Chapter 11

Shallow Water Equations

Nils Thuerey, Peter Hess

11.1 Introduction

The shallow water equations (SWE) are a simplified version of the more general Navier-
Stokes (NS) equations, which are commonly used to describe the motion of fluids. The SWE
reduce the problem of a three-dimensional fluid motion to a two-dimensional description
with a height-field representation. From now on, we will use the following notation (it is
also illustrated in Fig. 11.1):

o /1 denotes the height of the fluid above zero-level.

e g is the height of the ground below the fluid (above zero-level).
e 1 denotes the height of the fluid above ground, n =h —g.

o v the velocity of the fluid in the horizontal plane.

A basic version of the SWE can be written as

+(Vn)v=-nV-v (11.1)

n
Jt
&qL(Vv)v:ath, (11.2)
at
where a, denotes a vertical acceleration of the fluid, e.g., due to gravity. This formulation
can be derived from the NS equations by, most importantly, assuming a hydrostatic pressure
along the direction of gravity. Interested readers can find a detailed derivation of these
euqgations in Section A.
In the following sections we will first explain how to solve these equations with a basic
solver, and then extend this solver with more advanced techniques to handle open bound-
aries, or free surfaces.

67

Real Time Physics
68 Class Notes

Figure 11.1: A fluid volume is represented as a heightfield elevation in normal direction n.
The fluid velocity v has two components in horizontal directions.

11.2 A basic Solver

A basic solver of the SWE has to compute the change of the height and velocity values of
the water surface over time. According to Eq. (11.2) and Eq. (11.1) the equations for the
water height 1 and the velocity v = (v, v,) can be written as:

an/dt+(Vn)jv=-nV-v
dvy/dt+ (Vvi)v=a,Vh
Iva /It + (Vv2)v = a,Vh . (11.3)

In this form, the two distinct parts of the equations can be identified: the left side accounts
for the advection within the velocity field v, while the right side computes an additional
acceleration term. Here, we will use an explicit time integration scheme, as this makes the
solution of the SWE signficantly more simple. Alternatively, implicit schemes, as described
in [LvdP02] could be used. These, however, require a system of linear equations to be solved
for the update, and, with simpler methods such as implicit Euler, introduce a significant
amount of damping.

To compute a solution for these equations, we first discretize the domain with n; cells in
x-direction, and n, cells in y-direction. For simplicity, we assume in the following that the
cells have a square form with side length Ax. The gravity force a, is assumed to act along
the z-axis, e.g. a, = 10, and the size of a single time step is given by Az. The overall height
of the water, and the strength of the gravity will later on determine the speed of the waves
travelling on the surface. To represent the three unknowns with this grid we use a staggered
grid. This means that the pressure is located in the center of a cell, while the velocity
components are located at the center of each edge, as shown in Fig. 11.1. The staggered
grid is commonly used for fluid solvers, and prevents instabilities that would result from
a discretization on a co-located grid. An update step of the shallow water solver consisits
of the following parts: first all three fields are advected with the current velocity field.
Afterwards, the acceleration terms are computed for the height and velocity fields. The
following pseudo-code illustrates a single step of the simulation loop of a simple shallow
water solver:

CHAPTER 11. SHALLOW WATER EQUATIONS 69

Shallow-water-step(n,v,g)

(1) m = Advect(n,v)

(2) vi = Advect(vy,V)

(3) v, = Advect(v,,V)

(4) Update-height(n,v)

(5) h=n"+g

(6) Update-velocities(h,vy,v)

Note that the three calls of the Advect(...) function return a value that is assigned back to
the original input grid (e.g., in line 1 1} is a parameter of the call, and used in the assignment).
This should indicate that the advection requires a temporary array, to which the advected
values are written, and which is copied back to the original grid after finishing the advection
step.

To compute the advection, we can use the semi-Lagrangian method [Sta99] to compute
a solution without having to worry about stability. This algorithm computes the advection
on a grid by essentially performing a backward trace of an imaginary particle at each grid
location. Given a scalar field s to be advected, we have to compute a new value for a grid
cell at position x. This is done by tracing a particle at this position backward in time, where
it had the position X' ! = x — Arv(x). We now update the value of s with the value at x'~,
so the new value is given by s(x)’ = s(x'~!). Note that although x is either the center or
edge of a cell in our case, X’ can be located anywhere in the grid, and thus usually requires
an interpolation to compute the value of s there. This is typically done with a bi-linear
interpolation, to ensure stability. It guarantees that the interpolated value is bounded by
its source values from the grid, while any form of higher order interpolation could result
in larger or smaller values, and thus cause stability problems. The advection step can be
formulated as

Advect(s,V)
(1) for j=1ton,—1
2) fori=1ton; —1

3) X = (i-Ax, j- Ax)

4) x = x— Ar-v(x)

(5) s'(i, j) = interpolate(s, x’)
(6) endfor

(7) endfor

(8) return(s’)

Note that, due to the staggered grid, the lookup of v(x) above already might require an
averaging of two neighboring velocity components to compute the velocity at the desired
position. This is also, why the three advection steps cannot directly performed together -
each of them requires slightly different velocity interpolations, and leads to different offsets
in the grid for interpolation.

The divergence of the velocity field for the fluid height update can be easily computed
with finite differences on the staggered grid. So, according to Eq. (11.3), the height update
is given by

Real Time Physics
70 Class Notes

Update-height(n,v)
(1) forj=1tony—1
2) fori=1ton; —1

3) N, j)—=n(,j)- (<V1(i+1v£)x—V1<ivj)) i <Vz(i-,j+1A)x—vz(i,j)))At
5) endfor
(6) endfor

(7) return(n’)

In contrast to the advection steps, adding the accelerations can be directly done on the
input grids. Similarly, the acceleration term for the velocity update is given by the gradient
of the overall fluid height. Note that in this case, the total height above the zero-level is
used instead of the fluid height above the ground level. This is necessary, to, e.g., induce an
acceleration of the fluid on an inclined plane, even when the fluid height itself is constant
(all derivatives of 1 would be zero in this case). The parameter a for the velocity update
below is the gravity force.

Update-velocities(h,vi,v2,a)
(1) for j=1ton,—1
2) fori=2ton; —1

(3) vl(i,j)+:a(w)m
(5) endfor
(6) endfor

(7) for j=2ton,—1

(8) fori=1ton; —1

© wali)+ = a(ME) g
(10) endfor

(11) endfor

This concludes a single step of a basic shallow water solver. Note that the steps so far
do not update the values at the boundary of the simulation domain, as we cannot compute
any derivatives there. Instead, special boundary conditions are required at the border, and
can be used to achieve a variety of effects. These will be the topic of the next section.

11.3 Boundary Conditions

In the following, we will describe different types of boundary conditions: reflecting and
absorsorbing boundaries, as well as a form of free surface boundary conditions. The former
can be used to model a wall that reflects incoming waves. The second type can be used
to give the effect of an open water surface, as waves will simply leave the computational
domain. Free surface boundary conditions can be used once the fluid should, e.g., flow
through a landscape. Although the boundary conditions will be described to handle the
outermost region of the computational domain, they can likewise be used to, e.g., create a

CHAPTER 11. SHALLOW WATER EQUATIONS 71

Figure 11.2: Example of a wave spreading in a basic shallow water simulation.

wall in the middle of the domain. We will not consider periodic boundary conditions here.
They are commonly used in engineering applications, but give the visually unnatural effect
that a wave leaving the domain at the right side re-enters it at the left. The results shown in
this section where created by Peter Hess [HesO7].

Reflecting Boundaries

In the following, we will, without loss of generality, consider the boundary conditions for
cells at the left boundary. Reflecting boundary conditions are achieved by setting the veloc-
ities at the boundary to zero (after all, there should be no flux through the wall). In addition,
we mirror the height of the fluid in the outermost layer. We thus set:

n0,/) = h(l,))
Vl(lvj)/ =0
w(0,/) = 0. (11.4)

Note that we do not modify the y-component v, of the velocity field. The fluid is thus
allowed to move tangentially to a wall. Theoretically, we could also enforce different behav-
iors for the tangential velocities, but in practice this does not make a noticeable difference.
Also note, that we only set v (1, j), as v;(0, j) is usually never accessed during an compu-
tation step.

Real Time Physics
72 Class Notes

Absorbing Boundaries

Surprisingly, it is more difficult to achieve absorbing boundaries than reflecting ones. The
problem of boundaries simulating an infinite domain is already known for a long time (see,
e.g., [Dur01] for details). A commonly used method to achieve this, is the perfectly matched
layer introduced by [Ber94], requires an additional layer of computations around the actual
domain.

This is why we chose to use the Higdon boundary conditions [Hig94] which are less
accurate but can be more efficiently computed than PML. Below is the p™ order Higdon
boundary condition, where the velocities c; are chosen to span the range of incoming wave

velocities.
L 0
(H <E+cj$)>h:0 (11.5)

j=1
This boundary condition can be problematic for higher order approximations, but as the
wave propagation speed in shallow water is known to be ¢ = /g7, this allows us to use to
use the 1% order boundary condition

d d
<at+cax)h:0. (11.6)

This boundary condition actually requires temporal derivatives, so we assume the cur-
rent heightfield is given by /', while the heights of the previous step are stored in 4'~!.
Hence, we can set the boundary values to:

Ax h(0,j) 1+ A c(1,) h(1,)

h(0.7) =
0.7 Ax+ At c(1,)
h(1. D —h(0, i)
(L) = »nl,)) '-a (’J)Ax 0.0,
w(l,j) = 0 (11.7)

Note that the update of v; is essentially the same acceleration term on the left hand side
of Eq. (A.16). To further suppress any residual reflections at the boundary, we can apply a
slight damping of the height field in a layer around the boundary.

Fig. 11.3 shows the effect of these boundary conditions compared to reflecting ones.

For boundaries where fluid should flow into or out of the domain, we can reuse the two
types above. Inflow boundary conditions can be achieved by specifiying reflecting ones,
with an additional fixed normal velocity. For outflow boundary conditions, absorbing ones
with free normal velocities are more suitable.

Free Surfaces

Often, shallow water simulations assume a completely fluid domain, since this makes solv-
ing the SWE quite straightforward. Once applications like a river, or fluid filling an arbitrary
terrain are needed, this is not sufficient anymore. Such applications require a distinction be-
tween areas filled with fluid, and empty or dry areas. An example can be seen in Fig. 11.4.
In the following we will consider this as a problem similar to free surface handling for full
fluid simulations. Shallow water simulations naturally have an interface, and thus a free

CHAPTER 11. SHALLOW WATER EQUATIONS 73

Figure 11.3: A comparison between reflecting boundary conditions (upper row of pictures),
and absorbing ones (lower row).

surface, in the simulation plane between fluid below and a second gas phase above the fluid.
In addition, we will now prescribe boundary conditions with such a free surface within the
simulation plane itself. From the mathematical point of view, a distinction between fluid
and dry would not be necessary since the SWE still work if 77 is zero. Distinguishing fluid
and dry cells, however, brings some advantages. Foremost, computational time can be saved
if large parts of the domain are dry. Therefore, we introduce cell flags f(i, j), that deter-
mine the type of each cell, and update them once per time step after updating the heights.
This allows us to quickly identify wet and dry cells. Besides the computational advantage,
controlling the transition between wet and dry cells also gives us some control over the
spreading velocity. Without free surface tracking, the fluid boundary would expand exactly
one cell per time step, regardless of cell size and time step length. The height of this ad-
vancing boundary would be very small, but this behavior is usually not desired. In addition,
we will compute a fill value r for each cell, as this allows us to track a smoothly moving
surface line between the fluid and empty cells.

To determine the cell’s flag f we have to compute the minimal and maximal ground
level hy, and hy,,, as well as the maximal fluid depth 7,4, on the cell’s edges.

h(i, j) 4+ min h(p)

Bonin(i,) = 5 p <. (ij) (11.8)
hinax(i,) = i,) +12nax h(p) +ey peN(,)) (11.9)
(i,) = 1A XD P) peN(i,)) (11.10)

where .47(i, j) is the set of the four direct neighbors of cell (i, j). Note that we add
a small value g, to Ay, to prevent hyy, to be equal to A, in flat areas. With these three
values we can now determine f as well as the fill ratio » which indicates the cell’s fill level in
dependence of the local ground topology /i, (i, j) and Ay, (i, j). r can be used to compute

Real Time Physics
74 Class Notes

Figure 11.4: A shallow water simulation with free surface boundary conditions fills a ter-
rain.

an isoline which defines the border of the rendered fluid surface for rendering the water
surface. The following pseudo code shows how f and r are calculated:

Compute-flags(i, j)

(1) ifA(i, j) < hmin(i; j)andNmax(i, j) < €y,
2 f(i,j)=DRY

3 r@i,j)=0

4) else ifh(i, j) > hpygx

S f@i,j)=FLUID

© r@j)=1

(7) else

®) f(i,j)=FLUID

O (i) = ()~ i 1)) / (o0 1) i))
(10) endif

A cell is marked as dry if its surface height is not higher than the lowest ground value
in the cell and if there is no neighbor cell from which fluid could flow into this cell. The fill

CHAPTER 11. SHALLOW WATER EQUATIONS 75

Figure 11.5: A wave flows through an S-shaped river bed, and pushes a large number of
rigid bodies along with the flow.

ratio is then set to zero. &, can be seen as a threshold which allows inflow from a neighbor
cell only if this neighbor has a large enough amount of fluid. This effectively limits the
spread of thin layers of fluid. So this could be seen as a simple way of simulating surface
tension. A cell is completely filled if its surface height is higher than the ground at any
position in the cell. The fill ratio is then set to one. The cell is also marked as fluid if the
surface height is only in parts higher than the ground level. In this case however the fill ratio
is the ratio between minimal ground level, fluid surface height and maximal ground level.
Note, that with this definition cells may have negative depth values 1 even if they are
marked as fluid. There are cases were the cell center itself is dry, so the value of 1 is
negative at this point, while the whole cell still contains fluid at the edges of a cell.

