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Fire detection in a museum?

• Detector can detect fire in their room or in their
neighborhood.

• Each room must contain a detector or have a detector in a
neighboring room.
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Modelization with a graph

• Vertices V : rooms

• Edges E : between two neighboring rooms

• Set of detectors = dominating set S :

∀u ∈ V ,N[u] ∩ S 6= ∅
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Identifying where is the fire
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Identifying where is the fire

?

?

b

ca d

a,b

b a,b,c

b,c,d

b,c

c,d

In each room, the set of detectors in the neighborhood is unique.
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Modelization with a graph

Identifying code C = subset of vertices which is

• dominating : ∀u ∈ V ,N[u] ∩ C 6= ∅,
• separating : ∀u, v ∈ V ,N[u] ∩ C 6= N[v ] ∩ C .

5

1

2

6

3

4b

a c d

5

1 6 4

V \ C a b c d

1 • • - -
2 - • - -
3 - • • -
4 - - • •
5 • • • -
6 - • • •

Given a graph G , what is the size γID(G ) of minimum identifying
code ?
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Some facts about identifying codes

• Introduced in 1998 by Karpvosky, Chakrabarty and Levitin

• Exists iff there is no twins
u

v

Twins: N[u] = N[v ]

• NP-complete (Charon, Hudry, Lobstein, 2001)

• Hard to approximate: best approximation factor log(|V |)
• Lower bound:
→ A vertex is identified by a nonempty subset of C ⇒ |V | ≤ 2γID (G) − 1

γID(G ) ≥ log(|V |+ 1)

Tight example:

b ca

bc

ac

ab abc
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In restricted classes of graphs?

Example 1: Class of interval graphs

I1 I4

I2 I5

I3

1

2

3

4

5

If G is an interval graph, γID(G ) ≥
√

2|V |.

Proposition Foucaud, Naserasr, P., Valicov, 2012+
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In restricted classes of graphs?
Example 2: Class of split graphs

CliqueStable set

For infinitely many split graphs G , γID(G ) = log(|V |+ 1).

Proposition

Min-Id-Code is log-APX-hard for split graphs.

Proposition Foucaud, 2013
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Some known results in restricted classes of graphs

Restriction: classes of graphs closed by induced subgraphs

Graph class lower bound (order) Approximation

All log n log APX-h

Split log n log APX-h

Interval n1/2 open

Unit Interval n 2

Bipartite log n log APX-h

Line graphs n1/2 4

Chordal log n log APX-h

Planar n 7

Cograph n 1
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Part II

VC-dimension
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Shattered set

• H = (V , E) an hypergraph

• A set X ⊆ V is shattered if for all Y ⊆ X , there exists e ∈ E ,
s.t e ∩ X = Y .

A 2-shattered set A 3-shattered set
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Vapnik Chervonenkis (VC) dimension of an hypergraph

• A set X is shattered if ∀Y ⊆ X , ∃e ∈ E , s.t e ∩ X = Y .

• VC-dimension of H: largest size of a shattered set.

No 3-shattered set ⇒ VC-dim ≤ 2

A 2-shattered set ⇒ VC-dim = 2
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VC dimension of a graph / of a class of graph

• VC-dimension of G : VC-dim of the hypergraph of closed
neighborhoods

⇒
VC-dim(G ) = 2

• VC-dimension of a class C: maximal VC-dimension over C
I Class of interval graphs has VC-dimension 2.
I Class of split graphs has infinite VC-dimension.
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Split graphs have infinite VC-dimension

For any k, there is a split graph with VC-dimension k.

Clique of size k

1

2

3

4

Stable set
of size 2k

{1, 2, 4}
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Intervals have finite VC-dimension

There is no interval graph with VC-dimension 3.

Assume there is a shattered set {1, 2, 3}.

Shattered set

1

32

1

32

1

32

1

32

Intervals
1 2 3 1

2
3 1

2
3

Objection {1, 3} {1, 3} {1, 3}

1

32

{1, 3}{1, 2}

{2, 3}

Forbidden for intervals !

Interval graphs have VC-dimension at most 2.
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Part III

Identifying codes and VC-dimension
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Back to identifying codes

Graph class Lower bound (order) Approx

All log n log APX-h

Split log n log APX-h

Interval n1/2 open

Unit Interval n 2

Bipartite log n log APX-h

Line graphs n1/2 4

Chordal log n log APX-h

Planar n 7

Cograph n 1

VC dim)

∞
∞
2

2

∞
4

∞
4

2
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A dichotomy result

VC-dim of C ?

Infinite

⇓
There are infinetly many G ,

γID(G ) ≈ log |V |

Finite d

⇓
For all G ,

γID(G ) ≥ c |̇V |1/d

Theorem

20/27



Proof - Case with infinite VC dimension

If C has infinite VC-dimension, for any integer k, C contains a
graph G with at least 2k vertices and an identifying code ≤ 2k .

Proposition

Proof:

• Let G ∈ C of VC-dim k and X be a shattered set of size k.

• Let Y be a set shattering X .

• C = X identifies all vertices of Y .

• Add to C at most k vertices of Y to identify vertices of X .

→ G ′ = G [X ∪ Y ] satisfies the claim.
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Proof - Case with finite VC dimension

If C has finite VC-dimension d , ∀G ∈ C, γID(G ) ≥ c |̇V |1/d .

Proposition

Proof: direct consequence of:

Let X be a subset of vertices of graph G of VC-dimension d . The
number of distinct traces on X is at most

∑d
i=1

(|X |
i

)
≤ c1|X |d .

Sauer’s Lemma

X

Distinct traces ≤ c1|X |d

γID(G )

≤ c1γ
ID(G )d

Identifying code

All vertices |V |
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Back to the table

Graph class Lower bound Approx

?

VC-dim

All log n log APX-h ∞
Split log n log APX-h ∞

Bipartite log n log APX-h ∞
Chordal log n log APX-h ∞
Interval n1/2 open 2

Unit Interval n 2 2

Line graphs n1/2 4 4

Planar n 7 4

Cograph n 1 2

Permutation n1/3 open 3

Unit disk graphs n1/3 open 3

• Lower bound not optimal (ex: Line graphs)

• What about approximation ?
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Inapproximability in infinite VC dimension

If C has∞ VC-dimension, Min-Id-Code is log-APX-hard on C.

Theorem

Consequence of:

If C has infinite VC-dimension, C contains:
• all bipartite graphs, or

• all split graphs, or

• all cobipartite graphs.

Proposition

and

Min-Id-Code is log-APX-hard on bipartite, split and cobipartite
graphs.

Theorem Foucaud, 2013
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Sketch of the proof

If C has infinite VC-dimension, C contains all bipartite graphs, or all
split graphs, or all cobipartite graphs.

Proposition

1. C is full-crossing bipartite:
For any bipartite graph H = (A ∪ B,E ), by adding edges on A or on

B to H, we can get an element H ′ of C.

Y A Z

Shattered set

of size 3|A|
Z0

∀i ,N[ai ] ∩ Z 6= Z0

y1 a1y2 a2y3 a3y4 a4

B

b1 b2 b3 b4

N[bi ] = {yi} ∪ NH(bi ) ∪ Z0

H ′

a1 a2 a3 a4

b1 b2 b3 b4

H

2. H ′ induces cliques or stable sets on A and B.
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Sketch of the proof

If C has infinite VC-dimension, C contains all bipartite graphs, or all
split graphs, or all cobipartite graphs.

Proposition

1. C is full-crossing bipartite:
For any bipartite graph H = (A ∪ B,E ), by adding edges on A or on

B to H, we can get an element H ′ of C.

2. H ′ induces cliques or stable sets on A and B.

3. Conclusion :

For any bipartite H,
H0

or
H1

or
H2

or
H3

∈ C

(Hn) : sequence of universal bipartite graphs.
⇒ ∃i ∈ {0, 1, 2, 3},H i

n ∈ C for infinitely many n.
⇒ All bipartites (i = 0) or all splits (i = 1, 2) or all cobipartites
(i = 3) are in C.
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In the finite case ?

Graph class Lower bound Approx VC-dim

All log n log APX-h ∞
Split log n log APX-h ∞

Bipartite log n log APX-h ∞
Chordal log n log APX-h ∞
Interval n1/2 open 2

Unit Interval n 2 2

Line graphs n1/2 4 4

Planar n 7 4

Cograph n 1 2

Permutation n1/3 open 3

Unit disk graphs n1/3 open 3

Is there a constant approximation in finite VC-dimension?
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A class of finite VC-dimension with no good approximation

Min-ID-Code cannot be approximed within a o(log |V |) factor
in polynomial time for the class of bipartite C4-free graphs.

Theorem

• Class of VC-dimension 2

• Reduction from Set covering with intersection 1.

Gracias !
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