Locally identifying colorings of graphs

Aline Parreau

Joined work with: Louis Esperet, Sylvain Gravier, Mickaël Montassier, Pascal Ochem

and: Florent Foucaud, Iiro Honkala, Tero Laihonen, Guillem Perarnau

> May 3rd, 2012 Seminari COMBGRAF, UPC

Outline

Locally identifying colorings Motivation Definition First examples

Bounds with some parameters

With chromatic number With number of vertices With maximum degree

Perfect graphs

Bipartite graphs *k*-trees

Planar graphs

G = (V, E) graph. How to identify the vertices of G?

- G = (V, E) graph. How to identify the vertices of G?
 - $\rightarrow\,$ Identifying codes:

Subset $C \subseteq V$ Vertex x identified by $N[x] \cap C$

- G = (V, E) graph. How to identify the vertices of G?
 - $\rightarrow\,$ Identifying codes:

Subset $C \subseteq V$ Vertex x identified by $N[x] \cap C$

 \rightarrow With colors ?

- G = (V, E) graph. How to identify the vertices of G?
 - $\rightarrow\,$ Identifying codes:

Subset $C \subseteq V$ Vertex x identified by $N[x] \cap C$

 $\rightarrow\,$ With colors ? Identifying coloring:

Coloring $c: V \to \mathbb{N}$ Vertex x identified with

$$c(N[x]) = \{c(v), v \in N[x]\}$$

- G = (V, E) graph. How to identify the vertices of G?
 - $\rightarrow\,$ Identifying codes:

Subset $C \subseteq V$ Vertex x identified by $N[x] \cap C$

 \rightarrow With colors ? Identifying coloring:

Coloring $c: V \to \mathbb{N}$ Vertex x identified with

$$c(N[x]) = \{c(v), v \in N[x]\}$$

 \rightarrow Locally Identifying coloring: only adjacent vertices are separated.

- $c: V \to \mathbb{N}$ proper coloring: $xy \in E \Rightarrow c(x) \neq c(y)$
- c(S): set of colors in S: $c(S) = \{c(x), x \in S\}$
- color c_0 separates x and y if $c_0 \in c(N[x])\Delta c(N[y])$

x and y are separated by color 4

- $c: V \to \mathbb{N}$ proper coloring: $xy \in E \Rightarrow c(x) \neq c(y)$
- c(S): set of colors in S: $c(S) = \{c(x), x \in S\}$
- color c_0 separates x and y if $c_0 \in c(N[x])\Delta c(N[y])$

x and y are not separated: c(N[x]) = c(N[y])

- $c: V \to \mathbb{N}$ proper coloring: $xy \in E \Rightarrow c(x) \neq c(y)$
- c(S): set of colors in S: $c(S) = \{c(x), x \in S\}$
- color c_0 separates x and y if $c_0 \in c(N[x])\Delta c(N[y])$

Locally identifying coloring of G:

- proper coloring c
- For any $xy \in E$, $c(N[x]) \neq c(N[y])$, if $N[x] \neq N[y]$.

All pairs of adjacent vertices are separated

- $c: V \to \mathbb{N}$ proper coloring: $xy \in E \Rightarrow c(x) \neq c(y)$
- c(S): set of colors in S: $c(S) = \{c(x), x \in S\}$
- color c_0 separates x and y if $c_0 \in c(N[x])\Delta c(N[y])$

Locally identifying coloring of G:

- proper coloring c
- For any $xy \in E$, $c(N[x]) \neq c(N[y])$, if $N[x] \neq N[y]$.

All pairs of adjacent vertices are separated

• $\chi_{lid}(G)$: min. number of colors needed in a lid-coloring G.

With 4 colors :

With 4 colors :

With 4 colors :

With 4 colors :

Is it possible with 3 colors ?

 $\chi_{lid}(P_k) = 3 \Leftrightarrow k \text{ is odd}$

With edge colorings:

- Vertex-distinguishing edge colorings (Observability of a graph) (Hornak et al, 95'),
- Adjacent vertex-distinguishing edge colorings (Zhang et al, 02')

With total colorings:

• Adjacent vertex-distinguishing total colorings (Zhang, 05')

What are we doing next?

Remarks:

- Refinment of proper colorings: $\chi(G) \leq \chi_{lid}(G)$
- χ_{lid} is not heriditary: $\chi_{lid}(P_4) \ge \chi_{lid}(P_5)$

How behave lid-colorings compared with proper colorings?

What are we doing next?

Remarks:

- Refinment of proper colorings: $\chi(G) \leq \chi_{lid}(G)$
- χ_{lid} is not heriditary: $\chi_{lid}(P_4) \geq \chi_{lid}(P_5)$

How behave lid-colorings compared with proper colorings?

Upperbound using χ ?

Link with maximum degree?

What are we doing next?

Remarks:

- Refinment of proper colorings: $\chi(G) \leq \chi_{lid}(G)$
- χ_{lid} is not heriditary: $\chi_{lid}(P_4) \geq \chi_{lid}(P_5)$

How behave lid-colorings compared with proper colorings?

Upperbound using χ ?

Link with maximum degree?

In perfect graphs?

In planar graphs?

Def: $\forall xy \in E$, $c(x) \neq c(y)$ and $c(N[x]) \neq c(N[y])$

• Take a complete graph K_k

Def: $\forall xy \in E$, $c(x) \neq c(y)$ and $c(N[x]) \neq c(N[y])$

- Take a complete graph K_k
- Subdivide twice each edge

Def: $\forall xy \in E$, $c(x) \neq c(y)$ and $c(N[x]) \neq c(N[y])$

- Take a complete graph K_k
- Subdivide twice each edge
- $\rightarrow\,$ Each pair of initial vertices must have different colors

Def: $\forall xy \in E$, $c(x) \neq c(y)$ and $c(N[x]) \neq c(N[y])$

- Take a complete graph K_k
- Subdivide twice each edge
- $\rightarrow\,$ Each pair of initial vertices must have different colors

Def: $\forall xy \in E$, $c(x) \neq c(y)$ and $c(N[x]) \neq c(N[y])$

- Take a complete graph K_k
- Subdivide twice each edge
- \rightarrow Each pair of initial vertices must have different colors

 $\rightarrow \chi_{lid}(G_k) \geq k$

Def: $\forall xy \in E$, $c(x) \neq c(y)$ and $c(N[x]) \neq c(N[y])$

- Take a complete graph K_k
- Subdivide twice each edge
- \rightarrow Each pair of initial vertices must have different colors

$$\rightarrow \chi_{lid}(G_k) \geq k$$

 \rightarrow But $\chi(G_k) \leq 3$

For each k, there exists graph G_k with $\chi(G_k) \leq 3$ and $\chi_{lid}(G_k) \geq k$

No upper bound of χ_{lid} using χ !

Proper colorings: $\chi(G) = |V(G)| = n \Leftrightarrow G = K_n$

Proper colorings: $\chi(G) = |V(G)| = n \Leftrightarrow G = K_n$

- *K*_n
- P_{2k}^{k-1} :

Proper colorings: $\chi(G) = |V(G)| = n \Leftrightarrow G = K_n$

Lid-colorings: for which graphs $\chi_{lid}(G) = |V(G)|$?

- *K*_n
- P_{2k}^{k-1} :

Complete graph

Proper colorings: $\chi(G) = |V(G)| = n \Leftrightarrow G = K_n$

Separated by vertex 5

Proper colorings: $\chi(G) = |V(G)| = n \Leftrightarrow G = K_n$

- *K*_n
- P_{2k}^{k-1} :

Proper colorings: $\chi(G) = |V(G)| = n \Leftrightarrow G = K_n$

Maximum degree

Proper colorings: $\chi({\sf G}) \leq \Delta+1$, tight for odd cycles and complete graphs
Maximum degree

Proper colorings: $\chi({\it G}) \leq \Delta+1,$ tight for odd cycles and complete graphs

Lid-colorings:

•
$$\chi_{lid}(G) \leq \chi(G^3) \leq \Delta^3 - \Delta^2 + \Delta + 1$$

Maximum degree

Proper colorings: $\chi(\mathcal{G}) \leq \Delta + 1$, tight for odd cycles and complete graphs

Lid-colorings:

- $\chi_{\textit{lid}}(\mathcal{G}) \leq \chi(\mathcal{G}^3) \leq \Delta^3 \Delta^2 + \Delta + 1$
- Graphs with $\chi_{\mathit{lid}}(G) \geq \Delta^2 \Delta + 1$ using projective plane

Maximum degree

Proper colorings: $\chi(G) \leq \Delta + 1$, tight for odd cycles and complete graphs

Lid-colorings:

•
$$\chi_{lid}(\mathcal{G}) \leq \chi(\mathcal{G}^3) \leq \Delta^3 - \Delta^2 + \Delta + 1$$

• Graphs with $\chi_{\mathit{lid}}({\mathsf{G}}) \geq \Delta^2 - \Delta + 1$ using projective plane

Theorem (Foucaud, Honkala, Laihonen, P., Perarnau, 2012)

For any graph
$${\it G}$$
 with $\Delta \geq$ 3: $\chi_{\it lid}({\it G}) \leq 2\Delta^2 - 3\Delta + 3$

Open question

Do we have $\chi_{lid}(G) \leq \Delta^2 + O(\Delta)$?

Idea of the proof

Theorem (Foucaud, Honkala, Laihonen, P., Perarnau, 2012)

For any graph G with $\Delta \geq 3$: $\chi_{lid}(G) \leq 2\Delta^2 - 3\Delta + 3$

colors 2, 3, 4 are forbidden for x

Idea of the proof

Theorem (Foucaud, Honkala, Laihonen, P., Perarnau, 2012)

For any graph G with $\Delta \geq 3$: $\chi_{lid}(G) \leq 2\Delta^2 - 3\Delta + 3$

colors 2, 3, 4 are forbidden for x

Recoloring Lemma: there are at most $2d(x)(\Delta - 1)$ forbidden colors for x

Idea of the proof

Theorem (Foucaud, Honkala, Laihonen, P., Perarnau, 2012)

For any graph G with $\Delta \geq 3$: $\chi_{lid}(G) \leq 2\Delta^2 - 3\Delta + 3$

colors 2, 3, 4 are forbidden for x

Recoloring Lemma: there are at most $2d(x)(\Delta - 1)$ forbidden colors for x

- Proof by induction
- When we add a new vertex v, change c(N(v)) in a good way with recoloring lemma.
- Give a completetly new colour to v, c remains lid-coloring.
- Use recoloring lemma on v.

What about good classes for proper coloring of graphs ?

- $\omega(G)$: maximum size of a clique of G
- A graph G is perfect if for all subgraphs H of G, $\chi(H) = \omega(H)$

- $\omega(G)$: maximum size of a clique of G
- A graph G is perfect if for all subgraphs H of G, $\chi(H) = \omega(H)$

Example: Bipartite graphs are perfect, C_5 is not perfect: $\omega(C_5) = 2$, $\chi(C_5) = 3$

Theorem (Chudnovsky, Robertson, Seymour, Thomas, 2002)

G is perfect if and only if it has no induced odd cycle or complement of odd cycle with more than 5 vertices.

- $\omega(G)$: maximum size of a clique of G
- A graph G is perfect if for all subgraphs H of G, $\chi(H) = \omega(H)$

- $\omega(G)$: maximum size of a clique of G
- A graph G is perfect if for all subgraphs H of G, $\chi(H) = \omega(H)$

G connected graph:

• $\chi_{\textit{lid}}(G) = 1 \Rightarrow G$ is a single vertex

G connected graph:

- $\chi_{lid}(G) = 1 \Rightarrow G$ is a single vertex
- $\chi_{lid}(G) = 2 \Rightarrow G$ is just an edge

G connected graph:

- $\chi_{lid}(G) = 1 \Rightarrow G$ is a single vertex
- $\chi_{lid}(G) = 2 \Rightarrow G$ is just an edge

G connected graph:

- $\chi_{lid}(G) = 1 \Rightarrow G$ is a single vertex
- $\chi_{lid}(G) = 2 \Rightarrow G$ is just an edge

*χ*_{lid}(G) = 3 ⇒ G is a triangle or a bipartite graph:
 → Partition vertices with the number of colors in c(N[x])

Bipartite graphs are 4-lid-colorable

Bipartite graphs are 4-lid-colorable

Bipartite graphs are 4-lid-colorable

Theorem (Esperet, Gravier, Montassier, Ochem, P., 2012)

If G is bipartite, $\chi_{lid}(G) \leq 4$.

General bounds: $3 \le \chi_{lid}(B) \le 4$

General bounds: $3 \le \chi_{lid}(B) \le 4$

 $\chi_{lid}(B) = 3$:

General bounds: $3 \le \chi_{lid}(B) \le 4$

$$\chi_{lid}(B) = 3:$$

$$\chi_{lid}(B) = 4$$
:

General bounds: $3 \le \chi_{lid}(B) \le 4$

In general... 3-LID-COLORING is NP-complete in bipartite graphs

3-lid-coloring in bipartite graph \Leftrightarrow 2-coloring in hypergraph

3-lid-coloring in bipartite graph \Leftrightarrow 2-coloring in hypergraph

- 3-LID-COLORING in bipartite graph is NP-Complete
- Polynomial in regular graphs, in planar graphs with maximum degree 3, in trees.

- Color the triangle with colors 1, 2, 3
- Step:

- Color the triangle with colors 1, 2, 3
- Step:

- We always have:
 - proper coloring
 - ▶ no edge (*i*, *i* + 3)

- Color the triangle with colors 1, 2, 3
- Step:

- We always have:
 - proper coloring
 - ▶ no edge (*i*, *i* + 3)

- Color the triangle with colors 1, 2, 3
- Step:

- We always have:
 - proper coloring
 - ▶ no edge (*i*, *i* + 3)

- Color the triangle with colors 1, 2, 3
- Step:

- We always have:
 - proper coloring
 - ▶ no edge (*i*, *i* + 3)

- Color the triangle with colors 1, 2, 3
- Step:

- We always have:
 - proper coloring
 - no edge (i, i + 3)

Theorem (Esperet, Gravier, Montassier, Ochem, P., 2012)

A 2-tree is 6-lid-colorable.

To perfect graph: k-trees

We can extend the construction to k-trees:

 \rightarrow A k-tree G has lid-chromatic number at most $2k + 2 = 2\omega(G)$

This bound is sharp: P_{2k+2}^k is a k + 1-tree and $\chi_{lid}(P_{2k+2}^k) = 2k + 2$

Perfect graphs

Perfect graphs

Perfect graphs

Perfect graphs are not any more perfect...

Question: Can we color any perfect graph G with $2\omega(G)$ colors?

Perfect graphs are not any more perfect...

Question: Can we color any perfect graph G with $2\omega(G)$ colors? No!

 $\chi_{\it lid} \ge k+2 \ {\rm but} \ \omega=3$

Perfect graphs are not any more perfect...

Question: Can we color any perfect graph G with $2\omega(G)$ colors? No!

 $\chi_{\textit{lid}} \ge k+2 \text{ but } \omega = 3$

Conjecture We can color any chordal graph G with $2\omega(G)$ colors

Perfect Graphs

Chordal graph: constructed like *k*-trees but the size of the clique can change

Chordal graph: constructed like *k*-trees but the size of the clique can change

Split graphs:

Chordal graph: constructed like *k*-trees but the size of the clique can change

Split graphs:

 Bondy's theorem : k - 1 vertices of the stable set are enough to separate the clique vertices

Chordal graph: constructed like *k*-trees but the size of the clique can change

Split graphs:

- Bondy's theorem : k 1 vertices of the stable set are enough to separate the clique vertices
- \rightarrow We can color with 2k colors
- \rightarrow Possible with 2k 1 colors
- \rightarrow It's sharp

k couleurs

What about planar graphs ?

Is lid-chromatic number bounded for planar graphs ?

• Worse example : 8 colors,

Is lid-chromatic number bounded for planar graphs ?

- Worse example : 8 colors,
- With large girth (36) bounded by 5

Is lid-chromatic number bounded for planar graphs ?

- Worse example : 8 colors,
- With large girth (36) bounded by 5

Outerplanar graphs:

- General bound: 20 colors,
- Max outerplanar graphs: \leq 6 colors,
- Without triangles: \leq 8 colors,

Is lid-chromatic number bounded for planar graphs ?

- Worse example : 8 colors,
- With large girth (36) bounded by 5

Outerplanar graphs:

- General bound: 20 colors,
- Max outerplanar graphs: \leq 6 colors,
- Without triangles: \leq 8 colors,
- Examples with at most 6 colors

A bound for outerplanar graphs

- a layer = union of paths,
- 5 colors in a layer,
- 4 × 5 = 20

Bound for planar graphs ?

Really large bound by Gonzales and Pinlou (2012)

More general result :

Theorem (Gonzales, Pinlou)

Any family of graph closed by minor has lid-chromatic bounded

A remark

- For some subclasses of perfect graphs : $\chi_{\mathit{lid}}(\mathsf{G}) \leq 2\omega(\mathsf{G}) = 2\chi(\mathsf{G})$
- For planar graphs, worse example : $\chi_{lid}(G) \le 8 = 2\chi(G)$
- For outerplanar graphs, worse example : $\chi_{\textit{lid}}(G) \leq 6 = 2\chi(G)$
- ...

Open question

For which graphs do we have $\chi_{lid}(G) \leq 2\chi(G)$?

Another remark

•
$$\chi_{lid}(G) = 2 \Leftrightarrow G = K_2$$

•
$$\chi_{lid}(G) = 3 \Rightarrow G = K_3$$
 or G is bipartite

• $\chi_{lid}(G) = 3$ and $\chi(G) = 3 \Leftrightarrow G = K_3$

Open question

Caracterize graphs G such that $\chi_{lid}(G) = \chi(G)$. Are they only the complete graphs ?

Conclusion

Lot of open questions:

- Graphs with $\chi_{lid} = n$?
- Graphs with $\chi_{\textit{lid}} = \chi$?
- Do we have $\chi_{lid}(G) \leq \Delta^2 + O(\Delta)$?
- Do we have χ_{lid}(G) ≤ 2χ(G) for chordal graphs? for planar graphs? for which graphs?
- Find a good bound for planar graphs.

Thanks !