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Similarity based reasoning

barbera is similar to chianti

barbera has an amount of tannins which is approximately low

barbera has a body which is approximately medium 

How similar should chianti and barbera be for this inference to 
be plausible?

How similar to “low” can we assume the amount of tannins to 
be?

How is this similarity measured?

Cautious analogical-proportion based reasoning using
qualitative conceptual relations

Steven Schockaert1 and Henri Prade2

Abstract. Propositional rule bases may be incomplete in the sense
that some situations of interest are not explicitly covered by any of
their rules. While logical deduction does not produce meaningful re-
sults in such a case, a variety of methods have been proposed to de-
rive plausible conclusions about a given situation, by comparing it
with similar or analogous situations that are explicitly covered by
available rules. Most of these methods, however, rely on the avail-
ability of quantitative information which may be difficult to obtain
and/or justify. In this paper, we therefore propose a form of com-
monsense reasoning which remains at the qualitative level. In par-
ticular, we use qualitative spatial relations between geometric repre-
sentations of properties to encode how they are conceptually related,
essentially corresponding to a weaker version of analogical propor-
tions. A commonsense inference relation is then obtained by identi-
fying a rule base with a mapping between two geometric spaces, and
making assumptions about the regularity of this mapping.

1 Introduction

Many domains make use of a large number of labels to categorize
instances. In the domain of music, for example, labels for describing
different genres abound, ranging from coarse labels such as classical
music or pop music, to fine-grained labels such as lo-fi, doom metal,
or vocal jazz. As another example, consider the domain of wines, and
the following rules:

chianti → low-tannins ∧ medium-body (1)
merlot → (low-tannins ∨ mid-tannins) ∧ medium-body (2)

Given the large number of available labels, rule bases about domains
such as music genres or wines are not likely to be complete. For ex-
ample, assume that we have no rules about barbera wine. In such a
case, logical deduction cannot tell us anything about the amount of
tannins in barbera. On the other hand, if we know from experience
that barbera tastes quite similar to chianti, we may conclude that the
amount of tannins in barbera is not likely to be high. To formalize
this form of commonsense reasoning, a variety of similarity based
reasoning have already been proposed [2, 15, 7, 11, 3, 17]. The in-
tuition is usually that given a rule α → β and a fact α∗, the more
similar α is to α∗, the more likely it is that a situation similar to β
holds.

Although the idea of similarity based reasoning is important in
understanding human reasoning, and although it has enabled a large
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number of applications (including the work on fuzzy rule based sys-
tems and case based reasoning), it does not offer a fully satisfactory
solution to the problem at hand, because of problems such as:

• Where do the similarity degrees come from and what do they
mean?

• How similar should α and α∗ be to say something meaningful
about the similarity between the conclusion β∗, and the rule con-
sequent β?

• What exactly can we derive about the similarity between β and
β∗?

While specific applications may give specific answers to these ques-
tions, we believe that a more qualitative method is needed to handle
the problem of incomplete rule bases in general. In [9], we proposed
such a qualitative method for completing rule bases based on the no-
tion of analogical proportion. An analogical proportion a : b :: c : d
expresses that “a is related to b as c is related to d”. Possible exam-
ples are:

chick : chicken :: kitten : cat
loft : penthouse :: cottage : mansion

hard-rock : progressive-rock :: heavy-metal : progressive-metal

More formally, if A, B, C and D are the set of features exhibited by
a, b, c and d, the analogical proportion a : b :: c : d is said to hold
when A\B = C \D and B \A = D\C [1]. In [9], we suggested to
complete rule bases using the assumption that that when each of the
corresponding arguments of 4 rules are in an analogical proportion
then also the conclusions of these 4 rules should form an analogical
proportion. More precisely, given three rules a1 ∧ ... ∧ ak → a,
b1 ∧ ...∧ bk → b, c1 ∧ ...∧ ck → c and the premises d1, ..., dk such
that the analogical proportions ai : bi :: ci : di holds for every i, [9]
suggests to add the rule d1 ∧ ... ∧ dk → d to the knowledge base,
where X = d is the unique solution which makes a : b :: c : X an
analogical proportion, if one exists.

Analogical-proportion based reasoning eliminates the need for de-
grees, and can often suggest answers in situations where similarity
based reasoning cannot. However, from a practical point of view, in
many domains it may be hard to find four-tuples of properties which
form a perfect analogical proportion, and when analogical propor-
tions only hold approximately, the method from [9] may not be suf-
ficiently cautious. To make analogical-proportion based reasoning
more robust in such a case, in this paper we further develop the ideas
from [13] on interpolating and extrapolating rules using qualitative
knowledge.

The paper is structured as follows. First, in Section 2, we focus
on the idea of using betweenness to interpolate rules, essentially pro-
viding a qualitative counterpart to similarity based reasoning. Then,



Interpolative reasoning

barbera has an amount of tannins which is between the amounts 
in chianti and merlot

barbera has a body which is between the body of chianti and 
merlot

B is conceptually between A and C if B has all the (relevant) 
properties that A and C have in common

Cautious analogical-proportion based reasoning using
qualitative conceptual relations

Steven Schockaert1 and Henri Prade2

Abstract. Propositional rule bases may be incomplete in the sense
that some situations of interest are not explicitly covered by any of
their rules. While logical deduction does not produce meaningful re-
sults in such a case, a variety of methods have been proposed to de-
rive plausible conclusions about a given situation, by comparing it
with similar or analogous situations that are explicitly covered by
available rules. Most of these methods, however, rely on the avail-
ability of quantitative information which may be difficult to obtain
and/or justify. In this paper, we therefore propose a form of com-
monsense reasoning which remains at the qualitative level. In par-
ticular, we use qualitative spatial relations between geometric repre-
sentations of properties to encode how they are conceptually related,
essentially corresponding to a weaker version of analogical propor-
tions. A commonsense inference relation is then obtained by identi-
fying a rule base with a mapping between two geometric spaces, and
making assumptions about the regularity of this mapping.

1 Introduction

Many domains make use of a large number of labels to categorize
instances. In the domain of music, for example, labels for describing
different genres abound, ranging from coarse labels such as classical
music or pop music, to fine-grained labels such as lo-fi, doom metal,
or vocal jazz. As another example, consider the domain of wines, and
the following rules:

chianti → low-tannins ∧ medium-body (1)
merlot → (low-tannins ∨ mid-tannins) ∧ medium-body (2)

Given the large number of available labels, rule bases about domains
such as music genres or wines are not likely to be complete. For ex-
ample, assume that we have no rules about barbera wine. In such a
case, logical deduction cannot tell us anything about the amount of
tannins in barbera. On the other hand, if we know from experience
that barbera tastes quite similar to chianti, we may conclude that the
amount of tannins in barbera is not likely to be high. To formalize
this form of commonsense reasoning, a variety of similarity based
reasoning have already been proposed [2, 15, 7, 11, 3, 17]. The in-
tuition is usually that given a rule α → β and a fact α∗, the more
similar α is to α∗, the more likely it is that a situation similar to β
holds.

Although the idea of similarity based reasoning is important in
understanding human reasoning, and although it has enabled a large
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number of applications (including the work on fuzzy rule based sys-
tems and case based reasoning), it does not offer a fully satisfactory
solution to the problem at hand, because of problems such as:

• Where do the similarity degrees come from and what do they
mean?

• How similar should α and α∗ be to say something meaningful
about the similarity between the conclusion β∗, and the rule con-
sequent β?

• What exactly can we derive about the similarity between β and
β∗?

While specific applications may give specific answers to these ques-
tions, we believe that a more qualitative method is needed to handle
the problem of incomplete rule bases in general. In [9], we proposed
such a qualitative method for completing rule bases based on the no-
tion of analogical proportion. An analogical proportion a : b :: c : d
expresses that “a is related to b as c is related to d”. Possible exam-
ples are:

chick : chicken :: kitten : cat
loft : penthouse :: cottage : mansion

hard-rock : progressive-rock :: heavy-metal : progressive-metal

More formally, if A, B, C and D are the set of features exhibited by
a, b, c and d, the analogical proportion a : b :: c : d is said to hold
when A\B = C \D and B \A = D\C [1]. In [9], we suggested to
complete rule bases using the assumption that that when each of the
corresponding arguments of 4 rules are in an analogical proportion
then also the conclusions of these 4 rules should form an analogical
proportion. More precisely, given three rules a1 ∧ ... ∧ ak → a,
b1 ∧ ...∧ bk → b, c1 ∧ ...∧ ck → c and the premises d1, ..., dk such
that the analogical proportions ai : bi :: ci : di holds for every i, [9]
suggests to add the rule d1 ∧ ... ∧ dk → d to the knowledge base,
where X = d is the unique solution which makes a : b :: c : X an
analogical proportion, if one exists.

Analogical-proportion based reasoning eliminates the need for de-
grees, and can often suggest answers in situations where similarity
based reasoning cannot. However, from a practical point of view, in
many domains it may be hard to find four-tuples of properties which
form a perfect analogical proportion, and when analogical propor-
tions only hold approximately, the method from [9] may not be suf-
ficiently cautious. To make analogical-proportion based reasoning
more robust in such a case, in this paper we further develop the ideas
from [13] on interpolating and extrapolating rules using qualitative
knowledge.

The paper is structured as follows. First, in Section 2, we focus
on the idea of using betweenness to interpolate rules, essentially pro-
viding a qualitative counterpart to similarity based reasoning. Then,

barbera is conceptually between chianti and merlot

When is this inference pattern plausible?
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containing observations about the comfort level of some housing options:

villa(x) ∧ suburbs(x)→ luxurious(x) (1)
apartment(x) ∧ suburbs(x)→ basic(x) (2)
apartment(x) ∧ centre(x)→ very-comfortable(x) (3)

Clearly, the knowledge base in the previous example is incomplete, in the sense
that the comfort level of some configurations cannot be deduced from it. For
instance, we have no information at all about the comfort level of an apartment
in the outskirts. Intuitively, given that an apartment in the suburbs is basic
and one in the centre is very-comfortable, we may think that an apartment in
the outskirts would normally be basic, comfortable or very-comfortable. Such
a commonsense inference is based on the idea of interpolation of knowledge.
In particular, it relies on the assumption that intermediary conditions lead to
intermediary conclusions. Clearly, this requires that a notion of betweenness
can meaningfully be defined for labels of the same class. As another example,
consider the comfort level of a villa in the centre. From (2)–(3) we may learn
that housing in the centre is more comfortable than housing in the suburbs,
which would lead us to conclude from (1) that a villa in the centre would be
luxurious or exclusive. This is a form of extrapolative reasoning, which builds on
the premise that analogous changes in the conditions should lead to analogous
changes in the conclusions. It can be related to an underlying notion of direction
which is defined on the labels of the same class. In the example, for instance, we
make the underlying assumption that the change from basic to very-comfortable
goes in the same direction as the change from luxurious to exclusive.

A more detailed characterization of interpolative and extrapolative inference
will be given below. However, it should be clear that in order to automate such
inferences, we need a richer form of knowledge than what is available in a classi-
cal logical setting, viz. information about betweenness and directionality for la-
bels. In simple domains, we can specify such information by hand. The Comfort
class, for instance, is essentially the discretization of a linearly ordered numer-
ical domain, hence it suffices to rank the labels. In multi-dimensional domains,
however, things are not always so clear. To some extent, a partial description
may be manually specified, e.g. we may explicitly assert that the change from
a castle to a villa goes in the same direction as the change from a villa to a
rowhouse. In large domains, however, it is tedious to provide such specifications,
as there is a cubic number of tuples that needs to be considered for betweenness
and a quartic number of tuples that needs to be considered for directionality.
Moreover, providing this information requires deep knowledge of the considered
domain. To cope with this, in this paper, we propose a data-driven approach
to acquire the required background knowledge from the web in an automated
manner.

In particular, we take advantage of the fact that the notions of between-
ness and direction have a clear geometric interpretation, which can be related
to Gärdenfors’ theory of conceptual spaces [5]. This theory posits that natural
properties can be represented as convex regions in a vector space, whose dimen-

What about apartments in the outskirts?

What about a villa in the centre?
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containing observations about the comfort level of some housing options:

villa(x) ∧ suburbs(x)→ luxurious(x) (1)
apartment(x) ∧ suburbs(x)→ basic(x) (2)
apartment(x) ∧ centre(x)→ very-comfortable(x) (3)

Clearly, the knowledge base in the previous example is incomplete, in the sense
that the comfort level of some configurations cannot be deduced from it. For
instance, we have no information at all about the comfort level of an apartment
in the outskirts. Intuitively, given that an apartment in the suburbs is basic
and one in the centre is very-comfortable, we may think that an apartment in
the outskirts would normally be basic, comfortable or very-comfortable. Such
a commonsense inference is based on the idea of interpolation of knowledge.
In particular, it relies on the assumption that intermediary conditions lead to
intermediary conclusions. Clearly, this requires that a notion of betweenness
can meaningfully be defined for labels of the same class. As another example,
consider the comfort level of a villa in the centre. From (2)–(3) we may learn
that housing in the centre is more comfortable than housing in the suburbs,
which would lead us to conclude from (1) that a villa in the centre would be
luxurious or exclusive. This is a form of extrapolative reasoning, which builds on
the premise that analogous changes in the conditions should lead to analogous
changes in the conclusions. It can be related to an underlying notion of direction
which is defined on the labels of the same class. In the example, for instance, we
make the underlying assumption that the change from basic to very-comfortable
goes in the same direction as the change from luxurious to exclusive.

A more detailed characterization of interpolative and extrapolative inference
will be given below. However, it should be clear that in order to automate such
inferences, we need a richer form of knowledge than what is available in a classi-
cal logical setting, viz. information about betweenness and directionality for la-
bels. In simple domains, we can specify such information by hand. The Comfort
class, for instance, is essentially the discretization of a linearly ordered numer-
ical domain, hence it suffices to rank the labels. In multi-dimensional domains,
however, things are not always so clear. To some extent, a partial description
may be manually specified, e.g. we may explicitly assert that the change from
a castle to a villa goes in the same direction as the change from a villa to a
rowhouse. In large domains, however, it is tedious to provide such specifications,
as there is a cubic number of tuples that needs to be considered for betweenness
and a quartic number of tuples that needs to be considered for directionality.
Moreover, providing this information requires deep knowledge of the considered
domain. To cope with this, in this paper, we propose a data-driven approach
to acquire the required background knowledge from the web in an automated
manner.

In particular, we take advantage of the fact that the notions of between-
ness and direction have a clear geometric interpretation, which can be related
to Gärdenfors’ theory of conceptual spaces [5]. This theory posits that natural
properties can be represented as convex regions in a vector space, whose dimen-

apartment(x) ∧ outskirts(x)→ basic(x)
∨ comfortable(x)
∨ very-comfortable(x)

1

???

intermediate 
conditions
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containing observations about the comfort level of some housing options:

villa(x) ∧ suburbs(x)→ luxurious(x) (1)
apartment(x) ∧ suburbs(x)→ basic(x) (2)
apartment(x) ∧ centre(x)→ very-comfortable(x) (3)

Clearly, the knowledge base in the previous example is incomplete, in the sense
that the comfort level of some configurations cannot be deduced from it. For
instance, we have no information at all about the comfort level of an apartment
in the outskirts. Intuitively, given that an apartment in the suburbs is basic
and one in the centre is very-comfortable, we may think that an apartment in
the outskirts would normally be basic, comfortable or very-comfortable. Such
a commonsense inference is based on the idea of interpolation of knowledge.
In particular, it relies on the assumption that intermediary conditions lead to
intermediary conclusions. Clearly, this requires that a notion of betweenness
can meaningfully be defined for labels of the same class. As another example,
consider the comfort level of a villa in the centre. From (2)–(3) we may learn
that housing in the centre is more comfortable than housing in the suburbs,
which would lead us to conclude from (1) that a villa in the centre would be
luxurious or exclusive. This is a form of extrapolative reasoning, which builds on
the premise that analogous changes in the conditions should lead to analogous
changes in the conclusions. It can be related to an underlying notion of direction
which is defined on the labels of the same class. In the example, for instance, we
make the underlying assumption that the change from basic to very-comfortable
goes in the same direction as the change from luxurious to exclusive.

A more detailed characterization of interpolative and extrapolative inference
will be given below. However, it should be clear that in order to automate such
inferences, we need a richer form of knowledge than what is available in a classi-
cal logical setting, viz. information about betweenness and directionality for la-
bels. In simple domains, we can specify such information by hand. The Comfort
class, for instance, is essentially the discretization of a linearly ordered numer-
ical domain, hence it suffices to rank the labels. In multi-dimensional domains,
however, things are not always so clear. To some extent, a partial description
may be manually specified, e.g. we may explicitly assert that the change from
a castle to a villa goes in the same direction as the change from a villa to a
rowhouse. In large domains, however, it is tedious to provide such specifications,
as there is a cubic number of tuples that needs to be considered for betweenness
and a quartic number of tuples that needs to be considered for directionality.
Moreover, providing this information requires deep knowledge of the considered
domain. To cope with this, in this paper, we propose a data-driven approach
to acquire the required background knowledge from the web in an automated
manner.

In particular, we take advantage of the fact that the notions of between-
ness and direction have a clear geometric interpretation, which can be related
to Gärdenfors’ theory of conceptual spaces [5]. This theory posits that natural
properties can be represented as convex regions in a vector space, whose dimen-

apartment(x) ∧ outskirts(x)→ basic(x)
∨ comfortable(x)
∨ very-comfortable(x)

1

intermediate 
conditions

intermediate 
conclusions
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containing observations about the comfort level of some housing options:

villa(x) ∧ suburbs(x)→ luxurious(x) (1)
apartment(x) ∧ suburbs(x)→ basic(x) (2)
apartment(x) ∧ centre(x)→ very-comfortable(x) (3)

Clearly, the knowledge base in the previous example is incomplete, in the sense
that the comfort level of some configurations cannot be deduced from it. For
instance, we have no information at all about the comfort level of an apartment
in the outskirts. Intuitively, given that an apartment in the suburbs is basic
and one in the centre is very-comfortable, we may think that an apartment in
the outskirts would normally be basic, comfortable or very-comfortable. Such
a commonsense inference is based on the idea of interpolation of knowledge.
In particular, it relies on the assumption that intermediary conditions lead to
intermediary conclusions. Clearly, this requires that a notion of betweenness
can meaningfully be defined for labels of the same class. As another example,
consider the comfort level of a villa in the centre. From (2)–(3) we may learn
that housing in the centre is more comfortable than housing in the suburbs,
which would lead us to conclude from (1) that a villa in the centre would be
luxurious or exclusive. This is a form of extrapolative reasoning, which builds on
the premise that analogous changes in the conditions should lead to analogous
changes in the conclusions. It can be related to an underlying notion of direction
which is defined on the labels of the same class. In the example, for instance, we
make the underlying assumption that the change from basic to very-comfortable
goes in the same direction as the change from luxurious to exclusive.

A more detailed characterization of interpolative and extrapolative inference
will be given below. However, it should be clear that in order to automate such
inferences, we need a richer form of knowledge than what is available in a classi-
cal logical setting, viz. information about betweenness and directionality for la-
bels. In simple domains, we can specify such information by hand. The Comfort
class, for instance, is essentially the discretization of a linearly ordered numer-
ical domain, hence it suffices to rank the labels. In multi-dimensional domains,
however, things are not always so clear. To some extent, a partial description
may be manually specified, e.g. we may explicitly assert that the change from
a castle to a villa goes in the same direction as the change from a villa to a
rowhouse. In large domains, however, it is tedious to provide such specifications,
as there is a cubic number of tuples that needs to be considered for betweenness
and a quartic number of tuples that needs to be considered for directionality.
Moreover, providing this information requires deep knowledge of the considered
domain. To cope with this, in this paper, we propose a data-driven approach
to acquire the required background knowledge from the web in an automated
manner.

In particular, we take advantage of the fact that the notions of between-
ness and direction have a clear geometric interpretation, which can be related
to Gärdenfors’ theory of conceptual spaces [5]. This theory posits that natural
properties can be represented as convex regions in a vector space, whose dimen-

apartment(x) ∧ outskirts(x)→ basic(x)
∨ comfortable(x)
∨ very-comfortable(x)

villa(x) ∧ centre(x)→ luxurious(x) ∨ exclusive(x)

1

???

analogous 
changes
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containing observations about the comfort level of some housing options:

villa(x) ∧ suburbs(x)→ luxurious(x) (1)
apartment(x) ∧ suburbs(x)→ basic(x) (2)
apartment(x) ∧ centre(x)→ very-comfortable(x) (3)

Clearly, the knowledge base in the previous example is incomplete, in the sense
that the comfort level of some configurations cannot be deduced from it. For
instance, we have no information at all about the comfort level of an apartment
in the outskirts. Intuitively, given that an apartment in the suburbs is basic
and one in the centre is very-comfortable, we may think that an apartment in
the outskirts would normally be basic, comfortable or very-comfortable. Such
a commonsense inference is based on the idea of interpolation of knowledge.
In particular, it relies on the assumption that intermediary conditions lead to
intermediary conclusions. Clearly, this requires that a notion of betweenness
can meaningfully be defined for labels of the same class. As another example,
consider the comfort level of a villa in the centre. From (2)–(3) we may learn
that housing in the centre is more comfortable than housing in the suburbs,
which would lead us to conclude from (1) that a villa in the centre would be
luxurious or exclusive. This is a form of extrapolative reasoning, which builds on
the premise that analogous changes in the conditions should lead to analogous
changes in the conclusions. It can be related to an underlying notion of direction
which is defined on the labels of the same class. In the example, for instance, we
make the underlying assumption that the change from basic to very-comfortable
goes in the same direction as the change from luxurious to exclusive.

A more detailed characterization of interpolative and extrapolative inference
will be given below. However, it should be clear that in order to automate such
inferences, we need a richer form of knowledge than what is available in a classi-
cal logical setting, viz. information about betweenness and directionality for la-
bels. In simple domains, we can specify such information by hand. The Comfort
class, for instance, is essentially the discretization of a linearly ordered numer-
ical domain, hence it suffices to rank the labels. In multi-dimensional domains,
however, things are not always so clear. To some extent, a partial description
may be manually specified, e.g. we may explicitly assert that the change from
a castle to a villa goes in the same direction as the change from a villa to a
rowhouse. In large domains, however, it is tedious to provide such specifications,
as there is a cubic number of tuples that needs to be considered for betweenness
and a quartic number of tuples that needs to be considered for directionality.
Moreover, providing this information requires deep knowledge of the considered
domain. To cope with this, in this paper, we propose a data-driven approach
to acquire the required background knowledge from the web in an automated
manner.

In particular, we take advantage of the fact that the notions of between-
ness and direction have a clear geometric interpretation, which can be related
to Gärdenfors’ theory of conceptual spaces [5]. This theory posits that natural
properties can be represented as convex regions in a vector space, whose dimen-

analogous 
changes

apartment(x) ∧ outskirts(x)→ basic(x)
∨ comfortable(x)
∨ very-comfortable(x)

villa(x) ∧ centre(x)→ luxurious(x) ∨ exclusive(x)

1

analogous 
changes
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Conceptual spaces

Represent meaning of natural language terms in a geometric space, 
called a conceptual space (Gärdenfors 2000)

‣Dimensions correspond to cognitively primitive qualities
‣Natural properties or concepts can be represented as convex 

regions

Using conceptual spaces, we can give an operational definition for the 
semantic relations we need for interpolation/extrapolation:

‣Conceptual betweenness corresponds to geometric 
betweenness in conceptual spaces
‣ Analogical change corresponds to parallel directions in 

conceptual spaces



Betweenness

(a) Betweenness (b) Parallelism

Figure 2: Modelling betweenness and parallelism between regions.

at s, r needs to be changed in the same way as p needs to be changed to
arrive at q, i.e. at the qualitative level, p is to q as r is to s (although the
amount of change may be different).

The notions of betweenness and parallelism, which are defined for points,
need to be extended to regions, in order to describe relationships between
attributes. As is well known, this can be done in different ways [45]. We will
consider the following two notions of betweenness for regions A, B, and C:

bet(A, B, C) iff ∃q ∈ B .∃p ∈ A .∃r ∈ C . bet(p, q, r) (12)

bet(A, B, C) iff ∀q ∈ B .∃p ∈ A .∃r ∈ C . bet(p, q, r) (13)

In particular, if A and C are convex regions, bet(A, B, C) holds if B overlaps
with the convex hull of A ∪ C, whereas bet(A, B, C) holds if B is included
in this convex hull. These two notions of betweenness are illustrated in
Figure 2(a), where bet(A, B1, C), bet(A, B1, C) and bet(A, B2, C) hold, but
not bet(A, B2, C). Note in particular that both relations are reflexive w.r.t.
the first two arguments, in the sense that e.g. bet(A, A,C) holds, as well
as symmetric, in the sense that e.g. bet(A, B, C) ≡ bet(C, B, A). However,
transitivity does not necessarily hold for regions, e.g. from bet(A, B, C) and
bet(B, C,D) we cannot infer that bet(A, B, D); a counterexample is depicted
in Figure 3(a)3. In the terminology of rough set theory [46], bet and bet cor-
respond to upper and lower approximations of betweenness. The underlying

3This counterexample also illustrates a technical subtlety of the considered framework.
If we want to represent the meaning of each label as a topologically closed set, then
regions will inevitably share their boundary with other regions, which is not compatible
with the view that different labels (of the same attribute domain) refer to pairwise disjoint

24

Atomic propositions a and c correspond to 
regions A and C in some conceptual space

We introduce a binary modality ⋈ to refer 
to the convex hull of A and C at the 
syntactic level:

b → a !c

∀q ∈ B .∃p ∈ A, r ∈ C, λ ∈ [0, 1] .−→pq = λ ·−→pr

1



Betweenness

in Section 3, we turn our attention to the idea of analogical change
for extrapolating rules. Subsequently, in Section 4, we discuss some
of the limitations of the present approach, as well as some ideas to
address them in future work. In particular, we explore some ideas
to obtain the required information about betweenness and analogi-
cal change, we discuss the problem of introducing inconsistencies
when making interpolative or extrapolative inferences, and we touch
on the idea of applying interpolative and extrapolative reasoning in a
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In practice, it may be difficult or even impossible to character-
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propositional connectives. For example, while we may know that
barbera is between chianti and merlot, we may not necessarily be
able to enumerate all such wines. Even worse, sometimes the avail-
able labels make it impossible to exactly characterize α1 ! α2. For
instance, let α1 = 3-bedroom-apartment and α2 = penthouse, then
we may wonder whether a loft should be included in the disjunction
α1 ! α2, i.e. whether loft → 3-bedroom-apartment ! penthouse
holds. A loft with three bedrooms can be considered intermediate
between a 3 bedroom apartment and a 3 bedroom penthouse, but for
a loft with fewer bedrooms this is harder to justify. In other words,
while some lofts are conceptually between 3 bedroom apartments
and penthouses, this does not hold for all lofts. If the language does
not contain a label for 3 bedroom lofts, we may therefore not be able
to precisely characterize 3-bedroom-apartment !penthouse.

Because of this observation, in practice we are left with approxi-
mating α1 !α2. In particular, we assume that we have access to rules
of the form

α∗ → α1 !α2 β1 !β2 → β∗

which indicate, respectively, that at least all situations covered by α∗

are conceptually between α1 and α2, and that all situations which
are conceptually between β1 and β2 satisfy β∗.

Example 1 From (1) and (2) we derive using interpolation:

chianti !merlot → (lt ∧ mb) !((lt ∨ mt) ∧ mb)

Considering the equivalence in (4), and the rule

barbera → chianti !merlot

we find using classical deduction that

barbera → (lt ∨ mt) ∧ mb

Notice how the symbol ! is essentially treated as a binary modality.
We assume this modality to be reflexive and symmetric in the sense
that

α !α ≡ α

α !β ≡ β !α

for any propositional formulas α and β. We moreover assume that α
and β themselves are “between α and β”, i.e.

α ∨ β → α !β

In practice, we may only have information about the between-
ness of atoms (i.e. individual labels) and not about the betweenness
of more complex propositional formulas. We may consider, for in-
stance, the following inference rule to lift betweenness for atoms to
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Note that because ! is symmetric, from the premises of (5) we can
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To see why these inference rules make sense, and to elucidate the

informal requirement of logical independence, it is useful to consider
the notion of interpolation at the semantic level.

Semantics

We characterize interpolation at the semantic level using the idea of
conceptual spaces [4]. Specifically, we assume that the meaning of
every label can be represented as a convex region in some geomet-
ric space, whose dimensions correspond to elementary cognitive fea-
tures; they are usually called “quality dimensions” in this context.
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To lift information about analogical changes between atomic la-
bels to analogical changes of propositional formulas, the following
inference rules are available to us:

α → α3 !〈α1, α2〉
β → β3 !〈β1, β2〉

(α ∨ β) → (α3 ∨ β3)!〈(α1 ∨ β1), (α2 ∨ β2)〉

(10)

α3 !〈α1, α2〉 → α
β3 !〈β1, β2〉 → β

(α3 ∨ β3)!〈(α1 ∨ β1), (α2 ∨ β2)〉 → (α ∨ β)

(11)

α → α3 !〈α1, α2〉
α, α1 and α2 are “logically independent” from β and γ

(α ∧ γ) → (α3 ∧ γ)!〈(α1 ∧ β), (α2 ∧ β)〉

(12)

α3 !〈α1, α2〉 → α
β3 !〈β1, β2〉 → β

(α3 ∧ β3)!〈(α1 ∧ β1), (α2 ∧ β2)〉 → (α ∧ β)

(13)

The inference rules (10)–(13) are justified using a geometric argu-
ment, similar as for betweenness. The extrapolation principle (9) it-
self can again be shown to be valid when the rule base approximates
a linear mapping between conceptual spaces.

Example 3 Consider the following rule base about houses:

large ∧ detached → comf ∨ lux (14)
large ∧ row-house → comf (15)
small ∧ detached → bas ∨ comf (16)

which defines the comfort level (basic, comfortable, luxurious) of a
house, based on its size (small, medium, large) and type (detached,
row-house, semi-detached). From the extrapolation principle (9) we
find

`
(small ∧ det)!〈(large ∧ det), (large ∧ rh)〉

´
(17)

→
`
(bas ∨ comf)!〈(comf ∨ lux), (comf ∨ comf)〉

´

Using (12) and the fact that β → α!〈α, β〉 for any α and β, we find

(small ∧ rh) → (small ∧ det)!〈(large ∧ det), (large ∧ rh)〉 (18)

where we have again abbreviated some labels. From

bas!〈comf, comf〉 → bas
comf!〈lux, comf〉 → (bas ∨ comf)

we find using (11):

(bas ∨ comf)!〈(comf ∨ lux), (comf ∨ comf)〉 → (bas ∨ comf)
(19)

Combining (17)–(19), we find

(small ∧ row-house) → (bas ∨ comf) (20)

Intuitively, from the rule base (14)–(16) we derive that detached
houses are more comfortable than row houses, hence a small row
house can not be more comfortable than a small detached house.

If we know consider that

semi-detached → row-house "detached

Using the interpolation principle (3) we can derive from (16) and
(20) that

(small ∧ semi-detached) → (bas ∨ comf)

i.e. since semi-detached houses are intermediate between detached
houses and row houses, their comfort level should be intermediate as
well.

4 Discussion

In this section, we discuss a number of obstacles to implementing
the ideas of interpolation and extrapolation in practice, and provide
some ideas on how to circumvent them.

4.1 Obtaining conceptual relations

Regarding the applicability of our approach, an important question is
how the required relational knowledge about conceptual spaces can
be obtained. Depending on the specific application, different options
may be available.

In some domains, it is feasible to manually encode a complete
qualitative description of a conceptual space. Most notably, this is
the case for conceptual spaces that are unidimensional, for which it
suffices to provide a ranking of the labels of interest. For instance, a
conceptual space of housing sizes may be described by encoding that

very-small < small < medium < large < very-large

From this description, we immediately obtain that e.g. small →
very-small "medium.

A second possibility is to extract conceptual relations from natural
language. In [16], for instance, the idea of latent relational analysis
was introduced, with the aim of finding analogical proportions. The
main idea is that two pairs of words are likely to be related analo-
gously, i.e. form an analogical proportion, when the lexical contexts
in which they co-occur are similar. For example, the words kitten and
cat are found in sentences such as “a kitten is a young cat”, while the
words chick and chicken are found in sentences such as “a chick is a
young chicken”. From such observations, the analogical proportion
kitten : cat :: chick : chicken can be discovered. Another technique
for discovering analogical proportions from the web was proposed in
[8], estimating the strength of analogical proportions by converting
co-occurrence statistics using Kolmogorov information theory.

If sufficient information is available about instances of concepts
or properties, several data-driven approaches can be used, which di-
rectly take advantage of the geometric nature of the relations of in-
terest. For instance, [5] suggests to start from pairwise similarity
judgements between instances, and use multi-dimensional scaling to
obtain coordinates for them in a Euclidean space. Representations
of concepts can then be obtained by determining the corresponding
Voronoi tessellation, after which the conceptual relations of interest
can be evaluated by straightforward geometric calculations. In [12],
the feasibility of such an approach was demonstrated in the domain

Barbera is intermediate between Chianti and Merlot

Semi-detached houses are intermediate between row houses and 
detached houses

The wines which are intermediate between medium-bodied wines with 
low-tannins and medium-bodied wines with either low or mid tannins 
are exactly those medium-bodied wines with low or mid tannins
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For non-atomic formulas, we can take advantage of the following 
inference rules, which are all compatible with the geometric view of 
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Figure 2: Modelling betweenness and parallelism between regions.

at s, r needs to be changed in the same way as p needs to be changed to
arrive at q, i.e. at the qualitative level, p is to q as r is to s (although the
amount of change may be different).

The notions of betweenness and parallelism, which are defined for points,
need to be extended to regions, in order to describe relationships between
attributes. As is well known, this can be done in different ways [45]. We will
consider the following two notions of betweenness for regions A, B, and C:

bet(A, B, C) iff ∃q ∈ B .∃p ∈ A .∃r ∈ C . bet(p, q, r) (12)

bet(A, B, C) iff ∀q ∈ B .∃p ∈ A .∃r ∈ C . bet(p, q, r) (13)

In particular, if A and C are convex regions, bet(A, B, C) holds if B overlaps
with the convex hull of A ∪ C, whereas bet(A, B, C) holds if B is included
in this convex hull. These two notions of betweenness are illustrated in
Figure 2(a), where bet(A, B1, C), bet(A, B1, C) and bet(A, B2, C) hold, but
not bet(A, B2, C). Note in particular that both relations are reflexive w.r.t.
the first two arguments, in the sense that e.g. bet(A, A,C) holds, as well
as symmetric, in the sense that e.g. bet(A, B, C) ≡ bet(C, B, A). However,
transitivity does not necessarily hold for regions, e.g. from bet(A, B, C) and
bet(B, C,D) we cannot infer that bet(A, B, D); a counterexample is depicted
in Figure 3(a)3. In the terminology of rough set theory [46], bet and bet cor-
respond to upper and lower approximations of betweenness. The underlying

3This counterexample also illustrates a technical subtlety of the considered framework.
If we want to represent the meaning of each label as a topologically closed set, then
regions will inevitably share their boundary with other regions, which is not compatible
with the view that different labels (of the same attribute domain) refer to pairwise disjoint

24

b → a !c

∀q ∈ B .∃p ∈ A, r ∈ C, λ ∈ [0, 1] .−→pq = λ ·−→pr

d → c"〈a, b〉

∀s ∈ D .∃p ∈ A, q ∈ B, r ∈ C, λ ≥ 0 .−→rs = λ ·−→pq

1

We introduce a ternary modality to 
refer to the conical extension of C 
in the directions defined by A and 
C
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In the case of labels referring to wines, for instance, there would be
quality dimensions corresponding to colour (e.g. three dimensions,
encoding hue, saturation and intensity), dimensions corresponding to
the texture of the wine, its taste, smell, etc. The points of the concep-
tual space would then correspond to specific instances, while regions
correspond to categories. Essentially, the region representing a cate-
gory (e.g. chianti) corresponds to the points which are closest to the
prototypes of that category [5], which is why such regions are nat-
urally convex. For simplicity, we assume that conceptual spaces are
Euclidean spaces.

Given this geometric setting, betweenness can naturally be char-
acterized: we say that a category b is between a and c, if some point
of the region corresponding with b is between some point of the re-
gion corresponding with a and some point of the region correspond-
ing with c. To make this more precise, let us write reg(α) for the
conceptual space representation of a propositional formula α, where
reg(α ∧ β) = reg(α) ∩ reg(β) and reg(α ∨ β) = reg(α) ∪ reg(β).
In this paper, we do not explicitly consider negation, and rather as-
sume that propositions are grouped in domains of pairwise disjoint
attributes. In the wine example, we may for instance consider the
domain A = {low-tannins, mid-tannins, high-tannins}. We assume
there are implicit constraints that enforce the pairwise disjointness of
attributes from the same domain. Sometimes, we do use the notation
¬a as a shorthand for domains A = {a,¬a} with only two elements.

We have α → β !γ iff

∀q ∈ reg(α) . ∃p ∈ reg(β), r ∈ reg(γ), λ ∈ [0, 1] .−→pq = λ ·−→pr

and β !γ → α iff

∀p ∈ reg(β), r ∈ reg(γ), λ ∈ [0, 1] . p + λ ·−→pr ∈ reg(α)

where the points p + λ · −→pr for λ ∈ [0, 1] are exactly the points
which are between p and r. From these characterizations it is easy
to verify that inference rules (5), (6) and (8) are indeed valid. The
argument for (7) is a bit more subtle. The intuition is that because of
the assumption of logical independence, we can see the underlying
conceptual space as a Cartesian product C1 × C2 such that reg(α),
reg(α1) and reg(α2) are all of the form X×C2 (i.e. the dimensions in
C2 are irrelevant for describing the categories α, α1 and α2), whereas
reg(β) is of the form C1 × Y (i.e. the dimensions in C1 are irrelevant
for describing the category β).

If α is inconsistent (e.g. because it is the conjunction of two pair-
wise disjoint attributes), then reg(α) = ∅. In such a case, no point
is between a point of reg(α) and a point of any other region reg(β).
Accordingly, we assume that

⊥!β ≡ β !⊥ ≡ ⊥

To describe the interpolation process itself, i.e. inference rule
(3), assume that a propositional rule base R is available, contain-
ing negation-free rules as before. The antecedent α of a rule corre-
sponds to a region reg1(α) in some conceptual space C1 (typically
corresponding to the Cartesian product of more elementary concep-
tual spaces). Similarly, the consequent β of a rule corresponds to a
region reg2(β) in a conceptual space C2. We can thus view the rule
base R as a mapping f from regions of C1 to regions of C2. A rule
α∗ → β∗ can then be derived from the rule base R using classical
deduction iff f(reg1(α

∗)) ⊆ reg2(β
∗).

By making certain meta-assumptions about the relationship be-
tween the conceptual spaces C1 and C2, we may be able to refine
the mapping f . In particular, in many cases C2 will be a subspace of
C1 (i.e. the quality dimensions that are needed to describe the labels

in the consequents of rules are a subset of those needed to describe
the antecedents). In such a case, f is the approximation of a linear
mapping from points of C1 to points of C2. We can then refine f
to a mapping bf such that f(X) \ bf(X) are all points from C2 that
could never be obtained by a linear mapping from C1 which is con-
sistent with f . It can then be shown that bf(reg1(α

∗)) ⊆ reg2(β
∗)

iff α∗ → β∗ can be derived from R using inference rule (3), and
(5)-(8) together with classical deduction. In other words, at the se-
mantic level, the interpolative inference rule (3) corresponds to an
assumption of regularity. We refer to [13] for more details.

Finally, note that interpolative reasoning can also be formalized
in terms of analogical proportions, by considering that b is between
a and c iff the analogical proportion a : b :: b : c holds. For in-
terpolative inferences, the method outlined in this paper yields more
cautious conclusions than the method from [9], which is intuitively
due to the fact that a : b :: b : c means that b is between a and c
and the distance between a and b is identical to the distance between
b and c. In the next section, we present a method for extrapolative
reasoning, which is again more cautious than the method from [9].

3 Extrapolation
Geometrically, analogical proportions intuitively correspond to the
idea of a parallelogram, indicating that the direction of change to go
from a to b is parallel to the direction of change from c to d, and that
the amount of change is identical. As this latter amount is difficult
to quantify, we will use a more qualitative approach, and restrict our
attention to the direction of change. In particular, we write γ"〈α, β〉
for the disjunction of all propositional formulas which correspond
to situations that differ from some situation satisfying γ in the way
as some situation satisfying β differs from a situation satisfying α.
More precisely, at the semantic level we have δ → α"〈β, γ〉 iff for
every s in reg(δ) there exist p in reg(α), q in reg(β), r in reg(γ) and
λ ≥ 0 such that

−→rs = λ ·−→pq

Example 2 Let a partitioning of house sizes be given by
{very-small, small, medium, large, very-large}, then we have

medium"〈very-small, large〉 ≡ medium ∨ large ∨ very-large

Indeed, the change from very-small to large denotes an increase
in size. Therefore the house sizes compatible with medium "

〈very-small, large〉 are those that are at least as large as medium.
As in the case of betweenness, when we move from uni-

dimensional to multi-dimensional domains, it is often not possible
to provide precisely characterize formulas of the form γ"〈α, β〉. For
example, we may assume

prog-metal → heavy-metal"〈hard-rock, prog-rock〉

without being able to precisely define all music genres that differ from
heavy-metal as prog-rock differs from hard-rock using the labels that
are available to us.

We obtain a form of extrapolative reasoning by assuming that ana-
logical changes in the antecedent of rules should lead to analogical
changes in the consequent:

α1 → β1

α2 → β2

α3 → β3

α3 "〈α1, α2〉 → β3 "〈β1, β2〉

(9)

In the case of labels referring to wines, for instance, there would be
quality dimensions corresponding to colour (e.g. three dimensions,
encoding hue, saturation and intensity), dimensions corresponding to
the texture of the wine, its taste, smell, etc. The points of the concep-
tual space would then correspond to specific instances, while regions
correspond to categories. Essentially, the region representing a cate-
gory (e.g. chianti) corresponds to the points which are closest to the
prototypes of that category [5], which is why such regions are nat-
urally convex. For simplicity, we assume that conceptual spaces are
Euclidean spaces.

Given this geometric setting, betweenness can naturally be char-
acterized: we say that a category b is between a and c, if some point
of the region corresponding with b is between some point of the re-
gion corresponding with a and some point of the region correspond-
ing with c. To make this more precise, let us write reg(α) for the
conceptual space representation of a propositional formula α, where
reg(α ∧ β) = reg(α) ∩ reg(β) and reg(α ∨ β) = reg(α) ∪ reg(β).
In this paper, we do not explicitly consider negation, and rather as-
sume that propositions are grouped in domains of pairwise disjoint
attributes. In the wine example, we may for instance consider the
domain A = {low-tannins, mid-tannins, high-tannins}. We assume
there are implicit constraints that enforce the pairwise disjointness of
attributes from the same domain. Sometimes, we do use the notation
¬a as a shorthand for domains A = {a,¬a} with only two elements.

We have α → β !γ iff
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∀p ∈ reg(β), r ∈ reg(γ), λ ∈ [0, 1] . p + λ ·−→pr ∈ reg(α)

where the points p + λ · −→pr for λ ∈ [0, 1] are exactly the points
which are between p and r. From these characterizations it is easy
to verify that inference rules (5), (6) and (8) are indeed valid. The
argument for (7) is a bit more subtle. The intuition is that because of
the assumption of logical independence, we can see the underlying
conceptual space as a Cartesian product C1 × C2 such that reg(α),
reg(α1) and reg(α2) are all of the form X×C2 (i.e. the dimensions in
C2 are irrelevant for describing the categories α, α1 and α2), whereas
reg(β) is of the form C1 × Y (i.e. the dimensions in C1 are irrelevant
for describing the category β).

If α is inconsistent (e.g. because it is the conjunction of two pair-
wise disjoint attributes), then reg(α) = ∅. In such a case, no point
is between a point of reg(α) and a point of any other region reg(β).
Accordingly, we assume that

⊥!β ≡ β !⊥ ≡ ⊥

To describe the interpolation process itself, i.e. inference rule
(3), assume that a propositional rule base R is available, contain-
ing negation-free rules as before. The antecedent α of a rule corre-
sponds to a region reg1(α) in some conceptual space C1 (typically
corresponding to the Cartesian product of more elementary concep-
tual spaces). Similarly, the consequent β of a rule corresponds to a
region reg2(β) in a conceptual space C2. We can thus view the rule
base R as a mapping f from regions of C1 to regions of C2. A rule
α∗ → β∗ can then be derived from the rule base R using classical
deduction iff f(reg1(α

∗)) ⊆ reg2(β
∗).

By making certain meta-assumptions about the relationship be-
tween the conceptual spaces C1 and C2, we may be able to refine
the mapping f . In particular, in many cases C2 will be a subspace of
C1 (i.e. the quality dimensions that are needed to describe the labels

in the consequents of rules are a subset of those needed to describe
the antecedents). In such a case, f is the approximation of a linear
mapping from points of C1 to points of C2. We can then refine f
to a mapping bf such that f(X) \ bf(X) are all points from C2 that
could never be obtained by a linear mapping from C1 which is con-
sistent with f . It can then be shown that bf(reg1(α

∗)) ⊆ reg2(β
∗)

iff α∗ → β∗ can be derived from R using inference rule (3), and
(5)-(8) together with classical deduction. In other words, at the se-
mantic level, the interpolative inference rule (3) corresponds to an
assumption of regularity. We refer to [13] for more details.

Finally, note that interpolative reasoning can also be formalized
in terms of analogical proportions, by considering that b is between
a and c iff the analogical proportion a : b :: b : c holds. For in-
terpolative inferences, the method outlined in this paper yields more
cautious conclusions than the method from [9], which is intuitively
due to the fact that a : b :: b : c means that b is between a and c
and the distance between a and b is identical to the distance between
b and c. In the next section, we present a method for extrapolative
reasoning, which is again more cautious than the method from [9].

3 Extrapolation
Geometrically, analogical proportions intuitively correspond to the
idea of a parallelogram, indicating that the direction of change to go
from a to b is parallel to the direction of change from c to d, and that
the amount of change is identical. As this latter amount is difficult
to quantify, we will use a more qualitative approach, and restrict our
attention to the direction of change. In particular, we write γ"〈α, β〉
for the disjunction of all propositional formulas which correspond
to situations that differ from some situation satisfying γ in the way
as some situation satisfying β differs from a situation satisfying α.
More precisely, at the semantic level we have δ → α"〈β, γ〉 iff for
every s in reg(δ) there exist p in reg(α), q in reg(β), r in reg(γ) and
λ ≥ 0 such that

−→rs = λ ·−→pq

Example 2 Let a partitioning of house sizes be given by
{very-small, small, medium, large, very-large}, then we have

medium"〈very-small, large〉 ≡ medium ∨ large ∨ very-large

Indeed, the change from very-small to large denotes an increase
in size. Therefore the house sizes compatible with medium "

〈very-small, large〉 are those that are at least as large as medium.
As in the case of betweenness, when we move from uni-

dimensional to multi-dimensional domains, it is often not possible
to provide precisely characterize formulas of the form γ"〈α, β〉. For
example, we may assume

prog-metal → heavy-metal"〈hard-rock, prog-rock〉

without being able to precisely define all music genres that differ from
heavy-metal as prog-rock differs from hard-rock using the labels that
are available to us.

We obtain a form of extrapolative reasoning by assuming that ana-
logical changes in the antecedent of rules should lead to analogical
changes in the consequent:

α1 → β1

α2 → β2

α3 → β3

α3 "〈α1, α2〉 → β3 "〈β1, β2〉

(9)

To lift information about analogical changes between atomic la-
bels to analogical changes of propositional formulas, the following
inference rules are available to us:

α → α3 !〈α1, α2〉
β → β3 !〈β1, β2〉

(α ∨ β) → (α3 ∨ β3)!〈(α1 ∨ β1), (α2 ∨ β2)〉

(10)

α3 !〈α1, α2〉 → α
β3 !〈β1, β2〉 → β

(α3 ∨ β3)!〈(α1 ∨ β1), (α2 ∨ β2)〉 → (α ∨ β)

(11)

α → α3 !〈α1, α2〉
α, α1 and α2 are “logically independent” from β and γ

(α ∧ γ) → (α3 ∧ γ)!〈(α1 ∧ β), (α2 ∧ β)〉

(12)

α3 !〈α1, α2〉 → α
β3 !〈β1, β2〉 → β

(α3 ∧ β3)!〈(α1 ∧ β1), (α2 ∧ β2)〉 → (α ∧ β)

(13)

The inference rules (10)–(13) are justified using a geometric argu-
ment, similar as for betweenness. The extrapolation principle (9) it-
self can again be shown to be valid when the rule base approximates
a linear mapping between conceptual spaces.

Example 3 Consider the following rule base about houses:

large ∧ detached → comf ∨ lux (14)
large ∧ row-house → comf (15)
small ∧ detached → bas ∨ comf (16)

which defines the comfort level (basic, comfortable, luxurious) of a
house, based on its size (small, medium, large) and type (detached,
row-house, semi-detached). From the extrapolation principle (9) we
find

`
(small ∧ det)!〈(large ∧ det), (large ∧ rh)〉

´
(17)

→
`
(bas ∨ comf)!〈(comf ∨ lux), (comf ∨ comf)〉

´

Using (12) and the fact that β → α!〈α, β〉 for any α and β, we find

(small ∧ rh) → (small ∧ det)!〈(large ∧ det), (large ∧ rh)〉 (18)

where we have again abbreviated some labels. From

bas!〈comf, comf〉 → bas
comf!〈lux, comf〉 → (bas ∨ comf)

we find using (11):

(bas ∨ comf)!〈(comf ∨ lux), (comf ∨ comf)〉 → (bas ∨ comf)
(19)

Combining (17)–(19), we find

(small ∧ row-house) → (bas ∨ comf) (20)

Intuitively, from the rule base (14)–(16) we derive that detached
houses are more comfortable than row houses, hence a small row
house can not be more comfortable than a small detached house.

If we know consider that

semi-detached → row-house "detached

Using the interpolation principle (3) we can derive from (16) and
(20) that

(small ∧ semi-detached) → (bas ∨ comf)

i.e. since semi-detached houses are intermediate between detached
houses and row houses, their comfort level should be intermediate as
well.

4 Discussion

In this section, we discuss a number of obstacles to implementing
the ideas of interpolation and extrapolation in practice, and provide
some ideas on how to circumvent them.

4.1 Obtaining conceptual relations

Regarding the applicability of our approach, an important question is
how the required relational knowledge about conceptual spaces can
be obtained. Depending on the specific application, different options
may be available.

In some domains, it is feasible to manually encode a complete
qualitative description of a conceptual space. Most notably, this is
the case for conceptual spaces that are unidimensional, for which it
suffices to provide a ranking of the labels of interest. For instance, a
conceptual space of housing sizes may be described by encoding that

very-small < small < medium < large < very-large

From this description, we immediately obtain that e.g. small →
very-small "medium.

A second possibility is to extract conceptual relations from natural
language. In [16], for instance, the idea of latent relational analysis
was introduced, with the aim of finding analogical proportions. The
main idea is that two pairs of words are likely to be related analo-
gously, i.e. form an analogical proportion, when the lexical contexts
in which they co-occur are similar. For example, the words kitten and
cat are found in sentences such as “a kitten is a young cat”, while the
words chick and chicken are found in sentences such as “a chick is a
young chicken”. From such observations, the analogical proportion
kitten : cat :: chick : chicken can be discovered. Another technique
for discovering analogical proportions from the web was proposed in
[8], estimating the strength of analogical proportions by converting
co-occurrence statistics using Kolmogorov information theory.

If sufficient information is available about instances of concepts
or properties, several data-driven approaches can be used, which di-
rectly take advantage of the geometric nature of the relations of in-
terest. For instance, [5] suggests to start from pairwise similarity
judgements between instances, and use multi-dimensional scaling to
obtain coordinates for them in a Euclidean space. Representations
of concepts can then be obtained by determining the corresponding
Voronoi tessellation, after which the conceptual relations of interest
can be evaluated by straightforward geometric calculations. In [12],
the feasibility of such an approach was demonstrated in the domain

Progressive metal differs from heavy metal like progressive rock 
differs from hard rock

The only comfort levels which differ from comfortable like comfortable 
differs from luxurious are basic and comfortable

The house sizes which differ from medium like large differs from very 
small are exactly medium, large and very large
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how the required relational knowledge about conceptual spaces can
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Interpolation and extrapolation principle

in Section 3, we turn our attention to the idea of analogical change
for extrapolating rules. Subsequently, in Section 4, we discuss some
of the limitations of the present approach, as well as some ideas to
address them in future work. In particular, we explore some ideas
to obtain the required information about betweenness and analogi-
cal change, we discuss the problem of introducing inconsistencies
when making interpolative or extrapolative inferences, and we touch
on the idea of applying interpolative and extrapolative reasoning in a
non-monotonic setting.

2 Interpolation
Syntax

At the syntactic level, the idea of interpolating rules corresponds to
the following inference rule:

α1 → β1

α2 → β2

α1 !α2 → β1 !β2

(3)

where we write α1 !α2 for the disjunction of all formulas that are
conceptually between α1 and α2. In the example from the introduc-
tion, for instance, chianti ! merlot would be the disjunction of all
wines whose taste is between that of chianti and merlot, whereas we
may consider that

(lt ∧ mb) !((lt ∨ mt) ∧ mb) ≡ (lt ∨ mt) ∧ mb (4)

where we have abbreviated the labels for the ease of presentation
(e.g. lt stands for low-tannins).

In practice, it may be difficult or even impossible to character-
ize α1 ! α2 and β1 ! β2 using the available labels and the usual
propositional connectives. For example, while we may know that
barbera is between chianti and merlot, we may not necessarily be
able to enumerate all such wines. Even worse, sometimes the avail-
able labels make it impossible to exactly characterize α1 ! α2. For
instance, let α1 = 3-bedroom-apartment and α2 = penthouse, then
we may wonder whether a loft should be included in the disjunction
α1 ! α2, i.e. whether loft → 3-bedroom-apartment ! penthouse
holds. A loft with three bedrooms can be considered intermediate
between a 3 bedroom apartment and a 3 bedroom penthouse, but for
a loft with fewer bedrooms this is harder to justify. In other words,
while some lofts are conceptually between 3 bedroom apartments
and penthouses, this does not hold for all lofts. If the language does
not contain a label for 3 bedroom lofts, we may therefore not be able
to precisely characterize 3-bedroom-apartment !penthouse.

Because of this observation, in practice we are left with approxi-
mating α1 !α2. In particular, we assume that we have access to rules
of the form

α∗ → α1 !α2 β1 !β2 → β∗

which indicate, respectively, that at least all situations covered by α∗

are conceptually between α1 and α2, and that all situations which
are conceptually between β1 and β2 satisfy β∗.

Example 1 From (1) and (2) we derive using interpolation:

chianti !merlot → (lt ∧ mb) !((lt ∨ mt) ∧ mb)

Considering the equivalence in (4), and the rule

barbera → chianti !merlot

we find using classical deduction that

barbera → (lt ∨ mt) ∧ mb

Notice how the symbol ! is essentially treated as a binary modality.
We assume this modality to be reflexive and symmetric in the sense
that

α !α ≡ α

α !β ≡ β !α

for any propositional formulas α and β. We moreover assume that α
and β themselves are “between α and β”, i.e.

α ∨ β → α !β

In practice, we may only have information about the between-
ness of atoms (i.e. individual labels) and not about the betweenness
of more complex propositional formulas. We may consider, for in-
stance, the following inference rule to lift betweenness for atoms to
betweenness for formulas:

α → α1 !α2

β → β1 !β2

(α ∨ β)→ (α1 ∨ β1) !(α2 ∨ β2)

(5)

α1 !α2 → α

(α1 ∨ β) !(α2 ∨ β)→ (α ∨ β)
(6)

α → α1 !α2

α, α1 and α2 are “logically independent” from β

(α ∧ β)→ (α1 ∧ β) !(α2 ∧ β)

(7)

α1 !α2 → α
β1 !β2 → β

(α1 ∧ β1) !(α2 ∧ β2)→ (α ∧ β)

(8)

Note that because ! is symmetric, from the premises of (5) we can
also derive

(α ∨ β)→ (α1 ∨ β2) !(α2 ∨ β1)

(α ∨ β)→ (α2 ∨ β1) !(α1 ∨ β2)

(α ∨ β)→ (α2 ∨ β2) !(α1 ∨ β1)

and similar for (6)–(8).
To see why these inference rules make sense, and to elucidate the

informal requirement of logical independence, it is useful to consider
the notion of interpolation at the semantic level.

Semantics

We characterize interpolation at the semantic level using the idea of
conceptual spaces [4]. Specifically, we assume that the meaning of
every label can be represented as a convex region in some geomet-
ric space, whose dimensions correspond to elementary cognitive fea-
tures; they are usually called “quality dimensions” in this context.

In the case of labels referring to wines, for instance, there would be
quality dimensions corresponding to colour (e.g. three dimensions,
encoding hue, saturation and intensity), dimensions corresponding to
the texture of the wine, its taste, smell, etc. The points of the concep-
tual space would then correspond to specific instances, while regions
correspond to categories. Essentially, the region representing a cate-
gory (e.g. chianti) corresponds to the points which are closest to the
prototypes of that category [5], which is why such regions are nat-
urally convex. For simplicity, we assume that conceptual spaces are
Euclidean spaces.

Given this geometric setting, betweenness can naturally be char-
acterized: we say that a category b is between a and c, if some point
of the region corresponding with b is between some point of the re-
gion corresponding with a and some point of the region correspond-
ing with c. To make this more precise, let us write reg(α) for the
conceptual space representation of a propositional formula α, where
reg(α ∧ β) = reg(α) ∩ reg(β) and reg(α ∨ β) = reg(α) ∪ reg(β).
In this paper, we do not explicitly consider negation, and rather as-
sume that propositions are grouped in domains of pairwise disjoint
attributes. In the wine example, we may for instance consider the
domain A = {low-tannins, mid-tannins, high-tannins}. We assume
there are implicit constraints that enforce the pairwise disjointness of
attributes from the same domain. Sometimes, we do use the notation
¬a as a shorthand for domains A = {a,¬a} with only two elements.

We have α → β !γ iff

∀q ∈ reg(α) . ∃p ∈ reg(β), r ∈ reg(γ), λ ∈ [0, 1] .−→pq = λ ·−→pr

and β !γ → α iff

∀p ∈ reg(β), r ∈ reg(γ), λ ∈ [0, 1] . p + λ ·−→pr ∈ reg(α)

where the points p + λ · −→pr for λ ∈ [0, 1] are exactly the points
which are between p and r. From these characterizations it is easy
to verify that inference rules (5), (6) and (8) are indeed valid. The
argument for (7) is a bit more subtle. The intuition is that because of
the assumption of logical independence, we can see the underlying
conceptual space as a Cartesian product C1 × C2 such that reg(α),
reg(α1) and reg(α2) are all of the form X×C2 (i.e. the dimensions in
C2 are irrelevant for describing the categories α, α1 and α2), whereas
reg(β) is of the form C1 × Y (i.e. the dimensions in C1 are irrelevant
for describing the category β).

If α is inconsistent (e.g. because it is the conjunction of two pair-
wise disjoint attributes), then reg(α) = ∅. In such a case, no point
is between a point of reg(α) and a point of any other region reg(β).
Accordingly, we assume that

⊥!β ≡ β !⊥ ≡ ⊥

To describe the interpolation process itself, i.e. inference rule
(3), assume that a propositional rule base R is available, contain-
ing negation-free rules as before. The antecedent α of a rule corre-
sponds to a region reg1(α) in some conceptual space C1 (typically
corresponding to the Cartesian product of more elementary concep-
tual spaces). Similarly, the consequent β of a rule corresponds to a
region reg2(β) in a conceptual space C2. We can thus view the rule
base R as a mapping f from regions of C1 to regions of C2. A rule
α∗ → β∗ can then be derived from the rule base R using classical
deduction iff f(reg1(α

∗)) ⊆ reg2(β
∗).

By making certain meta-assumptions about the relationship be-
tween the conceptual spaces C1 and C2, we may be able to refine
the mapping f . In particular, in many cases C2 will be a subspace of
C1 (i.e. the quality dimensions that are needed to describe the labels

in the consequents of rules are a subset of those needed to describe
the antecedents). In such a case, f is the approximation of a linear
mapping from points of C1 to points of C2. We can then refine f
to a mapping bf such that f(X) \ bf(X) are all points from C2 that
could never be obtained by a linear mapping from C1 which is con-
sistent with f . It can then be shown that bf(reg1(α

∗)) ⊆ reg2(β
∗)

iff α∗ → β∗ can be derived from R using inference rule (3), and
(5)-(8) together with classical deduction. In other words, at the se-
mantic level, the interpolative inference rule (3) corresponds to an
assumption of regularity. We refer to [13] for more details.

Finally, note that interpolative reasoning can also be formalized
in terms of analogical proportions, by considering that b is between
a and c iff the analogical proportion a : b :: b : c holds. For in-
terpolative inferences, the method outlined in this paper yields more
cautious conclusions than the method from [9], which is intuitively
due to the fact that a : b :: b : c means that b is between a and c
and the distance between a and b is identical to the distance between
b and c. In the next section, we present a method for extrapolative
reasoning, which is again more cautious than the method from [9].

3 Extrapolation
Geometrically, analogical proportions intuitively correspond to the
idea of a parallelogram, indicating that the direction of change to go
from a to b is parallel to the direction of change from c to d, and that
the amount of change is identical. As this latter amount is difficult
to quantify, we will use a more qualitative approach, and restrict our
attention to the direction of change. In particular, we write γ"〈α, β〉
for the disjunction of all propositional formulas which correspond
to situations that differ from some situation satisfying γ in the way
as some situation satisfying β differs from a situation satisfying α.
More precisely, at the semantic level we have δ → α"〈β, γ〉 iff for
every s in reg(δ) there exist p in reg(α), q in reg(β), r in reg(γ) and
λ ≥ 0 such that

−→rs = λ ·−→pq

Example 2 Let a partitioning of house sizes be given by
{very-small, small, medium, large, very-large}, then we have

medium"〈very-small, large〉 ≡ medium ∨ large ∨ very-large

Indeed, the change from very-small to large denotes an increase
in size. Therefore the house sizes compatible with medium "

〈very-small, large〉 are those that are at least as large as medium.
As in the case of betweenness, when we move from uni-

dimensional to multi-dimensional domains, it is often not possible
to provide precisely characterize formulas of the form γ"〈α, β〉. For
example, we may assume

prog-metal → heavy-metal"〈hard-rock, prog-rock〉

without being able to precisely define all music genres that differ from
heavy-metal as prog-rock differs from hard-rock using the labels that
are available to us.

We obtain a form of extrapolative reasoning by assuming that ana-
logical changes in the antecedent of rules should lead to analogical
changes in the consequent:

α1 → β1

α2 → β2

α3 → β3

α3 "〈α1, α2〉 → β3 "〈β1, β2〉

(9)
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of music genres, using similarity judgements that were obtained in-
directly using user-contributed meta-data from the website last.fm3.
Rather than starting from similarity judgements, [14] suggests an ap-
proach based on singular value decomposition (SVD), which is a
form of dimensionality reduction. Translated to our setting, the ap-
proach would start from a matrix where rows correspond to instances
and columns correspond to binary features that these instances may
or may not have. Instances are then represented in a high-dimensional
space with one dimension for each feature, and coordinates are either
0 or 1, depending on whether the instance has the corresponding fea-
ture. Using SVD, a linear transformation is then determined which
maps this high-dimensional space onto a space of lower dimension,
with real-valued coordinates.

Note that these data-driven approaches essentially use quanti-
tative information to obtain a qualitative representation. One rea-
son for not using a purely quantitative approach is that the avail-
able data is not likely to be sufficiently informative to build accu-
rate conceptual space representations, but still allows to discover
information about qualitative relations between regions. A second
reason is that geometric calculations, such as determining convex
hulls or Voronoi tessellations, are computationally expensive in high-
dimensional spaces. Even the space required for representing poly-
topes is exponential in the number of dimensions. When all we are in-
terested in are spatial relations such as betweenness and parallelism,
we can avoid to actually build the conceptual space, using a linear
programming approach that was proposed in [12].

4.2 Handling inconsistencies
As mentioned in Sections 2 and 3, we see a rule base as an incom-
plete approximation of a mapping between two conceptual spaces (or
between two Cartesian products of conceptual spaces), and the inter-
polative and extrapolative inference principles are tied to assump-
tions on the regularity of this mapping. In particular, both principles
are valid when this mapping is linear. For interpolation, it even suf-
fices that the mapping is monotonic. If these regularity assumptions
are met, we are guaranteed that interpolation and extrapolation will
never introduce logical inconsistencies.

Relaxing the linearity assumption

In practice, on the other hand, the regularity assumptions may not
hold. For example, consider the following rules, which contain infor-
mation about the amount of traffic (light, moderate, heavy) at differ-
ent times during the day:

morning → heavy-traffic (21)
mid-day → moderate-traffic (22)
evening → heavy-traffic (23)

Together with the constraint that light-traffic, moderate-traffic and
heavy-traffic are mutually exclusive properties. Using interpolation,
and the assumption that

mid-day → morning !evening

we then derive the rule

mid-day → heavy-traffic

3 http://www.last.fm

which is in conflict with (22). This can be explained due to a failure
of the monotonicity assumption. In particular, the underlying map-
ping from different times of the day to different amounts of traf-
fic is not a projection to a lower-dimensional conceptual space, but
rather expresses an observation about the world. We can contrast
such phenomenological rules with conceptual rules, which link con-
cepts to their inherent properties (as well as super-concepts). For the
latter type of rules, the mapping between conceptual spaces usually
is a projection from one space onto a lower-dimensional sub-space,
which trivially satisfies the linearity assumption.

In the case of (21)–(23) the underlying mapping is not even deter-
ministic, in the sense that the exact amount of traffic at e.g. 9 am
may vary from day to day (even if we assume that the rule base
talks about weekdays in a specific city). Nonetheless, even for rules
where the linearity assumption fails, interpolation may still be useful.
For instance, suppose we introduce the labels mid-morning and mid-
afternoon, which are between morning and mid-day, and between
mid-day and evening respectively. From (21) and (22) we may derive

mid-morning → moderate-traffic ∨ heavy-traffic

Indeed, while the mapping underlying the rule base may, in principle,
be arbitrary, it seems natural to assume that more regular mappings
would be more likely, i.e. we could make the assumption that any
completion of the knowledge base should not introduce additional
irregularities. In particular, by identifying irregularities with viola-
tions of the monotonicity assumption, this leads to the assumption
that the conceptual space C1 corresponding with the antecedent of
the rules can be partitioned in a minimal number of segments, such
that the mapping is monotonic over these segments. In the traffic
example, we would thus assume that the amount of traffic is mono-
tonically decreasing throughout the morning and monotonically in-
creasing throughout the afternoon. While such conclusions would not
be valid in general, they are reasonable to make in absence of any
other information. Depending on how the rule base (21)–(23) was ob-
tained, we may also argue that the absence of a rule for mid-morning
suggests that this case is not special, i.e. that those cases which are
irregular in some sense would be more likely to be contained in the
rule base.

To avoid inconsistencies, the above view suggests that from a rule
base R we should try to identify subsets R1, ...Rk of rules, such
that no inconsistencies arise as long as interpolation is applied to two
rules from the same set Ri. To be compatible with the above view, we
should moreover insist that when α → α1 !α2, (α1 → β1) ∈ Ri,
(α2 → β2) ∈ Ri and (α → β) ∈ R, then we should have that (α →
β) ∈ Ri. In other words, the sub-bases Ri should contain all rules
that apply to a given (convex) segment of the conceptual space C1.
In this way, we can ensure that when a new rule α∗ → β∗ is derived
by interpolation from a sub-base Ri, the rules in Ri are indeed the
most relevant ones, i.e. that they are the ones whose antecedent is
closest to α∗ in some sense. In a similar, but slightly less cautious
fashion, we may assume that the mapping underlying the rule base R
is piecewise linear, and apply extrapolation locally to the sub-bases
R1, ..., Rk.

Restricting to the most salient properties

Another reason why inconsistencies may arise is because the infor-
mation about betweenness or analogical change is not accurate, or,
more fundamentally, because it only takes the most salient properties
of objects in the account. For example, when we derive betweenness
information for wines from wine-food pairings, it will mainly reflect
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which is in conflict with (22). This can be explained due to a failure
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which is in conflict with (22). This can be explained due to a failure
of the monotonicity assumption. In particular, the underlying map-
ping from different times of the day to different amounts of traf-
fic is not a projection to a lower-dimensional conceptual space, but
rather expresses an observation about the world. We can contrast
such phenomenological rules with conceptual rules, which link con-
cepts to their inherent properties (as well as super-concepts). For the
latter type of rules, the mapping between conceptual spaces usually
is a projection from one space onto a lower-dimensional sub-space,
which trivially satisfies the linearity assumption.

In the case of (21)–(23) the underlying mapping is not even deter-
ministic, in the sense that the exact amount of traffic at e.g. 9 am
may vary from day to day (even if we assume that the rule base
talks about weekdays in a specific city). Nonetheless, even for rules
where the linearity assumption fails, interpolation may still be useful.
For instance, suppose we introduce the labels mid-morning and mid-
afternoon, which are between morning and mid-day, and between
mid-day and evening respectively. From (21) and (22) we may derive

mid-morning → moderate-traffic ∨ heavy-traffic

Indeed, while the mapping underlying the rule base may, in principle,
be arbitrary, it seems natural to assume that more regular mappings
would be more likely, i.e. we could make the assumption that any
completion of the knowledge base should not introduce additional
irregularities. In particular, by identifying irregularities with viola-
tions of the monotonicity assumption, this leads to the assumption
that the conceptual space C1 corresponding with the antecedent of
the rules can be partitioned in a minimal number of segments, such
that the mapping is monotonic over these segments. In the traffic
example, we would thus assume that the amount of traffic is mono-
tonically decreasing throughout the morning and monotonically in-
creasing throughout the afternoon. While such conclusions would not
be valid in general, they are reasonable to make in absence of any
other information. Depending on how the rule base (21)–(23) was ob-
tained, we may also argue that the absence of a rule for mid-morning
suggests that this case is not special, i.e. that those cases which are
irregular in some sense would be more likely to be contained in the
rule base.

To avoid inconsistencies, the above view suggests that from a rule
base R we should try to identify subsets R1, ...Rk of rules, such
that no inconsistencies arise as long as interpolation is applied to two
rules from the same set Ri. To be compatible with the above view, we
should moreover insist that when α → α1 !α2, (α1 → β1) ∈ Ri,
(α2 → β2) ∈ Ri and (α → β) ∈ R, then we should have that (α →
β) ∈ Ri. In other words, the sub-bases Ri should contain all rules
that apply to a given (convex) segment of the conceptual space C1.
In this way, we can ensure that when a new rule α∗ → β∗ is derived
by interpolation from a sub-base Ri, the rules in Ri are indeed the
most relevant ones, i.e. that they are the ones whose antecedent is
closest to α∗ in some sense. In a similar, but slightly less cautious
fashion, we may assume that the mapping underlying the rule base R
is piecewise linear, and apply extrapolation locally to the sub-bases
R1, ..., Rk.

Restricting to the most salient properties

Another reason why inconsistencies may arise is because the infor-
mation about betweenness or analogical change is not accurate, or,
more fundamentally, because it only takes the most salient properties
of objects in the account. For example, when we derive betweenness
information for wines from wine-food pairings, it will mainly reflect
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the taste of the wine, and to a much lesser extent properties such as
price. As an additional example, we may consider that coffeehouses
are conceptually between bars and restaurants, as both coffeehouses
and bars emphasise drinking rather than eating, while coffeehouses
generally do serve some food (sandwiches, cakes) as well. Nonethe-
less, we may consider that

bar → serves-wine (24)
coffeehouse → ¬serves-wine (25)

restaurant → serves-wine (26)

Using interpolation and the assumption

coffeehouse → bar !restaurant

we derive the rule

coffeehouse → serves-wine

which is in conflict with the rule base. In this case, the inconsistency
is mainly do the fact that the property of serving wine was not consid-
ered when asserting that coffeehouses are between bars and restau-
rants. The most natural way to avoid inconsistencies would then be to
avoid applying interpolation to derive conclusions from the domain
A = {serves-wine,¬serves-wine}. In absence of any conflicts about
attributes from a given domain, we then assume that interpolative
and extrapolative conclusions are valid for that domain, an assump-
tion which may need to be revised if additional knowledge became
available.

4.3 Typicality
The ideas of interpolation and extrapolation, explored in this paper,
and the ideas of non-monotonic reasoning in the sense of [6] serve
two rather complementary goals. Whereas the former is concerned
with handling missing generic knowledge (i.e. the absence of rules
that allow us to derive meaningful conclusions about the situation at
hand), the latter allows us to deal with missing factual knowledge
(i.e. the absence of a complete description of the situation at hand).
Thus it is natural to try to combine both ideas, as illustrated by the
next example.

Example 4 Consider the following set of default rules:

bird |∼ flies
penguin |∼ bird
penguin |∼¬flies

aptenodytes |∼ penguin
eudyptula |∼ penguin

and assume that we also know that

pygoscelis → aptenodytes !eudyptula (27)

Then we may want to combine the interpolation principle with a form
of non-monotonic reasoning to conclude

pygoscelis |∼¬flies

The intuition underlying the semantics of default rules such as
bird |∼ flies is that typical birds fly, but there may be birds that are
exceptional and which may not fly. When taking a geometric view,
we may assume that each label is represented by two nested regions,

where the inner region contains the typical instances of the corre-
sponding concept. Let us write typ(a1 ∧ ... ∧ an) for the typical in-
stances of the concept a1∧...∧an, where typ is treated as a modality.
A default rule such as bird |∼ flies is then interpreted as the classical
rule typ(bird) → flies. The modality typ is assumed to at least satisfy
the following axiom

typ(a1 ∧ ... ∧ an) → a1 ∧ ... ∧ an

expressing that all typical instances of a concept are instances, i.e. at
the semantic level reg(typ(a1 ∧ ... ∧ an)) ⊆ reg(a1 ∧ ... ∧ an).

To obtain meaningful inferences, some additional assumptions
need to be made on how the formulas typ(a1 ∧ ... ∧ an) relate to
the corresponding formulas a1 ∧ ...∧ an. To obtain inferences in the
spirit of System P [6], we need to assume that the following are valid
inferences for the modality typ:

typ(a1 ∧ ... ∧ an) → b1 ∧ ... ∧ bm

typ(a1 ∧ ... ∧ an ∧ b1 ∧ ... ∧ bm) → γ

typ(a1 ∧ ... ∧ an) → γ

and
typ(a1 ∧ ... ∧ an) → b1 ∧ ... ∧ bm

typ(a1 ∧ ... ∧ an) → γ

typ(a1 ∧ ... ∧ an ∧ b1 ∧ ... ∧ bm) → γ

corresponding to the cut rule and rational monotony rule from Sys-
tem P respectively. When typ(a1 ∧ ... ∧ an) → b1 ∧ ... ∧ bm, it
should be possible to find geometric models in which reg(typ(a1 ∧
... ∧ an)) = reg(typ(a1 ∧ ... ∧ an ∧ b1 ∧ ... ∧ bm)). Such models
are simpler in the sense that a smaller number of distinct regions is
needed to explain the semantics of the rules. In other words, as for
interpolation and extrapolation, we find that the underlying principle
relates to a preference for simpler, or more regular models.

To obtain inferences in the spirit of System Z, we can add Reiter
defaults [10] of the form

M(typ(a1∧...∧an) ≡ a1∧...∧an) & typ(a1∧...∧an) ≡ a1∧...∧an
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Conclusions

We proposed a form of interpolative reasoning as a qualitative 
version of similarity based reasoning

We proposed a form of extrapolative reasoning as a cautious version 
of analogical-proportion based reasoning, taking only the “direction 
of change” into account and not the amount of change

We rely on a geometrical semantics based on Gärdenfors’ conceptual 
spaces to
‣ Justify when/why interpolation and extrapolation provide sound 
conclusions
‣ Induce information about betweenness and analogous change 
from data
‣ Justify how to handle inconsistencies or deal with default rules


