
Codes identifiants dans des classes de
graphes héréditaires

Aline Parreau
LIFL, Université de Lille 1
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Fire detection in a museum?

• Detector can detect fire in their room or in their
neighborhood.

• Each room must contain a detector or have a detector in
a neighboring room.
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Modelization with a graph

• Vertices V : rooms

• Edges E : between two neighboring rooms

• Set of detectors = dominating set S :

∀u ∈ V ,N[u] ∩ S 6= ∅
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Identifying where is the fire
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Identifying where is the fire

?

?

b

ca d

a,b

b a,b,c

b,c,d

b,c

c,d

In each room, the set of detectors in the neighborhood is
unique.
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Modelization with a graph

Identifying code C = subset of vertices which is

• dominating : ∀u ∈ V ,N[u] ∩ C 6= ∅,
• separating : ∀u, v ∈ V ,N[u] ∩ C 6= N[v ] ∩ C .

5

1

2

6

3

4b

a c d

5

1 6 4

V \ C a b c d

1 • • - -
2 - • - -
3 - • • -
4 - - • •
5 • • • -
6 - • • •
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Facts about identifying codes

• Introduced in 1998 by Karpvosky, Chakrabarty and Levitin

• Existence ⇔ no twins in the graph:

u

v
Twins: N[u] = N[v ]

Given a twin-free graph G , what is the size γID(G )
of minimum identifying code ?
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A difficult question...

Identifying Code : Given a twin-free graph G and an
integer k , is there an identifying code of size k in G ?

Identifying Code is NP-complete.

Proposition Charon, Hudry, Lobstein, 2001

Optimization problem hard to approximate:

Best polynomial approximation: factor log(|V |)

Proposition Laifenbled, Trachtenberg, 2006 & Suomela, 2007
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Bounds on γID(G ) using the number of vertices

• n : number of vertices

• Upper bound: γID(G ) ≤ n− 1 (Bertrand and Gravier, Moncel 2001)

• Lower bound (Karpovsky, Chakrabarty, Levitin 1998):
→ A vertex is identified by a subset of C ⇒ n ≤ 2γ

ID(G) − 1

γID(G ) ≥ log(n + 1)

Tight example:

b ca

bc

ac

ab abc
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What about restricted classes of graphs?

Coding theory classes:

• path, cycles

• rectangular , hexagonal, triangular grids

• hypercubes

• ...

Heriditary classes ?

→ line graphs

→ interval graphs
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Identifying codes in line graphs
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Identifying code in line graphs

Edge identifying code

Pendant edges

G

L

Twins

L(G )

Identifying code

γEID(G ) = γID(L(G ))
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Example with Petersen graph

4

3

15

2

γEID(P) ≤ 5
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Lower bound of γEID using n

γEID(G ) ≥ n

2

Proposition Foucaud, Gravier, Naserasr, P., Valicov, 2012

CE , k edges on n′ vertices

X = V (G ) \ V (CE )

• Assume CE is connected
• If CE is a cycle, |X | ≤ n′ ≤ k ,
• If CE is a tree, n′ − 1 = k and |X | ≤ n′ − 2
• In both cases, n = |X |+ n′ ≤ 2k
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Consequence for line graphs

• γEID(G ) ≥ n
2

• But |E (G )| ≤ n(n−1)
2

, hence:

γEID(G ) ≥
√

2|E (G )|
2

If H is a line graph,

γID(H) ≥
√

2n

2
.

Corollary

→ Larger than the log(n) bound!

15/25



Consequence for line graphs

• γEID(G ) ≥ n
2

• But |E (G )| ≤ n(n−1)
2

, hence:

γEID(G ) ≥
√

2|E (G )|
2

If H is a line graph,

γID(H) ≥
√

2n

2
.

Corollary

→ Larger than the log(n) bound!

15/25



Consequence for line graphs

• γEID(G ) ≥ n
2

• But |E (G )| ≤ n(n−1)
2

, hence:

γEID(G ) ≥
√

2|E (G )|
2

If H is a line graph,

γID(H) ≥
√

2n

2
.

Corollary

→ Larger than the log(n) bound!
15/25



Alternative proof

CE

{e1, e2}
{e1}

∅

e1 e2

• CE connected on n′ vertices

• u ∈ V → Cu = N[u] ∩ CE

• uv ∈ E identified by Cu ∪ Cv

|E | ≤
(
n′ + 1

2

)
≤
(
|CE |+ 2

2

)
− 4

Leads to the following tight bound:

γEID(G ) ≥ 3
√

2

2

√
|E (G )| 1 1 1· · ·
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Still difficult

Edge-IDCode : Given G pendant-free and k , γEID(G ) ≤ k ?

Edge-IDCode is NP-complete even for planar subcubic
bipartite graphs with large girth.

Theorem Foucaud, Gravier, Naserasr, P., Valicov, 2012

Reduction from Planar (≤ 3, 3)-SAT.

Identifying Code is NP-complete even for perfect planar
3-colorable line graphs with maximum degree 4.

Corollary
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But approximable

Edge-IDCode (resp. IDCode in line graphs) has a poly-
nomial 4-approximation.

Proposition Foucaud, Gravier, Naserasr, P., Valicov, 2012

Due to:

n

2
≤ γEID(G ) ≤ 2n − 3

Better approximation?

Open question
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Conclusion for line graph

• Class of graph for which γID(G ) ≥ Θ(
√

n).

• Defined by forbidden induced subgraphs:

• Is the lower bound still true with less restrictions?

→ Not true for claw-free graphs.

19/25



Identifying codes in interval graphs
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Interval graphs

I1 I4

I2 I5

I3 1

2

3

4 5
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Lower bound

If G is an interval graph, γID(G ) >
√

2n

Proposition Foucaud, Naserasr, P., Valicov, 2012+

1 2

3

4

1 − 1 2 − 3

1 − 2 2 − 4

1 − 4

1 − 3 3 − 4

• Identifying code of size k .

• Order the code by increasing left point.

• Each vertex intersects a consecutive set of code vertices.

→ n ≤
(
k
2

)
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Lower bound

If G is an interval graph, γID(G ) >
√

2n

Proposition Foucaud, Naserasr, P., Valicov, 2012+

Tight

Link with line graphs ?

→ each vertex is defined with two cliques
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Complexity

Identifying Code is NP-Complete for interval graphs.

Proposition Foucaud, Kosowski, Mertzios, Naserasr, P., Valicov

Reduction from 3-Dimensional Matching:

• Instance: A,B, C sets and T ⊂ A× B × C some triples

• Question: is there a perfect 3-dimensional matching M ⊂ T ,
i.e., each element of A ∪ B ∪ C appears exactly once in M?

. . .

P(p) P(q) P(r) P(s) P(a) P(b) P(c)

Tr(p, q) Tr(r , s)

Tr(p, r , b)

Tr(q, r , c)

Tr(s, a)

three element gadgets for a, b and c

p q r s
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Unit interval graphs
• In the reduction, intervals can separate pairs far from each

other without affecting the intervals in between.

→ what happens with unit intervals?

With unit intervals:

• Enough to dominate and separate consecutive intervals

• One interval can separate only two pairs of consecutive
intervals (except extreme ones)

If G is a unit interval graph, γID(G ) ≥ n+1
2

.

Proposition

What is the complexity of IDCode in unit interval graphs?

Open question

24/25
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Conclusion

Lower Bound Complexity Approximability

Line
√

n NP-c 4
Interval

√
n NP-c OPEN

Unit interval n
2

OPEN 2
Claw-free log n NP-c log n

Tree 3n
7

Linear -
Cograph n

2
Linear -

Split log n NP-c log n

Merci !
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