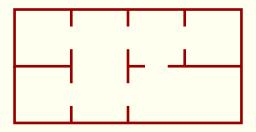
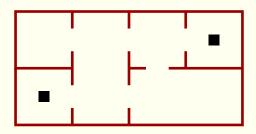
Problèmes d'identification dans les graphes

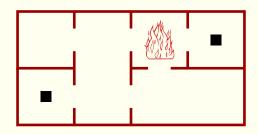
Aline Parreau

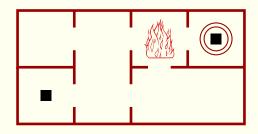
Séminaire DOLPHIN

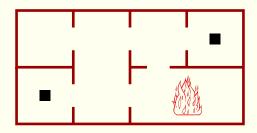
20 septembre 2012



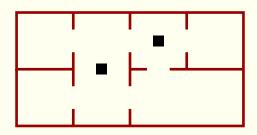




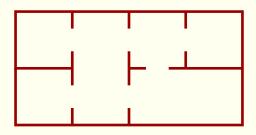




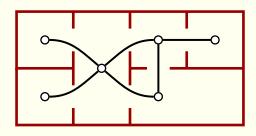
- Detector can detect fire in their room or in their neighborhood.
- Each room must contain a detector or have a detector in a neighboring room.



- Detector can detect fire in their room or in their neighborhood.
- Each room must contain a detector or have a detector in a neighboring room.



- Vertices V: rooms
- Edges *E*: between two neighboring rooms

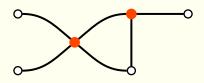


- Vertices V: rooms
- Edges *E*: between two neighboring rooms



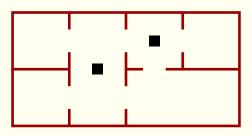
- Vertices V: rooms
- Edges *E*: between two neighboring rooms
- Set of detectors = dominating set *S*:

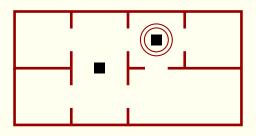
$$\forall u \in V, N[u] \cap S \neq \emptyset$$



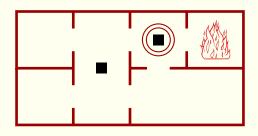
- Vertices V: rooms
- Edges *E*: between two neighboring rooms
- Set of detectors = dominating set *S*:

$$\forall u \in V, N[u] \cap S \neq \emptyset$$

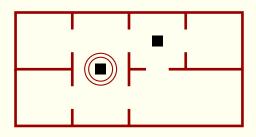




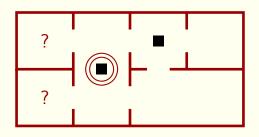
Where is the fire?



Where is the fire?



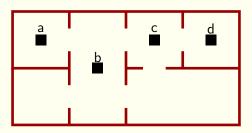
Where is the fire?



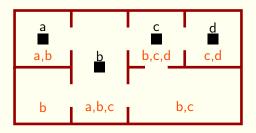
Where is the fire?

To locate the fire, we need more detectors.

Identifying where is the fire

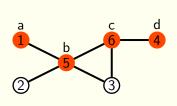


Identifying where is the fire



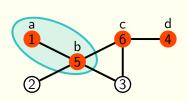
In each room, the set of detectors in the neighborhood is unique.

- dominating : $\forall u \in V, N[u] \cap C \neq \emptyset$,
- separating : $\forall u, v \in V, N[u] \cap C \neq N[v] \cap C$.



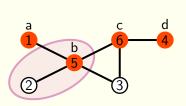
$V \setminus C$	а	b	С	d
1	•	•	-	-
2	-	•	-	-
3	-	•	•	-
4	-	-	•	•
5	•	•	•	-
6	_	•	•	•

- dominating : $\forall u \in V, N[u] \cap C \neq \emptyset$,
- separating : $\forall u, v \in V, N[u] \cap C \neq N[v] \cap C$.



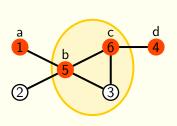
$V \setminus C$	а	b	С	d
1	•	•	1	-
2	-	•	-	-
3	-	•	•	-
4	-	-	•	•
5	•	•	•	-
6	-	•	•	•

- dominating : $\forall u \in V, N[u] \cap C \neq \emptyset$,
- separating : $\forall u, v \in V, N[u] \cap C \neq N[v] \cap C$.



$V \setminus C$	а	b	С	d
1	•	•	-	-
2	-	•	-	-
3	-	•	•	-
4	-	-	•	•
5	•	•	•	-
6	-	•	•	•

- dominating : $\forall u \in V, N[u] \cap C \neq \emptyset$,
- separating : $\forall u, v \in V, N[u] \cap C \neq N[v] \cap C$.



$V \setminus C$	а	b	С	d
1	•	•	-	-
2	-	•	-	-
3	-	•	•	-
4	-	-	•	•
5	•	•	•	-
6	-	•	•	•

Facts about identifying codes

- Introduced in 1998 by Karpvosky, Chakrabarty and Levitin
- Motivation: fault-detection in processors networks

Facts about identifying codes

- Introduced in 1998 by Karpvosky, Chakrabarty and Levitin
- Motivation: fault-detection in processors networks
- Main question:

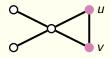
Given a graph G, what is the size $\gamma^{ID}(G)$ of minimum identifying code ?

Facts about identifying codes

- Introduced in 1998 by Karpvosky, Chakrabarty and Levitin
- Motivation: fault-detection in processors networks
- Main question:

Given a graph G, what is the size $\gamma^{ID}(G)$ of minimum identifying code ?

• Existence ⇔ no twins in the graph:



Twins: N[u] = N[v]

A difficult question...

IDENTIFYING CODE : Given a twin-free graph G and an integer k, is there an identifying code of size k in G?

Proposition Charon, Hudry, Lobstein, 2001

IDENTIFYING CODE is NP-complete.

A difficult question...

IDENTIFYING CODE : Given a twin-free graph G and an integer k, is there an identifying code of size k in G?

Proposition Charon, Hudry, Lobstein, 2001

IDENTIFYING CODE is NP-complete.

- Best polynomial approximation with logarithmic factor
- Polynomial for trees

Outline

- 1. Bounds and extremal graphs
- 2. Study in restricted classes of graphs
- 3. Identifying colorings
- 4. Some perspectives

Part I

Bounds and extremal graphs

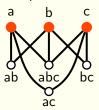
|V|: number of vertices

$$\log(|V|+1) \le \gamma^{ID}(G) \le |V|-1$$

|V|: number of vertices

$$\log(|V|+1) \le \gamma^{ID}(G) \le |V|-1$$

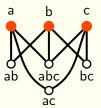
- Karpovsky, Chakrabarty, Levitin in 1998.
- Tight example:



|V|: number of vertices

$$\log(|V|+1) \le \gamma^{ID}(G) \le |V|-1$$

- Karpovsky, Chakrabarty, Levitin in 1998.
- Tight example:

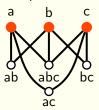


 Complete characterization by Moncel in 2006.

|V|: number of vertices

$$\log(|V|+1) \le \gamma^{ID}(G) \le |V|-1$$

- Karpovsky, Chakrabarty, Levitin in 1998.
- Tight example:

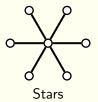


• Complete characterization by Moncel in 2006.

- Bertrand and Gravier, Moncel in 2001.
- Tight example:

Complete characterization?

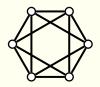
Some tight examples and a conjecture



Some tight examples and a conjecture

Complete graphs minus maximal matching

Some tight examples and a conjecture



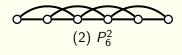
Complete graphs minus maximal matching

Conjecture Charbit, Charon, Cohen, Hudry, Lobstein, 2008

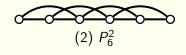
These are the only graphs with $\gamma^{ID} = |V| - 1$.

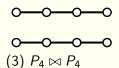
(1) Star $K_{1,n}$,

- (1) Star $K_{1,n}$,
- (2) Graphs P_{2k}^{k-1} ,

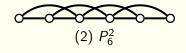


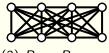
- (1) Star $K_{1,n}$,
- (2) Graphs P_{2k}^{k-1} ,
- (3) Join of several graphs in (2) and/or with some $\overline{K_2}$'s,



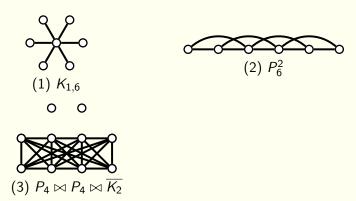


- (1) Star $K_{1,n}$,
- (2) Graphs P_{2k}^{k-1} ,
- (3) Join of several graphs in (2) and/or with some $\overline{K_2}$'s,

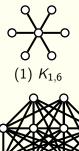


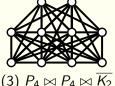


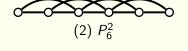
- (1) Star $K_{1,n}$,
- (2) Graphs P_{2k}^{k-1} ,
- (3) Join of several graphs in (2) and/or with some $\overline{K_2}$'s,



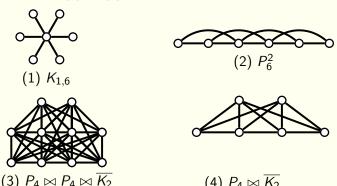
- (1) Star $K_{1,n}$,
- (2) Graphs P_{2k}^{k-1} ,
- (3) Join of several graphs in (2) and/or with some $\overline{K_2}$'s,





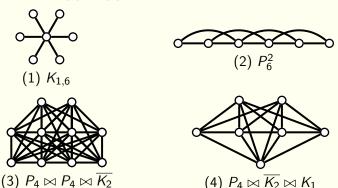


- (1) Star $K_{1,n}$,
- (2) Graphs P_{2k}^{k-1} ,
- (3) Join of several graphs in (2) and/or with some $\overline{K_2}$'s,
- (4) A graph in (2) or (3) with a universal vertex.



(4) $P_4 \bowtie \overline{K_2}$

- (1) Star $K_{1,n}$,
- (2) Graphs P_{2k}^{k-1} ,
- (3) Join of several graphs in (2) and/or with some $\overline{K_2}$'s,
- (4) A graph in (2) or (3) with a universal vertex.



- (1) Star $K_{1,n}$,
- (2) Graphs P_{2k}^{k-1} ,
- (3) Join of several graphs in (2) and/or with some $\overline{K_2}$'s,
- (4) A graph in (2) or (3) with a universal vertex.

Theorem Foucaud, Guerrini, Kovše, Naserasr, P., Valicov, 2011

Let G be a connected twin-free graph.

$$\gamma^{ID}(G) = |V| - 1 \Leftrightarrow G \text{ in } (1), (2), (3) \text{ or } (4)$$

Ideas of the proof

Theorem Foucaud, Guerrini, Kovše, Naserasr, P., Valicov, 2011

$$\gamma^{\textit{ID}}(\textit{G}) = |V| - 1 \Leftrightarrow \textit{G} \text{ in } (1), (2), (3) \text{ or } (4)$$

← By induction

Ideas of the proof

Theorem Foucaud, Guerrini, Kovše, Naserasr, P., Valicov, 2011

$$\gamma^{ID}(G) = |V| - 1 \Leftrightarrow G \text{ in } (1), (2), (3) \text{ or } (4)$$

- ← By induction
- \Rightarrow Let G be a minimal counter-example.
 - There is $u \in V$ s.t. G u extremal.
 - By minimality, G u is in (1), (2), (3) or (4).
 - We can construct an identifying code of size |V|-2 of G, contradiction.

Consequence

Corollary

If $\gamma^{ID}(G) = |V| - 1$, G has maximum degree $\Delta \ge |V| - 2$.

Consequence

Corollary

If
$$\gamma^{ID}(G) = |V| - 1$$
, G has maximum degree $\Delta \geq |V| - 2$.

Upper bound with the maximum degree Δ ?

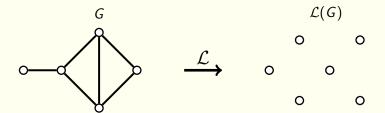
Conjecture Foucaud, Klasing, Kosowski, Raspaud, 2012

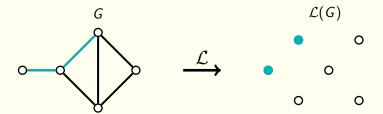
$$\gamma^{ID}(G) \leq |V| - \frac{|V|}{\Delta} + O(1).$$

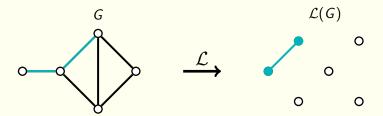
Part II

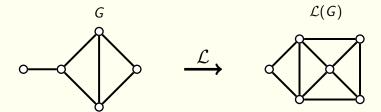
Study in a restricted class of graphs:

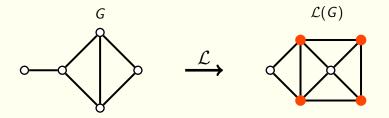
Line graphs



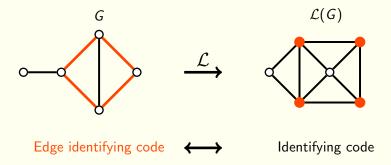


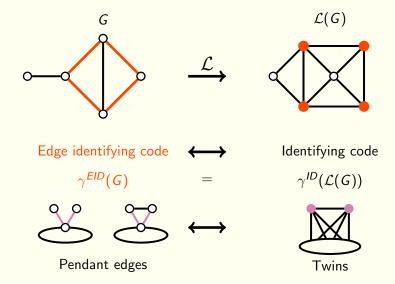






Identifying code





Still difficult

EDGE-IDCODE : Given G pendant-free and k, $\gamma^{EID}(G) \leq k$?

Theorem Foucaud, Gravier, Naserasr, P., Valicov, 2012

EDGE-IDCODE is NP-complete even for planar subcubic bipartite graphs with large girth.

Reduction from Planar ($\leq 3,3$)-SAT.

Still difficult

EDGE-IDCODE: Given G pendant-free and k, $\gamma^{EID}(G) \leq k$?

Theorem Foucaud, Gravier, Naserasr, P., Valicov, 2012

EDGE-IDCODE is NP-complete even for planar subcubic bipartite graphs with large girth.

Reduction from Planar ($\leq 3,3$)-SAT.

Corollary

IDENTIFYING CODE is NP-complete even for perfect planar 3-colorable line graphs with maximum degree 4.

$$\frac{1}{2}|V(G)| \le \gamma^{EID}(G) \le 2|V(G)| - 3$$

$$\frac{1}{2}|V(G)| \le \gamma^{EID}(G) \le 2|V(G)| - 3$$

- - \rightarrow Tight for hypercubes.

$$\frac{1}{2}|V(G)| \le \gamma^{EID}(G) \le 2|V(G)| - 3$$

- - \rightarrow Tight for hypercubes.
- Upper Bound: a minimal code is 2-degenerate.
 - \rightarrow Tight only for K_4 .

$$\frac{1}{2}|V(G)| \le \gamma^{EID}(G) \le 2|V(G)| - 3$$

- - \rightarrow Tight for hypercubes.
- Upper Bound: a minimal code is 2-degenerate.
 - \rightarrow Tight only for K_4 .
 - \rightarrow Infinite family with $\gamma^{EID}(G) = 2|V(G)| 6$:

Proposition Foucaud, Gravier, Naserasr, P., Valicov, 2012

$$\frac{1}{2}|V(G)| \le \gamma^{EID}(G) \le 2|V(G)| - 3$$

Corollary

EDGE-IDCODE has a polynomial 4-approximation.

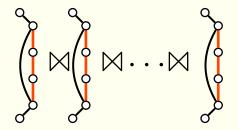
• Best polynomial approximation for identifying codes in log(|V|).

(Laifenbeld, Trachtenberg, Berger-Wolf, 2006 and Gravier, Klasing, Moncel, 2008)

Bounds using the number of edges

$$\frac{3}{2\sqrt{2}}\sqrt{|E(G)|} \le \gamma^{EID}(G) \le |E(G)| - 1$$

- Upper Bound: from identifying code
- Lower Bound: using the lower bound for vertices
 - \rightarrow Tight for:



Bounds using the number of edges

Proposition Foucaud, Gravier, Naserasr, P., Valicov, 2012

$$\frac{3}{2\sqrt{2}}\sqrt{|E(G)|} \le \gamma^{EID}(G) \le |E(G)| - 1$$

Corollary

If G is a line graph, $\gamma^{ID}(G) \geq \Theta(\sqrt{|V|})$

Conclusion for line graphs

- Class of graph for which $\gamma^{ID}(G) \geq \Theta(\sqrt{|V|})$ (instead of $\Theta(\log(|V|))$).
- Defined by forbidden induced subgraphs:

- Is the lower bound still true with less restrictions? For other classes defined by forbidden induced subgraphs?
 - → False for claw-free graphs.
 - \rightarrow True for interval graphs.

Part III

A variation of identifying code:

Identifying colorings of graphs

Some variations

- Locating-dominating codes
- Resolving sets
- $(r, \leq \ell)$ -identifying codes
- Weak and light codes
- Tolerant identifying codes
- Watching systems
- Discriminating codes
- Adaptative identifying codes
- Locating colorings
- ..

Some variations

- Locating-dominating codes
- Resolving sets
- $(r, \leq \ell)$ -identifying codes
- Weak and light codes
- Toleran
- Watchir
- vvateiii
- Discrim

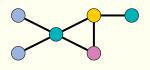
One more:

Identifying coloring

- Adaptat
- Locating colorings
- ..

Proper coloring of graphs

→ Two adjacent vertices have different colors.

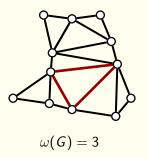


$$\chi(G) = 3$$

Chromatic number $\chi(G)$: minimum number of colors needed

Proper coloring of graphs - a lower bound

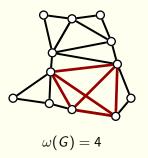
Clique number $\omega(G)$: max. number of vertices that induces a complete graph



For any graph
$$G$$
, $\chi(G) \geq \omega(G)$

Proper coloring of graphs - a lower bound

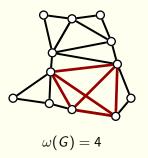
Clique number $\omega(G)$: max. number of vertices that induces a complete graph



For any graph
$$G$$
, $\chi(G) \geq \omega(G)$

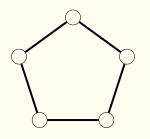
Proper coloring of graphs - a lower bound

Clique number $\omega(G)$: max. number of vertices that induces a complete graph



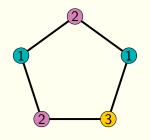
For any graph
$$G$$
, $\chi(G) \geq \omega(G)$

...that is not always reached



 $\chi(C_5) = 3 \text{ but } \omega(C_5) = 2$

...that is not always reached



$$\chi(C_5) = 3$$
 but $\omega(C_5) = 2$

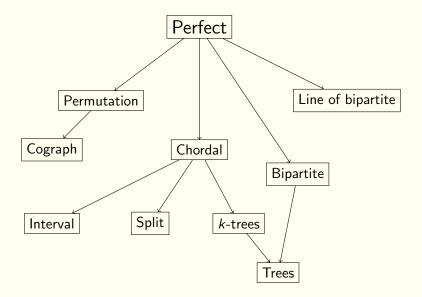
Perfect graphs

Perfect graph (1963): G is perfect if $\omega(H)=\chi(H)$ for any induced subgraph H of G

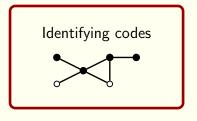
Theorem Strong Perfect Graph Theorem (Chudnovsky et al. 2002)

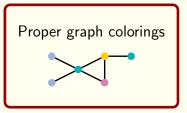
G is perfect if and only if it has no induced odd cycle or complement of odd cycle with more than 4 vertices

A part of the big family of perfect graphs

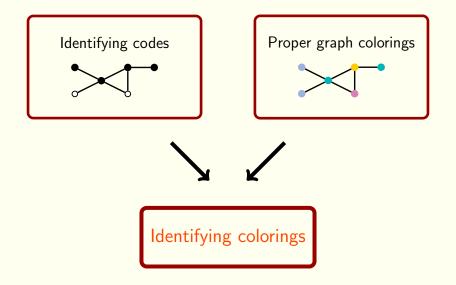


Identification with colors



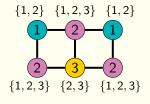


Identification with colors



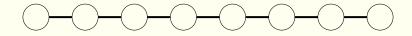
Locally identifying coloring

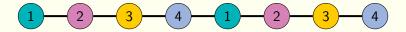
- Proper vertex coloring $c:V\to\mathbb{N}$
- local identification by the colors in the neighborhood: c(N[x])

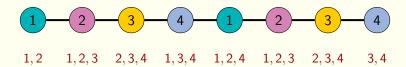


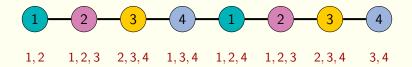
$$c(N[x]) \neq c(N[y])$$
 for $xy \in E$

• $\chi_{lid}(G)$: min. number of colors in a lid-coloring of G.

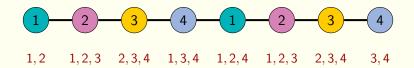






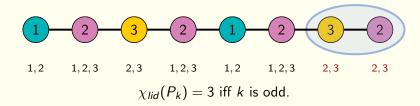


$$\chi_{lid}(P_k) \leq 4$$

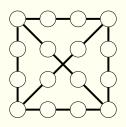


$$\chi_{lid}(P_k) \leq 4$$

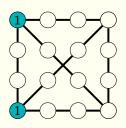
With 3 colors:



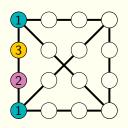
- A lid-coloring is a proper coloring: $\chi_{lid} \geq \chi$.
- No upper bound with χ.
 → complete graph K_k subdivided twice: χ_{lid} = k, χ = 3



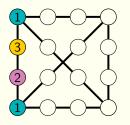
- A lid-coloring is a proper coloring: $\chi_{lid} \geq \chi$.
- No upper bound with χ.
 → complete graph K_k subdivided twice: χ_{lid} = k, χ = 3



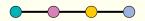
- A lid-coloring is a proper coloring: $\chi_{lid} \geq \chi$.
- No upper bound with χ.
 → complete graph K_k subdivided twice: χ_{lid} = k, χ = 3



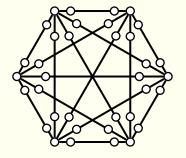
- A lid-coloring is a proper coloring: $\chi_{lid} \geq \chi$.
- No upper bound with χ . \rightarrow complete graph K_k subdivided twice: $\chi_{lid} = k$, $\chi = 3$



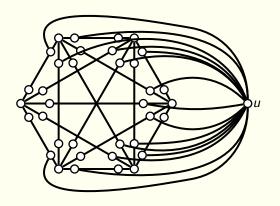
• Not monotone: $\chi_{lid}(P_5) \leq \chi_{lid}(P_4)$



$\chi_{\it lid}$ is not monotone at all

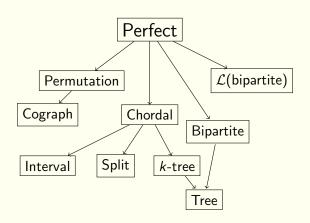


χ_{lid} is not monotone at all

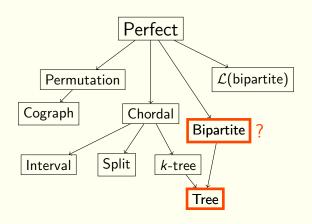


$$\chi_{lid}(G) = 5 \ll k = \chi_{lid}(G - u)$$

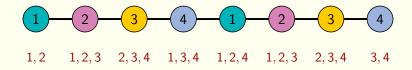
Study in perfect graphs



Study in perfect graphs

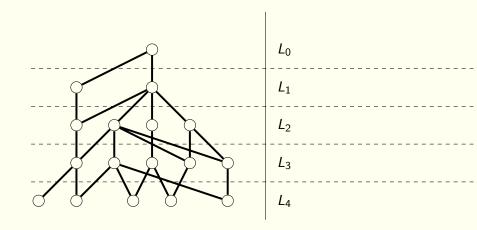


Bipartite graphs: the path

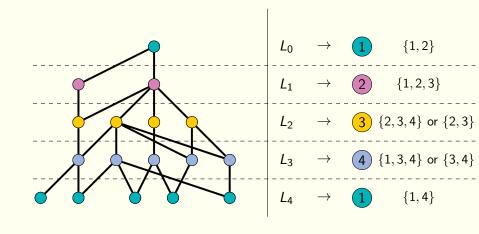


$$\chi_{lid}(P_k) \leq 4$$

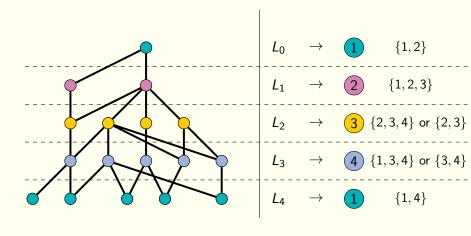
Bipartite graphs are 4-lid-colorable



Bipartite graphs are 4-lid-colorable



Bipartite graphs are 4-lid-colorable

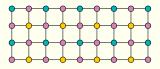


If G is bipartite, $\chi_{lid}(G) \leq 4$.

General bounds: $3 \le \chi_{lid}(B) \le 4$.

General bounds: $3 \le \chi_{lid}(B) \le 4$.

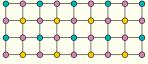
$$\chi_{lid}(B) = 3$$
:



General bounds: $3 \le \chi_{lid}(B) \le 4$.

$$\chi_{lid}(B) = 3:$$

$$\chi_{lid}(B) = 4$$
:

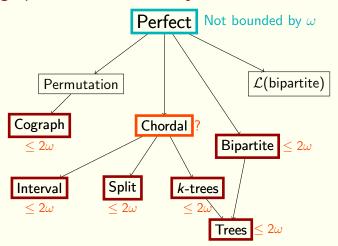


General bounds: $3 \le \chi_{lid}(B) \le 4$.

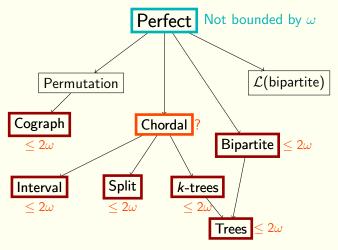
$$\chi_{lid}(B) = 3$$
: $\chi_{lid}(B) = 4$: \leftarrow ? \rightarrow

In general... 3-LID-COLORING is NP-complete in bipartite graphs

Perfect graphs - results and conjecture

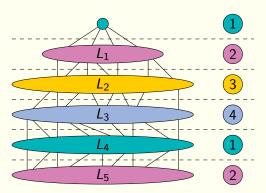


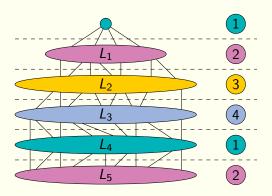
Perfect graphs - results and conjecture



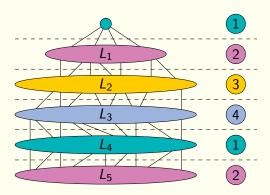
Conjecture Esperet, Gravier, Montassier, Ochem, P., 2012

Any chordal graph G has a lid-coloring with $2\omega(G)$ colors.

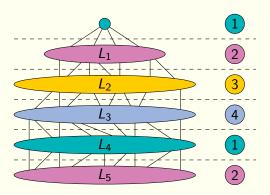




• Outerplanar graphs: L_i = union of paths, 5 colors $\rightarrow 4 \times 5 = 20$ colors



- Outerplanar graphs: L_i = union of paths, 5 colors
 → 4 × 5 = 20 colors
- Planar graphs: $L_i =$ outerplanar, 20 colors and 16 more colors $\rightarrow 4 \times 20 \times 16 = 1280$ colors (Gonçalves, P., Pinlou, 2012)



- Outerplanar graphs: L_i = union of paths, 5 colors
 → 4 × 5 = 20 colors
- Planar graphs: L_i = outerplanar, 20 colors and 16 more colors $\rightarrow 4 \times 20 \times 16 = 1280$ colors (Gonçalves, P., Pinlou, 2012)
- Same idea for K_k -minor free graphs (Gonçalves, P., Pinlou, 2012)

Part IV

Perspectives

Open questions

- Bounds and extremal graphs
 - \rightarrow Conjecture $\gamma^{ID}(G) \leq n \frac{n}{O(\Delta)}$
- Study in restricted classes of graphs
 - \rightarrow Other classes with $\gamma^{ID}(G) \geq \Theta(\sqrt{|V|})$?
 - → Better approximation for line graphs ?
- Identifying colorings
 - \rightarrow Better bound for planar graphs (between 8 and 1280...)
 - \rightarrow Conjecture $\chi_{lid} \leq 2\omega$ for chordal graphs
- Generalization to hypergraph

A new approach with integer linear programming?

Identifying code problem is equivalent to the following problem :

$$\begin{array}{ll} \min & \sum_{u \in V} x_u \\ \text{s.t.} & \sum_{u \in N[v]} x_u \geq 1 \qquad \forall v \in V \qquad \text{(domination)} \\ & \sum_{u \in N[v] \Delta N[v']} x_u \geq 1 \quad \forall v \neq v' \in V^2 \quad \text{(separation)} \\ & x_u \in \{0,1\} \end{array}$$

- → Subproblem of hitting set, covering set problems
- → New lower bounds, approximations, polynomial algorithm?

