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Back to the museum

Where is the fire ?

To locate the fire, we need more detectors.
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|dentifying where is the fire

[ | | |

ab | p [bcd ] cd
I

b | a,b,c | b.c

In each room, the set of detectors in the neighborhood is
unique.
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Modelization with a graph

Identifying code C = subset of vertices which is
e dominating : Yu € V,N[u] N C # 0,

e separating : Yu,v € V,N[u]n C # N[v]n C.
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e Introduced in 1998 by Karpvosky, Chakrabarty and Levitin
e Existence < no twins in the graph:
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Facts about identifying codes

e Introduced in 1998 by Karpvosky, Chakrabarty and Levitin
e Existence < no twins in the graph:

Xl ’ Twins: N[u] = NJ[v]

Given a twin-free graph G, what is the size v/°(G)
of minimum identifying code 7
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A difficult question...

IDENTIFYING CODE : Given a twin-free graph G and an
integer k, is there an identifying code of size k in G?

Proposition Charon, Hudry, Lobstein, 2001]

IDENTIFYING CODE is NP-complete.
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A difficult question...

IDENTIFYING CODE : Given a twin-free graph G and an
integer k, is there an identifying code of size k in G?

Proposition Charon, Hudry, Lobstein, 2001]

IDENTIFYING CODE is NP-complete. ]

Optimization problem hard to approximate:

Proposition Laifenbled, Trachtenberg, 2006 & Suomela, 2007]

Best polynomial approximation: factor log(|V/|) J

8/25



Bounds on 7/P(G) using the number of vertices

e n: number of vertices

L] Upper bound: ’)/ID(G) <n-1 (Bertrand and Gravier, Moncel 2001)

9/25



Bounds on 7/P(G) using the number of vertices

e n: number of vertices
L] Upper bound: ’)/ID(G) <n-1 (Bertrand and Gravier, Moncel 2001)

e Lower bound (Karpovsky, Chakrabarty, Levitin 1998):
a0 oo 1D
— A vertex is identified by a subset of C = n <27 (6) —1

9/25



Bounds on 7/P(G) using the number of vertices

e n: number of vertices
L] Upper bound: ’)/ID(G) <n-1 (Bertrand and Gravier, Moncel 2001)

e Lower bound (Karpovsky, Chakrabarty, Levitin 1998):
a0 oo 1D
— A vertex is identified by a subset of C = n <27 (6) —1

7P(G) > log(n+1)

Tight example:

o)
(@]

9/25



Bounds on 7/P(G) using the number of vertices

e n: number of vertices
L] Upper bound: ’)/ID(G) <n-1 (Bertrand and Gravier, Moncel 2001)

e Lower bound (Karpovsky, Chakrabarty, Levitin 1998):
a0 oo 1D
— A vertex is identified by a subset of C = n <27 (6) —1

7P(G) > log(n+1)

Tight example:

9/25



What about restricted classes of graphs?

Coding theory classes:
e path, cycles
e rectangular , hexagonal, triangular grids
e hypercubes

10/25



What about restricted classes of graphs?

Coding theory classes:
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e rectangular , hexagonal, triangular grids
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— line graphs
— interval graphs
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|dentifying code in line graphs

G L(G)
£ @
o—d ‘ o =

Edge identifying code 4= Identifying code
vHP(G) = VP(£(G))

o O o—0 —
S o> %
Pendant edges Twins
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Example with Petersen graph

+FP(P) <5
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Lower bound of v='* using n

Proposition Foucaud, Gravier, Naserasr, P., Valicov, 2012]
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EID

Lower bound of v='* using n

Proposition Foucaud, Gravier, Naserasr, P., Valicov, 2012]

1¥2(6) =

N S

Ce, k edges on n’ vertices

X =V(G)\ V(Ce) %o J 6 0 o>

Assume Cg is connected

If Ceis acycle, | X| < n' <k,

If Ceisatree, " —1=kand |X|<n -2
In both cases, n = |X| + n’ <2k

14/25



Consequence for line graphs

¢ 1(6) > 5

15/25



Consequence for line graphs
o 75°(6) > 3
o But |[E(G)| < ™1 hence:
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Consequence for line graphs
° ’)/EID(G) Z g
o But |[E(G)| < ™1 hence:

EID 2|E(G)|
7=7(G) > S —

Corollary

If H is a line graph,

S

7P(H) >

. J

— Larger than the log(n) bound!
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Alternative proof
e Cg connected on n’ vertices
e ucV — C,=N[ulNnCe

e uv € E identified by C, U C,

’
] < <n ;—1) < (]CE]2+2> A

1¥0(6) 2 S VIE@)] (L ML X -
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Still difficult

EDGE-IDCODE : Given G pendant-free and k, v£'P(G) < k ?

Theorem Foucaud, Gravier, Naserasr, P., Valicov, 2012

EDGE-IDCODE is NP-complete even for planar subcubic
bipartite graphs with large girth.

Reduction from PLANAR (< 3,3)-SAT.
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Theorem Foucaud, Gravier, Naserasr, P., Valicov, 2012

EDGE-IDCODE is NP-complete even for planar subcubic
bipartite graphs with large girth.

Reduction from PLANAR (< 3,3)-SAT.

Corollary

IDENTIFYING CODE is NP-complete even for perfect planar
3-colorable line graphs with maximum degree 4.
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But approximable

Proposition Foucaud, Gravier, Naserasr, P., Valicov, 2012

EDGE-IDCODE (resp. IDCODE in line graphs) has a poly-
nomial 4-approximation.

Due to:

<~FP(G)<2n—-3

NS
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Proposition Foucaud, Gravier, Naserasr, P., Valicov, 2012

EDGE-IDCODE (resp. IDCODE in line graphs) has a poly-
nomial 4-approximation.

Due to:

<~FP(G)<2n—-3

NS

Open question]

Better approximation? J
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Conclusion for line graph

e Class of graph for which v'°(G) > ©(y/n).

e Defined by forbidden induced subgraphs:

Il - 4 i O & o <

e Is the lower bound still true with less restrictions?
— Not true for claw-free graphs.
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Interval graphs
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Lower bound

Proposition Foucaud, Naserasr, P., Valicov, 2012—|—]
If G is an interval graph, v'°(G) > v/2n
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Lower bound

Proposition Foucaud, Naserasr, P., Valicov, 2012—|—]

If G is an interval graph, v'°(G) > v/2n

e Identifying code of size k.
e Order the code by increasing left point.

e Each vertex intersects a consecutive set of code vertices.
—n<(3)
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Lower bound
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Lower bound

Proposition Foucaud, Naserasr, P., Valicov, 2012—|—]
If G is an interval graph, v'°(G) > v/2n

Tight

Link with line graphs 7
— each vertex is defined with two cliques
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Complexity

Proposition Foucaud, Kosowski, Mertzios, Naserasr, P., Valicov]
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Proposition Foucaud, Kosowski, Mertzios, Naserasr, P., VaIicov]

IDENTIFYING CODE is NP-Complete for interval graphs. J

Reduction from 3-DIMENSIONAL MATCHING:

e |nstance: AB, C setsand 7 C A x B x C some triples

e Question: is there a perfect 3-dimensional matching M C T,
i.e., each element of AU B U C appears exactly once in M?

Tr(p,r.b) ]
I u J

;P
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Unit interval graphs

e In the reduction, intervals can separate pairs far from each
other without affecting the intervals in between.
— what happens with unit intervals?
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e Enough to dominate and separate consecutive intervals

e One interval can separate only two pairs of consecutive
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Unit interval graphs

e In the reduction, intervals can separate pairs far from each
other without affecting the intervals in between.
— what happens with unit intervals?
With unit intervals:
e Enough to dominate and separate consecutive intervals

e One interval can separate only two pairs of consecutive
intervals (except extreme ones)

Proposition

- o ID nt1
If G is a unit interval graph, 4/°(G) > . ]

Open question]

What is the complexity of IDCODE in unit interval graphs? ]
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Conclusion

‘ Lower Bound ‘ Complexity ‘ Approximability

Line Vvn NP-c 4
Interval Vn NP-c OPEN
Unit interval 5 OPEN 2
Claw-free log n NP-c log n
Tree 37” Linear -
Cograph 5 Linear -
Split log n NP-c log n
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Conclusion

‘ Lower Bound ‘ Complexity ‘ Approximability

Line NP-c 4
Interval NP-c OPEN
Unit interval OPEN 2
Claw-free NP-c log n
Tree Linear -
Cograph Linear -
Split NP-c log n

Merci |
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