Acyclic Edge Coloring Using Entropy Compression

Louis Esperet (G-SCOP, Grenoble, France) Aline Parreau (LIFL, Lille, France)

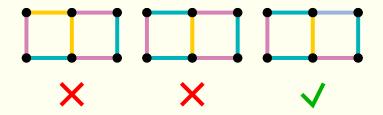
Bordeaux Graph Workshop, November 2012

maths a modeler

Acyclic Edge Colorings of graphs

An acyclic edge coloring of a graph is a coloring of the edges such that:

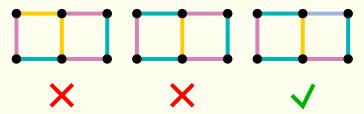
- two edges sharing a vertex have different color,
- there are no bicolored cycles.



Acyclic Edge Colorings of graphs

An acyclic edge coloring of a graph is a coloring of the edges such that:

- two edges sharing a vertex have different color,
- there are no bicolored cycles.



- a'(G): minimum number of colors in an acyclic edge coloring of G.
- If G has maximum degree Δ :

 $a'(G) \geq \Delta$.

Result

Conjecture Alon, Sudakov and Zaks, 2001

If G has maximum degree Δ , $a'(G) \leq \Delta + 2$.

Result

Conjecture Alon, Sudakov and Zaks, 2001

If G has maximum degree Δ , $a'(G) \leq \Delta + 2$.

Using the Lovász Local Lemma and variations:

- $a'(G) \leq 64\Delta$ (Alon, McDiarmid and Reed, 1991)
- $a'(G) \leq 16\Delta$ (Molloy and Reed, 1998)
- $a'(G) \leq 9.62\Delta$ (Ndreca, Procacci and Scoppola, 2012)

Result

Conjecture Alon, Sudakov and Zaks, 2001

If G has maximum degree Δ , $a'(G) \leq \Delta + 2$.

Using the Lovász Local Lemma and variations:

- $a'(G) \leq 64\Delta$ (Alon, McDiarmid and Reed, 1991)
- $a'(G) \leq 16\Delta$ (Molloy and Reed, 1998)
- $a'(G) \leq 9.62\Delta$ (Ndreca, Procacci and Scoppola, 2012)

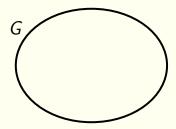
Theorem Esperet and P., 2012

If G has maximum degree Δ , $a'(G) \leq 4\Delta$.

Method of "entropy compression" based on the proof by Moser and Tardos of LLL and extended by Grytczuk, Kozik and Micek.

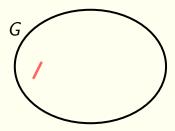
Order the edge set.

- Select the smallest uncolored edge e
- Give a random color in $\{1, ..., 4\Delta\}$ to e (not appearing in N[e])
- If *e* lies in a bicolored cycle *C*, uncolor *e* and all the other edges of *C*, except two edges.



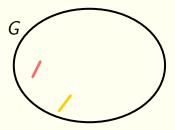
Order the edge set.

- Select the smallest uncolored edge e
- Give a random color in $\{1, ..., 4\Delta\}$ to e (not appearing in N[e])
- If *e* lies in a bicolored cycle *C*, uncolor *e* and all the other edges of *C*, except two edges.



Order the edge set.

- Select the smallest uncolored edge e
- Give a random color in $\{1, ..., 4\Delta\}$ to e (not appearing in N[e])
- If *e* lies in a bicolored cycle *C*, uncolor *e* and all the other edges of *C*, except two edges.



Order the edge set.

- Select the smallest uncolored edge e
- Give a random color in $\{1, ..., 4\Delta\}$ to e (not appearing in N[e])
- If *e* lies in a bicolored cycle *C*, uncolor *e* and all the other edges of *C*, except two edges.



Order the edge set.

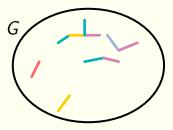
- Select the smallest uncolored edge e
- Give a random color in $\{1, ..., 4\Delta\}$ to e (not appearing in N[e])
- If *e* lies in a bicolored cycle *C*, uncolor *e* and all the other edges of *C*, except two edges.

Order the edge set.

- Select the smallest uncolored edge e
- Give a random color in $\{1, ..., 4\Delta\}$ to e (not appearing in N[e])
- If *e* lies in a bicolored cycle *C*, uncolor *e* and all the other edges of *C*, except two edges.

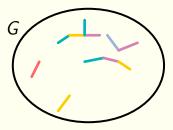
Order the edge set.

- Select the smallest uncolored edge e
- Give a random color in $\{1, ..., 4\Delta\}$ to e (not appearing in N[e])
- If *e* lies in a bicolored cycle *C*, uncolor *e* and all the other edges of *C*, except two edges.



Order the edge set.

- Select the smallest uncolored edge e
- Give a random color in $\{1, ..., 4\Delta\}$ to e (not appearing in N[e])
- If *e* lies in a bicolored cycle *C*, uncolor *e* and all the other edges of *C*, except two edges.



Order the edge set.

- Select the smallest uncolored edge e
- Give a random color in $\{1, ..., 4\Delta\}$ to e (not appearing in N[e])
- If *e* lies in a bicolored cycle *C*, uncolor *e* and all the other edges of *C*, except two edges.

Order the edge set.

- Select the smallest uncolored edge e
- Give a random color in $\{1, ..., 4\Delta\}$ to e (not appearing in N[e])
- If *e* lies in a bicolored cycle *C*, uncolor *e* and all the other edges of *C*, except two edges.

Order the edge set.

- Select the smallest uncolored edge e
- Give a random color in $\{1, ..., 4\Delta\}$ to e (not appearing in N[e])
- If *e* lies in a bicolored cycle *C*, uncolor *e* and all the other edges of *C*, except two edges.

Order the edge set.

- Select the smallest uncolored edge e
- Give a random color in $\{1, ..., 4\Delta\}$ to e (not appearing in N[e])
- If *e* lies in a bicolored cycle *C*, uncolor *e* and all the other edges of *C*, except two edges.

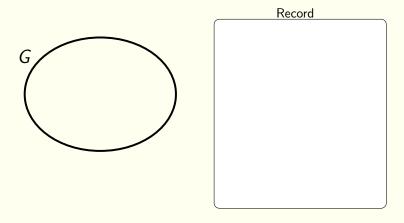
Order the edge set.

While there is an uncolored edge:

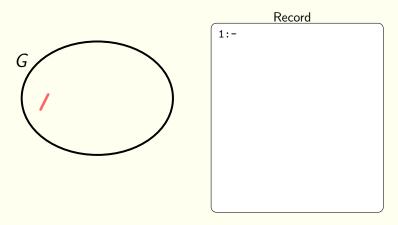
- Select the smallest uncolored edge e
- Give a random color in $\{1, ..., 4\Delta\}$ to e (not appearing in N[e])
- If *e* lies in a bicolored cycle *C*, uncolor *e* and all the other edges of *C*, except two edges.

We prove that this algorithm ends with non zero probability. \Rightarrow Any graph has an acyclic edge coloring with 4 Δ colors.

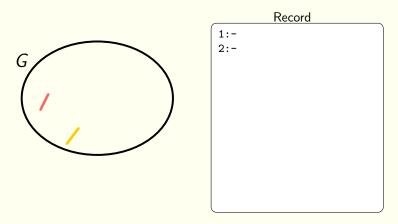
- We assume the algorithm is still running after t steps.
 → bad scenario
- We record in a compact way what happens during the algorithm.



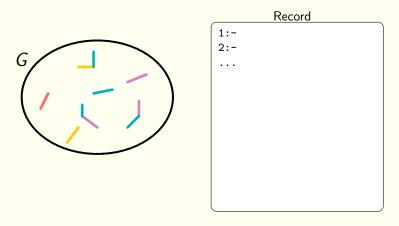
- We assume the algorithm is still running after t steps.
 → bad scenario
- We record in a compact way what happens during the algorithm.



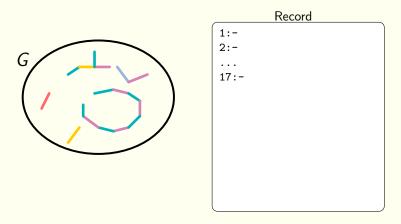
- We assume the algorithm is still running after t steps.
 → bad scenario
- We record in a compact way what happens during the algorithm.



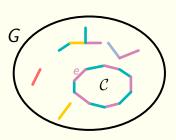
- We assume the algorithm is still running after t steps.
 → bad scenario
- We record in a compact way what happens during the algorithm.



- We assume the algorithm is still running after t steps.
 → bad scenario
- We record in a compact way what happens during the algorithm.

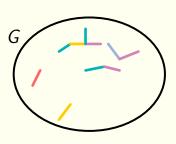


- We assume the algorithm is still running after t steps.
 → bad scenario
- We record in a compact way what happens during the algorithm.



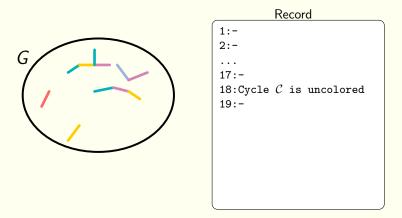
Record
1:-
2:-
 17:-
18:Cycle ${\mathcal C}$ is uncolored

- We assume the algorithm is still running after t steps.
 → bad scenario
- We record in a compact way what happens during the algorithm.

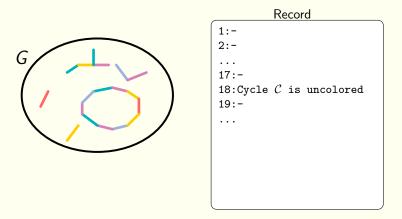


Record
1:-
2:-
17:-
18:Cycle ${\mathcal C}$ is uncolored

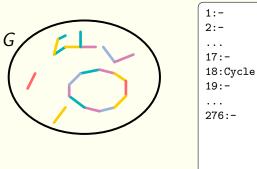
- We assume the algorithm is still running after t steps.
 → bad scenario
- We record in a compact way what happens during the algorithm.



- We assume the algorithm is still running after t steps.
 → bad scenario
- We record in a compact way what happens during the algorithm.

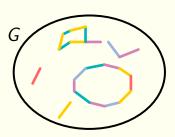


- We assume the algorithm is still running after t steps.
 → bad scenario
- We record in a compact way what happens during the algorithm.



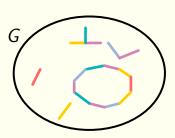
Record
1:- 2:-
 17:- 18:Cycle <i>C</i> is uncolored 19:-
276:-
)

- We assume the algorithm is still running after t steps.
 → bad scenario
- We record in a compact way what happens during the algorithm.



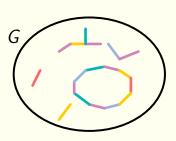
Record
1:- 2:-
 17:- 18:Cycle <i>C</i> is uncolored 19:-
276:- 277:Cycle \mathcal{C}' is uncolored

- We assume the algorithm is still running after t steps.
 → bad scenario
- We record in a compact way what happens during the algorithm.



1:-
2:-
17:- 18:Cycle C is uncolored 19:-
 276:- 277:Cycle \mathcal{C}' is uncolored

- We assume the algorithm is still running after t steps.
 → bad scenario
- We record in a compact way what happens during the algorithm.



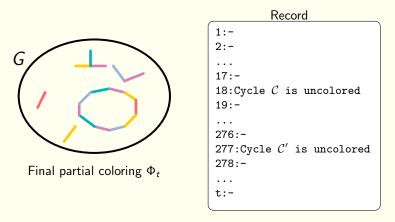
Record
1:-
2:-
 17:-
18:Cycle \mathcal{C} is uncolored
19:-
276:-
277:Cycle C' is uncolored
278:-
<u> </u>

- We assume the algorithm is still running after t steps. \rightarrow bad scenario
- We record in a compact way what happens during the algorithm.

Final partial coloring Φ_t

Record
1:- 2:-
17:- 18:Cycle <i>C</i> is uncolored 19:-
 276:- 277:Cycle \mathcal{C}' is uncolored 278:-
 t:-

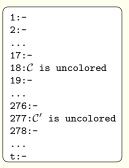
- We assume the algorithm is still running after t steps. \rightarrow bad scenario
- We record in a compact way what happens during the algorithm.



 $1\ {\rm record} + 1\ {\rm final}\ {\rm partial}\ {\rm coloring} = 1\ {\rm bad}\ {\rm scenario}$

Rewrite the history

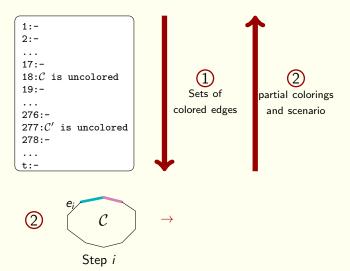
1. Top-down reading \rightarrow set of colored edges at each step.



(1) Sets of colored edges

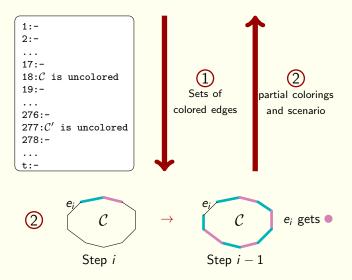
Rewrite the history

- 1. Top-down reading \rightarrow set of colored edges at each step.
- 2. Down-top reading \rightarrow partial coloring at each step and scenario.



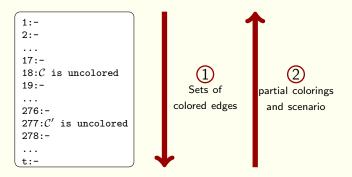
Rewrite the history

- 1. Top-down reading \rightarrow set of colored edges at each step.
- 2. Down-top reading \rightarrow partial coloring at each step and scenario.



Rewrite the history

- 1. Top-down reading \rightarrow set of colored edges at each step.
- 2. Down-top reading \rightarrow partial coloring at each step and scenario.



 \Rightarrow 1 record + 1 final partial coloring = 1 bad scenario

1 record +1 partial coloring = 1 bad scenario

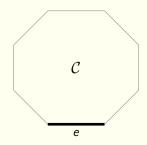
Summary

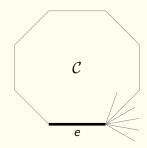
1 record +1 partial coloring = 1 bad scenario $\hat{\big|} \\ \leq (4\Delta+1)^m$

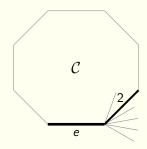
Summary

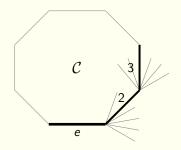
$$\begin{array}{c|c} 1 \ \text{record} \ +1 \ \text{partial coloring} \ = \ 1 \ \text{bad scenario} \\ & & & \\ ? & & \leq (4\Delta+1)^m \end{array} ?$$

How many possible records ?



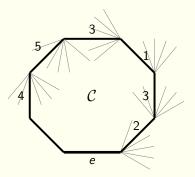


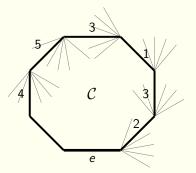




- 3 4 C 2 e
- We know one edge e of C.
- No choice for the last edge

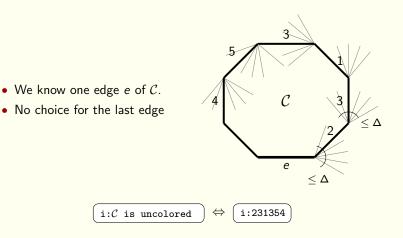
- We know one edge e of C.
- No choice for the last edge





- We know one edge e of C.
- No choice for the last edge

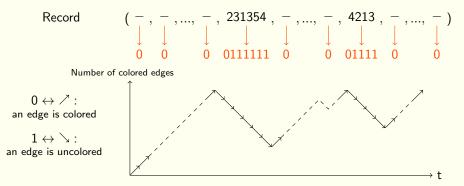
$$i:\mathcal{C} \text{ is uncolored } \Leftrightarrow (i:231354)$$



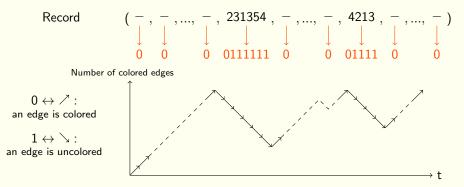
• Cycle coded by a word on $\{1, ..., \Delta\}^{2k-2}$ where 2k is the length of C.

Record
$$(-, -, ..., -, 231354, -, ..., -, 4213, -, ..., -)$$

Record

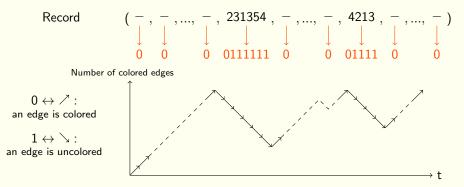


Partial Dyck word of length $\leq 2t$ and blocks of ones of even size.



Partial Dyck word of length $\leq 2t$ and blocks of ones of even size.

 \rightarrow Number of such words : $2^t/t^{3/2}$



Partial Dyck word of length $\leq 2t$ and blocks of ones of even size.

- \rightarrow Number of such words : $2^t/t^{3/2}$
- \rightarrow Number of records : $(2\Delta)^t/t^{3/2}$

```
1 record +1 partial coloring = 1 bad scenario \hat{\big|} \\ (4\Delta+1)^m
```

$$\begin{array}{c|c} 1 \ {\sf record} \ +1 \ {\sf partial} \ {\sf coloring} = 1 \ {\sf bad} \ {\sf scenario} \\ & & & \\ (2\Delta)^t/t^{3/2} \qquad (4\Delta+1)^m \end{array}$$

$$\begin{array}{c|c} 1 \ \text{record} \ +1 \ \text{partial coloring} = 1 \ \text{bad scenario} \\ & \uparrow & \uparrow \\ (2\Delta)^t/t^{3/2} & (4\Delta+1)^m & \frac{(4\Delta+1)^m (2\Delta)^t}{t^{3/2}} \end{array}$$

$$\begin{array}{c|c} 1 \ \text{record} \ +1 \ \text{partial coloring} = 1 \ \text{bad scenario} \\ & & \uparrow \\ (2\Delta)^t/t^{3/2} & (4\Delta+1)^m & \frac{(4\Delta+1)^m(2\Delta)^t}{t^{3/2}} \end{array}$$

• Number of scenarios: $(2\Delta)^t$

• Number of bad scenarios:
$$\frac{(4\Delta+1)^m(2\Delta)^t}{t^{3/2}} = o((2\Delta)^t)$$

$$\begin{array}{c|c} 1 \ \text{record} \ +1 \ \text{partial coloring} = 1 \ \text{bad scenario} \\ & & & & \\ & & & & \\ 2\Delta)^t/t^{3/2} & (4\Delta+1)^m & \frac{(4\Delta+1)^m(2\Delta)^t}{t^{3/2}} \end{array}$$

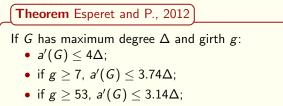
• Number of scenarios: $(2\Delta)^t$

• Number of bad scenarios:
$$\frac{(4\Delta+1)^m(2\Delta)^t}{t^{3/2}} = o((2\Delta)^t)$$

 \Rightarrow For t large enough, there are good scenarios.

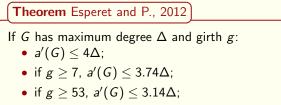
 \Leftrightarrow The algorithm stops with nonzero probability !

Conclusion



- if $g \ge 220$, $a'(G) \le 3.05\Delta$.
- Procedure in expected polynomial time using $(4 + \epsilon)\Delta$ colors.
- Holds also for list coloring.
- Can be applied for any coloring with "forbidden" configurations.

Conclusion



- if $g \ge 220$, $a'(G) \le 3.05\Delta$.
- Procedure in expected polynomial time using $(4 + \epsilon)\Delta$ colors.
- Holds also for list coloring.
- Can be applied for any coloring with "forbidden" configurations.

Thanks !