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RATIONALITY PUZZLES



WASON SELECTION TASK

WASON, P. C., & SHAPIRO, D. (1971) 
NATURAL AND CONTRIVED EXPERIENCE IN A REASONING PROBLEM. 

EVERY CARD WHICH HAS A D ON ONE SIDE HAS A 3 ON THE OTHER SIDE 
(AND KNOWLEDGE THAT EACH CARD HAS A LETTER ON ONE SIDE AND A 
NUMBER ON THE OTHER SIDE), TOGETHER WITH FOUR CARDS SHOWING 
RESPECTIVELY D, K, 3, 7, ... THIS PROBLEM IS CALLED “SELECTION TASK” 

AND THE CONDITIONAL SENTENCE IS CALLED “THE RULE”.



THE TASK

EVERY CARD WHICH HAS A D ON ONE SIDE 
HAS A 3 ON THE OTHER SIDE 

D K 3 7



DIFFERENT CONTEXT

COSMIDES, L., & TOOBY, J. (1993). 
COGNITIVE ADAPTATIONS FOR SOCIAL EXCHANGE

"IF YOU ARE DRINKING ALCOHOL THEN YOU MUST BE OVER 18"

16
😊

25
😊 ☕ 🍺



RESULT

CLASSIC LOGIC: TURN D & 7

TURN 7 BY MODUS TOLLENS: 
((P → Q) ⋀ ¬Q) → ¬P

ONLY 10% OF SUBJECTS  GIVE THE “CORRECT” ANSWER



SELECTION TASK AND ANALOGY

CONTENT-CHANGE MAKES THE TASK EASIER TO ACCESS 
FOR SUBJECTS

SUBJECTS PERFORMANCE IS TIGHTLY CONNECTED TO 
ESTABLISHING APPROPRIATE ANALOGIES

THEY FAIL IN ORIGINAL TASK TO ESTABLISH A FITTING 
ANALOGY WITH AN ALREADY KNOWN SITUATION



MODELING RATIONALITY PUZZLES
BESOLD, T. R., GUST, H., KRUMNACK, U., ABDEL-FATTAH, A., SCHMIDT, M., & 
KÜHNBERGER, K. (2011, JULY). AN ARGUMENT FOR AN ANALOGICAL 
PERSPECTIVE ON RATIONALITY & DECISION-MAKING.

WASON, P. C., & SHAPIRO, D. (1971) 
NATURAL AND CONTRIVED EXPERIENCE IN A REASONING PROBLEM. 

WASON SELECTION TASK: LOGIC

BYRNE, R (1989): SUPPRESSING VALID INFERENCES WITH CONDITIONALS.  

REASONING WITH CONDITIONALS

TVERSKY, A., KAHNEMAN, D. (1983): EXTENSIONAL VERSUS INTUITIVE 
REASONING: THE CONJUNCTION FALLACY IN PROBABILITY JUDGEMENT.  

LINDA PROBLEM: VIOLATION OF THE RULES OF PROBABILITY THEORY



ANALOGY



ANALOGY

CORE OF COGNITION

APPLICATION IN MANY DOMAINS

NO LOGICAL THEORY FOR ANALOGICAL REASONING

BUILD A COMPUTATIONAL MODEL



HEURISTIC-DRIVEN 
THEORY PROJECTION

(HDTP)



PROPERTIES

SYMBOLIC 
(FIRST ODER LOGIC FORMALIZATION OF DOMAINS AXIOMS)

COGNITIVELY INSPIRED, NOT A COGNITIVE ARCHITECTURE

DETECTS DEEP STRUCTURAL COMMONALITIES

HIGHER-ORDER ANTI-UNIFICATION

PRODUCES EXPLICIT GENERALIZATION

PHASES: RETRIEVAL, MAPPING, TRANSFER



EXAMPLE

Analogies

a type of reasoning: knowledge is transferred from one
situation to another based on similarity

a type of high-level perception: one situation is perceived in
terms of another one

SOURCE TARGET

Solar system Atom

CoUGAR
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2.1.2 Language

The well-known Rutherford Analogy, which compares the solar system to the Ruther-
ford atom model, is used as a running example to show the different aspects of HDTP’s
language for description of domains. Figure 2.1 shows a formalization of the Ruther-
ford Analogy. The source domain on the left side is the solar system. The target
domain on the right side is the Rutherford atom model. Both theories are simplified
and not considered to be complete and accurate physical theories of the described
objects. Analogies where source and target domain are from different fields of knowl-
edge, or the domains only present a partial view of the underlying theory, seem to
be especially creative. As can be seen by the amount of formulas the source domain
has a much richer formalization. The source domain describes that a planet revolves
around the sun because of the differences in mass that result in different gravitational
forces. At the same time, the sun and the planets do not collide with each other. This
is considered in relation to the Rutherford atom model where lightweight electrons
are attracted by the nucleus due to the Coulomb force. However, the electrons and the
nucleus keep a distance of greater than zero, which is an abstraction of the results of
the from Rutherford’s gold foil experiment [Rut].

Solar System Rutherford Atom
sorts
real, object, time

constants
sun ⇤ object, planet ⇤ object

functions
mass ⇤ object ⌅ time� real
dist ⇤ object ⌅ object ⌅ time� real
force ⇤ object ⌅ object ⌅ time� real
gravity ⇤ object ⌅ object ⌅ time� real
centrifugal ⇤ object ⌅ object ⌅ time� real

predicates
revolves_around ⇤ object ⌅ object

facts
�1 ⇤mass(sun) > mass(planet)
�2 ⇤mass(planet) > 0
�3 ⇤ ⇥(T ⇤ time) ⇤ gravity(planet, sun, T ) > 0
�4 ⇤ ⇥(T ⇤ time) ⇤ dist(planet, sun, T ) > 0

laws
�5 ⇤ ⇥(T ⇤ time, O1 ⇤object, O2 ⇤object) ⇤

dist(O1,O2, T ) > 0 ⇧ gravity(O1,O2, T ) > 0� centrifugal(O1,O2, T ) = �gravity(O1,O2, T )
�6 ⇤ ⇥(T ⇤ time, O1 ⇤object, O2 ⇤object) ⇤

0<mass(O1) ⇧ 0<mass(O2)⇧
dist(O1,O2, T )>0 ⇧ centrifugal(O1,O2, T ) < 0� revolves_around(O1,O2)

sorts
real, object, time

constants
nucleus ⇤ object, electron ⇤ object

functions
mass ⇤ object ⌅ time� real
dist ⇤ object ⌅ object ⌅ time� real
coulomb ⇤ object ⌅ object ⌅ time� real

facts
⇥1 ⇤mass(nucleus) > mass(electron)
⇥2 ⇤mass(electron) > 0
⇥3 ⇤ ⇥(T ⇤ time) ⇤ coulomb(electron,nucleus, T )>0
⇥4 ⇤ ⇥(T ⇤ time) ⇤ dist(electron,nucleus, T )>0

Figure 2.1: Logic formalization of the solar system and the Rutherford atom.

Domains contain not only facts, but also general laws as seen in the formalization of



PROLOG INPUT
ANALOGY('RUTHERFORD',
        DOMAIN('PHYSICS',[S:MASS(O:SUN) > S:MASS(O:PLANET),
                          S:DISTANCE(O:SUN,O:PLANET) > S:0, 
                          YELLOW(O:SUN),
                          S:FORCE(F:GRAVITATION,O:PLANET,O:SUN) > S:0, 
                          F:F_ANTI(F:GRAVITATION) = F:CENTRIFUGAL,
                          (S:DISTANCE(O:_X,O:_Y) > S:0, 
                          S:FORCE(F:_F,O:_Y,O:_X) > S:0 -> S:FORCE(F:F_ANTI(F:_F),O:_X,O:_Y) < S:0 ),
                          (S:FORCE(F:CENTRIFUGAL,O:_X1,O:_Y1) < S:0, S:MASS(O:_Y1) > S:MASS(O:_X1) -> 

REVOLVE(O:_X1,O:_Y1))
                         ]),
        DOMAIN('PHYSICS',[S:FORCE(F:COULOMB,O:ELECTRON,O:NUCLEUS) > S:0,
                          S:DISTANCE(O:ELECTRON,O:NUCLEUS) > S:0,
                          S:MASS(O:NUCLEUS) > S:MASS(O:ELECTRON)
                         ])).



mass(n) > mass(e) 

dist(e, n) > 0 

coulomb(n, e) > 0 

mass(s) > mass(p) 

dist(s, p) > 0 

gravity(s, p) > 0 

source target 

mass( X ) > mass( Y ) 

dist( X, Y) > 0 

F ( X , Y ) > 0 

interpretation interpretation 

general force 
system 

generalization 
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Alignments and mappings 34

given two terms and substitution chains from an anti-unifier, the anti-unifier is still
not unambiguously defined. See figure 3.2 for two generalizations with the same sub-
stitution chains to the same pair of instances but differing anti-unifiers. However, the
other direction, given a term and a substitution chain the generated instance is always
uniquely defined. Therefore, a domain generalization that covers all formulas of the
original domains could be used to reconstruct them. However, as discussed earlier to-
tal coverage is usually not the case. Whereas an alignment gives us the source for why
substitutions were made, the generalization for domains states which substitutions
were made and in what anti-unifier, which is in the generalized domain, they resulted.

For simplicity we will not adhere to the restrictions required by S�1 in the next ex-
ample and not state the additional needed renaming substitutions. Then [�mass(X) >
mass(Y ), [�X

sun,�
Y
planet], [�X

nucleus,�
Y
electron]⇥, �mass(Y ) > 0, [�Y

planet], [�Y
electron]⇥] is a

domain generalization corresponding to the alignment [�mass(sun) >mass(planet),
mass(nucleus) > mass(electron)⇥, �mass(planet) > 0,mass(electron) > 0⇥]. The
formulas are part of the domains, formalized in the Rutherford Analogy as seen in
figure 2.1. We will call the set of basic substitutions, employed in the generalization of
domains, a mapping. For the example above this set would be {�X

sun,�
Y
planet,�

X
nucleus,

�Y
electron}. We will call the set of substitutions that lead from generalized domain to

formulas in a specific domain the mapping that corresponds to that domain. Here{�X
sun,�

X
planet} would be the mapping corresponding to the source domain which is

the solar system domain.

domain generalization

mapping (set of basic substitutions)

domain Dβgeneralized 
theory/

domain Dɣ

domain Dα

α1

α2

α3

�

β1

β2

β3

�

ɣ1

ɣ2

�

τ1

ν1

ν2

τ2

mapping
to Dα

mapping
to Dβ

Figure 3.3: Depiction of mapping, domains and domain generalization.



RESTRICTED HIGHER-ORDER 
ANTI-UNIFICATION 



ANTI-UNIFICATION
DUAL OPERATION OF MORE WELL KNOWN UNIFICATION

TYPE OF SUBSTITUTIONS CAN VARY

FIND LEAST GENERAL / MOST SPECIFIC ANTI-UNIFIER 

f(X,Y)

f(a,Y) f(X,b)

f(a,b)



ANTI-UNIFICATION VARIANTS
FIRST-ORDER (PLOTKIN, 1970)

SUBSTITUTIONS: REPLACE A VARIABLE BY ANY TERM

AN ANTI-UNIFIER ALWAYS EXISTS

FINITELY MANY MOST SPECIFIC ANTI-UNIFIER

UNIQUE MOST SPECIFIC ANTI-UNIFIER EXISTS

SECOND-ORDER

AN ANTI-UNIFIER ALWAYS EXISTS

CAPTURES DEEP STRUCTURAL COMMONALITIES



STRUCTURAL COMMONALITIES
Anti-Unification 19

X

X b

⌫⌫.
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.

X a
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⇣⇣

a

b

f X, c

X b

⇡⇡3
33

33
33

X a
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↵↵
↵

f a, c f b, c

X

X g a, b

��6
66

66
66

X f a, b
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⌥⌥

⌥⌥
⌥

f a, b g a, b

(a) (b) (c)

Figure 2.5: Examples for Plotkin’s first-order anti-unification.

with a most specific anti-unifier. (b) is less general than (c), but not a least general
generalization because it does not include a most specific anti-unifier.

In figure 2.5 we see further examples for generalizations of different pairs of terms,
which we now analyze in the context of analogies. In (a), the constants a and b are anti-
unified to the Variable X . In this case b can be seen as an analogon to a. In (b), these
constants are used again as arguments, but each is in the same enclosing context. Still,
the same substitutions are used and therefore the same analogical relation between a

and b is established. In (c) the terms differ in function symbols, but the arguments
supplied are the same. A most specific anti-unifier from first-order anti-unification
cannot reflect this, and thus, only the most general anti-unifier in the form of a vari-
able is found by first-order anti-unification. In turn, this leads to complex substitu-
tions to reproduce the anti-unified terms. Plotkin’s anti-unification is not powerful
enough to capture complex structural equivalences in the anti-unifier like common-
alities that are embedded in different functions or predicates. In extreme cases like
figure 2.5(c), where the topmost function or predicate symbols differ, the result is the
inability to capture any similarities of subterms.

2.2.3 Higher-Order Anti-Unification

Gentner et al. [Gen83] have revealed empirically that analogies are characterized by
deep structural commonalities. However, first-order anti-unification fails to capture
them and tends to overgeneralize as seen in figure 2.5(c). Anti-unification can be
altered to recognize complex commonalities by extending the set of possible substi-
tutions and allowing for more detailed operations on terms. Particularly, being able
to express operations on arguments of functions or predicates is valuable for achiev-
ing a better coverage of similarities of terms. In the simplest case higher-order anti-
unification involves a change of function symbols. A more complex case, which con-
stitutes the operation in a higher-order logic, is the manipulation of subterm struc-
tures. Examples of this are reducing the arity of predicates or permuting function
arguments.

Defining complex substitutions that operate on predicate and function structures

Anti-Unification 19

X

{X�f(c, b)}
⌫⌫

{X�f(a, b)}
⌥⌥

f(a, b) f(c, b)

f(X,Y )
{X�c, Y �b}
⇠⇠

{X�a, Y �b}
⌃⌃

f(a, b) f(c, b)

f(X, b)
{X�c}
⇠⇠

{X�a}
⌃⌃

f(a, b) f(c, b)
(a) (b) (c)

Figure 2.4: Examples for generalizations in first-order anti-unification.

Figure 2.4 gives all three possible generalizations with first-order substitutions
for the terms f(a, b) and f(c, b). The pair of anti-unified terms at the bottom, of
each generalization depicted, is included additionally to the anti-unifier placed at
the top and the two corresponding substitutions, which are represented by labeled
arrows. Figure 2.4(a) includes the most general anti-unifier. (c) is the least gen-
eral generalization with a most specific anti-unifier. (b) is less general than (c),
but not a least general generalization because it does not include a most specific
anti-unifier.

X

{X�b}
⌫⌫

{X�a}
⌥⌥

a b

f(X, c)
⇡⇡⇧⇧

f(a, c) f(b, c)

F (a, b)
����

f(a, b) g(a, b)
(a) (b) (c)

Figure 2.5: Examples for Plotkin’s first-order anti-unification.

In figure 2.5 we see further examples for generalizations of different pairs of
terms, which we now analyze in the context of analogies. In (a), the constants a

and b are anti-unified to the Variable X. In this case b can be seen as an analo-
gon to a. In (b), these constants are used again as arguments, but each is in the
same enclosing context. Still, the same substitutions are used and therefore the
same analogical relation between a and b is established. In (c) the terms differ in
function symbols, but the arguments supplied are the same. A most specific anti-
unifier from first-order anti-unification cannot reflect this, and thus, only the most
general anti-unifier in the form of a variable is found by first-order anti-unification.
In turn, this leads to complex substitutions to reproduce the anti-unified terms.
Plotkin’s anti-unification is not powerful enough to capture complex structural
equivalences in the anti-unifier like commonalities that are embedded in different
functions or predicates. In extreme cases like figure 2.5(c), where the topmost
function or predicate symbols differ, the result is the inability to capture any sim-
ilarities of subterms.



RESTRICTED HIGHER-ORDER
GENERALIZED TERM STRUCTURALLY AS SIMPLE OR SIMPLER THAN INSTANCES

HIGHER ORDER TERMS: VARIABLES WITH ARGUMENTS

SUBSTITUTIONS ARE CHAINS OF BASIC SUBSTITUTIONS

RENAMING

FIXATION

ARGUMENT INSERTION

PERMUTATION



RENAMING
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Definition 12 (Most Specific Anti-Unifier) A most specific anti-unifier (msa) also re-
ferred to as the least general anti-unifier (lga) of a set of terms T is an anti-unifier a for
T such that there exists no anti-unifier a� for T with a� a� and a � a�.

The process of finding the most specific anti-unifier is called anti-unification. The
search for the most specific anti-unifiers means that the number of basic substitution
components is kept minimal and only those substitutions necessary to fulfill the condi-
tions for a valid anti-unifier are used. Anti-instances that are most specific anti-unifier
therefore carry maximal information about the common structure of the set of terms
anti-unified. If we would change the definition of possible substitutions, the order-
ing governed by the anti-instance relation could be changed. Therefore the notion
of what common structure is will change. The most general anti-unifier possible in
restricted higher-order anti-unification is, as in first-order anti-unification, a single
zero arity variable. This is a trivial anti-unifier for every set of terms, and guarantees
that an anti-unifier always exists for a set of terms if we do not take sorts into account.
However, this anti-unifier does not need to be and usually will not be the most specific
anti-unifier. We will call any anti-unifier together with the corresponding substitu-
tions for a set of two terms a generalization.

Definition 13 (Generalization) A generalization for a pair of terms ⇥s, t� is a triple⇥g, ⇥, �� with a term g and substitutions ⇥, � such that g
⇧⇥� s and g

⇥⇥� t. The term
g is therefore the anti-unifier in a generalization for s and t.

f(X)
⌅XZ

⌃⌃

⌅XY

⇤⇤
f(Y ) f(Z)

f(X)
⌃X
b

⇧⇧

⌃X
a

⌅⌅
f(a) f(b)

F (a)
⌃F
g

⌃⌃

⌃F
f

⇤⇤
f(a) g(a)

F (a, b, c)
�F,F ′′
G,1

��

�F,F ′
X,2

��
F �(a, b,X, c) F ��(a,G(b, c))

F (a, b, c)
⇤F,F ′′
⇥

⌥⌥

⇤F,F ′
�

⇥⇥
F �(a, c, b) F ��(c, b, a)

(a) (b) (c) (d) (e)

Figure 2.4: Examples for all basic substitutions from definition 8.

Generalizations with the earlier discussed examples of basic substitutions can be
found in figure 2.4. The pair of anti-unified terms at the bottom of each generaliza-
tion depicted, is stated additionally to the anti-unifier placed at the top and the two
corresponding substitutions. Labeled arrows represent the substitutions. The anti-
unifier in a generalization is not required to be a most specific anti-unifier for the pair
of terms given. Hence, we introduce the notion of least general generalization where
the anti-unifier is a most specific anti-unifier for the pair of terms given.

Definition 14 (Least General Generalization) A generalization ⇥g, ⇥, �� for a pair of
terms ⇥s, t� is called least general generalization if g is a most specific anti-unifier for
the terms s and t.

REPLACE A VARIABLE BY ANOTHER VARIABLE



FIXATION

REPLACE A VARIABLE BY A FUNCTION OR 
PREDICATE SYMBOL
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Definition 12 (Most Specific Anti-Unifier) A most specific anti-unifier (msa) also re-
ferred to as the least general anti-unifier (lga) of a set of terms T is an anti-unifier a for
T such that there exists no anti-unifier a� for T with a� a� and a � a�.

The process of finding the most specific anti-unifier is called anti-unification. The
search for the most specific anti-unifiers means that the number of basic substitution
components is kept minimal and only those substitutions necessary to fulfill the condi-
tions for a valid anti-unifier are used. Anti-instances that are most specific anti-unifier
therefore carry maximal information about the common structure of the set of terms
anti-unified. If we would change the definition of possible substitutions, the order-
ing governed by the anti-instance relation could be changed. Therefore the notion
of what common structure is will change. The most general anti-unifier possible in
restricted higher-order anti-unification is, as in first-order anti-unification, a single
zero arity variable. This is a trivial anti-unifier for every set of terms, and guarantees
that an anti-unifier always exists for a set of terms if we do not take sorts into account.
However, this anti-unifier does not need to be and usually will not be the most specific
anti-unifier. We will call any anti-unifier together with the corresponding substitu-
tions for a set of two terms a generalization.

Definition 13 (Generalization) A generalization for a pair of terms ⇥s, t� is a triple⇥g, ⇥, �� with a term g and substitutions ⇥, � such that g
⇧⇥� s and g

⇥⇥� t. The term
g is therefore the anti-unifier in a generalization for s and t.

f(X)
⌅XZ

⌃⌃

⌅XY

⇤⇤
f(Y ) f(Z)

f(X)
⌃X
b
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�

⇥⇥
F �(a, c, b) F ��(c, b, a)

(a) (b) (c) (d) (e)

Figure 2.4: Examples for all basic substitutions from definition 8.

Generalizations with the earlier discussed examples of basic substitutions can be
found in figure 2.4. The pair of anti-unified terms at the bottom of each generaliza-
tion depicted, is stated additionally to the anti-unifier placed at the top and the two
corresponding substitutions. Labeled arrows represent the substitutions. The anti-
unifier in a generalization is not required to be a most specific anti-unifier for the pair
of terms given. Hence, we introduce the notion of least general generalization where
the anti-unifier is a most specific anti-unifier for the pair of terms given.

Definition 14 (Least General Generalization) A generalization ⇥g, ⇥, �� for a pair of
terms ⇥s, t� is called least general generalization if g is a most specific anti-unifier for
the terms s and t.



ARGUMENT INSERTION

SIMPLE: INSERT VARIABLE OF ARITY 0

COMPLEX: INSERT VARIABLE OF ARITY > 0 
                  VARIABLE ABSORBS ARGUMENTS
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Definition 12 (Most Specific Anti-Unifier) A most specific anti-unifier (msa) also re-
ferred to as the least general anti-unifier (lga) of a set of terms T is an anti-unifier a for
T such that there exists no anti-unifier a� for T with a� a� and a � a�.

The process of finding the most specific anti-unifier is called anti-unification. The
search for the most specific anti-unifiers means that the number of basic substitution
components is kept minimal and only those substitutions necessary to fulfill the condi-
tions for a valid anti-unifier are used. Anti-instances that are most specific anti-unifier
therefore carry maximal information about the common structure of the set of terms
anti-unified. If we would change the definition of possible substitutions, the order-
ing governed by the anti-instance relation could be changed. Therefore the notion
of what common structure is will change. The most general anti-unifier possible in
restricted higher-order anti-unification is, as in first-order anti-unification, a single
zero arity variable. This is a trivial anti-unifier for every set of terms, and guarantees
that an anti-unifier always exists for a set of terms if we do not take sorts into account.
However, this anti-unifier does not need to be and usually will not be the most specific
anti-unifier. We will call any anti-unifier together with the corresponding substitu-
tions for a set of two terms a generalization.

Definition 13 (Generalization) A generalization for a pair of terms ⇥s, t� is a triple⇥g, ⇥, �� with a term g and substitutions ⇥, � such that g
⇧⇥� s and g

⇥⇥� t. The term
g is therefore the anti-unifier in a generalization for s and t.

f(X)
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⌅XY
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Figure 2.4: Examples for all basic substitutions from definition 8.

Generalizations with the earlier discussed examples of basic substitutions can be
found in figure 2.4. The pair of anti-unified terms at the bottom of each generaliza-
tion depicted, is stated additionally to the anti-unifier placed at the top and the two
corresponding substitutions. Labeled arrows represent the substitutions. The anti-
unifier in a generalization is not required to be a most specific anti-unifier for the pair
of terms given. Hence, we introduce the notion of least general generalization where
the anti-unifier is a most specific anti-unifier for the pair of terms given.

Definition 14 (Least General Generalization) A generalization ⇥g, ⇥, �� for a pair of
terms ⇥s, t� is called least general generalization if g is a most specific anti-unifier for
the terms s and t.
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REARRANGE ARGUMENTS (IDENTITY EXCLUDED)
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Definition 12 (Most Specific Anti-Unifier) A most specific anti-unifier (msa) also re-
ferred to as the least general anti-unifier (lga) of a set of terms T is an anti-unifier a for
T such that there exists no anti-unifier a� for T with a� a� and a � a�.

The process of finding the most specific anti-unifier is called anti-unification. The
search for the most specific anti-unifiers means that the number of basic substitution
components is kept minimal and only those substitutions necessary to fulfill the condi-
tions for a valid anti-unifier are used. Anti-instances that are most specific anti-unifier
therefore carry maximal information about the common structure of the set of terms
anti-unified. If we would change the definition of possible substitutions, the order-
ing governed by the anti-instance relation could be changed. Therefore the notion
of what common structure is will change. The most general anti-unifier possible in
restricted higher-order anti-unification is, as in first-order anti-unification, a single
zero arity variable. This is a trivial anti-unifier for every set of terms, and guarantees
that an anti-unifier always exists for a set of terms if we do not take sorts into account.
However, this anti-unifier does not need to be and usually will not be the most specific
anti-unifier. We will call any anti-unifier together with the corresponding substitu-
tions for a set of two terms a generalization.

Definition 13 (Generalization) A generalization for a pair of terms ⇥s, t� is a triple⇥g, ⇥, �� with a term g and substitutions ⇥, � such that g
⇧⇥� s and g

⇥⇥� t. The term
g is therefore the anti-unifier in a generalization for s and t.

f(X)
⌅XZ

⌃⌃

⌅XY

⇤⇤
f(Y ) f(Z)

f(X)
⌃X
b

⇧⇧

⌃X
a

⌅⌅
f(a) f(b)

F (a)
⌃F
g

⌃⌃

⌃F
f

⇤⇤
f(a) g(a)

F (a, b, c)
�F,F ′′
G,1

��

�F,F ′
X,2

��
F �(a, b,X, c) F ��(a,G(b, c))

F (a, b, c)
⇤F,F ′′
⇥

⌥⌥

⇤F,F ′
�

⇥⇥
F �(a, c, b) F ��(c, b, a)

(a) (b) (c) (d) (e)

Figure 2.4: Examples for all basic substitutions from definition 8.

Generalizations with the earlier discussed examples of basic substitutions can be
found in figure 2.4. The pair of anti-unified terms at the bottom of each generaliza-
tion depicted, is stated additionally to the anti-unifier placed at the top and the two
corresponding substitutions. Labeled arrows represent the substitutions. The anti-
unifier in a generalization is not required to be a most specific anti-unifier for the pair
of terms given. Hence, we introduce the notion of least general generalization where
the anti-unifier is a most specific anti-unifier for the pair of terms given.

Definition 14 (Least General Generalization) A generalization ⇥g, ⇥, �� for a pair of
terms ⇥s, t� is called least general generalization if g is a most specific anti-unifier for
the terms s and t.
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f X,Y

⇤⇤⇤
⇤⇤

⇤⇤
⇤⇤

⇥⇥⇥⇥
⇥⇥

⇥⇥
⇥

f g a, b, c , d f d, h a

F d,G a

⌅⌅⌅
⌅⌅

⌅⌅
⌅⌅

����
��

��
��

f g a, b, c , d f d, h a

F G a , d

⇧⇧⇧
⇧⇧

⇧⇧
⇧⇧

⌃⌃⌃⌃
⌃⌃

⌃⌃
⌃⌃

f g a, b, c , d f d, h a

Figure 3.4: Example with multiple least general generalizations

shown in figure 3.4.

While we extended the notion of terms and substitutions from first to a higher-
order version the definition of generalization does not differ from definition 13 in
section 2.2.2. A generalization by our definition consists of an anti-unifier and a pair
of substitutions which, when applied to the anti-unifier, yield the anti-unified terms.
From proposition 1 we conclude that there exist only a finite number of classes of gen-
eralizations that have a differing anti-unifier (up to renaming) for a given pair of anti-
unified terms. However, there are an infinite number of generalizations in each class.
This results from the property that there are an infinite number of different chains of
basic substitutions from the anti-unifier to each of the anti-unified terms. Valid chains
of basic substitutions that already lead from the anti-unifier to the anti-unified terms
can be further extended by renaming and permutation without changing the result of
their application. These chains contain unnecessary basic substitutions but are still
valid because there is no restriction on length of those chains.

There are multiple classes of least general generalizations that differ in the equiva-
lence class of anti-unifiers used, because there exist multiple most specific anti-unifiers
that are not in the same equivalence class. Figure 3.4 depicts three different classes of
least general generalizations. Note that the substitutions are not explicitly stated be-
cause there exists an infinite number of valid basic substitution chains with which the
arrows could be annotated in each of the classes.

3.2.2 Complexity of Substitutions

Multiple classes of least general generalizations are not necessary disadvantageous.
In analogy making several different mappings with different degrees of plausibility
may coexist. Thus, we need a complexity measure for ranking generalizations and
therefore have a criterion to rank for alternative least general generalizations. This
ranking may be based on the already defined information load. Information load of
an anti-unifier, which is part of a generalization, does not take into consideration the
complexity of the substitutions involved. However, substitutions need to be consid-
ered in the complexity measure because we want to promote their reuse and want to
anti-unify full sets of terms.
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Definition 18 (Complexity of Substitutions) The complexity of a basic substitution ⇧

is defined as:

C ⇧

0 if ⇧ ⌅ (renaming)
1 if ⇧ ⌃f (fixation)
k 1 if ⇧ �V,i and V k (argument insertion)
1 if ⇧ ⇤� (permutation)

For a composition of basic substitutions we define C ⇧1, , ⇧m
m
i 1 C ⇧i .

The complexity of a substitution is meant to reflect its computational processing
effort. Therefore permutations have a non-zero complexity even though they do not
change the information load of a term. Argument insertion restructures the term, and
the higher the arity of the inserted variable, the more arguments are moved and there-
fore more complexity is assigned to the argument insertion operation. We choose to
linearly scale the complexity of insertion according to the arity of the inserted higher-
order variable. The renaming substitution does not change the equivalence class and
structure of a term and therefore has a complexity measure of zero. A substitution
that is composed of basic higher-order substitutions has the complexity of the sum of
those basic substitutions. The complexity values for basic substitutions have proven
to generate plausible analogies when used by HDTP. The analysis of different complex-
ity values is subject of future work. The complexity of a generalization can be defined
in a straightforward manner by basing it on the complexity of its substitutions.

Definition 19 (Complexity of Generalizations) Let g, ⇧,⇥ be a generalization for a
pair of terms s, t . Define the complexity of the generalization by C g, ⇧,⇥ C ⇧

C ⇥ .

Figure 3.5 shows three possibilities for substitutions that transform f X,Y into
f d, h a . They all have a complexity of 4, which is the minimum achievable for
f X,Y f d, h a . Therefore they are equal candidates to be substitutions used
in the right side of the generalization template in figure 3.4(a). We say template here
because the substitutions used must to be explicitly stated for it to be a fully specified
generalization.

A substitution yielding f g a, b, c when applied to f X,Y , has a minimum
complexity of 8. Such a substitution must be at least composed of the five fixations for
g, a, b, c and d. Furthermore, three insertions are needed to produce the
argument structure for g. Summing the complexities for fixations and insertions
we gain a complexity of 8 for the complete chain of basic substitutions needed.
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TIME, MASS, VOLUME, PHYSICAL OBJECT
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ONE-TO-ONE, MANY-TO-ONE, MANY-TO-MANY
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3.3 Reuse of Substitutions

Anti-unification within HDTP is used to produce a set of anti-unifiers for a set of terms
of source and target domains by building generalizations. Subterms within the source
and target domains can appear more than once. The constants sun and planet, for ex-
ample are used within the terms mass sun mass planet and dist planet, sun,T

on the source side within the Rutherford analogy formalized in figure 2.1.
Furthermore, in the target domain the terms mass nucleus mass electron and
dist electron,nucleus, T have the same subterms electron and nucleus. A gener-
alization for mass sun mass planet and mass nucleus mass electron is
shown in figure 3.7(a). In (b) the depicted generalization is between
dist planet, sun,T and dist electron,nucleus, T .

mass X mass Y

�X
nucleus,�

Y
electron

⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥

�X
sun,�Y

planet

⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤

mass sun mass planet mass nucleus mass electron
(a)

dist X,Y, T

�X
nucleus,�

Y
electron

���������������

�X
sun,�Y

planet

⌅⌅⌅⌅
⌅⌅

⌅⌅
⌅⌅

⌅⌅
⌅⌅

dist sun, planet, T dist nucleus, electron, T
(b)

Figure 3.7: Examples for generalizations in the Rutherford analogy.

Both generalizations use two fixations for each substitution and therefore have a
complexity of 4. Both generalizations combined have a complexity of 8. However, the
fixations used in these two generalizations are the same. It is cognitively plausible if
already used substitutions and constructed mappings do not add complexity on reuse.
Because HDTP builds generalizations sequentially one by one, the desired process
should be that when the generalization in (a) is already made and a new generaliza-
tion as in (b) is constructed, the complexity assigned to (b) should be 0.

In order to define the desired mechanism of reuse for substitutions, we first exam-
ine a few problems that arise from a simple definition of reuse. We could simply define
reuse as follows: the complexity of an already used basic substitution during the map-
ping process of HDTP is zero. This yields a form of reuse that is not desired. The root
of the problem is that the variable F in the basic substitutions ⇥F

f , �F,F
I and ⇥F,F

� is



MAPPING

COMPUTES  AN ALIGNMENT BETWEEN SOURCE AND TARGET DOMAIN 
WITH MINIMAL COMPLEXITY

LOCAL GREEDY SEARCH STRATEGY

REPEAT UNTIL ALL SOURCE ( TARGET) FORMULA CONSIDERED  

SELECT A SOURCE FORMULA

COMPUTE COMPLEXITY OF ANTI-UNIFICATION WITH TARGET FORMULAS
AND PENALTY FOR NOT MATCHING AT ALL

SELECT GENERALIZATION WITH LEAST COMPLEXITY
AND MARK INVOLVED FORMULAS AS MAPPED



TWO VIEWS ON HEURISTICS

INCORPORATING ADDITIONAL KNOWLEDGE

MEMORY BASED REUSE OF GENERALIZATIONS FROM PREVIOUS 
ANALOGIES

PRUNING THE SEARCH TREE

INTELLIGENCE IN FORM OF HEURISTICS HERE IS THEN TO ADVERT THE 
THREAT OF EXPONENTIAL SEARCH EXPLOSION 



HEURISTICS
AN ALIGNMENT WITH MINIMAL COMPLEXITY BUT MAXIMAL COVERAGE 
PRODUCES A GOOD ANALOGY

SELECTING SOURCE FORMULAE

LEAST AMOUNT OF UNMAPPED SYMBOLS

MATCHING PREDICATES ON THE TOP-LEVEL

HEURISTIC THAT APPROXIMATES ANTI-UNIFICATION COMPLEXITY

USE COMPLEXITY OF PAIR WITH HEURISTICALLY LEAST COMPLEXITY AS 
CUTOFF VALUE FOR SEARCH

NON MATCH COMPLEXITY = (NUMBER OF SYMBOLS * 2) + 1

NOT ALIGN A FORMULA > FORMULA EQUAL IN ARGUMENT STRUCTURE



RATIONALITY



FRAMEWORKS
LOGIC BASED

WASON SELECTION TASK

PROBABILITY BASED

LINDA PROBLEM

GAME THEORY BASED

NO SINGLE OPTIMALITY CRITERION

HEURISTIC BASED

OFTEN LACK FORMAL TRANSPARENCY AND EXPLANATIVE POWER

USUALLY NORMATIVE BUT NOT PREDICTIVE FOR HUMAN BEHAVIOR

HUMAN RATIONALITY MODEL NEEDS TO ACCOUNT FOR “IRRATIONALITY”



COGNITIVE VIEW OF RATIONALITY
BOUNDED RATIONALITY

H. SIMON, (1959)
THEORIES OF DECISION MAKING IN ECONOMICS AND BEHAVIOURAL SCIENCE

 RATIONALITY AS MULTILEVEL THEORY BASED ON COGNITIVE PROCESSES

B. KOKINOV (2003) 
ANALOGY IN DECISION-MAKING, SOCIAL INTERACTION, AND EMERGENT 
RATIONALITY, BEHAVIORAL AND BRAIN SCIENCES 

UTILITY MAKING IS AN EMERGENT PROPERTY IN MOST CASES

RATIONAL RULES AS APPROXIMATIONS OF HUMAN BEHAVIOR



COGNITIVE VIEW OF RATIONALITY
B. INDURKHYA (2007)
RATIONALITY AND REASONING WITH METAPHORS

EXAMINED RATIONALITY IN AN INTERACTION-BASED VIEW OF COGNITION

METAPHORS CAN RADICALLY ALTER THE ONTOLOGY OF THE TARGET, THEREBY 
CREATING A NEW PERSPECTIVE

THIS ROLE OF METAPHORS SHOULD NOT BE EXCLUDED FROM AN ACCOUNT OF 
RATIONALITY

TWO KEY ROLES FOR ANALOGY IN RATIONALITY FRAMEWORKS

RESTRUCTURE THE PROBLEM DOMAIN (CHANGING THE VIEW)

GENERATION OF NEW KNOWLEDGE (TRANSFER)



EXISTING COGNITIVE FRAMEWORKS

G. PETKOV AND B. KOKINOV (2006) 
JUDGEMAP - INTEGRATION OF ANALOGY- MAKING, JUDGEMENT, AND CHOICE’ 

DUAL (COGNITIVE ARCHITECTURE) + AMBR (ANALOGY FRAMEWORK)

REPLICATES RANGE, FREQUENCY AND SEQUENTIAL ASSIMILATION EFFECTS

REPRODUCES CONTEXTUAL EFFECTS IN TASKS WHICH AT FIRST SIGHT DON’T 
SEEM TO BE RELATED TO ANALOGY-MAKING

MORE PROJECTS THAT APPLY ANALOGY-MAKING TO PROBLEM SOLVING

M. KLENK AND K. FORBUS (2007) 
COGNITIVE MODELING OF ANALOGY EVENTS IN PHYSICS PROBLEM SOLVING 
FROM EXAMPLES’ 



HDTP AS PART OF 
AN ARCHITECTURE FOR RATIONALITY

RETRIEVAL

COMPILE AND TRACK LIMITED LIBRARY OF PREVIOUS SITUATIONS

CORRESPONDS TO HUMAN EPISODIC MEMORY

OUTCOME DOES NOT HAVE TO BE UNIQUE

MAPPING

MULTIPLE MAPPINGS POSSIBLE

CAN BE GOAL DRIVEN



HDTP AS PART OF 
AN ARCHITECTURE FOR RATIONALITY

TRANSFER

INTEGRATION AND CONSOLIDATION FROM MULTIPLE DOMAINS

NEW APPLICATION PHASE

DOES NOT NEED TO BE A PERFECT DEDUCTIVE REASONER

FORMALIZATION EASY TO INTEGRATE INTO EXISTING PLANERS/REASONERS

PROBLEM SOLVING CAN STILL FAIL

INTEGRATION OF UNCERTAINTY

OBTAINING (COMPLETE) DOMAIN THEORIES FROM 
(MOST LIKELY ONLY PARTIAL) OBSERVATIONS



CONCLUSION

THEORETICAL AND PRACTICAL RESULTS ARE PROMISING ENOUGH TO JUSTIFY 
SERIOUS AND DEDICATED RESEARCH EFFORTS

PROMOTE GENERAL APPLICATION OF ANALOGY ENGINES 
TO RATIONALITY TASKS

COGNITIVE AND ANALOGY COMPUTATION MOVEMENT AND  RATIONALITY 
SCHOOLS CAN PROFIT FROM FURTHER INTENSIFYING THEIR INTERACTION AND 
COOPERATION

ANALOGY-MAKING COULD BE EXPANDED AND ENRICHED BY SOME OF THE 
ALTERNATE TECHNIQUES APPLIED WHEN MODELING RATIONALITY

FRAMEWORKS FOR RATIONALITY COULD SIGNIFICANTLY PROFIT FROM 
INCLUDING MORE COGNITIVE ASPECTS AND PROPERTIES OF HUMANS INTO 
THEIR MODELS AND THEORIES


