Identifying codes and VC-dimension

Aline Parreau

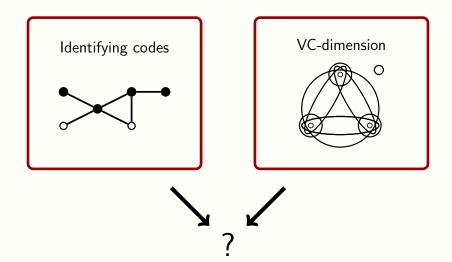
University of Liège, Belgium

Joint work with:

N. Bousquet, A. Lagoutte, Z. Li and S. Tomassé

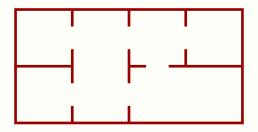
Combgraph Seminar - October 3, 2013

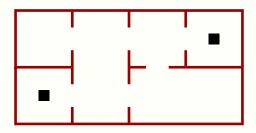
Contents

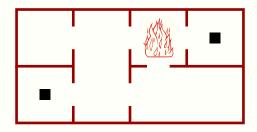


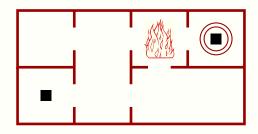
Part I

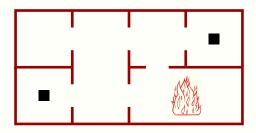
Identifying codes



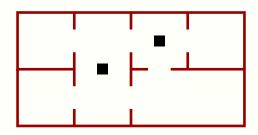




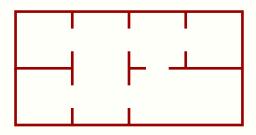




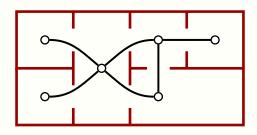
- Detector can detect fire in their room or in their neighborhood.
- Each room must contain a detector or have a detector in a neighboring room.



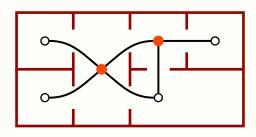
- Detector can detect fire in their room or in their neighborhood.
- Each room must contain a detector or have a detector in a neighboring room.



- Vertices *V*: rooms
- ullet Edges E: between two neighboring rooms



- Vertices *V*: rooms
- Edges *E*: between two neighboring rooms

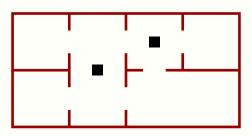


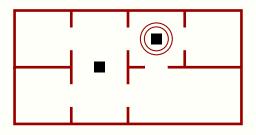
- Vertices V: rooms
- Edges *E*: between two neighboring rooms
- Set of detectors = dominating set *S*:

$$\forall u \in V, N[u] \cap S \neq \emptyset$$

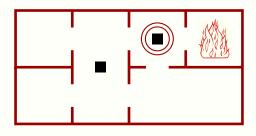
- Vertices V: rooms
- Edges *E*: between two neighboring rooms
- Set of detectors = dominating set *S*:

$$\forall u \in V, N[u] \cap S \neq \emptyset$$

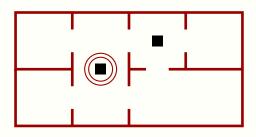




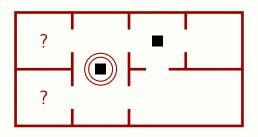
Where is the fire?



Where is the fire?



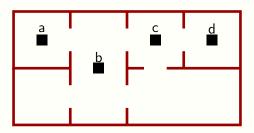
Where is the fire?



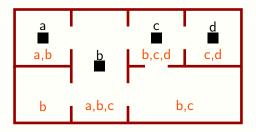
Where is the fire?

To locate the fire, we need more detectors.

Identifying where is the fire



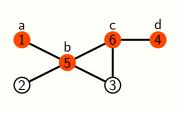
Identifying where is the fire



In each room, the set of detectors in the neighborhood is unique.

Identifying code C = subset of vertices which is

- dominating : $\forall u \in V, N[u] \cap C \neq \emptyset$,
- separating : $\forall u, v \in V, N[u] \cap C \neq N[v] \cap C$.

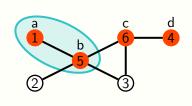


$V \setminus C$	а	b	С	d
1	•	•	-	-
2	-	•	-	-
3	-	•	•	-
4	-	-	•	•
5	•	•	•	-
6	-	•	•	•

Given a graph G, what is the size $\gamma^{ID}(G)$ of minimum identifying code ?

Identifying code C = subset of vertices which is

- dominating : $\forall u \in V, N[u] \cap C \neq \emptyset$,
- separating : $\forall u, v \in V, N[u] \cap C \neq N[v] \cap C$.

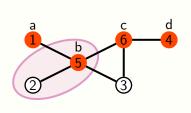


$V \setminus C$	а	b	С	d
1	•	•	-	-
2	-	•	-	-
3	-	•	•	-
4	-	-	•	•
5	•	•	•	-
6	-	•	•	•

Given a graph G, what is the size $\gamma^{ID}(G)$ of minimum identifying code ?

Identifying code C = subset of vertices which is

- dominating : $\forall u \in V, N[u] \cap C \neq \emptyset$,
- separating : $\forall u, v \in V, N[u] \cap C \neq N[v] \cap C$.

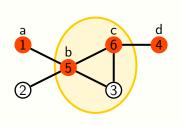


$V \setminus C$	а	b	С	d
1	•	•	1	-
2	-	•	-	-
3	-	•	•	-
4	-	-	•	•
5	•	•	•	-
6	-	•	•	•

Given a graph G, what is the size $\gamma^{ID}(G)$ of minimum identifying code ?

Identifying code C = subset of vertices which is

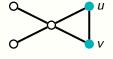
- dominating : $\forall u \in V, N[u] \cap C \neq \emptyset$,
- separating : $\forall u, v \in V, N[u] \cap C \neq N[v] \cap C$.



$V \setminus C$	а	b	С	d
1	•	•	-	-
2	-	•	-	-
3	-	•	•	-
4	-	-	•	•
5	•	•	•	-
6	-	•	•	•

Given a graph G, what is the size $\gamma^{ID}(G)$ of minimum identifying code ?

- Introduced in 1998 by Karpvosky, Chakrabarty and Levitin
- · Exists iff there is no twins



Twins: N[u] = N[v]

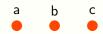
- Introduced in 1998 by Karpvosky, Chakrabarty and Levitin
- Exists iff there is no twins
- NP-complete (Charon, Hudry, Lobstein, 2001)

- Introduced in 1998 by Karpvosky, Chakrabarty and Levitin
- Exists iff there is no twins
- NP-complete (Charon, Hudry, Lobstein, 2001)
- Hard to approximate: best approximation factor log(|V|)

- Introduced in 1998 by Karpvosky, Chakrabarty and Levitin
- Exists iff there is no twins
- NP-complete (Charon, Hudry, Lobstein, 2001)
- Hard to approximate: best approximation factor log(|V|)
- Lower bound:
 - ightarrow A vertex is identified by a nonempty subset of $C \Rightarrow |V| \leq 2^{\gamma^{ID}(G)} 1$

$$\gamma^{ID}(G) \ge \log(|V|+1)$$

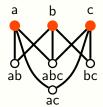
Tight example:



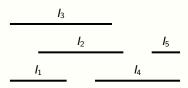
- Introduced in 1998 by Karpvosky, Chakrabarty and Levitin
- Exists iff there is no twins
- NP-complete (Charon, Hudry, Lobstein, 2001)
- Hard to approximate: best approximation factor log(|V|)
- Lower bound:
 - \rightarrow A vertex is identified by a nonempty subset of $C \Rightarrow |V| \leq 2^{\gamma^{ID}(G)} 1$

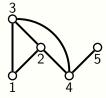
$$\gamma^{ID}(G) \geq \log(|V|+1)$$

Tight example:

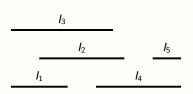


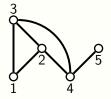
Example 1: Class of interval graphs





Example 1: Class of interval graphs

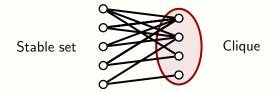




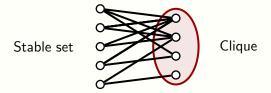
Proposition Foucaud, Naserasr, P., Valicov, 2012+

If G is an interval graph, $\gamma^{ID}(G) \ge \sqrt{2|V|}$.

Example 2: Class of split graphs



Example 2: Class of split graphs



Proposition

For infinitely many split graphs G, $\gamma^{ID}(G) = \log(|V| + 1)$.

Proposition Foucaud, 2013

MIN-ID-CODE is log-APX-hard for split graphs.

Some known results in restricted classes of graphs

Restriction: classes of graphs closed by induced subgraphs

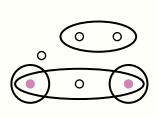
Graph class	lower bound (order)	Approximation
All	log n	log APX-h
Split	log n	log APX-h
Interval	$n^{1/2}$	open
Unit Interval	n	2
Bipartite	log n	log APX-h
Line graphs	$n^{1/2}$	4
Chordal	log n	log APX-h
Planar	n	7
Cograph	n	1

Part II

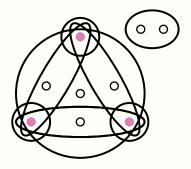
VC-dimension

Shattered set

- $\mathcal{H} = (V, \mathcal{E})$ an hypergraph
- A set $X \subseteq V$ is shattered if for all $Y \subseteq X$, there exists $e \in \mathcal{E}$, s.t $e \cap X = Y$.

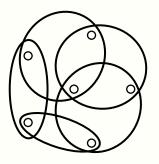


A 2-shattered set

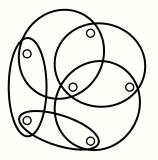


A 3-shattered set

- A set X is shattered if $\forall Y \subseteq X$, $\exists e \in \mathcal{E}$, s.t $e \cap X = Y$.
- VC-dimension of \mathcal{H} : largest size of a shattered set.

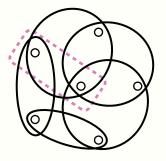


- A set X is shattered if $\forall Y \subseteq X$, $\exists e \in \mathcal{E}$, s.t $e \cap X = Y$.
- VC-dimension of \mathcal{H} : largest size of a shattered set.

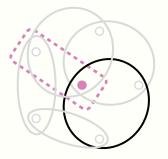


No 3-shattered set \Rightarrow VC-dim ≤ 2

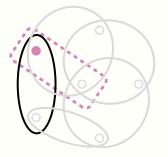
- A set X is shattered if $\forall Y \subseteq X$, $\exists e \in \mathcal{E}$, s.t $e \cap X = Y$.
- VC-dimension of \mathcal{H} : largest size of a shattered set.



- A set X is shattered if $\forall Y \subseteq X$, $\exists e \in \mathcal{E}$, s.t $e \cap X = Y$.
- VC-dimension of \mathcal{H} : largest size of a shattered set.

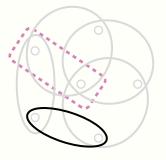


- A set X is shattered if $\forall Y \subseteq X$, $\exists e \in \mathcal{E}$, s.t $e \cap X = Y$.
- VC-dimension of \mathcal{H} : largest size of a shattered set.



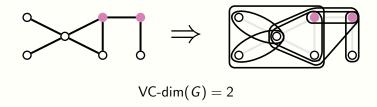
- A set X is shattered if $\forall Y \subseteq X$, $\exists e \in \mathcal{E}$, s.t $e \cap X = Y$.
- VC-dimension of \mathcal{H} : largest size of a shattered set.

- A set X is shattered if $\forall Y \subseteq X$, $\exists e \in \mathcal{E}$, s.t $e \cap X = Y$.
- VC-dimension of \mathcal{H} : largest size of a shattered set.



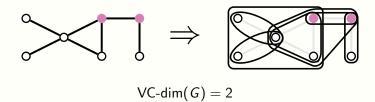
VC dimension of a graph / of a class of graph

 VC-dimension of G: VC-dim of the hypergraph of closed neighborhoods



VC dimension of a graph / of a class of graph

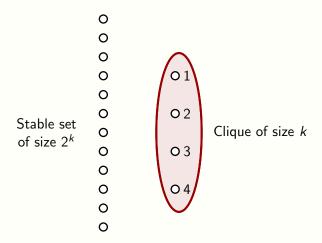
 VC-dimension of G: VC-dim of the hypergraph of closed neighborhoods



- ullet VC-dimension of a class $\mathcal C$: maximal VC-dimension over $\mathcal C$
 - ► Class of interval graphs has VC-dimension 2.
 - Class of split graphs has infinite VC-dimension.

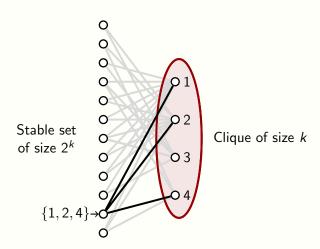
Split graphs have infinite VC-dimension

For any k, there is a split graph with VC-dimension k.



Split graphs have infinite VC-dimension

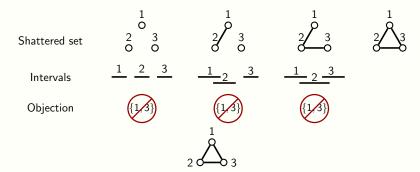
For any k, there is a split graph with VC-dimension k.



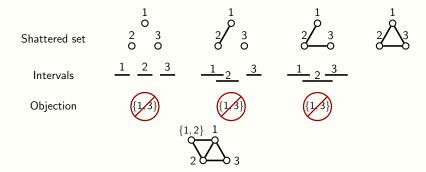
There is no interval graph with VC-dimension 3.

Shattered set	$\begin{array}{ccc} 1\\0\\2&3\\0&0\end{array}$	$\frac{1}{2}$ $\frac{3}{6}$	2 $\frac{1}{3}$ $\frac{3}{3}$	$2 \xrightarrow{1} 3$
Intervals	1 2 3	<u>1</u> 2 3	1 2 3	
Objection	(1/3)	(1/3)	(1/3)	

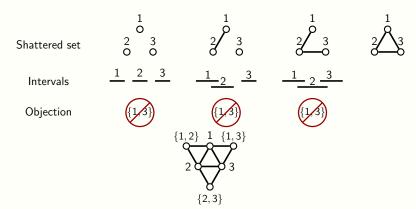
There is no interval graph with VC-dimension 3.



There is no interval graph with VC-dimension 3.

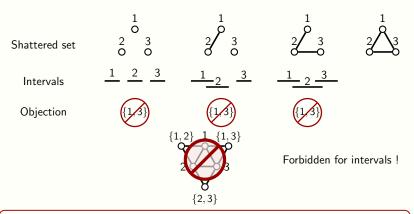


There is no interval graph with VC-dimension 3.



There is no interval graph with VC-dimension 3.

Assume there is a shattered set $\{1, 2, 3\}$.



Interval graphs have VC-dimension at most 2.

Part III

Identifying codes and VC-dimension

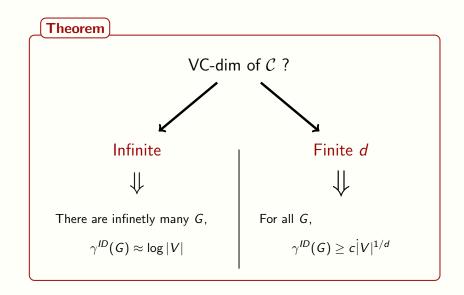
Graph class	Lower bound (order)	Approx
All	log n	log APX-h
Split	log n	log APX-h
Interval	$n^{1/2}$	open
Unit Interval	n	2
Bipartite	log n	log APX-h
Line graphs	$n^{1/2}$	4
Chordal	log n	log APX-h
Planar	n	7
Cograph	n	1

Graph class	Lower bound (order)	Approx	VC dim
All	log n	log APX-h	∞
Split	log n	log APX-h	∞
Interval	$n^{1/2}$	open	2
Unit Interval	n	2	2
Bipartite	log n	log APX-h	∞
Line graphs	$n^{1/2}$	4	4
Chordal	log n	log APX-h	∞
Planar	n	7	4
Cograph	n	1	2

Graph class	Lower bound (order)	Approx	VC dim
All	log n	log APX-h	∞
Split	log n	log APX-h	∞
Interval	$n^{1/2}$	open	2
Unit Interval	n	2	2
Bipartite	log n	log APX-h	∞
Line graphs	$n^{1/2}$	4	4
Chordal	log n	log APX-h	∞
Planar	n	7	4
Cograph	n	1	2

Graph class	Lower bound (order)	Approx	VC dim
All	log n	log APX-h	∞
Split	log n	log APX-h	∞
Bipartite	log n	log APX-h	∞
Chordal	log n	log APX-h	∞
Interval	$n^{1/2}$	open	2
Unit Interval	n	2	2
Line graphs	$n^{1/2}$	4	4
Planar	n	7	4
Cograph	n	1	2

A dichotomy result



Proof - Case with infinite VC dimension

Proposition

If C has infinite VC-dimension, for any integer k, C contains a graph G with at least 2^k vertices and an identifying code $\leq 2k$.

Proof - Case with infinite VC dimension

Proposition

If C has infinite VC-dimension, for any integer k, C contains a graph G with at least 2^k vertices and an identifying code $\leq 2k$.

Proof:

- Let $G \in \mathcal{C}$ of VC-dim k and X be a shattered set of size k.
- Let Y be a set shattering X.
- C = X identifies all vertices of Y.
- Add to C at most k vertices of Y to identify vertices of X.
- \rightarrow $G' = G[X \cup Y]$ satisfies the claim.

Proof - Case with finite VC dimension

Proposition

If C has finite VC-dimension d, $\forall G \in C$, $\gamma^{ID}(G) \geq c |V|^{1/d}$.

Proof - Case with finite VC dimension

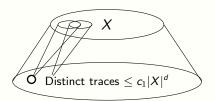
Proposition

If C has finite VC-dimension d, $\forall G \in C$, $\gamma^{ID}(G) \geq c |V|^{1/d}$.

Proof: direct consequence of:

Sauer's Lemma

Let X be a subset of vertices of graph G of VC-dimension d. The number of distinct traces on X is at most $\sum_{i=1}^{d} \binom{|X|}{i} \leq c_1 |X|^d$.



Proof - Case with finite VC dimension

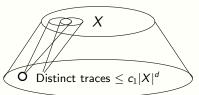
Proposition

If C has finite VC-dimension d, $\forall G \in C$, $\gamma^{ID}(G) \geq c |V|^{1/d}$.

Proof: direct consequence of:

Sauer's Lemma

Let X be a subset of vertices of graph G of VC-dimension d. The number of distinct traces on X is at most $\sum_{i=1}^{d} \binom{|X|}{i} \leq c_1 |X|^d$.



Identifying code $\gamma^{ID}(G)$

All vertices $|V| \leq c_1 \gamma^{ID}(G)^d$

Back to the table

Graph class	Lower bound	Approx	VC-dim
All	log n	log APX-h	∞
Split	log n	log APX-h	∞
Bipartite	log n	log APX-h	∞
Chordal	log n	log APX-h	∞
Interval	$n^{1/2}$	open	2
Unit Interval	n	2	2
Line graphs	$n^{1/2}$	4	4
Planar	n	7	4
Cograph	n	1	2
Permutation	$n^{1/3}$	open	3
Unit disk graphs	$n^{1/3}$	open	3

• Lower bound not optimal (ex: Line graphs)

Back to the table

Graph class	Lower bound 🗸	Approx ?	VC-dim
All	log n	log APX-h	∞
Split	log n	log APX-h	∞
Bipartite	log n	log APX-h	∞
Chordal	log n	log APX-h	∞
Interval	$n^{1/2}$	open	2
Unit Interval	n	2	2
Line graphs	$n^{1/2}$	4	4
Planar	n	7	4
Cograph	n	1	2
Permutation	$n^{1/3}$	open	3
Unit disk graphs	$n^{1/3}$	open	3

- Lower bound not optimal (ex: Line graphs)
- What about approximation ?

Inapproximability in infinite VC dimension

Theorem

If ${\mathcal C}$ has ∞ VC-dimension, $\operatorname{Min-Id-Code}$ is log-APX-hard on ${\mathcal C}.$

Inapproximability in infinite VC dimension

Theorem

If $\mathcal C$ has ∞ VC-dimension, MIN-ID-CODE is log-APX-hard on $\mathcal C$.

Consequence of:

Proposition

If C has infinite VC-dimension, C contains:

- all bipartite graphs, or
- · all split graphs, or
- all cobipartite graphs.

and

Theorem Foucaud, 2013

MIN-ID-CODE is log-APX-hard on bipartite, split and cobipartite graphs.

Proposition

If $\mathcal C$ has infinite VC-dimension, $\mathcal C$ contains all bipartite graphs, or all split graphs, or all cobipartite graphs.

1. C is full-crossing bipartite:

Proposition

If $\mathcal C$ has infinite VC-dimension, $\mathcal C$ contains all bipartite graphs, or all split graphs, or all cobipartite graphs.

1. C is full-crossing bipartite:

For any bipartite graph $H = (A \cup B, E)$, by adding edges on A or on B to H, we can get an element H' of C.

	Y	Α	Z
Shattered set	<i>y</i> ₁ <i>y</i> ₂ <i>y</i> ₃ <i>y</i> ₄	a ₁ a ₂ a ₃ a ₄	
of size $3 A $	• • • •	• • • •	

 $H \bigcup_{b_1 \ b_2 \ b_3 \ b_4}^{a_1 \ a_2 \ a_3 \ a_4}$

Proposition

If $\mathcal C$ has infinite VC-dimension, $\mathcal C$ contains all bipartite graphs, or all split graphs, or all cobipartite graphs.

1. C is full-crossing bipartite:

For any bipartite graph $H = (A \cup B, E)$, by adding edges on A or on B to H, we can get an element H' of C.

Shattered set of size 3|A|

Y	Α	Z
<i>y</i> ₁ <i>y</i> ₂ <i>y</i> ₃ <i>y</i> ₄ • • • •	a ₁ a ₂ a ₃ a ₄	Z ₀

 $\forall i, N[a_i] \cap Z \neq Z_0$

Proposition

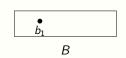
If $\mathcal C$ has infinite VC-dimension, $\mathcal C$ contains all bipartite graphs, or all split graphs, or all cobipartite graphs.

1. C is full-crossing bipartite:

For any bipartite graph $H=(A\cup B,E)$, by adding edges on A or on B to H, we can get an element H' of C.

Shattered set of size 3|A|

Y	Α	Z
<i>y</i> ₁ <i>y</i> ₂ <i>y</i> ₃ <i>y</i> ₄ • • • •	a ₁ a ₂ a ₃ a ₄ • • • •	Z ₀

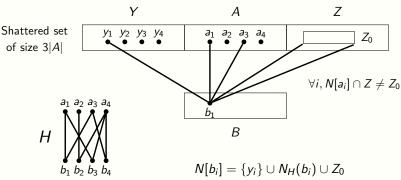


 $\forall i, N[a_i] \cap Z \neq Z_0$

Proposition

If $\mathcal C$ has infinite VC-dimension, $\mathcal C$ contains all bipartite graphs, or all split graphs, or all cobipartite graphs.

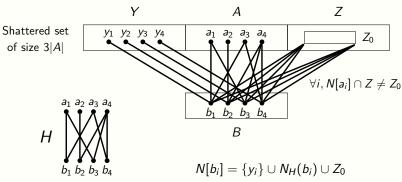
1. C is full-crossing bipartite:



Proposition

If $\mathcal C$ has infinite VC-dimension, $\mathcal C$ contains all bipartite graphs, or all split graphs, or all cobipartite graphs.

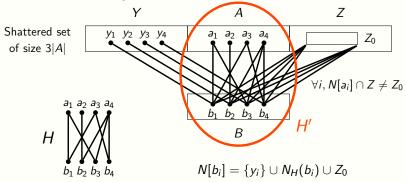
1. C is full-crossing bipartite:



Proposition

If $\mathcal C$ has infinite VC-dimension, $\mathcal C$ contains all bipartite graphs, or all split graphs, or all cobipartite graphs.

1. C is full-crossing bipartite:



Proposition

If $\mathcal C$ has infinite VC-dimension, $\mathcal C$ contains all bipartite graphs, or all split graphs, or all cobipartite graphs.

- 1. C is full-crossing bipartite: For any bipartite graph $H = (A \cup B, E)$, by adding edges on A or on B to H, we can get an element H' of C.
- 2. H' induces cliques or stable sets on A and B.

Proposition

If $\mathcal C$ has infinite VC-dimension, $\mathcal C$ contains all bipartite graphs, or all split graphs, or all cobipartite graphs.

- 1. C is full-crossing bipartite: For any bipartite graph $H = (A \cup B, E)$, by adding edges on A or on B to H, we can get an element H' of C.
- 2. H' induces cliques or stable sets on A and B.
- 3. Conclusion:

For any bipartite
$$H$$
, $\stackrel{H^0}{\boxtimes}$ or $\stackrel{H^1}{\boxtimes}$ or $\stackrel{H^2}{\boxtimes}$ or $\stackrel{H^3}{\boxtimes}$

 (H_n) : sequence of universal bipartite graphs.

- $\Rightarrow \exists i \in \{0,1,2,3\}, H_n^i \in \mathcal{C} \text{ for infinitely many } n.$
- \Rightarrow All bipartites (i = 0) or all splits (i = 1, 2) or all cobipartites (i = 3) are in C.

In the finite case?

Graph class	Lower bound	Approx	VC-dim
All	log n	log APX-h	∞
Split	log n	log APX-h	∞
Bipartite	log n	log APX-h	∞
Chordal	log n	log APX-h	∞
Interval	$n^{1/2}$	open	2
Unit Interval	n	2	2
Line graphs	$n^{1/2}$	4	4
Planar	n	7	4
Cograph	n	1	2
Permutation	$n^{1/3}$	open	3
Unit disk graphs	$n^{1/3}$	open	3

Is there a constant approximation in finite VC-dimension?

A class of finite VC-dimension with no good approximation

Theorem

MIN-ID-CODE cannot be approximed within a $o(\log |V|)$ factor in polynomial time for the class of bipartite C_4 -free graphs.

- Class of VC-dimension 2
- Reduction from Set Covering with Intersection 1.

A class of finite VC-dimension with no good approximation

Theorem

MIN-ID-CODE cannot be approximed within a $o(\log |V|)$ factor in polynomial time for the class of bipartite C_4 -free graphs.

- Class of VC-dimension 2
- Reduction from Set covering with intersection 1.

Gracias!