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Where is the fire ?

To locate the fire, we need more detectors.
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|dentifying where is the fire

In each room, the set of detectors in the neighborhood is unique.
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Modelization with a graph

Identifying code C = subset of vertices which is
e dominating : Yu € V,N[u]N C # 0,
e separating : Yu,v € V,N[u]n C # N[v]Nn C.

VNC|a|b]c]|d

a C d 1 o|le]-]-
b 2 IR I e

3 - |le]| o] -

4 = - |l o] e

5 o|eo| o] -

6 = o | o

Given a graph G, what is the size /P (G) of minimum identifying
code ?
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Some facts about identifying codes

e Introduced in 1998 by Karpvosky, Chakrabarty and Levitin

e Exists iff there is no twins

><I Twins: N[u] = NJ[v]
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— A vertex is identified by a nonempty subset of C = |V| < 27 _q
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In restricted classes of graphs?

Example 1: Class of interval graphs
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In restricted classes of graphs?

Example 1: Class of interval graphs

i

I ls 2 5

h la 1 4

Proposition Foucaud, Naserasr, P., Valicov, 2012+]

If G is an interval graph, v'°(G) > /2| V].
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In restricted classes of graphs?
Example 2: Class of split graphs

Stable set Clique
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In restricted classes of graphs?
Example 2: Class of split graphs

Stable set Clique

Proposition

For infinitely many split graphs G, 7'P(G) = log(|V| + 1). ]

Proposition Foucaud, 2013]

MIN-ID-CODE is log-APX-hard for split graphs. ]
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Some known results in restricted classes of graphs

Restriction: classes of graphs closed by induced subgraphs

] Graph class H lower bound (order) \ Approximation

All log n log APX-h
Split log n log APX-h
Interval n'/? open
Unit Interval n 2
Bipartite log n log APX-h
Line graphs nl/2 4
Chordal log n log APX-h
Planar n 7
Cograph n 1
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Shattered set

e H = (V,E) an hypergraph
e A set X C V is shattered if for all Y C X, there exists e € &,
stenX =Y.
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Vapnik Chervonenkis (VC) dimension of an hypergraph

e A set X isshattered if VY C X, dec &, stenX =Y.

e VVC-dimension of H: largest size of a shattered set.
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VC dimension of a graph / of a class of graph

e VVC-dimension of G: VC-dim of the hypergraph of closed
neighborhoods

|

N
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VC dimension of a graph / of a class of graph

e VVC-dimension of G: VC-dim of the hypergraph of closed
neighborhoods

|

N

©

e \/C-dimension of a class C: maximal VC-dimension over C

» Class of interval graphs has VC-dimension 2.
» Class of split graphs has infinite VC-dimension.
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Split graphs have infinite VC-dimension

[ For any k, there is a split graph with VC-dimension k. ]

o1

02
Stable set Cli f size k
f size o ique of size
© 03

o4
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Split graphs have infinite VC-dimension

[ For any k, there is a split graph with VC-dimension k. ]

Stable set

oL Clique of size k

{1,2,4}

0O QO OO0O00O000O0O0
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Intervals have finite VC-dimension

[ There is no interval graph with VC-dimension 3.

Assume there is a shattered set {1,2, 3}.

1 1 1
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Shattered set o o o
1 2 3
Intervals e L2 3 1 2 3
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Intervals have finite VC-dimension

[ There is no interval graph with VC-dimension 3.

Assume there is a shattered set {1,2, 3}.

1 1 1
) Y
2 3 2 3 2 3
Shattered set o o o
1 2 3
Intervals e L2 3 . 2 3
e @ D @
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Intervals have finite VC-dimension

[ There is no interval graph with VC-dimension 3. ]
Assume there is a shattered set {1,2, 3}.
1 1 1 1
) A SAN
2 3 2/ 3 2/ 3 2/ \3
Shattered set o o o
1 2 3
Intervals C— CJC L2 Sk e 2 =
we @ @O
{12} 1 {1,3}
X
{2,3}
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Intervals have finite VC-dimension

[ There is no interval graph with VC-dimension 3.

Assume there is a shattered set {1,2, 3}.

[a

1
(o]
2
Shattered set o

1 2 3

N
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w
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=

Intervals

- =2
e @ @D O

3

A

{1,2}_ 1 J1.3}
Forbidden for intervals !

{2,3}

[ Interval graphs have VC-dimension at most 2.
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Back to identifying codes

| Graph class || Lower bound (order) | Approx |

All log n log APX-h
Split log n log APX-h
Interval nl/? open
Unit Interval n 2
Bipartite log n log APX-h
Line graphs nl/? 4
Chordal log n log APX-h
Planar n 7
Cograph n 1
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A dichotomy result

Theorem

Infinite

4

There are infinetly many G,

7'°(G) = log | V|

VC-dim of C 7

VRN

Finite d

4

7P(6) = c|vV?

For all G,
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Proof - Case with infinite VC dimension

Proposition

If C has infinite VC-dimension, for any integer k, C contains a
graph G with at least 2* vertices and an identifying code < 2k.
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Proof - Case with infinite VC dimension

Proposition

If C has infinite VC-dimension, for any integer k, C contains a
graph G with at least 2* vertices and an identifying code < 2k.

Proof:
e Let G € C of VC-dim k and X be a shattered set of size k.
e Let Y be a set shattering X.
o C = X identifies all vertices of Y.
e Add to C at most k vertices of Y to identify vertices of X.
— G’ = G[X U Y] satisfies the claim.
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Proof - Case with finite VC dimension

Proposition

If C has finite VC-dimension d, VG € C, 4/°(G) > c|V/|/9.
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Proof - Case with finite VC dimension

Proposition

If C has finite VC-dimension d, VG € C, 4/°(G) > c|V/|/9. ]

Proof: direct consequence of:

Sauer’s Lemma]

Let X be a subset of vertices of graph G of VC-dimension d. The
number of distinct traces on X is at most 27:1 (\)I{I) < a|X|9.

, ) . d
O Distinct traces < ¢ | X]|
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Proof - Case with finite VC dimension

Proposition

If C has finite VC-dimension d, VG € C, 4/°(G) > c|V/|/9. ]

Proof: direct consequence of:

Sauer’s Lemma]

Let X be a subset of vertices of graph G of VC-dimension d. The
number of distinct traces on X is at most 27:1 (\)I{I) < a|X|9.

Identifying code 7P(G)

4

O Distinct traces < c|X|? All vertices |V| < C17ID(G)d
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Back to the table

Graph class Lower bound Approx VC-dim
All log n log APX-h 00
Split log n log APX-h 00
Bipartite log n log APX-h o0
Chordal log n log APX-h 00
Interval e open 2
Unit Interval n 2 2
Line graphs nl/2 4 4
Planar n 7 4
Cograph n 1 2
Permutation nl/3 open 3
Unit disk graphs i open 3

e Lower bound not optimal (ex: Line graphs)
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Back to the table

Graph class Lower bound J Approx ? | VC-dim
All log n log APX-h 00
Split log n log APX-h 00
Bipartite log n log APX-h 00
Chordal log n log APX-h 00
Interval e open 2
Unit Interval n 2 2
Line graphs nl/2 4 4
Planar n 7 4
Cograph n 1 2
Permutation nl/3 open 3
Unit disk graphs g open 3

e Lower bound not optimal (ex: Line graphs)
e What about approximation ?
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Inapproximability in infinite VC dimension

Theorem
If C has oo VC-dimension, MIN-ID-CODE is log-APX-hard on C. ]
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Inapproximability in infinite VC dimension

Theorem

If C has oo VC-dimension, MIN-ID-CODE is log-APX-hard on C. ]

Consequence of:

Proposition

If C has infinite VC-dimension, C contains:
e all bipartite graphs, or

e all split graphs, or
e all cobipartite graphs.

and

Theorem Foucaud, 2013]

MIN-ID-CODE is log-APX-hard on bipartite, split and cobipartite
graphs.
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Sketch of the proof

Proposition

If C has infinite VC-dimension, C contains all bipartite graphs, or all
split graphs, or all cobipartite graphs.

1. C is full-crossing bipartite:
For any bipartite graph H = (AU B, E), by adding edges on A or on
B to H, we can get an element H' of C.

dy ap az aa

H

by by bz b ,
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% AN\ z
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Sketch of the proof

Proposition

If C has infinite VC-dimension, C contains all bipartite graphs, or all
split graphs, or all cobipartite graphs.

1. C is full-crossing bipartite:
For any bipartite graph H = (AU B, E), by adding edges on A or on
B to H, we can get an element H' of C.

2. H’ induces cliques or stable sets on A and B.

3. Conclusion :

HO HL  H?
For any bipartite H, OEO or OEO or OEO or OEO

(H,) : sequence of universal bipartite graphs.

= 3i € {0,1,2,3}, H. € C for infinitely many n.

= All bipartites (i = 0) or all splits (i = 1,2) or all cobipartites
(f=3)areinC.
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In the finite case 7

| Graph class ” Lower bound | Approx | VC-dim |
All log n log APX-h o0
Split log n log APX-h 00
Bipartite log n log APX-h o0
Chordal log n log APX-h 00
Interval nt/? open 2
Unit Interval 2 2
Line graphs e 4 4
Planar n 7 4
Cograph n 1 2
Permutation nt/3 open 3
Unit disk graphs n'/3 open 3

Is there a constant approximation in finite VC-dimension?
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A class of finite VC-dimension with no good approximation

Theorem

MiN-ID-CODE cannot be approximed within a o(log|V/|) factor
in polynomial time for the class of bipartite C4-free graphs.

e Class of VC-dimension 2
e Reduction from SET COVERING WITH INTERSECTION 1.
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