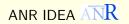
Locally identifying colorings of graphs

Aline Parreau

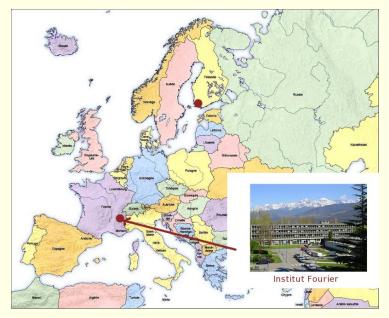
Joint work with Louis Esperet, Sylvain Gravier, Mickaël Montassier, Pascal Ochem

Turku, March 28th, 2011



maths a modeler

Grenoble-Turku



Outline

Proper Colorings

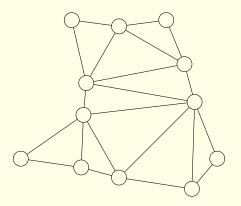
Definition Perfect graphs Colorings of hypergraph

Locally Identifying Colorings

Definition Bipartite graphs Perfect graphs are not any more perfect Planar graphs

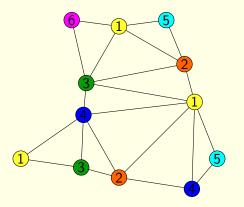
Proper coloring

Graph G = (V, E)Proper coloring : $c : V \to \mathbb{N}$ s.t. $uv \in E \Rightarrow c(u) \neq c(v)$



Proper coloring

Graph G = (V, E)Proper coloring : $c : V \to \mathbb{N}$ s.t. $uv \in E \Rightarrow c(u) \neq c(v)$



A well-known example

4-Colour Theorem :

But also : frequency allocation, scheduling,...

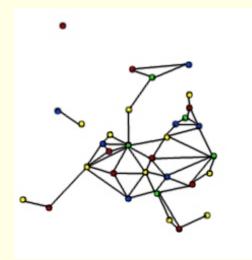
A well-known example

4-Colour Theorem :

But also : frequency allocation, scheduling,...

A well-known example

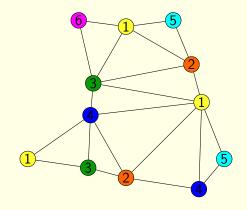
4-Colour Theorem :



But also : frequency allocation, scheduling,...

Chromatic number

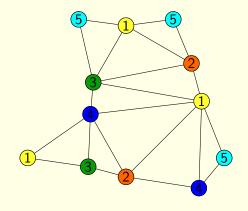
Chromatic number $\chi(G)$: minimum number of colors to have a porper coloring :



 $\chi(G) \leq 6$

Chromatic number

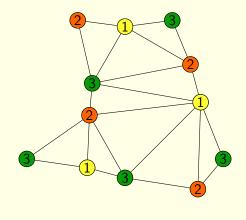
Chromatic number $\chi(G)$: minimum number of colors to have a porper coloring :



 $\chi(G) \leq 5$

Chromatic number

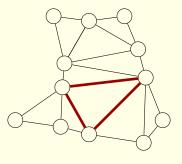
Chromatic number $\chi(G)$: minimum number of colors to have a porper coloring :



 $\chi(G) = 3$

A lower bound...

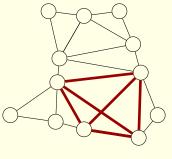
Clique number $\omega(G)$: max k such that there are k vertices in G that are all connected to each other



 $\omega(G)=3$

A lower bound...

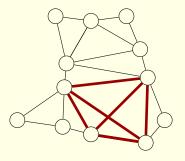
Clique number $\omega(G)$: max k such that there are k vertices in G that are all connected to each other



 $\omega(G) = 4$

A lower bound...

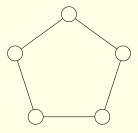
Clique number $\omega(G)$: max k such that there are k vertices in G that are all connected to each other



 $\omega(G) = 4$

For any graph G, $\chi(G) \ge \omega(G)$

... that is not always reached



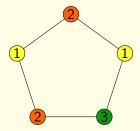
$$\chi(C_5) = 3$$
 but $\omega(C_5) = 2$

... that is not always reached



$$\chi(C_5) = 3$$
 but $\omega(C_5) = 2$

... that is not always reached



 $\chi(C_5) = 3$ but $\omega(C_5) = 2$

Mycielski graphs M_k such that $\chi(M_k) = k$ but $\omega(M_k) = 2$

An upper bound

 $\Delta(G)$: maximum degree of G

Upper bound with greedy algorithm :

 $\chi(G) \leq \Delta(G) + 1$

Tight for : complete graphs, odd cycles

Brook's theorem (1941) :

 $\chi(G) \leq \Delta(G)$ if G is not a complete graph or an odd cycle

k-COLORING is NP-complete for any $k \ge 3$

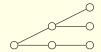
Even for k = 3 and planar graphs with maximum degree 4!

Good graphs for coloring

Perfect graph (1963) : G is perfect if $\omega(H) = \chi(H)$ for any induced subgraph H of G

Examples :

- trees (and bipartite graphs) :
- interval graphs :



Strong Perfect Graph Theorem

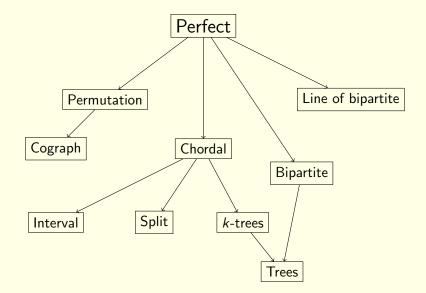
Remark : perfect graphs are stable by induced subgraphs

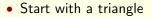
Smallest non perfect graphs? \rightarrow odd cycles of size \geq 5, complement of odd cycles of size \geq 5

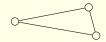
Strong Perfect Graph Theorem (Chudnovsky, Robertson, Seymour, Thomas 2002) :

G is perfect if and only if it has no induced odd cycle or complement of odd cycle with more than 5 vertices

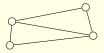
A part of the big family of perfect graphs



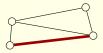




- Start with a triangle
- Choose an edge

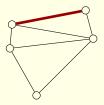


- Start with a triangle
- Choose an edge
- Add a vertex connected to the 2 vertices of the edge



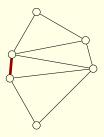
- Start with a triangle
- Choose an edge
- Add a vertex connected to the 2 vertices of the edge
- Repeat the operation

Construction of 2-trees :



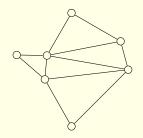
- Start with a triangle
- Choose an edge
- Add a vertex connected to the 2 vertices of the edge
- Repeat the operation

Construction of 2-trees :



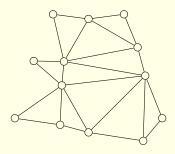
- Start with a triangle
- Choose an edge
- Add a vertex connected to the 2 vertices of the edge
- Repeat the operation

Construction of 2-trees :



- Start with a triangle
- Choose an edge
- Add a vertex connected to the 2 vertices of the edge
- Repeat the operation

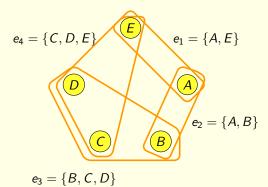
Construction of 2-trees :



- Start with a triangle
- Choose an edge
- Add a vertex connected to the 2 vertices of the edge
- Repeat the operation

Hypergraph

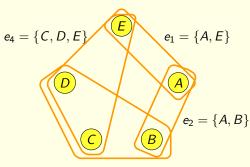
Hypergraph $\mathcal{H} = (V, \mathcal{E})$ where an edge $e \in \mathcal{E}$ is a subset of vertices

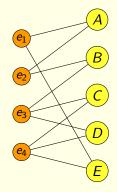


 ${\sf Hypergraph}$

Hypergraph

Hypergraph $\mathcal{H} = (V, \mathcal{E})$ where an edge $e \in \mathcal{E}$ is a subset of vertices





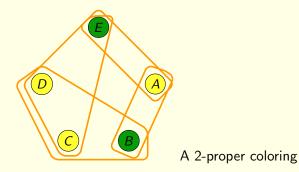
 $e_3 = \{B, C, D\}$

Hypergraph

Corresponding bipartite graph

Colorings of Hypergraph

 $c: V \to \mathbb{N}$ is a proper coloring of $\mathcal H$ if no edge is unicolor.

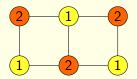


$\label{eq:complete} \text{2-Hypergraph-Coloring is NP-complete}$

Locally identifying coloring (lid-coloring)

In proper coloring :

Two adjacent vertices have distinct colors .



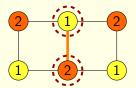
 $B_t(u) = \{v \mid d(u, v) \leq t\}$

For any edge uv, $c(B_0(u)) \neq c(B_0(v))$

Locally identifying coloring (lid-coloring)

In proper coloring :

Two adjacent vertices have distinct colors .



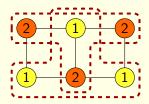
 $B_t(u) = \{v \mid d(u, v) \leq t\}$

For any edge uv, $c(B_0(u)) \neq c(B_0(v))$

Locally identifying coloring (lid-coloring)

In locally identifying coloring :

Two adjacent vertices have distinct colors in their neighborhood.



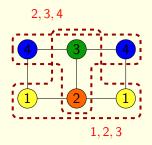
 $B_t(u) = \{v \mid d(u,v) \leq t\}$

For any edge uv, $c(B_0(u)) \neq c(B_0(v))$ and $c(B_1(u)) \neq c(B_1(v))$

Locally identifying coloring (lid-coloring)

In locally identifying coloring :

Two adjacent vertices have distinct colors in their neighborhood.



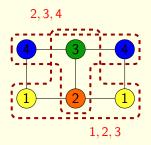
 $B_t(u) = \{v \mid d(u,v) \leq t\}$

For any edge uv, $c(B_0(u)) \neq c(B_0(v))$ and $c(B_1(u)) \neq c(B_1(v))$

Locally identifying coloring (lid-coloring)

In locally identifying coloring :

Two adjacent vertices have distinct colors in their neighborhood.

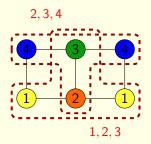


 $B_t(u) = \{v \mid d(u,v) \leq t\}$

For any edge uv, $c(B_0(u)) \neq c(B_0(v))$ and $c(B_1(u)) \neq c(B_1(v))$ whenever $B_1(u) \neq B_1(v)$ Locally identifying coloring (lid-coloring)

In locally identifying coloring :

Two adjacent vertices have distinct colors in their neighborhood.



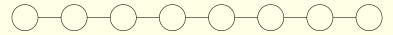
 $B_t(u) = \{v \mid d(u,v) \leq t\}$

For any edge uv, $c(B_0(u)) \neq c(B_0(v))$ and $c(B_1(u)) \neq c(B_1(v))$ whenever $B_1(u) \neq B_1(v)$

 $\chi_{lid}(G)$: lid-chromatic number

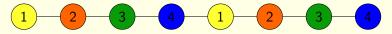
An example : the path

With 4 colors :



An example : the path

With 4 colors :



An example : the path With 4 colors :

1 2 3 4 1 2 3 4 1,2 1,2,3 2,3,4 1,3,4 1,2,4 1,2,3 2,3,4 3,4 So :

 $\chi_{lid}(P_k) \leq 4$

An example : the path With 4 colors : 1 - 2 - 3 - 4 - 1 - 2 - 3 - 41,2 1,2,3 2,3,4 1,3,4 1,2,4 1,2,3 2,3,4 3,4 So : 2 - 3 - 4

 $\chi_{lid}(P_k) \leq 4$

An example : the path With 4 colors : 1 2 3 4 1 2 3

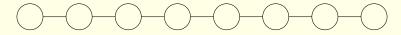
 $\chi_{lid}(P_k) \leq 4$

1, 2, 3 2, 3, 4 1, 3, 4 1, 2, 4 1, 2, 3 2, 3, 4

Is it possible with 3 colors?

1,2

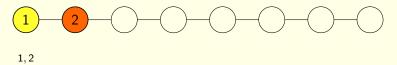
So :

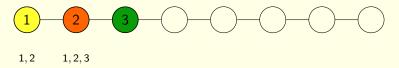


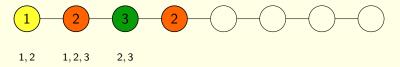
3,4

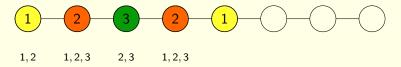
An example : the path With 4 colors : 1 - 2 - 3 - 4 - 1 - 2 - 3 - 41,2 1,2,3 2,3,4 1,3,4 1,2,4 1,2,3 2,3,4 3,4 So : (D) < 4

 $\chi_{lid}(P_k) \leq 4$

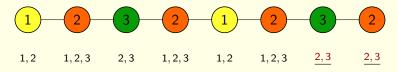








Is it possible with 3 colors?



 $\chi_{lid}(P_k) = 3 \Leftrightarrow k \text{ is odd}$

Related works

With edge colorings :

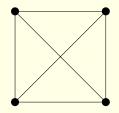
- Vertex-distinguishing edge colorings (Observability of a graph) (Hornak et al, 95'),
- Adjacent vertex-distinguishing edge colorings (Zhang et al, 02')

With total colorings :

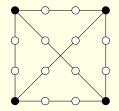
• Adjacent vertex-distinguishing total colorings (Zhang, 05')

 $\chi_{lid}(G) \geq \chi(G)$ Do we need much more than $\chi(G)$ colors?

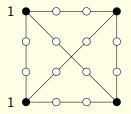
 $\chi_{lid}(G) \ge \chi(G)$ Do we need much more than $\chi(G)$ colors?



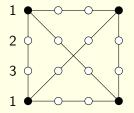
 $\chi_{lid}(G) \ge \chi(G)$ Do we need much more than $\chi(G)$ colors?



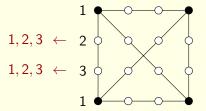
 $\chi_{lid}(G) \ge \chi(G)$ Do we need much more than $\chi(G)$ colors?



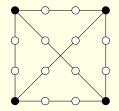
 $\chi_{lid}(G) \ge \chi(G)$ Do we need much more than $\chi(G)$ colors?



 $\chi_{lid}(G) \ge \chi(G)$ Do we need much more than $\chi(G)$ colors?



 $\chi_{lid}(G) \ge \chi(G)$ Do we need much more than $\chi(G)$ colors?



An example with $\chi(G) = 3$ and $\chi_{lid}(G) \ge k$

 χ_{lid} is not bounded by a function of χ But...

Link with maximum degree

We have :

$$\chi_{lid}(G) \leq \chi(G^3)$$

This implies :

$$\chi_{\mathit{lid}}({\mathcal{G}}) \leq \Delta({\mathcal{G}})^3 - \Delta({\mathcal{G}})^2 + \Delta({\mathcal{G}}) + 1$$

Link with maximum degree

We have :

$$\chi_{lid}(G) \leq \chi(G^3)$$

This implies :

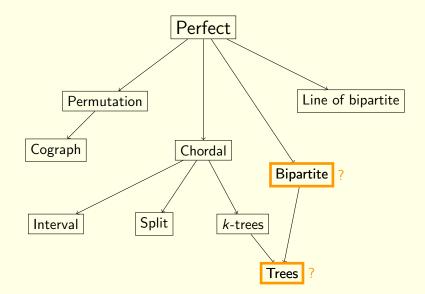
$$\chi_{\mathit{lid}}(\mathit{G}) \leq \Delta(\mathit{G})^3 - \Delta(\mathit{G})^2 + \Delta(\mathit{G}) + 1$$

We know only graph that needs $\Delta(G)^2 + \Delta(G) + 1$

No bounds with χ for general graphs..

What about "good classes" for proper colorings?

Perfect graphs

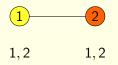


G connected graph :

• $\chi_{lid}(G) = 1 \Rightarrow G$ is a single vertex

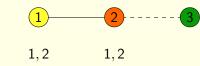
G connected graph :

- $\chi_{\textit{lid}}(G) = 1 \Rightarrow G$ is a single vertex
- $\chi_{lid}(G) = 2 \Rightarrow G$ is just an edge



G connected graph :

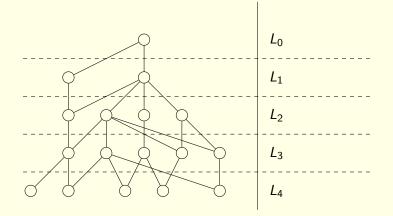
- $\chi_{\textit{lid}}(G) = 1 \Rightarrow G$ is a single vertex
- $\chi_{lid}(G) = 2 \Rightarrow G$ is just an edge

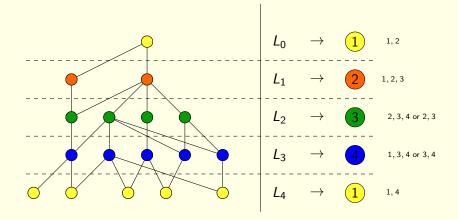


G connected graph :

- $\chi_{\textit{lid}}(G) = 1 \Rightarrow G$ is a single vertex
- $\chi_{lid}(G) = 2 \Rightarrow G$ is just an edge

*χ*_{lid}(G) = 3 ⇒ G is a triangle or a bipartite graph :
 → Partition vertices with the number of colors they see

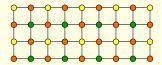




General bounds : $3 \le \chi_{lid}(B) \le 4$

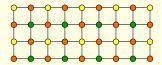
General bounds : $3 \le \chi_{lid}(B) \le 4$

 $\chi_{lid}(B) = 3$:

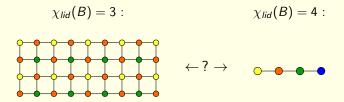


General bounds : $3 \le \chi_{lid}(B) \le 4$

$$\chi_{\mathit{lid}}(B)=3$$
 : $\chi_{\mathit{lid}}(B)=4$:



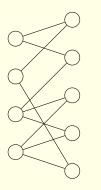
General bounds : $3 \le \chi_{lid}(B) \le 4$

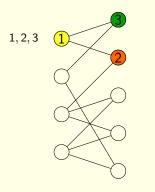


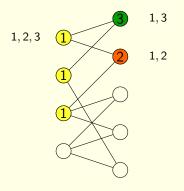
In general... 3-LID-COLORING is NP-complete in bipartite graphs

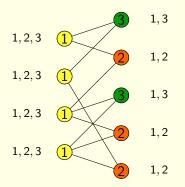
Link with 2-coloring of hypergraph

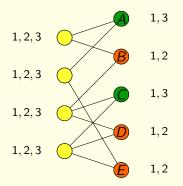
Try to color a graph with 3 colors

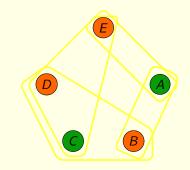


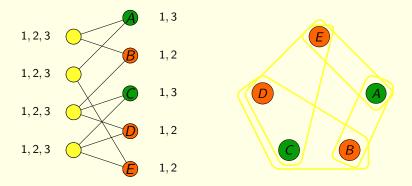




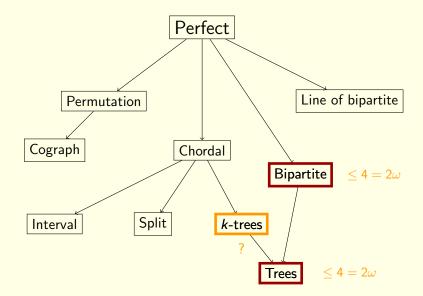




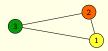


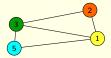


- 3-LID-COLORING in bipartite graph is NP-Complete
- Polynomial if *B* regular, if *B* is planar with maximum degree 3, if *B* is a tree.

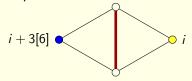


- Color the triangle with colors 1, 2, 3
- Step :

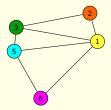




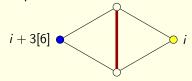
- Color the triangle with colors 1, 2, 3
- Step :



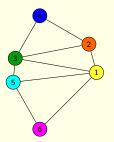
- We always have :
 - proper coloring
 - ▶ no edge (i, i + 3)



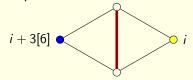
- Color the triangle with colors 1, 2, 3
- Step :



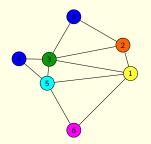
- We always have :
 - proper coloring
 - ▶ no edge (i, i + 3)



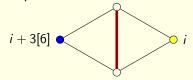
- Color the triangle with colors 1, 2, 3
- Step :



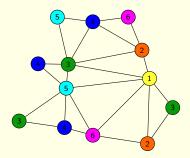
- We always have :
 - proper coloring
 - ▶ no edge (i, i + 3)



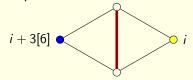
- Color the triangle with colors 1, 2, 3
- Step :



- We always have :
 - proper coloring
 - ▶ no edge (i, i + 3)



- Color the triangle with colors 1, 2, 3
- Step :

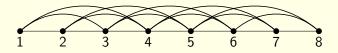


- We always have :
 - proper coloring
 - ▶ no edge (i, i + 3)

We can extend the construction to k-trees :

 \rightarrow A k-tree has lid-chromatic number at most 2k + 2

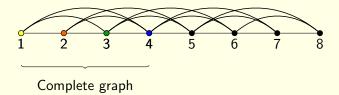
This bound is sharp : P_{2k+2}^k



We can extend the construction to k-trees :

 \rightarrow A k-tree has lid-chromatic number at most 2k + 2

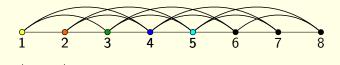
This bound is sharp : P_{2k+2}^k



We can extend the construction to k-trees :

 \rightarrow A k-tree has lid-chromatic number at most 2k + 2

This bound is sharp : P_{2k+2}^k

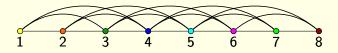


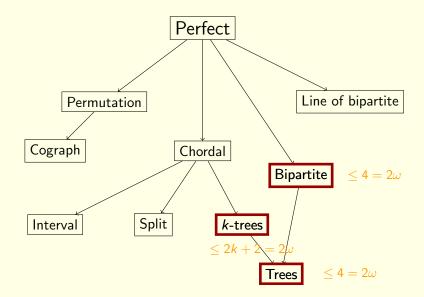
Separated by vertex 5

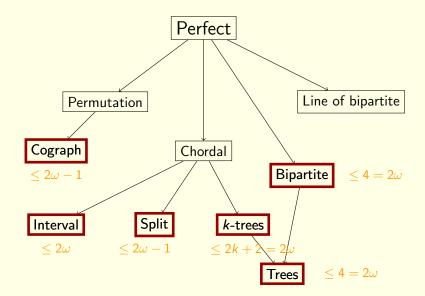
We can extend the construction to k-trees :

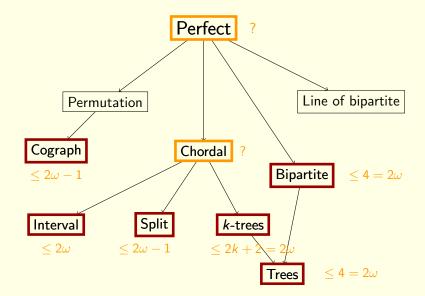
 \rightarrow A k-tree has lid-chromatic number at most 2k + 2

This bound is sharp : P_{2k+2}^k







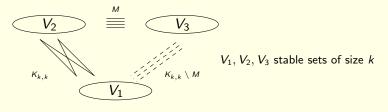


Perfect graphs are not any more perfect...

Question : Can we color any perfect graph G with $2\omega(G)$ colors?

Perfect graphs are not any more perfect...

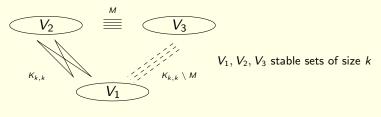
Question : Can we color any perfect graph G with $2\omega(G)$ colors? No!



 $\chi_{\it lid} \geq k+2 \ {\rm but} \ \omega=3$

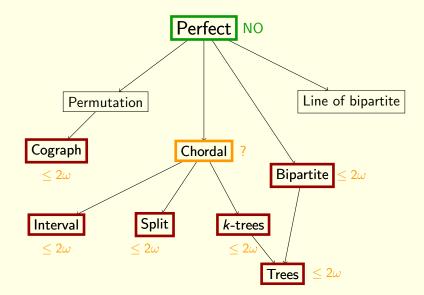
Perfect graphs are not any more perfect...

Question : Can we color any perfect graph G with $2\omega(G)$ colors? No!



 $\chi_{\it lid} \ge k+2 \ {\rm but} \ \omega=3$

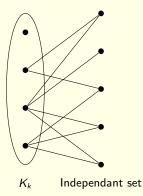
Conjecture : We can color any chordal graph G with $2\omega(G)$ colors



Chordal graph : constructed like k-trees but the size of the clique can change

Chordal graph : constructed like k-trees but the size of the clique can change

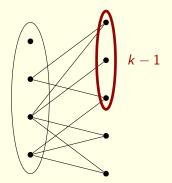
Split graphs :



Chordal graph : constructed like k-trees but the size of the clique can change

Split graphs :

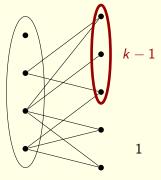
 Bondy's theorem : k - 1 vertices of the stable set are enough to separate the clique vertices



Chordal graph : constructed like k-trees but the size of the clique can change

Split graphs :

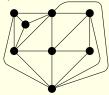
- Bondy's theorem : k 1 vertices of the stable set are enough to separate the clique vertices
- \rightarrow We can color with 2k colors
- \rightarrow Possible with 2k 1 colors
- \rightarrow It's sharp



k couleurs

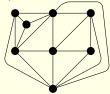
Is lid-chromatic number bounded for planar graphs?

• Worse example : 8 colors,



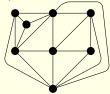
Is lid-chromatic number bounded for planar graphs?

- Worse example : 8 colors,
- With large girth (36) bounded by 5



Is lid-chromatic number bounded for planar graphs?

- Worse example : 8 colors,
- With large girth (36) bounded by 5

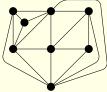


Is lid-chromatic number bounded for planar graphs?

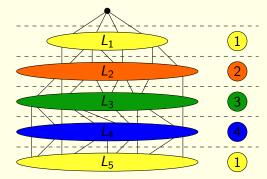
- Worse example : 8 colors,
- With large girth (36) bounded by 5

Outerplanar graphs :

- General bound : 20 colors,
- Max outerplanar graphs : \leq 6 colors,
- Without triangles : \leq 8 colors,
- Examples with at most 6 colors



A bound for outerplanar graphs



- a layer = union of paths,
- 5 colors in a layer,
- 4 × 5 = 20

Really large bound by Gonzcales and Pinlou (2010)

More general result :

Any family of graph closed by minor has lid-chromatic bounded

A remark

- For some subclasses of perfect graphs : $\chi_{\mathit{lid}}(\mathcal{G}) \leq 2\omega(\mathcal{G}) = 2\chi(\mathcal{G})$
- For planar graphs, worse example : $\chi_{lid}(G) \leq 8 = 2\chi(G)$
- For outerplanar graphs, worse example : $\chi_{lid}(G) \leq 6 = 2\chi(G)$

A remark

- For some subclasses of perfect graphs : $\chi_{\mathit{lid}}(G) \leq 2\omega(G) = 2\chi(G)$
- For planar graphs, worse example : $\chi_{lid}(G) \leq 8 = 2\chi(G)$
- For outerplanar graphs, worse example : $\chi_{lid}(G) \leq 6 = 2\chi(G)$

For which graphs do we have $\chi_{lid}(G) \leq 2\chi(G)$? Is it true for planar graphs?

^{• ...}

Some open problems

- Find a good bound for χ_{lid} in planar graphs
- Prove (or disprove) conjecture for chordal graphs
- For which graphs $\chi_{lid} = \chi$?
- Better bound with maximum degree Δ ?
- What about a global version?

Kiitos!