Locally identifying colorings of graphs

Aline Parreau

Turku, March 28th, 2011
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Proper coloring

Graph G = (V,E)
Proper coloring : ¢: V — Ns.t. uv € E = c(u) # c(v)
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A well-known example

4-Colour Theorem :

o

But also : frequency allocation, scheduling,...
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Chromatic number

Chromatic number x(G) : minimum number of colors to have a
porper coloring :
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A lower bound...

Clique number w(G) : max k such that there are k vertices in G
that are all connected to each other

w(G)=3
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A lower bound...

Clique number w(G) : max k such that there are k vertices in G
that are all connected to each other

w(G)=4

For any graph G, x(G) > w(G)
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... that is not always reached

X(Gs) = 3 but w(Gs) =2
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... that is not always reached

X(Gs) = 3 but w(Gs) =2

Mycielski graphs My such that x(My) = k but w(My) =2
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An upper bound

A(G) : maximum degree of G

Upper bound with greedy algorithm :
x(G) <A(G) +1
Tight for : complete graphs, odd cycles

Brook's theorem (1941) :

X(G) < A(G) if G is not a complete graph or an odd cycle
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It's hard to guess'!

k-COLORING is NP-complete for any k > 3

Even for k = 3 and planar graphs with maximum degree 4!
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Good graphs for coloring

Perfect graph (1963) : G is perfect if w(H) = x(H) for any
induced subgraph H of G

Examples :

e trees (and bipartite graphs) : Qéﬁ

e interval graphs :
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Strong Perfect Graph Theorem

Remark : perfect graphs are stable by induced subgraphs

Smallest non perfect graphs?
— odd cycles of size > 5, complement of odd cycles of size > 5

Strong Perfect Graph Theorem (Chudnovsky, Robertson,
Seymour, Thomas 2002) :

G is perfect if and only if it has no induced odd cycle or
complement of odd cycle with more than 5 vertices
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A part of the big family of perfect graphs

Perfect

’ Line of bipartite

Chordal
Bipartite

Interval
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k-trees

Construction of 2-trees :

o~}

e Start with a triangle
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Hypergraph

Hypergraph H = (V,E) where an edge e € £ is a subset of vertices

e, ={C,D,E} © e = {A E}

©, @
o & ={A B}

€3 = {B, C, D}

Hypergraph
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Hypergraph

Hypergraph H = (V,E) where an edge e € £ is a subset of vertices

e, ={C,D,E} © e = {A E}

© @

€ = {Av B}
€3 = {B, C, D}
Hypergraph Corresponding bipartite

graph
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Colorings of Hypergraph

c: V — Nis a proper coloring of H if no edge is unicolor.
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A 2-proper coloring

2-HYPERGRAPH-COLORING is NP-complete
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Locally identifying coloring (lid-coloring)
In proper coloring :

Two adjacent vertices have distinct colors .

Bi(u) ={v|d(u,v) <t}

For any edge uv, c(Boy(u)) # c(Bo(v))
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Locally identifying coloring (lid-coloring)

In locally identifying coloring :

Two adjacent vertices have distinct colors in their neighborhood.

Bi(u) ={v|d(u,v) <t}

For any edge uv, c(By(u)) # c(Bo(v)) and c(Bi(u)) # c(Bi(v))
whenever Bj(u) # Bi(v)

XJid(G) : lid-chromatic number
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An example : the path
With 4 colors :

OnOnOntnOn®nOn®
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An example : the path
With 4 colors :

000000

1,2 1,23 23,4 1,34 1,24 1,23 23,4 34

So:
Xid(Pk) < 4

Is it possible with 3 colors?

1,2 1,2,3 2,3 1,2,3 1,2 1,2,3 2,3 2,3

Xlid(Pk) =3 < kis odd
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Related works

With edge colorings :
e Vertex-distinguishing edge colorings (Observability of a graph)
(Hornak et al, 95),
o Adjacent vertex-distinguishing edge colorings (Zhang et al,
02')
With total colorings :
o Adjacent vertex-distinguishing total colorings (Zhang, 05")
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Link with chromatic number

Xiid(G) > x(G)
Do we need much more than x(G) colors?
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Link with chromatic number

Xiid(G) > x(G)
Do we need much more than x(G) colors?

1
1,23 « 2
1,2,3 < 3
1

An example with x(G) = 3 and x/is(G) > k
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Link with chromatic number

Xiid(G) > x(G)
Do we need much more than x(G) colors?

An example with x(G) = 3 and x/is(G) > k

XJid is not bounded by a function of
But...
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Link with maximum degree

We have :
xid(G) < x(G?)

This implies :

Xid(G) < A(G)* = A(G)* + A(G) + 1
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Link with maximum degree

We have :
xid(G) < x(G?)

This implies :

Xid(G) < A(G)* = A(G)* + A(G) + 1

We know only graph that needs A(G)? + A(G) + 1
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Transition Slide

No bounds with x for general graphs..

What about “good classes” for proper colorings ?
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Perfect graphs

Perfect

Line of bipartite

Chordal
Bipartite

Interval

Trees
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An amazing fact about bipartite graphs

G connected graph :
e xid(G) =1 = G is a single vertex
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An amazing fact about bipartite graphs

G connected graph :
e xid(G) =1 = G is a single vertex
e xid(G) =2 = G is just an edge

1,2 1,2

e xid(G) =3 = G is a triangle or a bipartite graph :
— Partition vertices with the number of colors they see
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Bipartite graphs

Lo
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Bipartite graphs
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Bipartite graphs

General bounds : 3 < x,4(B) < 4
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Bipartite graphs

General bounds : 3 < x,4(B) < 4

o

Xlid(B) = 3 :

1]

8

5
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a0

5
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In general... 3-LID-COLORING is NP-complete in bipartite graphs
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Link with 2-coloring of hypergraph

Try to color a graph with 3 colors
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1,2,3

1,2,3

1,2,3

1,2,3

AN
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Link with 2-coloring of hypergraph

Try to color a graph with 3 colors

1,2,3

1,2,3

1,2,3

1,2,3

1,3

1,2

1,3
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Link with 2-coloring of hypergraph

Try to color a graph with 3 colors

1,3
1,2,3 .
1,2
19,9
s @ ®
1,2,3
1,2
1,2,3 . .
1,2

e 3-LiD-COLORING in bipartite graph is NP-Complete

e Polynomial if B regular, if B is planar with maximum degree
3, if B is a tree.
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Perfect graphs

Perfect

Chordal

Interval

’ Line of bipartite

Bipartite

k—érees
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To perfect graph : k-trees

Lid-coloring of 2-trees with 6 colors :

e Color the triangle with
colors 1,2,3

e Step :

o— |
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To perfect graph : k-trees

Lid-coloring of 2-trees with 6 colors :

e Color the triangle with
colors 1,2,3

°"\ . Step

‘gc i+ 3[6] i

S

e We always have :

> proper coloring
> no edge (i,i+3)
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To perfect graph : k-trees

We can extend the construction to k-trees :

— A k-tree has lid-chromatic number at most 2k + 2

This bound is sharp : P§k+2

30/40



To perfect graph : k-trees

We can extend the construction to k-trees :

— A k-tree has lid-chromatic number at most 2k + 2

This bound is sharp : P§k+2

Complete graph

30/40



To perfect graph : k-trees

We can extend the construction to k-trees :

— A k-tree has lid-chromatic number at most 2k + 2

This bound is sharp : P§k+2

Separated by vertex 5

30/40



To perfect graph : k-trees

We can extend the construction to k-trees :

— A k-tree has lid-chromatic number at most 2k + 2

This bound is sharp : P§k+2

30/40



Perfect Graphs

Perfect

’ Line of bipartite

Bipartite

Interval

31/40



Perfect Graphs

Cograph

Interval

Permutation

Perfect

] Line of bipartite

Chordal |

Bipartite

Split

| k-trees |

31/40



Perfect Graphs

Permutation

Cograph

Interval

Perfect
] Line of bipartite
Chordal
Bipartite
Split | k-trees |

31/40



Perfect graphs are not any more perfect...

Can we color any perfect graph G with 2w(G) colors?
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Perfect graphs are not any more perfect...

Can we color any perfect graph G with 2w(G) colors?
No!

Ve >

P
s,
7z // .
\ 2222 Vi, Vo, V3 stable sets of size k
&, %
K,k T K\ M

Xiid = k+2 but w=3

We can color any chordal graph G with 2w(G) colors
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Perfect Graphs

Permutation

Cograph

Interval

Perfect | NO
] Line of bipartite
Chordal
Bipartite
Split | k-trees |
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To support the conjecture : Split graphs

Chordal graph : constructed like k-trees but the size of the clique
can change
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To support the conjecture : Split graphs

Chordal graph : constructed like k-trees but the size of the clique
can change

Split graphs :

e Bondy's theorem : k —1
vertices of the stable set are k—1
enough to separate the
clique vertices

— We can color with 2k colors
— Possible with 2k — 1 colors |
— It's sharp

k couleurs
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Planar graphs

Is lid-chromatic number bounded for planar graphs?

e Worse example : 8 colors,
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Planar graphs

Is lid-chromatic number bounded for planar graphs?

e Worse example : 8 colors,
e With large girth (36) bounded by 5

Outerplanar graphs :

e General bound : 20 colors,
e Max outerplanar graphs : < 6 colors, m
e Without triangles : < 8 colors,

e Examples with at most 6 colors
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A bound for outerplanar graphs

e a layer = union
of paths,

e 5 colorsin a
layer,

e 4 x5=20
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Bound for planar graphs?

Really large bound by Gonzcales and Pinlou (2010)

More general result :

Any family of graph closed by minor has lid-chromatic bounded
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A remark

e For some subclasses of perfect graphs :
XIid(G) S 2w(G) = 2X(G)
For planar graphs, worse example : x4(G) < 8 = 2x(G)

For outerplanar graphs, worse example : x/iy(G) < 6 = 2x(G)
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A remark

e For some subclasses of perfect graphs :
Xiid(G) < 2w(G) = 2x(G)
e For planar graphs, worse example : x4(G) < 8 = 2x(G)
e For outerplanar graphs, worse example : x/ig(G) < 6 = 2x(G)
. ...

For which graphs do we have x/is(G) < 2x(G)? Is it true for
planar graphs?
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Some open problems

Find a good bound for x/q in planar graphs

Prove (or disprove) conjecture for chordal graphs

For which graphs x4 = x 7

Better bound with maximum degree A7

What about a global version?
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