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Proper coloring

Graph G = (V ,E )
Proper coloring : c : V → N s.t. uv ∈ E ⇒ c(u) 6= c(v)
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A well-known example
4-Colour Theorem :

But also : frequency allocation, scheduling,...
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Chromatic number

Chromatic number χ(G ) : minimum number of colors to have a
porper coloring :
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A lower bound...

Clique number ω(G ) : max k such that there are k vertices in G
that are all connected to each other

ω(G ) = 3

For any graph G , χ(G ) ≥ ω(G )
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... that is not always reached
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χ(C5) = 3 but ω(C5) = 2

Mycielski graphs Mk such that χ(Mk) = k but ω(Mk) = 2
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An upper bound

∆(G ) : maximum degree of G

Upper bound with greedy algorithm :

χ(G ) ≤ ∆(G ) + 1

Tight for : complete graphs, odd cycles

Brook’s theorem (1941) :

χ(G ) ≤ ∆(G ) if G is not a complete graph or an odd cycle
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It’s hard to guess !

k-Coloring is NP-complete for any k ≥ 3

Even for k = 3 and planar graphs with maximum degree 4 !
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Good graphs for coloring

Perfect graph (1963) : G is perfect if ω(H) = χ(H) for any
induced subgraph H of G

Examples :

• trees (and bipartite graphs) :

• interval graphs :
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Strong Perfect Graph Theorem

Remark : perfect graphs are stable by induced subgraphs

Smallest non perfect graphs ?
→ odd cycles of size ≥ 5, complement of odd cycles of size ≥ 5

Strong Perfect Graph Theorem (Chudnovsky, Robertson,
Seymour, Thomas 2002) :

G is perfect if and only if it has no induced odd cycle or
complement of odd cycle with more than 5 vertices
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A part of the big family of perfect graphs

Perfect

Chordal

Permutation Line of bipartite

Cograph

Trees

k-treesSplit

Bipartite

Interval

13/40



k-trees

Construction of 2-trees :

• Start with a triangle

• Choose an edge

• Add a vertex connected to
the 2 vertices of the edge

• Repeat the operation

Remark : any edge is in a triangle
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Hypergraph

Hypergraph H = (V , E) where an edge e ∈ E is a subset of vertices
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Colorings of Hypergraph

c : V → N is a proper coloring of H if no edge is unicolor.

E

D

C B

A

A 2-proper coloring

2-Hypergraph-Coloring is NP-complete
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Locally identifying coloring (lid-coloring)

In proper coloring :

Two adjacent vertices have distinct colors .

1 12

12 2

1 12

34 4

1, 2, 3

2, 3, 4

Bt(u) = {v | d(u, v) ≤ t}

For any edge uv , c(B0(u)) 6= c(B0(v))

and c(B1(u)) 6= c(B1(v))
whenever B1(u) 6= B1(v)

χlid(G ) : lid-chromatic number
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An example : the path
With 4 colors :

1 2 3 4 1 2 3 4

1, 2 1, 2, 3 2, 3, 4 1, 3, 4 1, 2, 4 1, 2, 3 2, 3, 4 3, 4

So :
χlid(Pk) ≤ 4

Is it possible with 3 colors ?

1 2

1, 2

3

1, 2, 3

2

2, 3

1

1, 2, 3

2 3 2

1, 2 1, 2, 3 2, 3 2, 3

χlid(Pk) = 3 ⇔ k is odd
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Related works

With edge colorings :

• Vertex-distinguishing edge colorings (Observability of a graph)
(Hornak et al, 95’),

• Adjacent vertex-distinguishing edge colorings (Zhang et al,
02’)

With total colorings :

• Adjacent vertex-distinguishing total colorings (Zhang, 05’)
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Link with chromatic number

χlid(G ) ≥ χ(G )
Do we need much more than χ(G ) colors ?

1

1

2

3

1, 2, 3 ←

1, 2, 3 ←

An example with χ(G ) = 3 and χlid(G ) ≥ k

χlid is not bounded by a function of χ
But...
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Link with maximum degree

We have :
χlid(G ) ≤ χ(G 3)

This implies :

χlid(G ) ≤ ∆(G )3 −∆(G )2 + ∆(G ) + 1

We know only graph that needs ∆(G )2 + ∆(G ) + 1
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Transition Slide

No bounds with χ for general graphs..

What about “good classes” for proper colorings ?
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Perfect graphs

Perfect

Chordal

Permutation Line of bipartite

Cograph

Trees

k-treesSplit

Bipartite

Interval

Trees

Bipartite

?

?
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An amazing fact about bipartite graphs

G connected graph :

• χlid(G ) = 1 ⇒ G is a single vertex

• χlid(G ) = 2 ⇒ G is just an edge

1

1, 2

3

2

1, 2

• χlid(G ) = 3 ⇒ G is a triangle or a bipartite graph :
→ Partition vertices with the number of colors they see
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Bipartite graphs
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Bipartite graphs

General bounds : 3 ≤ χlid(B) ≤ 4

χlid(B) = 3 : χlid(B) = 4 :

← ? →

In general... 3-Lid-Coloring is NP-complete in bipartite graphs
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Link with 2-coloring of hypergraph

Try to color a graph with 3 colors

1, 2, 3

1, 2

1, 3

1, 2

1, 2

1, 3

1, 2, 3

1, 2, 3

1, 2, 3

E

D

C

B

A

2

2

3

1

1

1

1

2

3

E

D

C B

A

• 3-Lid-Coloring in bipartite graph is NP-Complete

• Polynomial if B regular, if B is planar with maximum degree
3, if B is a tree.
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Perfect graphs

Perfect

Chordal

Permutation Line of bipartite
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Trees

Bipartite

k-trees

≤ 4 = 2ω

≤ 4 = 2ω

?
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To perfect graph : k-trees

Lid-coloring of 2-trees with 6 colors :

1

2

3

5

6

4

4

65

3
4

2

3

• Color the triangle with
colors 1, 2, 3

• Step :

i

i + 3[6]

• We always have :
I proper coloring
I no edge (i , i + 3)
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To perfect graph : k-trees

We can extend the construction to k-trees :

→ A k-tree has lid-chromatic number at most 2k + 2

This bound is sharp : Pk
2k+2

1 2 3 4 5 6 7 8

1 2 3 4

Complete graph

5

Separated by vertex 5

6 7 8
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Perfect graphs are not any more perfect...

Question : Can we color any perfect graph G with 2ω(G ) colors ?

No !

V1

V2 V3

M

Kk,k \ MKk,k

V1,V2,V3 stable sets of size k

χlid ≥ k + 2 but ω = 3

Conjecture : We can color any chordal graph G with 2ω(G ) colors
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Perfect Graphs

Perfect

Chordal

Permutation Line of bipartite

Cograph

Trees

k-treesSplit

Bipartite

Interval

Trees ≤ 2ω

Bipartite ≤ 2ω

k-trees

≤ 2ω

SplitInterval

Cograph

≤ 2ω

≤ 2ω

≤ 2ω

Perfect

Chordal

NO

?
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To support the conjecture : Split graphs

Chordal graph : constructed like k-trees but the size of the clique
can change

Split graphs :

• Bondy’s theorem : k − 1
vertices of the stable set are
enough to separate the
clique vertices

→ We can color with 2k colors

→ Possible with 2k − 1 colors

→ It’s sharp

Kk Independant setk couleurs

k − 1

1
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Planar graphs

Is lid-chromatic number bounded for planar graphs ?

• Worse example : 8 colors,

• With large girth (36) bounded by 5

Outerplanar graphs :

• General bound : 20 colors,

• Max outerplanar graphs : ≤ 6 colors,

• Without triangles : ≤ 8 colors,

• Examples with at most 6 colors
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A bound for outerplanar graphs

1

2

3

4

1

L1

L2

L3

L4

L5

• a layer = union
of paths,

• 5 colors in a
layer,

• 4× 5 = 20
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Bound for planar graphs ?

Really large bound by Gonzcales and Pinlou (2010)

More general result :

Any family of graph closed by minor has lid-chromatic bounded
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A remark

• For some subclasses of perfect graphs :
χlid(G ) ≤ 2ω(G ) = 2χ(G )

• For planar graphs, worse example : χlid(G ) ≤ 8 = 2χ(G )

• For outerplanar graphs, worse example : χlid(G ) ≤ 6 = 2χ(G )

• ...

For which graphs do we have χlid(G ) ≤ 2χ(G ) ? Is it true for
planar graphs ?
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Some open problems

• Find a good bound for χlid in planar graphs

• Prove (or disprove) conjecture for chordal graphs

• For which graphs χlid = χ ?

• Better bound with maximum degree ∆ ?

• What about a global version ?
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Kiitos !
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