Codes identifiants dans des classes de graphes héréditaires

Aline Parreau LIFL, Université de Lille 1

En collaboration avec : Florent Foucaud, Sylvain Gravier, Adrian Kosowski, George Mertzios, Reza Naserasr et Petru Valicov

Seminaire Graphes et Structures Discrètes du LIP ENS de Lyon - Mardi 29 janvier 2012

Identifying codes

Identifying codes in line graphs

Identifying codes in interval graphs

- Detector can detect fire in their room or in their neighborhood.
- Each room must contain a detector or have a detector in a neighboring room.

- Detector can detect fire in their room or in their neighborhood.
- Each room must contain a detector or have a detector in a neighboring room.

- Vertices V: rooms
- Edges *E*: between two neighboring rooms

- Vertices V: rooms
- Edges *E*: between two neighboring rooms

- Vertices V: rooms
- Edges E: between two neighboring rooms
- Set of detectors = dominating set *S*:

 $\forall u \in V, N[u] \cap S \neq \emptyset$

- Vertices V: rooms
- Edges E: between two neighboring rooms
- Set of detectors = dominating set *S*:

 $\forall u \in V, N[u] \cap S \neq \emptyset$

Where is the fire ?

Where is the fire ?

Where is the fire ?

Where is the fire ?

To locate the fire, we need more detectors.

Identifying where is the fire

Identifying where is the fire

In each room, the set of detectors in the neighborhood is unique.

- dominating : $\forall u \in V, N[u] \cap C \neq \emptyset$,
- separating : $\forall u, v \in V, N[u] \cap C \neq N[v] \cap C$.

$V \setminus C$	а	b	С	d
1	•	•	-	-
2	-	•	-	-
3	-	•	•	-
4	-	-	•	•
5	•	•	•	-
6	-	•	•	٠

- dominating : $\forall u \in V, N[u] \cap C \neq \emptyset$,
- separating : $\forall u, v \in V, N[u] \cap C \neq N[v] \cap C$.

$V\setminusC$	а	b	С	d
1	•	•	-	-
2	-	٠	-	-
3	-	٠	•	-
4	-	-	•	•
5	•	•	•	-
6	-	•	•	•

- dominating : $\forall u \in V, N[u] \cap C \neq \emptyset$,
- separating : $\forall u, v \in V, N[u] \cap C \neq N[v] \cap C$.

$V\setminusC$	а	b	С	d
1	•	•	-	-
2	-	٠	-	-
3	-	٠	•	-
4	-	-	•	•
5	•	•	•	-
6	-	•	•	•

- dominating : $\forall u \in V, N[u] \cap C \neq \emptyset$,
- separating : $\forall u, v \in V, N[u] \cap C \neq N[v] \cap C$.

$V \setminus C$	а	b	С	d
1	•	•	-	-
2	-	•	-	-
3	-	•	٠	-
4	-	-	٠	٠
5	•	•	•	-
6	-	•	•	•

Facts about identifying codes

- Introduced in 1998 by Karpvosky, Chakrabarty and Levitin
- Existence ⇔ no twins in the graph:

Twins: N[u] = N[v]

Facts about identifying codes

- Introduced in 1998 by Karpvosky, Chakrabarty and Levitin
- Existence ⇔ no twins in the graph:

Twins:
$$N[u] = N[v]$$

Given a twin-free graph G, what is the size $\gamma^{ID}(G)$ of minimum identifying code ?

A difficult question...

IDENTIFYING CODE : Given a twin-free graph G and an integer k, is there an identifying code of size k in G?

Proposition Charon, Hudry, Lobstein, 2001

IDENTIFYING CODE is NP-complete.

A difficult question...

IDENTIFYING CODE : Given a twin-free graph G and an integer k, is there an identifying code of size k in G?

Proposition Charon, Hudry, Lobstein, 2001

IDENTIFYING CODE is NP-complete.

Optimization problem hard to approximate:

Proposition Laifenbled, Trachtenberg, 2006 & Suomela, 2007

Best polynomial approximation: factor log(|V|)

- *n* : number of vertices
- Upper bound: $\gamma^{ID}(G) \leq n-1$ (Bertrand and Gravier, Moncel 2001)

- *n* : number of vertices
- Upper bound: $\gamma^{ID}(G) \leq n-1$ (Bertrand and Gravier, Moncel 2001)
- Lower bound (Karpovsky, Chakrabarty, Levitin 1998):

 \rightarrow A vertex is identified by a subset of $C \Rightarrow n \leq 2^{\gamma^{ID}(G)} - 1$

- *n* : number of vertices
- Upper bound: $\gamma^{ID}(G) \leq n-1$ (Bertrand and Gravier, Moncel 2001)
- Lower bound (Karpovsky, Chakrabarty, Levitin 1998):

 \rightarrow A vertex is identified by a subset of $C \Rightarrow n \leq 2^{\gamma^{ID}(G)} - 1$

$$\gamma^{ID}(G) \ge \log(n+1)$$

Tight example:

- *n* : number of vertices
- Upper bound: $\gamma^{I\!D}({\sf G}) \leq n-1$ (Bertrand and Gravier, Moncel 2001)
- Lower bound (Karpovsky, Chakrabarty, Levitin 1998):

 \rightarrow A vertex is identified by a subset of $C \Rightarrow n \leq 2^{\gamma^{ID}(G)} - 1$

$$\gamma^{ID}(G) \ge \log(n+1)$$

Tight example:

What about restricted classes of graphs?

Coding theory classes:

- path, cycles
- rectangular , hexagonal, triangular grids
- hypercubes
- ...

What about restricted classes of graphs?

Coding theory classes:

- path, cycles
- rectangular , hexagonal, triangular grids
- hypercubes
- ...

Heriditary classes ?

- $\rightarrow\,$ line graphs
- \rightarrow interval graphs

Identifying codes in line graphs

Identifying code in line graphs

Identifying code

Edge identifying code \longleftrightarrow

Identifying code

Edge identifying code \leftrightarrow $\gamma^{EID}(G) =$ Pendant edges Identifying code $\gamma^{ID}(\mathcal{L}(G))$

Example with Petersen graph

 $\gamma^{\textit{EID}}(\mathcal{P}) \leq 5$

Lower bound of $\gamma^{\it EID}$ using $\it n$

Proposition Foucaud, Gravier, Naserasr, P., Valicov, 2012

$$\gamma^{\text{EID}}(G) \geq \frac{n}{2}$$

Lower bound of γ^{EID} using n

Proposition Foucaud, Gravier, Naserasr, P., Valicov, 2012

$$\gamma^{EID}(G) \geq \frac{n}{2}$$

 C_E , k edges on n' vertices

$$X = V(G) \setminus V(C_E)$$

Lower bound of γ^{EID} using *n*

Proposition Foucaud, Gravier, Naserasr, P., Valicov, 2012

$$\gamma^{\text{EID}}(G) \geq \frac{n}{2}$$

 C_E , k edges on n' vertices

- $X = V(G) \setminus V(C_E)$
- Assume C_E is connected
- If C_E is a cycle, $|X| \le n' \le k$,

Lower bound of γ^{EID} using *n*

Proposition Foucaud, Gravier, Naserasr, P., Valicov, 2012

$$\gamma^{\text{EID}}(G) \geq \frac{n}{2}$$

 C_E , k edges on n' vertices

- $X = V(G) \setminus V(C_E)$
- Assume C_E is connected
- If C_E is a cycle, $|X| \le n' \le k$,
- If C_E is a tree, n'-1=k and $|X|\leq n'-2$
- In both cases, $n = |X| + n' \le 2k$

Consequence for line graphs

•
$$\gamma^{EID}(G) \geq \frac{n}{2}$$

Consequence for line graphs

•
$$\gamma^{EID}(G) \ge \frac{n}{2}$$

• But $|E(G)| \le \frac{n(n-1)}{2}$, hence:

$$\gamma^{EID}(G) \geq \frac{\sqrt{2|E(G)|}}{2}$$

Consequence for line graphs

•
$$\gamma^{EID}(G) \geq \frac{n}{2}$$

• But $|E(G)| \leq \frac{n(n-1)}{2}$, hence:

$$\gamma^{EID}(G) \geq \frac{\sqrt{2|E(G)|}}{2}$$

 \rightarrow Larger than the log(*n*) bound!

$$u \in V \rightarrow C_u = N[u] \cap C_E$$

$$u \in V \to C_u = N[u] \cap C_E$$

•
$$uv \in E$$
 identified by $C_u \cup C_v$

•
$$u \in V \rightarrow C_u = N[u] \cap C_E$$

•
$$uv \in E$$
 identified by $C_u \cup C_v$

$$|E| \le \binom{n'+1}{2} \le \binom{|C_E|+2}{2} - 4$$

• C_E connected on n' vertices

•
$$u \in V \rightarrow C_u = N[u] \cap C_E$$

•
$$uv \in E$$
 identified by $C_u \cup C_v$

$$|E| \le \binom{n'+1}{2} \le \binom{|C_E|+2}{2} - 4$$

 $\bowtie \cdots \bowtie$

Leads to the following tight bound:

$$\gamma^{EID}(G) \geq \frac{3\sqrt{2}}{2}\sqrt{|E(G)|}$$

Still difficult

EDGE-IDCODE : Given G pendant-free and k, $\gamma^{EID}(G) \leq k$?

Theorem Foucaud, Gravier, Naserasr, P., Valicov, 2012

EDGE-IDCODE is NP-complete even for planar subcubic bipartite graphs with large girth.

Reduction from PLANAR ($\leq 3, 3$)-SAT.

Still difficult

EDGE-IDCODE : Given G pendant-free and k, $\gamma^{EID}(G) \leq k$?

Theorem Foucaud, Gravier, Naserasr, P., Valicov, 2012

EDGE-IDCODE is NP-complete even for planar subcubic bipartite graphs with large girth.

Reduction from PLANAR ($\leq 3, 3$)-SAT.

Corollary

IDENTIFYING CODE is NP-complete even for perfect planar 3-colorable line graphs with maximum degree 4.

But approximable

Proposition Foucaud, Gravier, Naserasr, P., Valicov, 2012

 $\rm EDGE-IDCODE$ (resp. $\rm IDCODE$ in line graphs) has a polynomial 4-approximation.

Due to:

$$\frac{n}{2} \leq \gamma^{EID}(G) \leq 2n - 3$$

But approximable

Proposition Foucaud, Gravier, Naserasr, P., Valicov, 2012

 $\rm EDGE-IDCODE$ (resp. $\rm IDCODE$ in line graphs) has a polynomial 4-approximation.

Due to:

$$\frac{n}{2} \le \gamma^{EID}(G) \le 2n - 3$$

Open question

Better approximation?

Conclusion for line graph

- Class of graph for which $\gamma^{ID}(G) \ge \Theta(\sqrt{n})$.
- Is the lower bound still true with less restrictions?
 → Not true for claw-free graphs.

Identifying codes in interval graphs

Interval graphs

5

Proposition Foucaud, Naserasr, P., Valicov, 2012+

If G is an interval graph, $\gamma^{ID}(G) > \sqrt{2n}$

Proposition Foucaud, Naserasr, P., Valicov, 2012+

If G is an interval graph, $\gamma^{I\!D}(G) > \sqrt{2n}$

- Identifying code of size k.
- Order the code by increasing left point.

Proposition Foucaud, Naserasr, P., Valicov, 2012+

If G is an interval graph, $\gamma^{\prime D}(G) > \sqrt{2n}$

- Identifying code of size k.
- Order the code by increasing left point.
- Each vertex intersects a consecutive set of code vertices.

Proposition Foucaud, Naserasr, P., Valicov, 2012+

If G is an interval graph, $\gamma^{\prime D}(G) > \sqrt{2n}$

- Identifying code of size k.
- Order the code by increasing left point.
- Each vertex intersects a consecutive set of code vertices. $\rightarrow n \leq \binom{k}{2}$

Proposition Foucaud, Naserasr, P., Valicov, 2012+

If G is an interval graph,
$$\gamma^{ID}(G) > \sqrt{2n}$$

Tight

Proposition Foucaud, Naserasr, P., Valicov, 2012+

If G is an interval graph,
$$\gamma^{ID}(G) > \sqrt{2n}$$

Tight

Link with line graphs ?

 $\rightarrow\,$ each vertex is *defined* with two cliques

Complexity

Proposition Foucaud, Kosowski, Mertzios, Naserasr, P., Valicov

IDENTIFYING CODE is NP-Complete for interval graphs.

Complexity

Proposition Foucaud, Kosowski, Mertzios, Naserasr, P., Valicov

IDENTIFYING CODE is NP-Complete for interval graphs.

Reduction from 3-DIMENSIONAL MATCHING:

- Instance: A,B, C sets and $T \subset A \times B \times C$ some triples
- Question: is there a perfect 3-dimensional matching M ⊂ T,
 i.e., each element of A ∪ B ∪ C appears exactly once in M?

Complexity

Proposition Foucaud, Kosowski, Mertzios, Naserasr, P., Valicov

IDENTIFYING CODE is NP-Complete for interval graphs.

Reduction from 3-DIMENSIONAL MATCHING:

- Instance: A,B, C sets and $\mathcal{T} \subset A \times B \times C$ some triples
- Question: is there a perfect 3-dimensional matching M ⊂ T,
 i.e., each element of A ∪ B ∪ C appears exactly once in M?

Unit interval graphs

- In the reduction, intervals can separate pairs far from each other without affecting the intervals in between.
- $\rightarrow\,$ what happens with unit intervals?

Unit interval graphs

- In the reduction, intervals can separate pairs far from each other without affecting the intervals in between.
- \rightarrow what happens with unit intervals?
- With unit intervals:
 - Enough to dominate and separate consecutive intervals
 - One interval can separate only two pairs of consecutive intervals (except extreme ones)

Proposition

If G is a unit interval graph, $\gamma^{ID}(G) \geq \frac{n+1}{2}$.

Unit interval graphs

- In the reduction, intervals can separate pairs far from each other without affecting the intervals in between.
- \rightarrow what happens with unit intervals?
- With unit intervals:
 - Enough to dominate and separate consecutive intervals
 - One interval can separate only two pairs of consecutive intervals (except extreme ones)

Proposition

If G is a unit interval graph, $\gamma^{ID}(G) \geq \frac{n+1}{2}$.

Open question

What is the complexity of IDCODE in unit interval graphs?

Conclusion

	Lower Bound	Complexity	Approximability
Line	\sqrt{n}	NP-c	4
Interval	\sqrt{n}	NP-c	OPEN
Unit interval	$\frac{n}{2}$	OPEN	2
Claw-free	log n	NP-c	log n
Tree	$\frac{3n}{7}$	Linear	-
Cograph	$\frac{n}{2}$	Linear	-
Split	log n	NP-c	log n

Conclusion

	Lower Bound	Complexity	Approximability
Line	\sqrt{n}	NP-c	4
Interval	\sqrt{n}	NP-c	OPEN
Unit interval	$\frac{n}{2}$	OPEN	2
Claw-free	log n	NP-c	log n
Tree	$\frac{3n}{7}$	Linear	-
Cograph	$\frac{n}{2}$	Linear	-
Split	log n	NP-c	log n

Merci !