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Acyclic Edge Colorings of graphs

An acyclic edge coloring of a graph is a coloring of the edges such that:
e two edges sharing a vertex have different color,

e there are no bicolored cycles.
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An acyclic edge coloring of a graph is a coloring of the edges such that:
e two edges sharing a vertex have different color,

e there are no bicolored cycles.

[ — | [ — [ —
e 3'(G): minimum number of colors in an acyclic edge coloring of G.
e If G has maximum degree A:

a(G) > A.
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Result

Conjecture Alon, Sudakov and Zaks, 2001]

If G has maximum degree A, a'(G) < A + 2. ]
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Result

Conjecture Alon, Sudakov and Zaks, 2001]

If G has maximum degree A, a'(G) < A + 2. ]

Using the Lovéasz Local Lemma and variations:
e 2'(G) < 64A (Alon, McDiarmid and Reed, 1991)
e 2'(G) < 16A (Molloy and Reed, 1998)
e 3'(G) < 9.62A (Ndreca, Procacci and Scoppola, 2012)

Theorem Esperet and P., 2012]

If G has maximum degree A, 2'(G) < 4A. ]

Method of "entropy compression” based on the proof by Moser and
Tardos of LLL and extended by Grytczuk, Kozik and Micek.
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Algorithm
Order the edge set.
While there is an uncolored edge:
e Select the smallest uncolored edge e
e Give a random color in {1,...,4A} to e (not appearing in N[e])

o If e lies in a bicolored cycle C, uncolor e and all the other edges of
C, except two edges.
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Algorithm
Order the edge set.
While there is an uncolored edge:
e Select the smallest uncolored edge e
e Give a random color in {1,...,4A} to e (not appearing in N[e])

o If e lies in a bicolored cycle C, uncolor e and all the other edges of
C, except two edges.

G

We prove that this algorithm ends with non zero probability.
= Any graph has an acyclic edge coloring with 4A colors.
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Recording

e We assume the algorithm is still running after t steps.
— bad scenario

e We record in a compact way what happens during the algorithm.

Record
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Recording
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Record
s N

1._
2:-

17:-

18:Cycle C is uncolored
19:-

276:-

277:Cycle C' is uncolored

. . . 278:-
Final partial coloring &,

1 record + 1 final partial coloring = 1 bad scenario
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Rewrite the history

1. Top-down reading — set of colored edges at each step.

s 2
1:-

2:-

17:-

18:C is uncolored
19:- Sets of
276 o colored edges
277:C’ is uncolored
278: -

t:- Y
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Summary

1 record +1 partial coloring = 1 bad scenario
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Summary

1 record +1 partial coloring = 1 bad scenario

< (4D +1)m
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Summary

1 record +1 partial coloring = 1 bad scenario

? < (40 +1)m ?

How many possible records ?
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Compact records of cycles

e We know one edge e of C.
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Compact records of cycles

e We know one edge e of C.

e No choice for the last edge

[i:C is uncolored ] 54 [i:231354]

e Cycle coded by a word on {1, ..., A}?=2 where 2k is the length of C.
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Number of records

Record (=, =,y —, 231354 — . — 4213 — . —)
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Number of records

Record (—, —, —, 231354 | —
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Number of records

Record (=, =, —, 231354 — . — 4213 — . —)
L e A e
0 O 0 0111111 O 0 01111 O 0

Number of colored edges

0<—>/ ’ //\\/ //
an edge is colored // L 2
1\ 7

an edge is uncolored

t

Partial Dyck word of length < 2t and blocks of ones of even size.
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Number of records

Record

]

0 O

Number of colored edges

0+ /7
an edge is colored /
1+ N\ 7
an edge is uncolored ’

(_7_""7—72313547_7"'7_’42137_7"'7_)

[

0 O111111 O 0 01111 O 0

2N /
, ,
P VRS 4
,
, ,
,
s
,

Partial Dyck word of length < 2t and blocks of ones of even size.

— Number of such words : 2t/t3/2
— Number of records : (2A)t/t3/2
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End of the proof

1 record +1 partial coloring = 1 bad scenario

(4n+1)m
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End of the proof

1 record +1 partial coloring = 1 bad scenario
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e Number of scenarios: (2A)*

e Number of bad scenarios: %/Z(M)t = o((2A)Y)
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End of the proof

1 record +1 partial coloring = 1 bad scenario

(2A)t/t3/2 (4A + 1) (48+1)"(20)"

372

e Number of scenarios: (2A)*
e Number of bad scenarios: MAJFQ# = o((2A)Y)
= For t large enough, there are good scenarios.

< The algorithm stops with nonzero probability !
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Conclusion

(iTheorem Esperet and P., 2012]

If G has maximum degree A and girth g:
e J(G) <4A;

o if g>7, 3(G) <3.74A;
e if g >53, 4 (G) <3.14A;
o if g >220, a(G) < 3.05A.

e Procedure in expected polynomial time using (4 + €)A colors.
e Holds also for list coloring.

e Can be applied for any coloring with "forbidden” configurations.
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If G has maximum degree A and girth g:
e J(G) <4A;

o if g>7, 3(G) <3.74A;
e if g >53, 4 (G) <3.14A;
o if g >220, a(G) < 3.05A.

e Procedure in expected polynomial time using (4 + €)A colors.
e Holds also for list coloring.

e Can be applied for any coloring with "forbidden” configurations.

Thanks !
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