
Belief revision-based case-based reasoning

Julien Cojan1 and Jean Lieber234

1 INRIA Sophia-Antipolis, Edelweiss Project, julien.cojan@inria.fr
2 Université de Lorraine, LORIA, UMR 7503 � Vand÷uvre-lès-Nancy,

F-54506, France, jean.lieber@loria.fr
3 CNRS, LORIA, UMR 7503 � Vand÷uvre-lès-Nancy, F-54506, France
4 Inria � Villers-lès-Nancy, F-54602, France

1 / 25

Remark on the di�erence between the paper and the talk

The paper gathers several results on revision-based CBR and

is rather technical

The talk will make some simplifying assumptions and

will try to be more intuitive

2 / 25

Remark on the di�erence between the paper and the talk

The paper gathers several results on revision-based CBR and

is rather technical

The talk will make some simplifying assumptions and

will try to be more intuitive

2 / 25

Outline of the talk

belief revision CBR

revision-based CBR

revision-based adaptation (generalisation)

preliminaries

3 / 25

Preliminaries

4 / 25

Formalism

I Generalisation from propositional logic with n variables:
I U = {false, true}n: set of the interpretations
I A formula ϕ represents a subset Mod(ϕ) of U

I Generalisation:
I U : a given set (�the universe of instances/interpretations�)
I L: the representation language
I Semantics: ϕ ∈ L 7→ Mod(ϕ) ∈ 2U

I With A = Mod(ϕ) and B = Mod(χ)
I ϕ |= χ if A ⊆ B
I ϕ is satis�able if A 6= ∅

5 / 25

Formalism

I Generalisation from propositional logic with n variables:
I U = {false, true}n: set of the interpretations
I A formula ϕ represents a subset Mod(ϕ) of U

I Generalisation:
I U : a given set (�the universe of instances/interpretations�)
I L: the representation language
I Semantics: ϕ ∈ L 7→ Mod(ϕ) ∈ 2U

I With A = Mod(ϕ) and B = Mod(χ)
I ϕ |= χ if A ⊆ B
I ϕ is satis�able if A 6= ∅

5 / 25

Distance

I d : U × U → [0; +∞] is a distance if

d(x , y) = 0 i� x = y

(no other condition required in this talk)

6 / 25

Belief Revision

7 / 25

Belief revision (introduction)

I Belief base = knowledge base (no di�erence in this talk)

I Given
I ψ a revisable consistent knowledge base
I µ a non revisable consistent knowledge base

I A revision ψ u µ of ψ by µ is a knowledge base obtained by

minimal modi�cation of ψ so that it is consistent with µ:
I ψ 7→ ψ′

I ψ u µ = ψ′ ∩ µ
I Di�erent ways to model minimal modi�cation

hence di�erent revision operators

I In the following, u is de�ned on L × L or on 2U × 2U :

Mod(ψ u µ) = Mod(ψ) u Mod(µ)

8 / 25

Belief revision (introduction)

I Belief base = knowledge base (no di�erence in this talk)

I Given
I ψ a revisable consistent knowledge base
I µ a non revisable consistent knowledge base

I A revision ψ u µ of ψ by µ is a knowledge base obtained by

minimal modi�cation of ψ so that it is consistent with µ:
I ψ 7→ ψ′

I ψ u µ = ψ′ ∩ µ
I Di�erent ways to model minimal modi�cation

hence di�erent revision operators

I In the following, u is de�ned on L × L or on 2U × 2U :

Mod(ψ u µ) = Mod(ψ) u Mod(µ)

8 / 25

Belief revision (introduction)

I Belief base = knowledge base (no di�erence in this talk)

I Given
I ψ a revisable consistent knowledge base
I µ a non revisable consistent knowledge base

I A revision ψ u µ of ψ by µ is a knowledge base obtained by

minimal modi�cation of ψ so that it is consistent with µ:
I ψ 7→ ψ′

I ψ u µ = ψ′ ∩ µ

I Di�erent ways to model minimal modi�cation

hence di�erent revision operators

I In the following, u is de�ned on L × L or on 2U × 2U :

Mod(ψ u µ) = Mod(ψ) u Mod(µ)

8 / 25

Belief revision (introduction)

I Belief base = knowledge base (no di�erence in this talk)

I Given
I ψ a revisable consistent knowledge base
I µ a non revisable consistent knowledge base

I A revision ψ u µ of ψ by µ is a knowledge base obtained by

minimal modi�cation of ψ so that it is consistent with µ:
I ψ 7→ ψ′

I ψ u µ = ψ′ ∩ µ
I Di�erent ways to model minimal modi�cation

hence di�erent revision operators

I In the following, u is de�ned on L × L or on 2U × 2U :

Mod(ψ u µ) = Mod(ψ) u Mod(µ)

8 / 25

Belief revision (introduction)

I Belief base = knowledge base (no di�erence in this talk)

I Given
I ψ a revisable consistent knowledge base
I µ a non revisable consistent knowledge base

I A revision ψ u µ of ψ by µ is a knowledge base obtained by

minimal modi�cation of ψ so that it is consistent with µ:
I ψ 7→ ψ′

I ψ u µ = ψ′ ∩ µ
I Di�erent ways to model minimal modi�cation

hence di�erent revision operators

I In the following, u is de�ned on L × L or on 2U × 2U :

Mod(ψ u µ) = Mod(ψ) u Mod(µ)

8 / 25

Belief revision (postulates)

I AGM postulates (1985)

I Katsuno & Mendelzon (1992):

reformulation in propositional logic

I Easy to generalise in our formalism (see further)

9 / 25

Belief revision (postulates)

I AGM postulates (1985)

I Katsuno & Mendelzon (1992):

reformulation in propositional logic

I Easy to generalise in our formalism (see further)

9 / 25

Belief revision (postulates)

I AGM postulates (1985)

I Katsuno & Mendelzon (1992):

reformulation in propositional logic

I Easy to generalise in our formalism (see further)

9 / 25

Belief revision (distance-based revision operators)
With d , a distance on U , A ⊆ U , B ⊆ U :

A ud B = {b ∈ B | d(A, b) = d(A,B)}

U

10 / 25

Belief revision (distance-based revision operators)
With d , a distance on U , A ⊆ U , B ⊆ U :

A ud B = {b ∈ B | d(A, b) = d(A,B)}

U

10 / 25

Belief revision (distance-based revision operators)
With d , a distance on U , A ⊆ U , B ⊆ U :

A ud B = {b ∈ B | d(A, b) = d(A,B)}

U

10 / 25

Belief revision (distance-based revision operators)
With d , a distance on U , A ⊆ U , B ⊆ U :

A ud B = {b ∈ B | d(A, b) = d(A,B)}

U

10 / 25

Case-Based Reasoning

11 / 25

CBR: problems, solutions and cases

Assumption for the talk: problem-solution decomposition of cases

I A problem instance x : an element of Upb
I A problem pb: a class of problem instances, pb ∈ 2Upb

I A solution instance y : an element of Usol
I A solution sol: a class of solution instances, sol ∈ 2Usol

I There exists a relation �x has for solution y � but it is

incompletely known.

I A case C is given by a problem pb and a solution sol(pb) of
pb: C = pb× sol(pb).

I Thus, C ∈ 2U where U = Upb × Usol.

12 / 25

CBR: problems, solutions and cases

Assumption for the talk: problem-solution decomposition of cases

I A problem instance x : an element of Upb

I A problem pb: a class of problem instances, pb ∈ 2Upb

I A solution instance y : an element of Usol
I A solution sol: a class of solution instances, sol ∈ 2Usol

I There exists a relation �x has for solution y � but it is

incompletely known.

I A case C is given by a problem pb and a solution sol(pb) of
pb: C = pb× sol(pb).

I Thus, C ∈ 2U where U = Upb × Usol.

12 / 25

CBR: problems, solutions and cases

Assumption for the talk: problem-solution decomposition of cases

I A problem instance x : an element of Upb
I A problem pb: a class of problem instances, pb ∈ 2Upb

I A solution instance y : an element of Usol
I A solution sol: a class of solution instances, sol ∈ 2Usol

I There exists a relation �x has for solution y � but it is

incompletely known.

I A case C is given by a problem pb and a solution sol(pb) of
pb: C = pb× sol(pb).

I Thus, C ∈ 2U where U = Upb × Usol.

12 / 25

CBR: problems, solutions and cases

Assumption for the talk: problem-solution decomposition of cases

I A problem instance x : an element of Upb
I A problem pb: a class of problem instances, pb ∈ 2Upb

I A solution instance y : an element of Usol

I A solution sol: a class of solution instances, sol ∈ 2Usol

I There exists a relation �x has for solution y � but it is

incompletely known.

I A case C is given by a problem pb and a solution sol(pb) of
pb: C = pb× sol(pb).

I Thus, C ∈ 2U where U = Upb × Usol.

12 / 25

CBR: problems, solutions and cases

Assumption for the talk: problem-solution decomposition of cases

I A problem instance x : an element of Upb
I A problem pb: a class of problem instances, pb ∈ 2Upb

I A solution instance y : an element of Usol
I A solution sol: a class of solution instances, sol ∈ 2Usol

I There exists a relation �x has for solution y � but it is

incompletely known.

I A case C is given by a problem pb and a solution sol(pb) of
pb: C = pb× sol(pb).

I Thus, C ∈ 2U where U = Upb × Usol.

12 / 25

CBR: problems, solutions and cases

Assumption for the talk: problem-solution decomposition of cases

I A problem instance x : an element of Upb
I A problem pb: a class of problem instances, pb ∈ 2Upb

I A solution instance y : an element of Usol
I A solution sol: a class of solution instances, sol ∈ 2Usol

I There exists a relation �x has for solution y � but it is

incompletely known.

I A case C is given by a problem pb and a solution sol(pb) of
pb: C = pb× sol(pb).

I Thus, C ∈ 2U where U = Upb × Usol.

12 / 25

CBR: problems, solutions and cases

Assumption for the talk: problem-solution decomposition of cases

I A problem instance x : an element of Upb
I A problem pb: a class of problem instances, pb ∈ 2Upb

I A solution instance y : an element of Usol
I A solution sol: a class of solution instances, sol ∈ 2Usol

I There exists a relation �x has for solution y � but it is

incompletely known.

I A case C is given by a problem pb and a solution sol(pb) of
pb: C = pb× sol(pb).

I Thus, C ∈ 2U where U = Upb × Usol.

12 / 25

CBR: problems, solutions and cases

Assumption for the talk: problem-solution decomposition of cases

I A problem instance x : an element of Upb
I A problem pb: a class of problem instances, pb ∈ 2Upb

I A solution instance y : an element of Usol
I A solution sol: a class of solution instances, sol ∈ 2Usol

I There exists a relation �x has for solution y � but it is

incompletely known.

I A case C is given by a problem pb and a solution sol(pb) of
pb: C = pb× sol(pb).

I Thus, C ∈ 2U where U = Upb × Usol.

12 / 25

CBR (input/output)
Input

I The target case Target = tgt× Usol (unknown solution)

(often tgt = {x t})
I The case base CaseBase: set of the cases available to the

system: Source ∈ CaseBase, Source = srce× sol(srce)
(often Source = {(x s , y s)})

I The domain knowledge DK ⊆ U
a necessary condition for a case instance a = (x , y) ∈ U to be

licit

if a 6∈ DK then a is not licit

I Other knowledge containers (similarity, AK)

Output

sol(tgt) ∈ 2Usol such that the hypothesis

�sol(tgt) solves tgt� is likely (...).

(often sol(tgt) = {y t})

13 / 25

CBR (input/output)
Input

I The target case Target = tgt× Usol (unknown solution)

(often tgt = {x t})

I The case base CaseBase: set of the cases available to the

system: Source ∈ CaseBase, Source = srce× sol(srce)
(often Source = {(x s , y s)})

I The domain knowledge DK ⊆ U
a necessary condition for a case instance a = (x , y) ∈ U to be

licit

if a 6∈ DK then a is not licit

I Other knowledge containers (similarity, AK)

Output

sol(tgt) ∈ 2Usol such that the hypothesis

�sol(tgt) solves tgt� is likely (...).

(often sol(tgt) = {y t})

13 / 25

CBR (input/output)
Input

I The target case Target = tgt× Usol (unknown solution)

(often tgt = {x t})
I The case base CaseBase: set of the cases available to the

system: Source ∈ CaseBase, Source = srce× sol(srce)
(often Source = {(x s , y s)})

I The domain knowledge DK ⊆ U
a necessary condition for a case instance a = (x , y) ∈ U to be

licit

if a 6∈ DK then a is not licit

I Other knowledge containers (similarity, AK)

Output

sol(tgt) ∈ 2Usol such that the hypothesis

�sol(tgt) solves tgt� is likely (...).

(often sol(tgt) = {y t})

13 / 25

CBR (input/output)
Input

I The target case Target = tgt× Usol (unknown solution)

(often tgt = {x t})
I The case base CaseBase: set of the cases available to the

system: Source ∈ CaseBase, Source = srce× sol(srce)
(often Source = {(x s , y s)})

I The domain knowledge DK ⊆ U
a necessary condition for a case instance a = (x , y) ∈ U to be

licit

if a 6∈ DK then a is not licit

I Other knowledge containers (similarity, AK)

Output

sol(tgt) ∈ 2Usol such that the hypothesis

�sol(tgt) solves tgt� is likely (...).

(often sol(tgt) = {y t})

13 / 25

CBR (input/output)
Input

I The target case Target = tgt× Usol (unknown solution)

(often tgt = {x t})
I The case base CaseBase: set of the cases available to the

system: Source ∈ CaseBase, Source = srce× sol(srce)
(often Source = {(x s , y s)})

I The domain knowledge DK ⊆ U
a necessary condition for a case instance a = (x , y) ∈ U to be

licit

if a 6∈ DK then a is not licit

I Other knowledge containers (similarity, AK)

Output

sol(tgt) ∈ 2Usol such that the hypothesis

�sol(tgt) solves tgt� is likely (...).

(often sol(tgt) = {y t})

13 / 25

CBR (input/output)
Input

I The target case Target = tgt× Usol (unknown solution)

(often tgt = {x t})
I The case base CaseBase: set of the cases available to the

system: Source ∈ CaseBase, Source = srce× sol(srce)
(often Source = {(x s , y s)})

I The domain knowledge DK ⊆ U
a necessary condition for a case instance a = (x , y) ∈ U to be

licit

if a 6∈ DK then a is not licit

I Other knowledge containers (similarity, AK)

Output

sol(tgt) ∈ 2Usol such that the hypothesis

�sol(tgt) solves tgt� is likely (...).

(often sol(tgt) = {y t})
13 / 25

CBR (retrieval and adaptation)

tgt

srce

sol(srce) sol(tgt)

retrieval

adaptation

14 / 25

CBR (retrieval and adaptation)

tgtsrce

sol(srce) sol(tgt)

retrieval

adaptation

14 / 25

CBR (retrieval and adaptation)

tgtsrce

sol(srce)

sol(tgt)

retrieval

adaptation

14 / 25

CBR (retrieval and adaptation)

tgtsrce

sol(srce) sol(tgt)

retrieval

adaptation

14 / 25

CBR (retrieval and adaptation)

tgtsrce

sol(srce) sol(tgt)

retrieval

adaptation

14 / 25

CBR (example) http://taaable.fr

Fruit pie recipe

without apple?

Apple pie

recipe?

Apple pie recipe

• 6 apples

• pie shell

• 60 g sugar

Cut the apples.

etc.

σ(sol(srce)) with

1. σ = apples pears

2. σ = apples
pears and

almond powder

3. σ =
6 apples

60 g sugar

9 pears

24 g sugar

4. σ: adaptation of the preparation

retrieval

adaptation

15 / 25

http://taaable.fr

CBR (example) http://taaable.fr

Fruit pie recipe

without apple?

Apple pie

recipe?

Apple pie recipe

• 6 apples

• pie shell

• 60 g sugar

Cut the apples.

etc.

σ(sol(srce)) with

1. σ = apples pears

2. σ = apples
pears and

almond powder

3. σ =
6 apples

60 g sugar

9 pears

24 g sugar

4. σ: adaptation of the preparation

retrieval

adaptation

15 / 25

http://taaable.fr

CBR (example) http://taaable.fr

Fruit pie recipe

without apple?

Apple pie

recipe?

Apple pie recipe

• 6 apples

• pie shell

• 60 g sugar

Cut the apples.

etc.

σ(sol(srce)) with

1. σ = apples pears

2. σ = apples
pears and

almond powder

3. σ =
6 apples

60 g sugar

9 pears

24 g sugar

4. σ: adaptation of the preparation

retrieval

adaptation

15 / 25

http://taaable.fr

CBR (example) http://taaable.fr

Fruit pie recipe

without apple?

Apple pie

recipe?

Apple pie recipe

• 6 apples

• pie shell

• 60 g sugar

Cut the apples.

etc.

σ(sol(srce)) with

1. σ = apples pears

2. σ = apples
pears and

almond powder

3. σ =
6 apples

60 g sugar

9 pears

24 g sugar

4. σ: adaptation of the preparation

retrieval

adaptation

15 / 25

http://taaable.fr

CBR (example) http://taaable.fr

Fruit pie recipe

without apple?

Apple pie

recipe?

Apple pie recipe

• 6 apples

• pie shell

• 60 g sugar

Cut the apples.

etc.

σ(sol(srce)) with
1. σ = apples pears

2. σ = apples
pears and

almond powder

3. σ =
6 apples

60 g sugar

9 pears

24 g sugar

4. σ: adaptation of the preparation

retrieval

adaptation

15 / 25

http://taaable.fr

CBR (example) http://taaable.fr

Fruit pie recipe

without apple?

Apple pie

recipe?

Apple pie recipe

• 6 apples

• pie shell

• 60 g sugar

Cut the apples.

etc.

σ(sol(srce)) with
1. σ = apples pears

2. σ = apples
pears and

almond powder

3. σ =
6 apples

60 g sugar

9 pears

24 g sugar

4. σ: adaptation of the preparation

retrieval

adaptation

15 / 25

http://taaable.fr

CBR (example) http://taaable.fr

Fruit pie recipe

without apple?

Apple pie

recipe?

Apple pie recipe

• 6 apples

• pie shell

• 60 g sugar

Cut the apples.

etc.

σ(sol(srce)) with
1. σ = apples pears

2. σ = apples
pears and

almond powder

3. σ =
6 apples

60 g sugar

9 pears

24 g sugar

4. σ: adaptation of the preparation

retrieval

adaptation

15 / 25

http://taaable.fr

CBR (example) http://taaable.fr

Fruit pie recipe

without apple?

Apple pie

recipe?

Apple pie recipe

• 6 apples

• pie shell

• 60 g sugar

Cut the apples.

etc.

σ(sol(srce)) with
1. σ = apples pears

2. σ = apples
pears and

almond powder

3. σ =
6 apples

60 g sugar

9 pears

24 g sugar

4. σ: adaptation of the preparation

retrieval

adaptation

15 / 25

http://taaable.fr

Revision-Based CBR

16 / 25

Revision-based adaptation (intuition)

I Adaptation: modi�cation of srce× sol(srce)
so that it is consistent with tgt× Usol

//

I Revision: modi�cation of ψ
so that it is consistent with µ

17 / 25

Revision-based adaptation (de�nition)

tgt×sol(tgt) = (

DK ∩

srce× sol(srce))

u

AK

(

DK ∩

tgt× Usol)

18 / 25

Revision-based adaptation (de�nition)

tgt×sol(tgt) = (DK ∩ srce× sol(srce))

u

AK

(DK ∩ tgt× Usol)

18 / 25

Revision-based adaptation (de�nition)

tgt×sol(tgt) = (DK ∩ srce× sol(srce)) u

AK

(DK ∩ tgt× Usol)

18 / 25

Revision-based adaptation (de�nition)

tgt×sol(tgt) = (DK ∩ srce× sol(srce)) uAK (DK ∩ tgt× Usol)

18 / 25

Revision-based adaptation (properties)

revision postulates u-adaptation properties

(reformulated)

u 1 A u B ⊆ B
The result of the adaptation

is consistent with DK.

u 2
if A ∩ B 6= ∅
then A u B = A ∩ B

If the target case is consistent

with the source case then

this latter is deductively reused

for solving the target case.

u 3
if B 6= ∅
then A u B 6= ∅

Unless the target case is

DK-inconsistent, the adaptation

gives a consistent result.

u 4

u 5

if (A u B) ∩ C 6= ∅
then A u (B ∩ C) =

(A u B) ∩ C

Adaptation by minimal

modi�cation (according to u).

u 6
The result of the revision

is representable in L.
The result of the adaptation

is representable in L.
19 / 25

Example 1: in prop. logic, with Dalal revision operator

I tgt = pie ∧ fruit ∧ ¬apple
(pie: recipe of pies, apple: recipes with apples, etc.)

I srce = pie ∧ apple
sol(srce) = pie_shell ∧ sugar

I DK =

®
apple ∨ pear⇔ pome_fruit,
pome_fruit⇒ fruit, etc.

´
I u = Dalal revision operator = udH with dH : Hamming distance

dH(I,J) = number of �ips of variables from I to J
= card ({variable a | I(a) 6= J (a)})

tgt ∧ sol(tgt) = pie ∧ pear ∧ pie_shell ∧ sugar

20 / 25

Example 1: in prop. logic, with Dalal revision operator

I tgt = pie ∧ fruit ∧ ¬apple
(pie: recipe of pies, apple: recipes with apples, etc.)

I srce = pie ∧ apple
sol(srce) = pie_shell ∧ sugar

I DK =

®
apple ∨ pear⇔ pome_fruit,
pome_fruit⇒ fruit, etc.

´
I u = Dalal revision operator = udH with dH : Hamming distance

dH(I,J) = number of �ips of variables from I to J
= card ({variable a | I(a) 6= J (a)})

tgt ∧ sol(tgt) = pie ∧ pear ∧ pie_shell ∧ sugar

20 / 25

Example 1: in prop. logic, with Dalal revision operator

I tgt = pie ∧ fruit ∧ ¬apple
(pie: recipe of pies, apple: recipes with apples, etc.)

I srce = pie ∧ apple
sol(srce) = pie_shell ∧ sugar

I DK =

®
apple ∨ pear⇔ pome_fruit,
pome_fruit⇒ fruit, etc.

´
I u = Dalal revision operator = udH with dH : Hamming distance

dH(I,J) = number of �ips of variables from I to J
= card ({variable a | I(a) 6= J (a)})

tgt ∧ sol(tgt) = pie ∧ pear ∧ pie_shell ∧ sugar

20 / 25

Example 1: in prop. logic, with Dalal revision operator

I tgt = pie ∧ fruit ∧ ¬apple
(pie: recipe of pies, apple: recipes with apples, etc.)

I srce = pie ∧ apple
sol(srce) = pie_shell ∧ sugar

I DK =

®
apple ∨ pear⇔ pome_fruit,
pome_fruit⇒ fruit, etc.

´

I u = Dalal revision operator = udH with dH : Hamming distance

dH(I,J) = number of �ips of variables from I to J
= card ({variable a | I(a) 6= J (a)})

tgt ∧ sol(tgt) = pie ∧ pear ∧ pie_shell ∧ sugar

20 / 25

Example 1: in prop. logic, with Dalal revision operator

I tgt = pie ∧ fruit ∧ ¬apple
(pie: recipe of pies, apple: recipes with apples, etc.)

I srce = pie ∧ apple
sol(srce) = pie_shell ∧ sugar

I DK =

®
apple ∨ pear⇔ pome_fruit,
pome_fruit⇒ fruit, etc.

´
I u = Dalal revision operator = udH with dH : Hamming distance

dH(I,J) = number of �ips of variables from I to J
= card ({variable a | I(a) 6= J (a)})

tgt ∧ sol(tgt) = pie ∧ pear ∧ pie_shell ∧ sugar

20 / 25

Example 1: in prop. logic, with Dalal revision operator

I tgt = pie ∧ fruit ∧ ¬apple
(pie: recipe of pies, apple: recipes with apples, etc.)

I srce = pie ∧ apple
sol(srce) = pie_shell ∧ sugar

I DK =

®
apple ∨ pear⇔ pome_fruit,
pome_fruit⇒ fruit, etc.

´
I u = Dalal revision operator = udH with dH : Hamming distance

dH(I,J) = number of �ips of variables from I to J
= card ({variable a | I(a) 6= J (a)})

tgt ∧ sol(tgt) = pie ∧ pear ∧ pie_shell ∧ sugar

20 / 25

Example 2: in prop. logic, using adaptation rules

I Same tgt, srce, sol(srce) and DK

I Use of adaptation knowledge given by adaptation rules

AK =

®
salad ∧ vinegar salad ∧ lemon ∧ salt,
apple pear ∧ almond_powder, etc.

´
I u = udAK with dAK de�ned by

I Version 1:

dAK(I,J) = length of the shortest AK-path from I to J

Limitation: dAK(I,J) = +∞ if no AK-path from I to J exist
I Version 2:

dAK(I,J) =
length of the shortest path from I to J
using adaptation rules and �ips of variables

(when AK = ∅, dAK = dH)

tgt ∧ sol(tgt) = pie ∧ pear ∧ almond_powder ∧ pie_shell ∧ sugar

21 / 25

Example 2: in prop. logic, using adaptation rules

I Same tgt, srce, sol(srce) and DK

I Use of adaptation knowledge given by adaptation rules

AK =

®
salad ∧ vinegar salad ∧ lemon ∧ salt,
apple pear ∧ almond_powder, etc.

´
I u = udAK with dAK de�ned by

I Version 1:

dAK(I,J) = length of the shortest AK-path from I to J

Limitation: dAK(I,J) = +∞ if no AK-path from I to J exist
I Version 2:

dAK(I,J) =
length of the shortest path from I to J
using adaptation rules and �ips of variables

(when AK = ∅, dAK = dH)

tgt ∧ sol(tgt) = pie ∧ pear ∧ almond_powder ∧ pie_shell ∧ sugar

21 / 25

Example 2: in prop. logic, using adaptation rules

I Same tgt, srce, sol(srce) and DK

I Use of adaptation knowledge given by adaptation rules

AK =

®
salad ∧ vinegar salad ∧ lemon ∧ salt,
apple pear ∧ almond_powder, etc.

´

I u = udAK with dAK de�ned by
I Version 1:

dAK(I,J) = length of the shortest AK-path from I to J

Limitation: dAK(I,J) = +∞ if no AK-path from I to J exist
I Version 2:

dAK(I,J) =
length of the shortest path from I to J
using adaptation rules and �ips of variables

(when AK = ∅, dAK = dH)

tgt ∧ sol(tgt) = pie ∧ pear ∧ almond_powder ∧ pie_shell ∧ sugar

21 / 25

Example 2: in prop. logic, using adaptation rules

I Same tgt, srce, sol(srce) and DK

I Use of adaptation knowledge given by adaptation rules

AK =

®
salad ∧ vinegar salad ∧ lemon ∧ salt,
apple pear ∧ almond_powder, etc.

´
I u = udAK with dAK de�ned by

I Version 1:

dAK(I,J) = length of the shortest AK-path from I to J

Limitation: dAK(I,J) = +∞ if no AK-path from I to J exist
I Version 2:

dAK(I,J) =
length of the shortest path from I to J
using adaptation rules and �ips of variables

(when AK = ∅, dAK = dH)

tgt ∧ sol(tgt) = pie ∧ pear ∧ almond_powder ∧ pie_shell ∧ sugar

21 / 25

Example 2: in prop. logic, using adaptation rules

I Same tgt, srce, sol(srce) and DK

I Use of adaptation knowledge given by adaptation rules

AK =

®
salad ∧ vinegar salad ∧ lemon ∧ salt,
apple pear ∧ almond_powder, etc.

´
I u = udAK with dAK de�ned by

I Version 1:

dAK(I,J) = length of the shortest AK-path from I to J

Limitation: dAK(I,J) = +∞ if no AK-path from I to J exist

I Version 2:

dAK(I,J) =
length of the shortest path from I to J
using adaptation rules and �ips of variables

(when AK = ∅, dAK = dH)

tgt ∧ sol(tgt) = pie ∧ pear ∧ almond_powder ∧ pie_shell ∧ sugar

21 / 25

Example 2: in prop. logic, using adaptation rules

I Same tgt, srce, sol(srce) and DK

I Use of adaptation knowledge given by adaptation rules

AK =

®
salad ∧ vinegar salad ∧ lemon ∧ salt,
apple pear ∧ almond_powder, etc.

´
I u = udAK with dAK de�ned by

I Version 1:

dAK(I,J) = length of the shortest AK-path from I to J

Limitation: dAK(I,J) = +∞ if no AK-path from I to J exist
I Version 2:

dAK(I,J) =
length of the shortest path from I to J
using adaptation rules and �ips of variables

(when AK = ∅, dAK = dH)

tgt ∧ sol(tgt) = pie ∧ pear ∧ almond_powder ∧ pie_shell ∧ sugar

21 / 25

Example 2: in prop. logic, using adaptation rules

I Same tgt, srce, sol(srce) and DK

I Use of adaptation knowledge given by adaptation rules

AK =

®
salad ∧ vinegar salad ∧ lemon ∧ salt,
apple pear ∧ almond_powder, etc.

´
I u = udAK with dAK de�ned by

I Version 1:

dAK(I,J) = length of the shortest AK-path from I to J

Limitation: dAK(I,J) = +∞ if no AK-path from I to J exist
I Version 2:

dAK(I,J) =
length of the shortest path from I to J
using adaptation rules and �ips of variables

(when AK = ∅, dAK = dH)

tgt ∧ sol(tgt) = pie ∧ pear ∧ almond_powder ∧ pie_shell ∧ sugar

21 / 25

Example 3: adaptation of quantities (1/2)

I L: conjunction of linear constraints

(on integers and real numbers)

I tgt = (nbapple = 0)

I srce ∧ sol(srce) =
(nbpie_shell = 1) ∧ (nbapple = 6) ∧
(masssugar = 60) ∧ (nbpear = 0) ∧
(nbtomato = 0) ∧ . . .

I DK =

(massapple = 242× nbapple) ∧
(masspear = 166× nbpear) ∧ . . .
(massfruit = massapple + masspear + . . .) ∧
(masscarbohydrates = masssugar + 33× nbapple

+ 26× nbpear + . . .) ∧ . . .
I x = (x1, x2, . . . , xn) ∈ U , xk ∈ IR+ or xk ∈ IN
I u = ud with d(x , y) =

∑
k

wk · |yk − xk |

22 / 25

Example 3: adaptation of quantities (1/2)

I L: conjunction of linear constraints

(on integers and real numbers)

I tgt = (nbapple = 0)

I srce ∧ sol(srce) =
(nbpie_shell = 1) ∧ (nbapple = 6) ∧
(masssugar = 60) ∧ (nbpear = 0) ∧
(nbtomato = 0) ∧ . . .

I DK =

(massapple = 242× nbapple) ∧
(masspear = 166× nbpear) ∧ . . .
(massfruit = massapple + masspear + . . .) ∧
(masscarbohydrates = masssugar + 33× nbapple

+ 26× nbpear + . . .) ∧ . . .
I x = (x1, x2, . . . , xn) ∈ U , xk ∈ IR+ or xk ∈ IN
I u = ud with d(x , y) =

∑
k

wk · |yk − xk |

22 / 25

Example 3: adaptation of quantities (1/2)

I L: conjunction of linear constraints

(on integers and real numbers)

I tgt = (nbapple = 0)

I srce ∧ sol(srce) =
(nbpie_shell = 1) ∧ (nbapple = 6) ∧
(masssugar = 60) ∧ (nbpear = 0) ∧
(nbtomato = 0) ∧ . . .

I DK =

(massapple = 242× nbapple) ∧
(masspear = 166× nbpear) ∧ . . .
(massfruit = massapple + masspear + . . .) ∧
(masscarbohydrates = masssugar + 33× nbapple

+ 26× nbpear + . . .) ∧ . . .
I x = (x1, x2, . . . , xn) ∈ U , xk ∈ IR+ or xk ∈ IN
I u = ud with d(x , y) =

∑
k

wk · |yk − xk |

22 / 25

Example 3: adaptation of quantities (1/2)

I L: conjunction of linear constraints

(on integers and real numbers)

I tgt = (nbapple = 0)

I srce ∧ sol(srce) =
(nbpie_shell = 1) ∧ (nbapple = 6) ∧
(masssugar = 60) ∧ (nbpear = 0) ∧
(nbtomato = 0) ∧ . . .

I DK =

(massapple = 242× nbapple) ∧
(masspear = 166× nbpear) ∧ . . .
(massfruit = massapple + masspear + . . .) ∧
(masscarbohydrates = masssugar + 33× nbapple

+ 26× nbpear + . . .) ∧ . . .
I x = (x1, x2, . . . , xn) ∈ U , xk ∈ IR+ or xk ∈ IN
I u = ud with d(x , y) =

∑
k

wk · |yk − xk |

22 / 25

Example 3: adaptation of quantities (1/2)

I L: conjunction of linear constraints

(on integers and real numbers)

I tgt = (nbapple = 0)

I srce ∧ sol(srce) =
(nbpie_shell = 1) ∧ (nbapple = 6) ∧
(masssugar = 60) ∧ (nbpear = 0) ∧
(nbtomato = 0) ∧ . . .

I DK =

(massapple = 242× nbapple) ∧
(masspear = 166× nbpear) ∧ . . .
(massfruit = massapple + masspear + . . .) ∧
(masscarbohydrates = masssugar + 33× nbapple

+ 26× nbpear + . . .) ∧ . . .

I x = (x1, x2, . . . , xn) ∈ U , xk ∈ IR+ or xk ∈ IN
I u = ud with d(x , y) =

∑
k

wk · |yk − xk |

22 / 25

Example 3: adaptation of quantities (1/2)

I L: conjunction of linear constraints

(on integers and real numbers)

I tgt = (nbapple = 0)

I srce ∧ sol(srce) =
(nbpie_shell = 1) ∧ (nbapple = 6) ∧
(masssugar = 60) ∧ (nbpear = 0) ∧
(nbtomato = 0) ∧ . . .

I DK =

(massapple = 242× nbapple) ∧
(masspear = 166× nbpear) ∧ . . .
(massfruit = massapple + masspear + . . .) ∧
(masscarbohydrates = masssugar + 33× nbapple

+ 26× nbpear + . . .) ∧ . . .
I x = (x1, x2, . . . , xn) ∈ U , xk ∈ IR+ or xk ∈ IN

I u = ud with d(x , y) =
∑
k

wk · |yk − xk |

22 / 25

Example 3: adaptation of quantities (1/2)

I L: conjunction of linear constraints

(on integers and real numbers)

I tgt = (nbapple = 0)

I srce ∧ sol(srce) =
(nbpie_shell = 1) ∧ (nbapple = 6) ∧
(masssugar = 60) ∧ (nbpear = 0) ∧
(nbtomato = 0) ∧ . . .

I DK =

(massapple = 242× nbapple) ∧
(masspear = 166× nbpear) ∧ . . .
(massfruit = massapple + masspear + . . .) ∧
(masscarbohydrates = masssugar + 33× nbapple

+ 26× nbpear + . . .) ∧ . . .
I x = (x1, x2, . . . , xn) ∈ U , xk ∈ IR+ or xk ∈ IN
I u = ud with d(x , y) =

∑
k

wk · |yk − xk |

22 / 25

Example 3: adaptation of quantities (2/2)

I For some sets of weights:

tgt ∧ sol(tgt) = DK ∧ (nbapple = 0)

∧ (nbpear = 9) ∧ (masssugar = 24)

I Algorithm: transformation of the problem into a linear

programming problem

23 / 25

Example 4: adaptation of preparations

I Representation of recipes using a temporal qualitative algebra

I Using a revision operator on qualitative constraint networks

24 / 25

Example 4: adaptation of preparations

I Representation of recipes using a temporal qualitative algebra

I Using a revision operator on qualitative constraint networks

24 / 25

Example 4: adaptation of preparations

I Representation of recipes using a temporal qualitative algebra

I Using a revision operator on qualitative constraint networks

24 / 25

Conclusion and Future Work

Conclusion Belief revision o�ers a useful framework (or a

viewpoint) for specifying adaptation in CBR

Future work

I What part of the adaptation processes does it

cover?
I What revision operator choosing?

(adaptation knowledge acquisition issue)

There is other work not mentioned there

(but mentioned in the paper)

25 / 25

Conclusion and Future Work

Conclusion Belief revision o�ers a useful framework (or a

viewpoint) for specifying adaptation in CBR

Future work

I What part of the adaptation processes does it

cover?
I What revision operator choosing?

(adaptation knowledge acquisition issue)

There is other work not mentioned there

(but mentioned in the paper)

25 / 25

Conclusion and Future Work

Conclusion Belief revision o�ers a useful framework (or a

viewpoint) for specifying adaptation in CBR

Future work

I What part of the adaptation processes does it

cover?

I What revision operator choosing?

(adaptation knowledge acquisition issue)

There is other work not mentioned there

(but mentioned in the paper)

25 / 25

Conclusion and Future Work

Conclusion Belief revision o�ers a useful framework (or a

viewpoint) for specifying adaptation in CBR

Future work

I What part of the adaptation processes does it

cover?
I What revision operator choosing?

(adaptation knowledge acquisition issue)

There is other work not mentioned there

(but mentioned in the paper)

25 / 25

Conclusion and Future Work

Conclusion Belief revision o�ers a useful framework (or a

viewpoint) for specifying adaptation in CBR

Future work

I What part of the adaptation processes does it

cover?
I What revision operator choosing?

(adaptation knowledge acquisition issue)

There is other work not mentioned there

(but mentioned in the paper)

25 / 25

