RapidOWL
is rather new and significant resources had not been at our
disposal for a broad evaluation the number of successfully

realized RapidOWL projects is still small. However, on-
tologies and applications have been build on the basis of
RapidOWL containing approximately 20,000 concepts and
serving 3,000 parties (cf. the case study in [?]).

References

[1] W. P. Appel and R. Behr. Towards the theory of virtual or-
ganizations: A description of their formation and figure. Ar-
beitspapiere wirtschaftsinformatik, Justus-Liebig-Universitt
Gieen Fachbereich Wirtschaftswissenschaften, 12 1996.

[2] S. Auer. Powl: A web based platform for collaborative se-
mantic web development. In S. Auer, C. Bizer, and L. Miller,
editors, Proceedings of the Workshop Scripting for the Se-
mantic Web, number 135 in CEUR Workshop Proceedings,
Heraklion, Greece, 05 2005.

[3] S. Auer. Towards Agile Knowledge Engineering: Method-
ology, Concepts and Applications. PhD thesis, Universität
Leipzig, 2006.

[4] S. Auer and B. Pieterse. ”Vernetzte Kirche”: Building
a Semantic Web. In Proceedings of ISWC Workshop Se-
mantic Web Case Studies and Best Practices for eBusiness
(SWCASE05), 2005.

[5] K. Beck and C. Andres. Extreme Programming Explained:
Embrace Change, Second Edition. Addison Wesley Profes-
sional, 2004.

[6] A. Cockburn. Selecting a project ’s methodology. IEEE
Software, 17(4), 2000.

[7] A. Cockburn. Crystal Clear. Addison-Wesley Professional,
2004.

[8] W. Cunningham. Wiki design principles.
http://c2.com/cgi/wiki? WikiDesignPrinciples.

[9] M. Fernndez-Lpez. Overview of methodologies for build-
ing ontologies. In IJCAI99 Workshop on Ontologies and
Problem-Solving Methods: Lessons Learned and Future
Trends, 1999.

[10] A. Gebhardt. Rapid Prototyping. Hanser Gardner Pubns,
2003.

[11] T. R. Gruber. A translation approach to portable ontologies.
Knowledge Acquisition, 5(2):199–220, June 1993.

[12] H. Knublauch. An Agile Development Methodology for
Knowledge-Based Systems. PhD thesis, University of Ulm,
2002.

[13] B. Leuf and W. Cunningham. The Wiki Way: Collaboration
and Sharing on the Internet. Addison-Wesley Professional,
2001.

[14] H. S. Pinto, S. Staab, and C. Tempich. DILIGENT: To-
wards a fine-grained methodology for distributed, loosely-
controlled and evolving engineering of oNTologies. In
ECAI, pages 393–397, 2004.

[15] G. Schreiber, H. Akkermans, A. Anjewierden, R. de Hoog,
N. Shadbolt, W. V. de Velde, and B. J. Wielinga. Knowl-
edge Engineering and Management: The CommonKADS
Methodology. MITpress, 2000.

[16] K. Schwaber and M. Beedle. Agile Software Development
with Scrum. Prentice Hall, 1st edition, Oct 2001.


