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Dynamic Programming and inspiration

Lectures on Dynamic Programming: examples, among which
the Longest Common Subword lcs(u, v) problem.
For the exam, the Shortest Common Superword SCS(u, v).

Ha-Ha ! Notice that |SCS(u, v)|+ |lcs(u, v)| = |u|+ |v |.
(N.B.: Not that smart: there is a simple demonstration).

Analogy ! Analog to LCM(a, b)× GCD(a, b) = a × b.
There is also an analogical proportion between the four words:

SCS(u, v) : u :: lcs(u, v) : v

Would there be a lattice of SCS and lcs generated by a finite
language U, with nice analogical proportions ?

This is where transpiration begins.
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A first glance

u = cadb = c a d ∼ b ∼
| | | | | |

v = aebf = ∼ a ∼ e b f
| | | | | |

lcs(u, v) = ∼ a ∼ ∼ b ∼
| | | | | |

SCS(u, v) = c a d e b f
e d
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Basics of stringology

Σ is an alphabet, i.e. a finite set of letters.
A word u ∈ Σ? is a sequence u1 . . . un of letters in Σ.
The length of u, denoted |u| is n.
The empty word, of null length, is ε.
A language is a set of words.
A subword of a word u is a word obtained by deleting the
letters at some (non necessarily adjacent) positions in u.

non necessarily adjacent subword subsequence sous-mot
adjacent factor substring facteur
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The shuffle of words

We denote u • v or •(u, v) the shuffle of two words.
For example,
ab • bc = {abbc , (abbc), abcb, babc, bacb, bcab}

The set u • v has at most
( |u|
|u|+|v |

)
elements.

This operation is associative.
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Order relations in Σ?

In Σ?, there is a partial order relation order relation denoted ≤
defined by:

(u ≤ v ⇔ u is a subword of v)

When u is a subword of v , v is called a superword of u. For
example:

abc ≤ aabbcd

abd ≤ aabbcd

Another (total) order relation is that on the lengths of the
words.

non necessarily adjacent superword supersequence sur-mot
adjacent superstring sur-facteur (?)
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For two words

w is a common subword to u and v when w ≤ u and w ≤ v .
w is a maximal common subword to u and v if there not exist
any other common subword x to u and v such that w ≤ x .

Definition

·t (u, v) is the set of maximal common subwords to u and v
·u (u, v) is the set of minimal common superwords to u and v
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For two words

For example, ab and c are maximal common subwords to
u = cadba and v = f agbhc , while a is a non maximal common
subword.

u = cadba = c ∼ a d ∼ b a ∼ ∼
| | | | | | | | |

v = fagbhc = ∼ f a ∼ g b ∼ h c
| | | | | | | | |

lcs(u, v) = ∼ ∼ a ∼ ∼ b ∼ ∼ ∼
| | | | | | | | |

SCS(u, v) = c f a d g b a h c
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Introduction to locally maximal subwords

a is a subword of ab, but. . .

u = cadba = c a d b ∼ a ∼ ∼ ∼ ∼
| | | | | | | | | |

v = f agbhc = ∼ ∼ ∼ ∼ f a g b h c
| | | | | | | | | |

lcs(u, v) = ∼ ∼ ∼ ∼ ∼ a ∼ ∼ ∼ ∼
| | | | | | | | | |

SCS(u, v) = c a d b f a g b h c

Actually, SCS(u, v) = (cadb • f ) a gbhc
Call a (second in u, first in v) a locally maximal subword of u and v .
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Back to SCS and lcs

Enumerating ·t (u, v) is tricky !

u = bac and v = dae.
The four words in (d • b)a(c • e) are minimal superwords of
length five.
But u and v have four other minimal superwords of length six,
included in u • v , namely ba(c • d)ae and da(e • b)ac .
All the other elements of u • v are non minimal.

An example

·u (cadba, f agbhc) = {ab, c}
·t (cadba, fagbhc) includes for example

cf adgbahc and fagbhcadba
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Graphically speaking, a simpler example

z

b

y

a

x

t b u a v b w

b

a

b

All minimal superwords of tbuavbw and zbyax (and a lot of non
minimal) are recognized by this finite automaton. The maximal
subword ba is can be read in the diagonals.
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Locally maximal subwords

z

b

y

a

x

t b u a v b w

b

a

b

There is a partial order between the diagonal transitions.
The locally maximal subwords are the maximal chains of this order.
Construct an automaton from the Hasse diagram of this order
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Locally maximal subwords and locally minimal superwords
u(u, v) and t(u, v).

q11

q22

q33

q44

q51

q62

z

b

y

a

x

t b u a v b w

b

a

b

ε

ε

ε

ε

ε

The automaton Au(u, v) recognizing the locally maximal subwords
common to u and v . Retour
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Constructing the locally minimal superwords

z

b

y

a

x

t b u a v b w

b

a

b

This automaton recognizes exactly the locally minimal superwords.
A rectangle stands for a shuffle automaton.
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Conclusion of the geometric part

Construct ·u (u, v) (maximal subwords)?
Construct the Hasse diagram and eliminate subwords.

Construct ·t (u, v) (minimal superwords)?
Construct u ·u v and test all subwords.

Construct u(u, v) (locally maximal subwords) ?
Construct the Hasse diagram.

Construct t(u, v) (locally minimal superwords) ?
By definition, from the previous.

Generalization to any number of words: quite possible for the
locally sub and superwords.
We deal in the following only with the locally sub and
superwords.

L. Miclet lattice of sets of alignments. 18/37



Introduction: Teaching is good for Research
Subwords, superwords and alignments

A structured set of sets of alignments for n words
Conclusion

Roadmap

1 Introduction: Teaching is good for Research

2 Subwords, superwords and alignments

3 A structured set of sets of alignments for n words

4 Conclusion

L. Miclet lattice of sets of alignments. 19/37



Introduction: Teaching is good for Research
Subwords, superwords and alignments

A structured set of sets of alignments for n words
Conclusion

Example:
an alignment of three words on a common subword

a =

 a c b d e g
a c e h

g a h c d



a = ( a c bdeg , a c eh, g a h c d)

L(a) = (ε • ε • g)a(ε • ε • h)c(bdeg • eh • d)

L. Miclet lattice of sets of alignments. 20/37



Introduction: Teaching is good for Research
Subwords, superwords and alignments

A structured set of sets of alignments for n words
Conclusion

Alignment

Definition
An alignment is a finite set of pairs (w , l) where w is a word and l
a set of indices between 1 and |w |. The set l defines a subword of
w denoted w [l ]. Moreover, an alignment a must satisfy the
following properties for all (w , l) ∈ a and (w ′, l ′) ∈ a:

1 w [l ] = w ′[l ′]
2 (w = w ′)⇒ (l = l ′)
3 (w ≤ w ′)⇒ (w = w ′)

The set of words on which the alignment is defined is called the
support and is denoted word(a) = {w | ∃l with (w , l) ∈ a} .
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Locally maximal alignments and subwords

Definition 1
An alignment a = {(w1, l1), . . . , (wn, ln)} is locally maximal if
there is no other alignment b = {(w1, l ′1), . . . , (wn, l ′n)} on the same
support such that for all i , li ⊂ l ′i .

Definition 2
The set of boxed subwords associated to all locally maximal
alignments between a finite set of words W = {w1, . . . ,wn} is
called the set of locally maximal subwords to W and is denoted
·u ({w1, . . . ,wn}).
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Example of locally maximal alignment and subword

The set of locally maximal alignments of W = {ababc, cabd} is
A(W ) = {

( a b abc, c a b d), ( a ba b c , c a b d),

(ab a b c , c a b d), (abab c , c abd)
}

The set of locally maximal subwords is

u(W ) = {ab, c}
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Order relation between alignments: an example

a b c
d b c
f b c e

 v


a b d
a b c

d f b a c e
b c b


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Order relation between alignments

Given two alignments
a = {(w1, l1), . . . , (wn, ln)} and b = {(w ′

1, l
′
1), . . . , (w ′

m, l
′
m)}, we

write a v b if
For every word w in word(a) there exists a word w ′ in word(b)
such that u ≤ v .
and wi = w ′

j ⇒ l ′j ⊆ li .
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Homogeneous sets of alignments and order

Homogeneous sets of alignments
A set of alignments is homogeneous when all its elements have the
same support.
The family of homogeneous sets of alignments is denoted AH .

Order on homogeneous sets of alignments
Let A and B be two homogeneous sets of alignments. We have
A v B if for all b ∈ B , there is a ∈ A such that a v b.

Property

v is a partial order on AH and the smallest element is {∅}.
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The union operation g on AH

Let a ∈ Ar ({u1, · · · , un}) and b ∈ As({v1, · · · , vm}), where
a = {(u1, l1), . . . , (un, ln)} and b = {(v1, l ′1), . . . , (vm, l ′m)}.

Firstly, we construct a + b, the finite set of alignments
c = {(w1, L1), . . . , (wp, Lp)} such that

1 {w1, . . . ,wp} = word(a) ∪ word(b)

2 for all (i , k), if (wk = ui ) then (Lk ⊆ li )
3 for all (j , k), if (wk = vj) then (Lk ⊆ l ′j )

Secondly, we denote ag b the set of minimal elements of a + b
according to v.
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The union operation g on AH

a =

(
a b c d

b c a

)
b =

 b d a b
a b c d
a b c d a



a + b =


a b c d

b c a
b d a b

a b c d
a b c d a

 ag b =

(
b d a b

a b c d a

)

Note that a v ag b and b v ag b.
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The union operation g on AH

Extension
Let A and B be two homogeneous sets of alignments. We define
Ag B as the set of the minimal elements of A + B according to v
where

A + B =
⋃
b∈B
a∈A

(a + b)

Property
The operation g is internal to AH , commutative and idempotent.
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An intersection operation

a = {( a cd , ab a c , a ba)} b = {(a c d , aba c , c a)}

The support of af b id the intersection of the supports of a
and b, namely {acd , abac}.
The boxed subwords have to be maximal.

af b = {( a c d , a ba c ), ( a c d , ab a c )}

L. Miclet lattice of sets of alignments. 30/37
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An intersection operation

Let a ∈ Ar ({u1, · · · , un}) and b ∈ As({v1, · · · , vm}) where
a = {(u1, l1), . . . , (un, ln)} and b = {(v1, l ′1), . . . , (vm, l ′m)}. We
construct af b, the finite set of alignments
c = {(w1, L1), . . . , (wp, Lp)} such that

1 {w1, . . . ,wp} = word(a) ∩ word(b)

2 Either, for all (i , k) such that wk = ui we have li ⊆ Lk , or for
all (j , k) such that wk = vj we have l ′j ⊆ Lk .

3 c is a locally maximal alignment.
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An intersection operation

Extension

Af B =
⋃
b∈B
a∈A

(af b)

Property
The operation f is internal to AH , commutative and idempotent.
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Finding a lattice structure to AH

Definition
We define sup

v
(A,B) as the minimal set of alignments

larger than A and B (if it exists) according to v.

Similarly, inf
v

(A,B) is the maximal set of alignments

smaller than A and B .

Property
Let A and B be finite homogeneous sets of alignments.
Then sup

v
(A,B) exists and

sup
v

(A,B) = Ag B
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Finding a lattice structure to AH

Definition
If U is a finite collection of words.
We define the collection of sets of alignments
A(U) = {A(V ) | V ⊆ U}.

Property

Let A and B be sets of alignments in A(U).
Then, in A(U), inf

v
(A,B) exists and:

inf
v

(A,B) = Af B
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Finally. . .

Property

Let U = {u1, u2, · · · , un} be a finite set of words,
the operations f and g are internal to U.

Final result
Let U = {u1, u2, · · · , un} be a finite set of words, antichain for ≤.

Then U = (A(U),g,f) is a lattice.
This lattice is said to be built on the finite language U.
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Conclusion

Summary
Exploring the structure of subwords and superwords common
to a finite language.
Defining the concept of locally maximal common subwords and
minimal superwords.
Finding a lattice of alignments on a finite language.

Further work
Use the lattice structure to extend finite languages using

Analogical proportions
Generalization
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