
Acyclic Edge Coloring Using Entropy
Compression

Louis Esperet (G-SCOP, Grenoble, France)

Aline Parreau (LIFL, Lille, France)

Bordeaux Graph Workshop, November 2012

1/11



Acyclic Edge Colorings of graphs

An acyclic edge coloring of a graph is a coloring of the edges such that:

• two edges sharing a vertex have different color,

• there are no bicolored cycles.

• a′(G ): minimum number of colors in an acyclic edge coloring of G .

• If G has maximum degree ∆:

a′(G ) ≥ ∆.
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Result

If G has maximum degree ∆, a′(G ) ≤ ∆ + 2.

Conjecture Alon, Sudakov and Zaks, 2001

Using the Lovász Local Lemma and variations:

• a′(G ) ≤ 64∆ (Alon, McDiarmid and Reed, 1991)

• a′(G ) ≤ 16∆ (Molloy and Reed, 1998)

• a′(G ) ≤ 9.62∆ (Ndreca, Procacci and Scoppola, 2012)

If G has maximum degree ∆, a′(G ) ≤ 4∆.

Theorem Esperet and P., 2012

Method of ”entropy compression” based on the proof by Moser and
Tardos of LLL and extended by Grytczuk, Kozik and Micek.
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Algorithm

Order the edge set.
While there is an uncolored edge:

• Select the smallest uncolored edge e

• Give a random color in {1, ..., 4∆} to e (not appearing in N[e])

• If e lies in a bicolored cycle C, uncolor e and all the other edges of
C, except two edges.

G

e
C

We prove that this algorithm ends with non zero probability.
⇒ Any graph has an acyclic edge coloring with 4∆ colors.
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Recording
• We assume the algorithm is still running after t steps.
→ bad scenario

• We record in a compact way what happens during the algorithm.

G

e
C

Final partial coloring Φt

Record

1:-

2:-

...

17:-

18:Cycle C is uncolored

19:-

...

276:-

277:Cycle C′ is uncolored

278:-

...

t:-

1 record + 1 final partial coloring = 1 bad scenario
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Rewrite the history

1. Top-down reading → set of colored edges at each step.

2. Down-top reading→ partial coloring at each step and scenario.

1:-

2:-

...

17:-

18:C is uncolored

19:-

...

276:-

277:C′ is uncolored

278:-

...

t:-

1
Sets of

colored edges

2
partial colorings

and scenario

6/11



Rewrite the history

1. Top-down reading → set of colored edges at each step.

2. Down-top reading→ partial coloring at each step and scenario.

1:-

2:-

...

17:-

18:C is uncolored

19:-

...

276:-

277:C′ is uncolored

278:-

...

t:-

1
Sets of

colored edges

2
partial colorings

and scenario

ei
C

Step i

2 →

ei
C ei gets

Step i − 1

6/11



Rewrite the history

1. Top-down reading → set of colored edges at each step.

2. Down-top reading→ partial coloring at each step and scenario.

1:-

2:-

...

17:-

18:C is uncolored

19:-

...

276:-

277:C′ is uncolored

278:-

...

t:-

1
Sets of

colored edges

2
partial colorings

and scenario

ei
C

Step i

2 →
ei

C ei gets

Step i − 1

6/11



Rewrite the history

1. Top-down reading → set of colored edges at each step.

2. Down-top reading→ partial coloring at each step and scenario.

1:-

2:-

...

17:-

18:C is uncolored

19:-

...

276:-

277:C′ is uncolored

278:-

...

t:-

1
Sets of

colored edges

2
partial colorings

and scenario

⇒ 1 record + 1 final partial coloring = 1 bad scenario

6/11



Summary

1 record +1 partial coloring = 1 bad scenario

≤ (4∆ + 1)m? ?

How many possible records ?
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Compact records of cycles

• We know one edge e of C.

• No choice for the last edge

C

e

2

3

1

3

5

4

≤ ∆

≤ ∆

i:C is uncolored i:231354⇔

• Cycle coded by a word on {1, ...,∆}2k−2 where 2k is the length of C.
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Number of records

( − , − , ..., − , 231354 , − , ..., − , 4213 , − , ..., − )Record

0 0 0 0111111 0 0 01111 0 0

0↔ :
an edge is colored

1↔ :
an edge is uncolored

t

Number of colored edges

Partial Dyck word of length ≤ 2t and blocks of ones of even size.

→ Number of such words : 2t/t3/2

→ Number of records : (2∆)t/t3/2
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End of the proof

1 record +1 partial coloring = 1 bad scenario

(4∆ + 1)m

(2∆)t/t3/2 (4∆+1)m(2∆)t

t3/2

• Number of scenarios: (2∆)t

• Number of bad scenarios: (4∆+1)m(2∆)t

t3/2 = o((2∆)t)

⇒ For t large enough, there are good scenarios.

⇔ The algorithm stops with nonzero probability !
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Conclusion

If G has maximum degree ∆ and girth g :
• a′(G ) ≤ 4∆;

• if g ≥ 7, a′(G ) ≤ 3.74∆;

• if g ≥ 53, a′(G ) ≤ 3.14∆;

• if g ≥ 220, a′(G ) ≤ 3.05∆.

Theorem Esperet and P., 2012

• Procedure in expected polynomial time using (4 + ε)∆ colors.

• Holds also for list coloring.

• Can be applied for any coloring with ”forbidden” configurations.

Thanks !
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