Belief revision-based case-based reasoning

Julien Cojan! and Jean Lieber?3*

INRIA Sophia-Antipolis, Edelweiss Project, julien.cojan@inria.fr
Université de Lorraine, LORIA, UMR 7503 — Vandceuvre-lés-Nancy,

F-54506, France, jean.lieber@loria.fr

CNRS, LORIA, UMR 7503 — Vandceuvre-lés-Nancy, F-54506, France
Inria — Villers-lés-Nancy, F-54602, France

Remark on the difference between the paper and the talk

The paper gathers several results on revision-based CBR and
is rather technical

2/25

Remark on the difference between the paper and the talk

The paper gathers several results on revision-based CBR and
is rather technical
The talk will make some simplifying assumptions and
will try to be more intuitive

Outline of the talk

preliminaries

belief revision

N4

revision-based CBR

/N

revision-based adaptation (generalisation)

3/25

Preliminaries

4/25

Formalism

» Generalisation from propositional logic with n variables:

» U = {false,true}”: set of the interpretations
» A formula ¢ represents a subset Mod(y) of U

[C]

o

Formalism

» Generalisation from propositional logic with n variables:

» U = {false,true}”: set of the interpretations
» A formula ¢ represents a subset Mod(y) of U

» Generalisation:
» U: a given set (“the universe of instances/interpretations’)
L: the representation language
Semantics: ¢ € £ — Mod(p) € 24
With A = Mod(y) and B = Mod(x)
» oE=ExIfACB
> ¢ is satisfiable if A # ()

vYvyy

[C]

o

Distance

» d:U XU — [0;400] is a distance if
d(x,y)=0 iff x=y

(no other condition required in this talk)

Belief Revision

7/

25

Belief revision (introduction)

» Belief base = knowledge base (no difference in this talk)

8/25

Belief revision (introduction)

» Belief base = knowledge base (no difference in this talk)
> Given

» < a revisable consistent knowledge base
> /1 a non revisable consistent knowledge base

Belief revision (introduction)

» Belief base = knowledge base (no difference in this talk)
> Given

» < a revisable consistent knowledge base
> /1 a non revisable consistent knowledge base

> A revision of 1) by 1. is a knowledge base obtained by

minimal modification of) so that it is consistent with s
> =)
» b+ pu=9' Np

8/2

Belief revision (introduction)

v

Belief base = knowledge base (no difference in this talk)
Given

» < a revisable consistent knowledge base
> /1 a non revisable consistent knowledge base

A revision of 1) by 1. is a knowledge base obtained by

minimal modification of) so that it is consistent with s
> 1))
» = Np

v

v

v

Different ways to model minimal modification
hence different revision operators

o

o

Belief revision (introduction)

» Belief base = knowledge base (no difference in this talk)
> Given

» < a revisable consistent knowledge base
> /1 a non revisable consistent knowledge base

> A revision of 1) by 1. is a knowledge base obtained by

minimal modification of) so that it is consistent with s
> 1))
» = Np

» Different ways to model minimal modification
hence different revision operators

» In the following, + is defined on £ x L or on oU U

Mod(v) +) = Mod(v) + Mod (1)

o
N
o

Belief revision (postulates)

» AGM postulates (1985)

9/25

Belief revision (postulates)

» AGM postulates (1985)

» Katsuno & Mendelzon (1992):
reformulation in propositional logic

9/25

Belief revision (postulates)

» AGM postulates (1985)

» Katsuno & Mendelzon (1992):
reformulation in propositional logic

» Easy to generalise in our formalism (see further)

Belief revision (distance-based revision operators)
With d, a distanceon U, AC U, B C U:

A+9B={beB|dADb)=dA B)}

10/25

Belief revision (distance-based revision operators)
With d, a distanceon U, AC U, B C U:

A+9B={beB|dADb)=dA B)}

10/25

Belief revision (distance-based revision operators)
With d, a distanceon U, AC U, B C U:

A+9B={beB|dADb)=dA B)}

10/25

Belief revision (distance-based revision operators)
With d, a distanceon U, AC U, B C U:

A+9B={beB|dADb)=dA B)}

10/25

Case-Based Reasoning

11/25

CBR: problems, solutions and cases

Assumption for the talk: problem-solution decomposition of cases

12/25

CBR: problems, solutions and cases

Assumption for the talk: problem-solution decomposition of cases

» A problem instance x: an element of Uy,

CBR: problems, solutions and cases

Assumption for the talk: problem-solution decomposition of cases
» A problem instance x: an element of Uy,

» A problem pb: a class of problem instances, pb € 2V

CBR: problems, solutions and cases

Assumption for the talk: problem-solution decomposition of cases
» A problem instance x: an element of Uy,
» A problem pb: a class of problem instances, pb € 2V

» A solution instance y: an element of Uso1

CBR: problems, solutions and cases

Assumption for the talk: problem-solution decomposition of cases
» A problem instance x: an element of Uy,
A problem pb: a class of problem instances, pb € 2V

| 4
» A solution instance y: an element of Uso1
» A solution sol: a class of solution instances, sol € Vs

N
N
o

CBR: problems, solutions and cases

Assumption for the talk: problem-solution decomposition of cases

» A problem instance x: an element of Uy,

v

A problem pb: a class of problem instances, pb € 2V

v

A solution instance y: an element of Uso1
A solution sol: a class of solution instances, sol € 2!z

v

v

There exists a relation “x has for solution y” but it is
incompletely known.

-
N
N
o

CBR: problems, solutions and cases

Assumption for the talk: problem-solution decomposition of cases

>

v

v

v

v

v

A problem instance x: an element of Uy,

A problem pb: a class of problem instances, pb € 2V

A solution instance y: an element of Uso1

A solution sol: a class of solution instances, sol € 2Use

There exists a relation “x has for solution y” but it is
incompletely known.

A case C is given by a problem pb and a solution sol(pb) of
pb: C = pb x sol(pb).

N

N
o

CBR: problems, solutions and cases

Assumption for the talk: problem-solution decomposition of cases

>

v

v

v

v

v

v

A problem instance x: an element of Uy,

A problem pb: a class of problem instances, pb € 2V

A solution instance y: an element of Uso1

A solution sol: a class of solution instances, sol € 2Use

There exists a relation “x has for solution y” but it is
incompletely known.

A case C is given by a problem pb and a solution sol(pb) of
pb: C = pb x sol(pb).

Thus, ¢ € 2 where U = Upb X Usor.

N

N
o

CBR (input/output)

Input

QOutput

13/25

CBR (input/output)
Input

» The target case Target = tgt X Uso1 (unknown solution)
(often tgt = {x'})

QOutput

13/25

CBR (input/output)
Input
» The target case Target = tgt X Uso1 (unknown solution)
(often tgt = {x'})
> The case base CaseBase: set of the cases available to the
system: Source € CaseBase, Source = srce X sol(srce)
(often Source = {(x*%,y°)})

QOutput

13/25

CBR (input/output)
Input
» The target case Target = tgt X Uso1 (unknown solution)
(often tgt = {x'})
> The case base CaseBase: set of the cases available to the

system: Source € CaseBase, Source = srce X sol(srce)
(often Source = {(x°,y°)})

» The domain knowledge DK C U/
a necessary condition for a case instance a = (x,y) € U to be
licit
if a € DK then a is not licit

QOutput

13/25

CBR (input/output)
Input
» The target case Target = tgt X Uso1 (unknown solution)
(often tgt = {x'})
> The case base CaseBase: set of the cases available to the

system: Source € CaseBase, Source = srce X sol(srce)
(often Source = {(x°,y°)})

» The domain knowledge DK C U/
a necessary condition for a case instance a = (x,y) € U to be
licit
if a € DK then a is not licit
» Other knowledge containers (similarity, AK)
Output

13/25

CBR (input/output)
Input
» The target case Target = tgt X Uso1 (unknown solution)
(often tgt = {x'})
> The case base CaseBase: set of the cases available to the

system: Source € CaseBase, Source = srce X sol(srce)
(often Source = {(x°,y°)})

» The domain knowledge DK C U/
a necessary condition for a case instance a = (x,y) € U to be
licit
if a € DK then a is not licit

» Other knowledge containers (similarity, AK)
Output

sol(tgt) € 2% such that the hypothesis
“sol(tgt) solves tgt” is likely (...).
(often sol(tgt) = {y'})

13/25

CBR (retrieval and adaptation)

tgt

14 /25

CBR (retrieval and adaptation)

retrieval
srce tgt

14 /25

CBR (retrieval and adaptation)

retrieval
srce tgt

sol(srce)

14 /25

CBR (retrieval and adaptation)

retrieval
srce tgt

sol(srce) - sol(tgt)
adaptation

14 /25

CBR (retrieval and adaptation)

retrieval
srce tgt

sol(srce) - sol(tgt)
adaptation

14 /25

CBR (example) http://taaable.fr

Fruit pie recipe
without apple?

15/25

http://taaable.fr

CBR (example) http://taaable.fr

Apple pie retrieval Fruit pie recipe
recipe? without apple?

15/25

http://taaable.fr

CBR (example) http://taaable.fr

Apple pie retrieval Fruit pie recipe
recipe? without apple?

Apple pie recipe
e 6 apples

e pie shell

e 60 g sugar
Cut the apples.
etc.

15/25

http://taaable.fr

CBR (example)

http://taaable.fr

retrieval

Apple pie
recipe?

Apple pie recipe

e 6 apples
e pie shell
e 60 g sugar

Cut the apples.
etc.

N

adaptation

Fruit pie recipe
without apple?

o(sol(srce)) with

15/25

http://taaable.fr

CBR (example) http://taaable.fr

Apple pie retrieval Fruit pie recipe
recipe? without apple?

o(sol(srce)) with

Aoole b .
PPIE PIE Tecipe 1. o0 = apples ~ pears

e 6 apples

e pie shell

e 60 g sugar adaptation
Cut the apples.
etc.

15/25

http://taaable.fr

CBR (example)

http://taaable.fr

recipe
apple?

Apple pie retrieval Fruit pie

wihon
Apple pie recipe o(sol(srce)) with
« 6 apples 1. 0 = apples ~ p
e pie shell 2. o = apples ~
e 60 g sugar adaptation
Cut the apples.
etc.

ears
pears and

almond powder

15/25

http://taaable.fr

CBR (example) http://taaable.fr

Apple pie retrieval Fruit pie recipe
recipe? without apple?

Apple pie recipe U(SOI_(SICGJ)) i

1. o0 = apples ~ pears
e 6 apples pears and
e pie shell |2 o=apples~ almond powder
e 60 g sugar adaptation 6 apples 9 pears
Cut the apples. 3. 0= PP e ’
o 60 g sugar 24 g sugar

15/25

http://taaable.fr

CBR (example)

http://taaable.fr

retrieval

Apple pie
recipe?

Apple pie recipe

e 6 apples
e pie shell
e 60 g sugar

Cut the apples.
etc.

N

adaptation

Fruit pie recipe
without apple?

o(sol(srce)) with

1. o0 = apples ~ pears

pears and
almond powder
6 apples . 9 pears
60 g sugar 24 g sugar
4. o: adaptation of the preparation

2. o = apples ~

3. 0=

15/25

http://taaable.fr

Revision-Based CBR

Revision-based adaptation (intuition)

» Adaptation: modification of srce x sol(srce)
so that it is consistent with tgt X Use1

//

» Revision: modification of ¢
so that it is consistent with 1

17 /25

Revision-based adaptation (definition)

tgtxsol(tgt) = (srce X sol(srce)) (tgt X Uso1)

18/25

Revision-based adaptation (definition)

tgtxsol(tgt) = (DK Nsrce X sol(srce)) (DK N tgt X Uso1)

18/25

Revision-based adaptation (definition)

tgtxsol(tgt) = (DK Nsrce X sol(srce)) + (DKNtgt X Uso1)

18/25

Revision-based adaptation (definition)

tgtxsol(tgt) = (DK Nsrce X sol(srce)) 44k (DKNtgt X Uso1)

18/25

Revision-based adaptation (properties)

revision postulates
(reformulated)

-F-adaptation properties

The result of the adaptation

- } - . . .
+1 A+BCE is consistent with DK.

If the target case is consistent
1o fANB#0D with the source case then

then A+ B=ANB

this latter is deductively reused
for solving the target case.

Unless the target case is

) if B#£0 . . .
+3 then A+ B # 0 D.K—mcon5|st.ent, the adaptation
gives a consistent result.
+ 4 if (A + B) NC#0 Adaptation by minimal
+5 then A+ (BN C) = modification (according to +)
(A+B)nC § '
i The result of the revision The result of the adaptation

is representable in L.

is representable in L.

19/25

Example 1: in prop. logic, with Dalal revision operator

20 /25

Example 1: in prop. logic, with Dalal revision operator

» tgt = pie A fruit A —apple

20 /25

Example 1: in prop. logic, with Dalal revision operator

» tgt = pie A fruit A —apple

> srce = pie A apple
sol(srce) = pie_shell A sugar

20 /25

Example 1: in prop. logic, with Dalal revision operator

» tgt = pie A fruit A —apple

> srce = pie A apple
sol(srce) = pie_shell A sugar

> DK — apple V pear < pome_fruit,
| pome_fruit = fruit, etc.

20 /25

Example 1: in prop. logic, with Dalal revision operator

» tgt = pie A fruit A —apple

> srce = pie A apple
sol(srce) = pie_shell A sugar

> DK — apple V pear < pome_fruit,
| pome_fruit = fruit, etc.

» | = Dalal revision operator = 4+ with dy: Hamming distance

dy(Z, J) = number of flips of variables from Z to J
= card ({variable a | Z(a) # J(a)})

20/25

Example 1: in prop. logic, with Dalal revision operator

» tgt = pie A fruit A —apple

> srce = pie A apple
sol(srce) = pie_shell A sugar

> DK — apple V pear < pome_fruit,
| pome_fruit = fruit, etc.

» | = Dalal revision operator = 4+ with dy: Hamming distance

dy(Z, J) = number of flips of variables from Z to J
= card ({variable a | Z(a) # J(a)})

tgt Asol(tgt) = pie A A pie_shell A sugar

20 /25

Example 2: in prop. logic, using adaptation rules

21/25

Example 2: in prop. logic, using adaptation rules

» Same tgt, srce, sol(srce) and DK

21/25

Example 2: in prop. logic, using adaptation rules

» Same tgt, srce, sol(srce) and DK

» Use of adaptation knowledge given by adaptation rules
AK — salad A vinegar ~~» salad A lemon A salt,
~ | apple ~ pear A almond_powder, etc.

21/25

Example 2: in prop. logic, using adaptation rules

» Same tgt, srce, sol(srce) and DK

» Use of adaptation knowledge given by adaptation rules
AK — salad A vinegar ~~» salad A lemon A salt,
~ | apple ~ pear A almond_powder, etc.

> —|— = —i—dAK with dAK defined by
» Version 1:

dix(Z,J) = length of the shortest AK-path from Z to J

21/25

Example 2: in prop. logic, using adaptation rules

» Same tgt, srce, sol(srce) and DK

» Use of adaptation knowledge given by adaptation rules
AK — salad A vinegar ~~» salad A lemon A salt,
~ | apple ~ pear A almond_powder, etc.

> —|— = —i—dAK with dAK defined by
» Version 1:

dix(Z,J) = length of the shortest AK-path from Z to J

Limitation: dy(Z,J) = +oo if no AK-path from Z to J exist

21/25

Example 2: in prop. logic, using adaptation rules

» Same tgt, srce, sol(srce) and DK
» Use of adaptation knowledge given by adaptation rules
AK — {salad A vinegar ~~» salad A lemon A salt,}
apple ~~ pear A almond_powder, etc.
> —l— = —i—dAK with dAK defined by
» Version 1:

dix(Z,J) = length of the shortest AK-path from Z to J

Limitation: dy(Z,J) = +oo if no AK-path from Z to J exist
» Version 2:

length of the shortest path from Z to J
using adaptation rules and flips of variables

dAK(I7 \7) =

(when AK = @, dAK = dH)

21/25

Example 2: in prop. logic, using adaptation rules

» Same tgt, srce, sol(srce) and DK
» Use of adaptation knowledge given by adaptation rules
AK — {salad A vinegar ~~» salad A lemon A salt,}
apple ~~ pear A almond_powder, etc.
> —l— = —i—dAK with dAK defined by
» Version 1:

dix(Z,J) = length of the shortest AK-path from Z to J

Limitation: dy(Z,J) = +oo if no AK-path from Z to J exist
» Version 2:

length of the shortest path from Z to J
using adaptation rules and flips of variables

dAK(I7 \7) =

(when AK = @, dAK = dH)

tgt Asol(tgt) =pie A ‘ pear A almond_powder |A pie_shell A sugar

21/25

Example 3: adaptation of quantities (1/2)

22/25

Example 3: adaptation of quantities (1/2)

» L: conjunction of linear constraints
(on integers and real numbers)

22/25

Example 3: adaptation of quantities (1/2)
» L: conjunction of linear constraints

(on integers and real numbers)
> tgt = (nbappie = 0)

22/25

Example 3: adaptation of quantities (1/2)

» L: conjunction of linear constraints
(on integers and real numbers)
> tgt = (nbappie = 0)
(nbpie_shell =]-) A (nbapple = 6) A
» srce Asol(srce) = (masSsygar = 60) A (0bpear = 0) A
(nbtomato = O) A,

Example 3: adaptation of quantities (1/2)

» L: conjunction of linear constraints
(on integers and real numbers)
> tgt = (nbappie = 0)
(nbpie_shell = 1) A (nbapple = 6) A
» srce Asol(srce) = (masSsygar = 60) A (0bpear = 0) A
(nbtomato = O) AL
(massappie = 242 X Nbappre) A
(masspear = 166 X nbpear) A ...
» DK = (massS¢ryit = MASSapple + MASSpear +...) A
(masscarbohydrates = MaSSgugar + 33 X Nbappie
+ 26 X nbpear +...) A ...

Example 3: adaptation of quantities (1/2)

» L: conjunction of linear constraints
(on integers and real numbers)

tgt = (nbappie = 0)

v

(nbpie_shell = 1) A (nbapple = 6) A
» srce Asol(srce) = (masSsygar = 60) A (0bpear = 0) A
(nbtomato = 0) A ...
(massappie = 242 X Nbappre) A
(masspear = 166 X nbpear) A ...
» DK = (massS¢ryit = MASSapple + MASSpear +...) A
(masscarbohydrates = MaSSgugar + 33 X Nbappie
+ 26 X nbpear +...) A ...

> x = (x1,x2,...,%) €U, xx € Ry or x, € N

Example 3: adaptation of quantities (1/2)

» L: conjunction of linear constraints
(on integers and real numbers)
> tgt = (nbappie = 0)
(nbpie_shell = 1) A (nbapple = 6) A
» srce Asol(srce) = (masSsygar = 60) A (0bpear = 0) A
(nbtomato = O) AL
(massappie = 242 X Nbappre) A
(masspear = 166 X nbpear) A ...
» DK = (massS¢ryit = MASSapple + MASSpear +...) A
(masscarbohydrates = MaSSgugar + 33 X Nbappie
+ 26 X nbpear +...) A ...
> x = (x1,x2,...,%) €U, xx € Ry or x, € N

» + =19 with d(x,y) = ZWk ke = xd
k

Example 3: adaptation of quantities (2/2)

» For some sets of weights:

tgt Asol(tgt) = DK A (nbappie = 0)

A

(nbpear = 9) A (masSSgugar = 24)

» Algorithm: transformation of the problem into a linear

programming problem

23 /25

Example 4: adaptation of preparations

24 /25

Example 4: adaptation of preparations

» Representation of recipes using a temporal qualitative algebra

24 /25

Example 4: adaptation of preparations

» Representation of recipes using a temporal qualitative algebra

» Using a revision operator on qualitative constraint networks

24 /25

Conclusion and Future Work

Conclusion Belief revision offers a useful framework (or a
viewpoint) for specifying adaptation in CBR

Conclusion and Future Work

Conclusion Belief revision offers a useful framework (or a
viewpoint) for specifying adaptation in CBR

Future work

25 / 25

Conclusion and Future Work

Conclusion Belief revision offers a useful framework (or a
viewpoint) for specifying adaptation in CBR
Future work

» What part of the adaptation processes does it
cover?

Conclusion and Future Work

Conclusion Belief revision offers a useful framework (or a
viewpoint) for specifying adaptation in CBR
Future work

» What part of the adaptation processes does it
cover?

» What revision operator choosing?
(adaptation knowledge acquisition issue)

N
]

o

Conclusion and Future Work

Conclusion Belief revision offers a useful framework (or a
viewpoint) for specifying adaptation in CBR
Future work

» What part of the adaptation processes does it
cover?

» What revision operator choosing?
(adaptation knowledge acquisition issue)

There is other work not mentioned there
(but mentioned in the paper)

