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— ldentifying codes:

{a,b} {a,b,c} {b,c}

Subset C C V
Vertex x identified by N[x] N C

fap ~ {pp A<}
— With colors 7 Identifying coloring:
{1,2} {1,2,3,4} {2,4}

Coloring c: V =+ N
Vertex x identified with

c(N[x]) = {c(v), v e N[x]}
{1,2,3} {2,3} {2,3,4}

— Locally Identifying coloring: only adjacent vertices are separated.
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Locally identifying coloring (lid-coloring)

e c: V — N proper coloring: xy € E = c(x) # ¢c(y)
e ¢(S): set of colors in S: ¢(S) = {c(x),x € S}
e color ¢y separates x and y if ¢g € c(N[x])Ac(N[y])

x and y are separated by color 4
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Locally identifying coloring (lid-coloring)

e c: V — N proper coloring: xy € E = c(x) # ¢c(y)
e ¢(S): set of colors in S: ¢(S) = {c(x),x € S}
e color ¢y separates x and y if ¢g € c(N[x])Ac(N[y])

Locally identifying coloring of G:
e proper coloring ¢
e For any xy € E, c(N[x]) # c(N[y]). if N[x] # N[y].

{2,4} {2,3,4} {2,4}

All pairs of adjacent vertices are
separated

{2,3,4} {2,3} {2,3,4}

e \;id(G): min. number of colors needed in a lid-coloring G.
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Coloring the path
With 4 colors :

O~ O—O0-0-0-0-0-0
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Coloring the path
With 4 colors :

0 0600 6060C

1,2 1,23 23,4 1,34 1,24 1,23 23,4 3,4

So:
Xid(Px) < 4

Is it possible with 3 colors 7
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Coloring the path
With 4 colors :

0 600

1,2 1,2,3 2,34 1,34 1,24 123

©®
®

N

,3,4 3,4

So:
Xid(Px) < 4

Is it possible with 3 colors 7

0 0000 60

1,2 1,23 23 1,23 1,2 1,23 23 2,3

Xid(Px) =3 < k is odd
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Related works

With edge colorings:

e Vertex-distinguishing edge colorings (Observability of a graph)
(Hornak et al, 95"),

e Adjacent vertex-distinguishing edge colorings (Zhang et al, 02')

With total colorings:
e Adjacent vertex-distinguishing total colorings (Zhang, 05')
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What are we doing next?

Remarks:
o Refinment of proper colorings: x(G) < xyia(G)
e g is not heriditary: xjia(Pa) > Xiid(Ps)

How behave lid-colorings compared with proper colorings?
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o g is not heriditary: xia(Ps) > xia(Ps)
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. . . N
Link with maximum degree? 1D (s ey
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Upperbound using chromatic number x?

Def: Vxy € E, c(x) # c(y) and ¢(N[x]) # c(N[y])

Q

O

e Take a complete graph K
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Upperbound using chromatic number x?

Def: Vxy € E, c(x) # c(y) and ¢(N[x]) # c(N[y])

e Take a complete graph K
e Subdivide twice each edge

— Each pair of initial vertices
must have different colors

— Xid(Gk) > k

8/31



Upperbound using chromatic number x?

Def: Vxy € E, c(x) # c(y) and ¢(N[x]) # c(N[y])

e Take a complete graph K
e Subdivide twice each edge

— Each pair of initial vertices
must have different colors

— xid(Gk) > k
— But x(Gk) <3

For each k, there exists graph G with x(Gx) < 3 and xiia(Gk) > k

No upper bound of x4 using x !
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Upper bound on a graph with n vertices ?
Proper colorings: x(G) = |V(G)|=n< G =K,

Lid-colorings: for which graphs xis(G) = |V(G)|?
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Upper bound on a graph with n vertices ?
Proper colorings: x(G) = |V(G)|=n< G =K,

Lid-colorings: for which graphs x;s(G) = |V(G)|?

o K,
° Pt

1 2 3 4 5 6 7 8
o ... 7

Open question

Caracterize graphs G such that x,4(G) = n. ]
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Maximum degree

Proper colorings: x(G) < A + 1, tight for odd cycles and complete
graphs

10/31



Maximum degree

Proper colorings: x(G) < A + 1, tight for odd cycles and complete
graphs

Lid-colorings:
o xia(G) < x(G%) < A% — A2+ A+1

10/31



Maximum degree
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Lid-colorings:
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Maximum degree
Proper colorings: x(G) < A + 1, tight for odd cycles and complete
graphs
Lid-colorings:
o Xid(G) < x(G}) <A3-A2+A+1
e Graphs with x4(G) > A? — A + 1 using projective plane

Theorem (Foucaud,Honkala,Laihonen,P.,Perarnau, 2012)]

For any graph G with A > 3: yi4(G) < 2A2% —3A + 3 ]

Open question

Do we have X/id(G) < A2 + O(A) ? ]
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Idea of the proof

Theorem (Foucaud,Honkala,Laihonen,P.,Perarnau, 2012)]

For any graph G with A > 3: y4(G) < 2A% —3A +3 ]

colors 2,3, 4 are forbidden
for x
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Idea of the proof

Theorem (Foucaud,Honkala,Laihonen,P.,Perarnau, 2012)]

For any graph G with A > 3: y4(G) < 2A% —3A +3 ]

colors 2,3, 4 are forbidden
for x

Recoloring Lemma: there are at most 2d(x)(A — 1) forbidden colors for x

Proof by induction

When we add a new vertex v, change c¢(N(v)) in a good way with
recoloring lemma.

e Give a completetly new colour to v, ¢ remains lid-coloring.

Use recoloring lemma on v.

11/31



What about good classes for proper coloring of graphs 7
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Perfect graphs

e w(G): maximum size of a clique of G
e A graph G is perfect if for all subgraphs H of G, x(H) = w(H)
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Perfect graphs

e w(G): maximum size of a clique of G
e A graph G is perfect if for all subgraphs H of G, x(H) = w(H)

Example: Bipartite graphs are perfect, Cs is not perfect: w(Gs) = 2,
X(G) =3

Theorem (Chudnovsky, Robertson, Seymour, Thomas, 2002)]

G is perfect if and only if it has no induced odd cycle or complement
of odd cycle with more than 5 vertices.
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Perfect graphs

e w(G): maximum size of a clique of G
e A graph G is perfect if for all subgraphs H of G, x(H) = w(H)

Perfect

] Line of bipartite \

Bipartite |7

Interval /
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Bipartite graphs

G connected graph:
e Yid(G) =1 = G is a single vertex
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Bipartite graphs

G connected graph:
e id(G) =1 = G is a single vertex
e Yid(G) =2 = G is just an edge
1,2 1,2

e Yiid(G) =3 = G is a triangle or a bipartite graph:
— Partition vertices with the number of colors in c(N[x])
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Bipartite graphs are 4-lid-colorable
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Bipartite graphs are 4-lid-colorable

Theorem (Esperet, Gravier, Montassier, Ochem, P., 2012)]

If G is bipartite, xis(G) < 4. ]
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Bipartite graphs

General bounds: 3 < y4(B) < 4
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Bipartite graphs

General bounds: 3 < y4(B) < 4

Xiid(B) = 3 xid(B) = 4:

In general... 3-LID-COLORING is NP-complete in bipartite graphs

16/31



Link with 2-coloring of hypergraph

Try to color a graph with 3 colors
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Link with 2-coloring of hypergraph
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Link with 2-coloring of hypergraph

1,2,3

1,2,3

1,2,3

1,2,3

3-lid-coloring in bipartite graph < 2-coloring in hypergraph

@)

=7

g@
—

1,3

1,2

@
®
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Link with 2-coloring of hypergraph

1,3
1,2,3 .

1,2
1,2,3

1,3 . @
1,2,3

1,2
1,2,3 @ ’

1,2

3-lid-coloring in bipartite graph < 2-coloring in hypergraph

e 3-LiD-COLORING in bipartite graph is NP-Complete

e Polynomial in regular graphs, in planar graphs with maximum degree
3, in trees.
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Perfect graphs

] Line of bipartite

Chordal

<4=2w

Interval
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Lid-coloring of 2-trees with 6 colors

=1

e Color the triangle with colors
1,2,3

e Step:
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1,2,3
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Lid-coloring of 2-trees with 6 colors

e Color the triangle with colors
1,2,3
e Step:

i+ 3[6] i

e We always have:

> proper coloring
> no edge (/,i + 3)

Theorem (Esperet, Gravier, Montassier, Ochem, P., 2012)]

A 2-tree is 6-lid-colorable. ]
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To perfect graph: k-trees

We can extend the construction to k-trees:

— A k-tree G has lid-chromatic number at most 2k + 2 = 2w(G)

This bound is sharp: P, ., is a k + 1-tree and xg(P%,,) = 2k + 2
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Perfect graphs

Perfect
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Perfect graphs

Perfect

] Line of bipartite

Chordal

Bipartite| < 4 = 2w
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Perfect graphs

Perfect| 7

Line of bipartite

Chordal

Bipartite| < 4 = 2w

Interval

< 2w <2w-1 <2k +2 =2w
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Perfect graphs are not any more perfect...

Question: Can we color any perfect graph G with 2w(G) colors?
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Question: Can we color any perfect graph G with 2w(G) colors?  No!
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Perfect graphs are not any more perfect...

Question: Can we color any perfect graph G with 2w(G) colors?  No!

v >

\ /j/:// Vi, Vs, V3 stable sets of size k
Kk,k 5 @ Kk \ M

Xid > k+2butw=3

Conjecture

We can color any chordal graph G with 2w(G) colors ]
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Perfect Graphs

Perfect

] Line of bipartite

Chordal

< 2w

Bipartite| < 2w

< 2w < 2w < 2w
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To support the conjecture: Split graphs

Chordal graph: constructed like k-trees but the size of the clique can
change
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To support the conjecture: Split graphs

Chordal graph: constructed like k-trees but the size of the clique can
change

Split graphs:

e Bondy's theorem : kK —1
vertices of the stable set are
enough to separate the clique
vertices

We can color with 2k colors
Possible with 2k — 1 colors

It's sharp 1

&L &

k couleurs

24/31



What about planar graphs ?
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Planar graphs

Is lid-chromatic number bounded for planar graphs ?

o Worse example : 8 colors,
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Planar graphs

Is lid-chromatic number bounded for planar graphs ?

o Worse example : 8 colors,
o With large girth (36) bounded by 5

Outerplanar graphs:
e General bound: 20 colors,
e Max outerplanar graphs: < 6 colors,
o Without triangles: < 8 colors,

e Examples with at most 6 colors

26/31



A bound for outerplanar graphs

e a layer = union of
paths,

e 5 colors in a layer,
e 4 x5=20

27/31



Bound for planar graphs ?

Really large bound by Gonzales and Pinlou (2012)

More general result :

Theorem (Gonzales, Pinlou)]

Any family of graph closed by minor has lid-chromatic bounded ]
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A remark

o For some subclasses of perfect graphs : xit(G) < 2w(G) = 2x(G)
e For planar graphs, worse example : xig(G) < 8 = 2x(G)
e For outerplanar graphs, worse example : yis(G) < 6 = 2x(G)

Open question

For which graphs do we have xi4(G) < 2x(G) ? ]
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Another remark

e xi(G) =2 G =K,
e id(G) =3 = G = Kj; or G is bipartite
e Xid(G) =3 and x(G) =3 = G =K

Open question

Caracterize graphs G such that xis(G) = x(G). Are they only the
complete graphs 7
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Conclusion

Lot of open questions:
e Graphs with g =n?
o Graphs with xjig = x 7
e Do we have xis(G) < A%+ 0(A) ?

e Do we have x;i4(G) < 2x(G) for chordal graphs? for planar graphs?
for which graphs?

e Find a good bound for planar graphs.

Thanks !
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