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Identification in graphs

G = (V ,E ) graph. How to identify the vertices of G ?

→ Identifying codes:

ba c

{a} {b} {c}

{a, b} {a, b, c} {b, c}

Subset C ⊆ V
Vertex x identified by N[x ] ∩ C

→ With colors ?

Identifying coloring:

2 23

21 4

{1, 2, 3} {2, 3} {2, 3, 4}

{1, 2} {1, 2, 3, 4} {2, 4}
Coloring c : V → N
Vertex x identified with

c(N[x ]) = {c(v), v ∈ N[x ]}

→ Locally Identifying coloring: only adjacent vertices are separated.
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Locally identifying coloring (lid-coloring)

• c : V → N proper coloring: xy ∈ E ⇒ c(x) 6= c(y)

• c(S): set of colors in S : c(S) = {c(x), x ∈ S}
• color c0 separates x and y if c0 ∈ c(N[x ])∆c(N[y ])

2 23

23

y

x

y

x

4

{2, 3, 4} {2, 3} {2, 3, 4}

{2, 4} {2, 3, 4} {2, 4}

4

x and y are separated by color 4

x and y are not separated:
c(N[x ]) = c(N[y ])

Locally identifying coloring of G :

• proper coloring c

• For any xy ∈ E , c(N[x ]) 6= c(N[y ]), if N[x ] 6= N[y ].

• χlid(G ): min. number of colors needed in a lid-coloring G .
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Coloring the path

With 4 colors :

1 2 3 4 1 2 3 4

1, 2 1, 2, 3 2, 3, 4 1, 3, 4 1, 2, 4 1, 2, 3 2, 3, 4 3, 4

So:
χlid(Pk) ≤ 4

Is it possible with 3 colors ?

1 2

1, 2

3

1, 2, 3

2

2, 3

1

1, 2, 3

2 3 2

1, 2 1, 2, 3 2, 3 2, 3

χlid(Pk) = 3 ⇔ k is odd
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Related works

With edge colorings:

• Vertex-distinguishing edge colorings (Observability of a graph)
(Hornak et al, 95’),

• Adjacent vertex-distinguishing edge colorings (Zhang et al, 02’)

With total colorings:

• Adjacent vertex-distinguishing total colorings (Zhang, 05’)

6/31



What are we doing next?

Remarks:

• Refinment of proper colorings: χ(G ) ≤ χlid(G )

• χlid is not heriditary: χlid(P4) ≥ χlid(P5)

How behave lid-colorings compared with proper colorings?

Link with maximum degree?

Upperbound using χ?

In perfect graphs?

In planar graphs?
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Upperbound using chromatic number χ?

Def: ∀xy ∈ E , c(x) 6= c(y) and c(N[x ]) 6= c(N[y ])

1

1

2

3

• Take a complete graph Kk

• Subdivide twice each edge

→ Each pair of initial vertices
must have different colors

→ χlid(Gk) ≥ k

→ But χ(Gk) ≤ 3

For each k, there exists graph Gk with χ(Gk) ≤ 3 and χlid(Gk) ≥ k

No upper bound of χlid using χ !
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Upper bound on a graph with n vertices ?

Proper colorings: χ(G ) = |V (G )| = n⇔ G = Kn

Lid-colorings: for which graphs χlid(G ) = |V (G )|?

• Kn

• Pk−1
2k :

1 2 3 4 5 6 7 8

1 2 3 4

Complete graph

5

Separated by vertex 5

6 7 8

• ... ?

Caracterize graphs G such that χlid(G ) = n.

Open question
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Maximum degree
Proper colorings: χ(G ) ≤ ∆ + 1, tight for odd cycles and complete
graphs

Lid-colorings:

• χlid(G ) ≤ χ(G 3) ≤ ∆3 −∆2 + ∆ + 1

• Graphs with χlid(G ) ≥ ∆2 −∆ + 1 using projective plane
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Maximum degree
Proper colorings: χ(G ) ≤ ∆ + 1, tight for odd cycles and complete
graphs

Lid-colorings:

• χlid(G ) ≤ χ(G 3) ≤ ∆3 −∆2 + ∆ + 1

• Graphs with χlid(G ) ≥ ∆2 −∆ + 1 using projective plane

For any graph G with ∆ ≥ 3: χlid(G ) ≤ 2∆2 − 3∆ + 3

Theorem (Foucaud,Honkala,Laihonen,P.,Perarnau, 2012)

Do we have χlid(G ) ≤ ∆2 + O(∆) ?

Open question
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Idea of the proof

For any graph G with ∆ ≥ 3: χlid(G ) ≤ 2∆2 − 3∆ + 3

Theorem (Foucaud,Honkala,Laihonen,P.,Perarnau, 2012)

1
x 2 3

2 4

3
colors 2, 3, 4 are forbidden
for x

Recoloring Lemma: there are at most 2d(x)(∆− 1) forbidden colors for x

• Proof by induction

• When we add a new vertex v , change c(N(v)) in a good way with
recoloring lemma.

• Give a completetly new colour to v , c remains lid-coloring.

• Use recoloring lemma on v .
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What about good classes for proper coloring of graphs ?
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Perfect graphs

• ω(G ): maximum size of a clique of G

• A graph G is perfect if for all subgraphs H of G , χ(H) = ω(H)
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Perfect graphs

• ω(G ): maximum size of a clique of G

• A graph G is perfect if for all subgraphs H of G , χ(H) = ω(H)

Example: Bipartite graphs are perfect, C5 is not perfect: ω(C5) = 2,
χ(C5) = 3

G is perfect if and only if it has no induced odd cycle or complement
of odd cycle with more than 5 vertices.

Theorem (Chudnovsky, Robertson, Seymour, Thomas, 2002)
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Perfect graphs

• ω(G ): maximum size of a clique of G

• A graph G is perfect if for all subgraphs H of G , χ(H) = ω(H)

Perfect

Chordal

Permutation Line of bipartite

Cograph

Tree

k-treeSplit

Bipartite

Bipartite ?

Interval
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Bipartite graphs

G connected graph:

• χlid(G ) = 1 ⇒ G is a single vertex

• χlid(G ) = 2 ⇒ G is just an edge

1

1, 2

3

2

1, 2

• χlid(G ) = 3 ⇒ G is a triangle or a bipartite graph:
→ Partition vertices with the number of colors in c(N[x ])
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Bipartite graphs are 4-lid-colorable

L0

L1

L2

L3

L4

1

2

3

4

1

→

→

→

→

→

1, 2

1, 2, 3

2, 3, 4 or 2, 3

1, 3, 4 or 3, 4

1, 4

If G is bipartite, χlid(G ) ≤ 4.

Theorem (Esperet, Gravier, Montassier, Ochem, P., 2012)
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Bipartite graphs

General bounds: 3 ≤ χlid(B) ≤ 4

χlid(B) = 3: χlid(B) = 4:

← ? →

In general... 3-Lid-Coloring is NP-complete in bipartite graphs
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Link with 2-coloring of hypergraph
Try to color a graph with 3 colors

1, 2, 3

1, 2

1, 3

1, 2

1, 2

1, 3

1, 2, 3

1, 2, 3

1, 2, 3

E

D

C

B

A

2

2

3

1

1

1

1

2

3

E

D

C B

A

3-lid-coloring in bipartite graph ⇔ 2-coloring in hypergraph

• 3-Lid-Coloring in bipartite graph is NP-Complete

• Polynomial in regular graphs, in planar graphs with maximum degree
3, in trees.
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Perfect graphs

Perfect

Chordal

Permutation Line of bipartite

Cograph

Trees

k-treesSplit

Bipartite

Interval

Trees

Bipartite

k-trees

≤ 4 = 2ω

≤ 4 = 2ω

?
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Lid-coloring of 2-trees with 6 colors

1

2

3

5

6

4

4

65

3
4

2

3

• Color the triangle with colors
1, 2, 3

• Step:

i

i + 3[6]

• We always have:
I proper coloring
I no edge (i , i + 3)

A 2-tree is 6-lid-colorable.

Theorem (Esperet, Gravier, Montassier, Ochem, P., 2012)
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To perfect graph: k-trees

We can extend the construction to k-trees:

→ A k-tree G has lid-chromatic number at most 2k + 2 = 2ω(G )

This bound is sharp: Pk
2k+2 is a k + 1-tree and χlid(Pk

2k+2) = 2k + 2

1 2 3 4 5 6 7 8
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Perfect graphs

Perfect

Chordal

Permutation Line of bipartite

Cograph

Trees

k-treesSplit

Bipartite

Interval

Trees ≤ 4 = 2ω

Bipartite ≤ 4 = 2ω

k-trees

≤ 2k + 2 = 2ω

SplitInterval

Cograph

≤ 2ω − 1

≤ 2ω − 1

≤ 2ω

Perfect

Chordal

?

?
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Perfect graphs are not any more perfect...

Question: Can we color any perfect graph G with 2ω(G ) colors?

No!

V1

V2 V3

M

Kk,k \MKk,k

V1,V2,V3 stable sets of size k

χlid ≥ k + 2 but ω = 3

We can color any chordal graph G with 2ω(G ) colors

Conjecture
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Perfect Graphs

Perfect

Chordal

Permutation Line of bipartite

Cograph

Trees

k-treesSplit

Bipartite

Interval

Trees ≤ 2ω

Bipartite ≤ 2ω

k-trees

≤ 2ω

SplitInterval

Cograph

≤ 2ω

≤ 2ω

≤ 2ω

Perfect

Chordal

Not bounded by ω

?
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To support the conjecture: Split graphs

Chordal graph: constructed like k-trees but the size of the clique can
change

Split graphs:

• Bondy’s theorem : k − 1
vertices of the stable set are
enough to separate the clique
vertices

→ We can color with 2k colors

→ Possible with 2k − 1 colors

→ It’s sharp

Kk Independant setk couleurs

k − 1

1

24/31



To support the conjecture: Split graphs

Chordal graph: constructed like k-trees but the size of the clique can
change

Split graphs:

• Bondy’s theorem : k − 1
vertices of the stable set are
enough to separate the clique
vertices

→ We can color with 2k colors

→ Possible with 2k − 1 colors

→ It’s sharp

Kk Independant set

k couleurs

k − 1

1

24/31



To support the conjecture: Split graphs

Chordal graph: constructed like k-trees but the size of the clique can
change

Split graphs:

• Bondy’s theorem : k − 1
vertices of the stable set are
enough to separate the clique
vertices

→ We can color with 2k colors

→ Possible with 2k − 1 colors

→ It’s sharp

Kk Independant setk couleurs

k − 1

1

24/31



To support the conjecture: Split graphs

Chordal graph: constructed like k-trees but the size of the clique can
change

Split graphs:

• Bondy’s theorem : k − 1
vertices of the stable set are
enough to separate the clique
vertices

→ We can color with 2k colors

→ Possible with 2k − 1 colors

→ It’s sharp

Kk Independant set

k couleurs

k − 1

1

24/31



What about planar graphs ?
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Planar graphs

Is lid-chromatic number bounded for planar graphs ?

• Worse example : 8 colors,

• With large girth (36) bounded by 5

Outerplanar graphs:

• General bound: 20 colors,

• Max outerplanar graphs: ≤ 6 colors,

• Without triangles: ≤ 8 colors,

• Examples with at most 6 colors
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A bound for outerplanar graphs

1

2

3

4

1

L1

L2

L3

L4

L5

• a layer = union of
paths,

• 5 colors in a layer,

• 4× 5 = 20
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Bound for planar graphs ?

Really large bound by Gonzales and Pinlou (2012)

More general result :

Any family of graph closed by minor has lid-chromatic bounded

Theorem (Gonzales, Pinlou)
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A remark

• For some subclasses of perfect graphs : χlid(G ) ≤ 2ω(G ) = 2χ(G )

• For planar graphs, worse example : χlid(G ) ≤ 8 = 2χ(G )

• For outerplanar graphs, worse example : χlid(G ) ≤ 6 = 2χ(G )

• ...

For which graphs do we have χlid(G ) ≤ 2χ(G ) ?

Open question
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Another remark

• χlid(G ) = 2 ⇔ G = K2

• χlid(G ) = 3 ⇒ G = K3 or G is bipartite

• χlid(G ) = 3 and χ(G ) = 3 ⇔ G = K3

Caracterize graphs G such that χlid(G ) = χ(G ). Are they only the
complete graphs ?

Open question
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Conclusion

Lot of open questions:

• Graphs with χlid = n ?

• Graphs with χlid = χ ?

• Do we have χlid(G ) ≤ ∆2 + O(∆) ?

• Do we have χlid(G ) ≤ 2χ(G ) for chordal graphs? for planar graphs?
for which graphs?

• Find a good bound for planar graphs.

Thanks !
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