Identifying coloring of graphs

Louis Esperet, Sylvain Gravier, Mickaël Montassier, Pascal Ochem, <u>Aline Parreau</u>

July 1st, 2010

Proper coloring

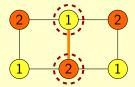
Two adjacent vertices have distinct colors .

 $B_t(u) = \{v \mid d(u, v) \leq t\}$

For any edge uv, $c(B_0(u)) \neq c(B_0(v))$

Proper coloring

Two adjacent vertices have distinct colors .



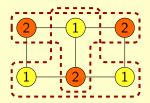
 $B_t(u) = \{v \mid d(u,v) \leq t\}$

For any edge uv, $c(B_0(u)) \neq c(B_0(v))$

Definition

Locally identifying coloring (lid-coloring)

Two adjacent vertices have distinct colors in their neighborhood.



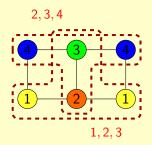
 $B_t(u) = \{v \mid d(u, v) \leq t\}$

For any edge uv, $c(B_0(u)) \neq c(B_0(v))$ and $c(B_1(u)) \neq c(B_1(v))$

Definition

Locally identifying coloring (lid-coloring)

Two adjacent vertices have distinct colors in their neighborhood.

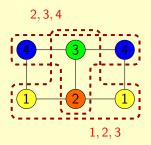


 $B_t(u) = \{v \mid d(u, v) \leq t\}$

For any edge uv, $c(B_0(u)) \neq c(B_0(v))$ and $c(B_1(u)) \neq c(B_1(v))$

Locally identifying coloring (lid-coloring)

Two adjacent vertices have distinct colors in their neighborhood.

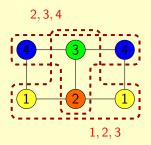


 $B_t(u) = \{v \mid d(u, v) \leq t\}$

For any edge uv, $c(B_0(u)) \neq c(B_0(v))$ and $c(B_1(u)) \neq c(B_1(v))$ whenever $B_1(u) \neq B_1(v)$

Locally identifying coloring (lid-coloring)

Two adjacent vertices have distinct colors in their neighborhood.



 $B_t(u) = \{v \mid d(u, v) \leq t\}$

For any edge uv, $c(B_0(u)) \neq c(B_0(v))$ and $c(B_1(u)) \neq c(B_1(v))$ whenever $B_1(u) \neq B_1(v)$

 $\chi_{lid}(G)$: lid-chromatic number

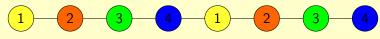
An example: the path

With 4 colors :

0 - 0 - 0 - 0 - 0 - 0 - 0 - 0

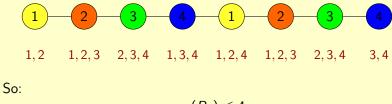
An example: the path

With 4 colors :



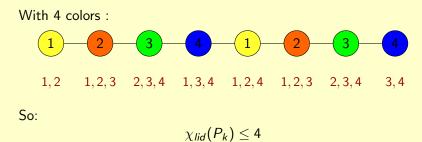
An example: the path

With 4 colors :



 $\chi_{lid}(P_k) \leq 4$

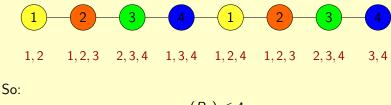
An example: the path



Is it possible with 3 colors ?

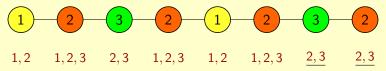
An example: the path

With 4 colors :



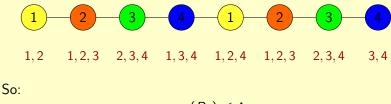
 $\chi_{lid}(P_k) \leq 4$

Is it possible with 3 colors ?



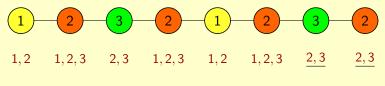
An example: the path

With 4 colors :



 $\chi_{lid}(P_k) \leq 4$

Is it possible with 3 colors ?



$$\chi_{lid}(P_k) = 3 \Leftrightarrow k$$
 is odd

Related works

With edge colorings:

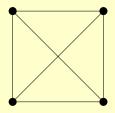
- Vertex-distinguishing edge colorings (Observability of a graph) (Hornak et al, 95'),
- Adjacent vertex-distinguishing edge colorings (Zhang et al, 02')

With total colorings:

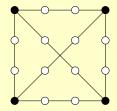
• Adjacent vertex-distinguishing total colorings (Zhang, 05')

Do we need much more than $\chi(G)$ colors ?

Do we need much more than $\chi(G)$ colors ?

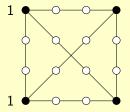


Do we need much more than $\chi(G)$ colors ?



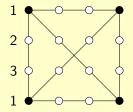
An example with $\chi(G) = 3$ and $\chi_{\textit{lid}}(G) \ge k$

Do we need much more than $\chi(G)$ colors ?



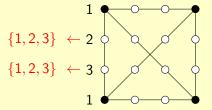
An example with $\chi(G) = 3$ and $\chi_{\mathit{lid}}(G) \ge k$

Do we need much more than $\chi(G)$ colors ?



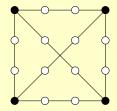
An example with $\chi(G) = 3$ and $\chi_{\textit{lid}}(G) \ge k$

Do we need much more than $\chi(G)$ colors ?



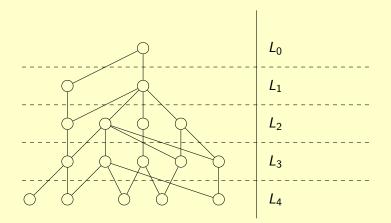
An example with $\chi(G) = 3$ and $\chi_{\textit{lid}}(G) \ge k$

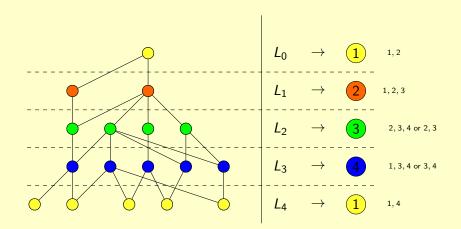
Do we need much more than $\chi(G)$ colors ?



An example with $\chi(G) = 3$ and $\chi_{lid}(G) \ge k$

What about "good classes" for classical colorings ?

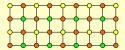




General bounds: $3 \le \chi_{lid}(B) \le 4$

General bounds: $3 \le \chi_{lid}(B) \le 4$

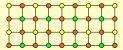
 $\chi_{lid}(B) = 3$:



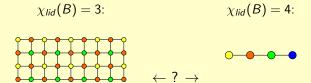
General bounds: $3 \le \chi_{lid}(B) \le 4$

 $\chi_{lid}(B) = 3$:

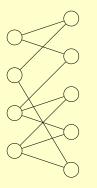
 $\chi_{lid}(B) = 4$:

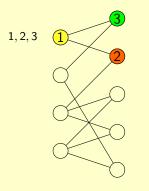


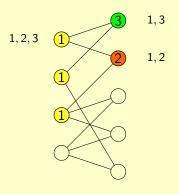
General bounds: $3 \le \chi_{lid}(B) \le 4$

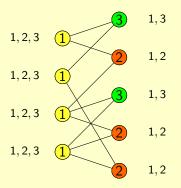


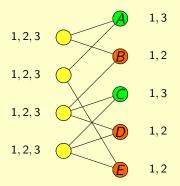
In general... 3-LID-COLORING is NP-complete in bipartite graphs

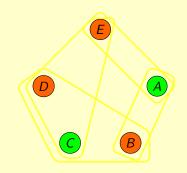


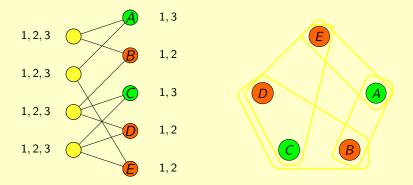










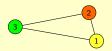


- 3-LID-COLORING in bipartite graph is NP-Complete
- Polynomial if B regular, if B is planar with maximum degree 3.

To perfect graph : *k*-trees

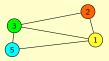
Lid-coloring of 2-trees with 6 colors :

- Color the triangle with colors 1, 2, 3
- Step:

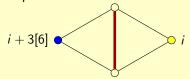


To perfect graph : k-trees

Lid-coloring of 2-trees with 6 colors :



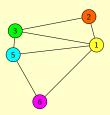
- Color the triangle with colors 1, 2, 3
- Step:



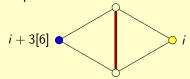
- We always have:
 - proper coloring
 - no edge (*i*, *i* + 3)

To perfect graph : k-trees

Lid-coloring of 2-trees with 6 colors :



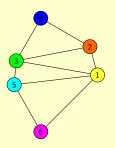
- Color the triangle with colors 1, 2, 3
- Step:



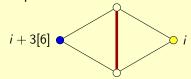
- We always have:
 - proper coloring
 - no edge (*i*, *i* + 3)

To perfect graph : k-trees

Lid-coloring of 2-trees with 6 colors :



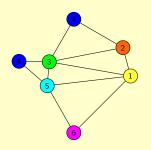
- Color the triangle with colors 1, 2, 3
- Step:



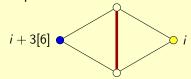
- We always have:
 - proper coloring
 - no edge (*i*, *i* + 3)

To perfect graph : k-trees

Lid-coloring of 2-trees with 6 colors :



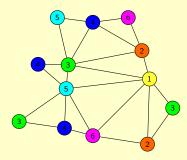
- Color the triangle with colors 1, 2, 3
- Step:



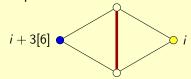
- We always have:
 - proper coloring
 - no edge (*i*, *i* + 3)

To perfect graph : k-trees

Lid-coloring of 2-trees with 6 colors :



- Color the triangle with colors 1, 2, 3
- Step:



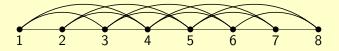
- We always have:
 - proper coloring
 - no edge (*i*, *i* + 3)

k-trees

To perfect graph: k-trees

We can extend the construction to k-trees:

- \rightarrow A k-tree has lid-chromatic number at most 2k + 2
- This bound is sharp: P_{2k+2}^k



- Bipartite graphs: $4 = 2\omega$
- *k*-trees: $2k + 2 = 2\omega$,

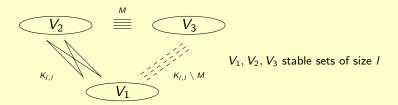
- Bipartite graphs: $4 = 2\omega$
- *k*-trees: $2k + 2 = 2\omega$,
- Split graphs: $2\omega 1$
- Cographs: $2\omega 1$
- ...

- Bipartite graphs: $4 = 2\omega$
- *k*-trees: $2k + 2 = 2\omega$,
- Split graphs: $2\omega 1$
- Cographs: $2\omega 1$
- ...

Question: Can we color any perfect graph G with $2\omega(G)$ colors?

- Bipartite graphs: $4 = 2\omega$
- *k*-trees: $2k + 2 = 2\omega$,
- Split graphs: $2\omega 1$
- Cographs: $2\omega 1$
- ...

Question: Can we color any perfect graph G with $2\omega(G)$ colors? No !



Planar graphs:

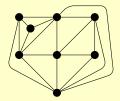
• No general bound, but...

Planar graphs:

- No general bound, but...
- With large girth (36): 5 colors,

Planar graphs:

- No general bound, but...
- With large girth (36): 5 colors,
- Examples with at most 8 colors

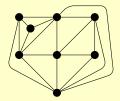


Planar graphs:

- No general bound, but...
- With large girth (36): 5 colors,
- Examples with at most 8 colors

Outerplanar graphs:

- General bound: 20 colors,
- Max outerplanar graphs: 6 colors,
- Without triangles: 8 colors,

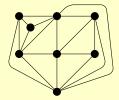


Planar graphs:

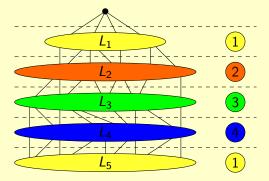
- No general bound, but...
- With large girth (36): 5 colors,
- Examples with at most 8 colors

Outerplanar graphs:

- General bound: 20 colors,
- Max outerplanar graphs: 6 colors,
- Without triangles: 8 colors,
- Examples with at most 6 colors



A bound for outerplanar graphs



- a layer = union of paths,
- 5 colors in a layer,
- 4 × 5 = 20

Some open questions

- Is χ_{lid} bounded for planar graphs?
- For which graphs $\chi_{lid} = \chi$?
- Link with maximum degree Δ ?
- What about a global version ?

Thanks !