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Probabilistic method in Combinatorics

To prove the existence of an object with a property, show that a random
object satifies the property with probability > 0.
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Probabilistic method in Combinatorics

To prove the existence of an object with a property, show that a random
object satifies the property with probability > 0.

Example: In a graph G with m edges, there is always a cut with 7 edges.

Proof:

e Make a random partition {X, Y} of the vertices: for each vertex,
choose with probability 3 if it is in X orin Y.

e An edge has probability 3 to be in the cut.

e The average number of edges in the cut is m/2:
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Probabilistic method in Combinatorics

To prove the existence of an object with a property, show that a random
object satifies the property with probability > 0.

Example: In a graph G with m edges, there is always a cut with 7 edges.

Proof:

e Make a random partition {X, Y} of the vertices: for each vertex,
choose with probability 3 if it is in X orin Y.

e An edge has probability 3 to be in the cut.

e The average number of edges in the cut is m/2:

— There exists a cut with m/2 edges.
Construction 7
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Lovasz Local Lemma

(_[ Local Lemma (symmetric version)]

Let A;,...,A be some 'bad’ events. If:
e each event occurs with small probability, Pr(A;) < p,

e each event is dependent of at most d events,
e 4pd <1,

= with nonzero probability, no bad event occurs.
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e each event occurs with small probability, Pr(A;) < p,
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e 4pd <1,

= with nonzero probability, no bad event occurs.

(. J

Example: Any k-SAT instance where the support of each clause
intersects at most 2=2 other clauses is satifsiable.
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Let A;,...,A be some 'bad’ events. If:
e each event occurs with small probability, Pr(A;) < p,

e each event is dependent of at most d events,
e 4pd <1,

= with nonzero probability, no bad event occurs.

(.

Example: Any k-SAT instance where the support of each clause
intersects at most 2=2 other clauses is satifsiable.

e Choose true or false for each variable with probability 1/2.

e A; = clause i is not satisfied, Pr(A;) = 1/2k

2k72

e A; is dependant with at most events.
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Let A;,...,A be some 'bad’ events. If:
e each event occurs with small probability, Pr(A;) < p,

e each event is dependent of at most d events,
e 4pd <1,

= with nonzero probability, no bad event occurs.

(.

Example: Any k-SAT instance where the support of each clause
intersects at most 2=2 other clauses is satifsiable.

e Choose true or false for each variable with probability 1/2.
e A; = clause i is not satisfied, Pr(A;) = 1/2k

2k72

e A; is dependant with at most events.

Construction ?
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Constructive proof of Moser

e 2009, Moser at STACS conference, and then, Moser and Tardos:

— algorithmic and constructive proof of LLL.

e |dea: entropy compression

“a random string cannot be compressed”
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Constructive proof of Moser

e 2009, Moser at STACS conference, and then, Moser and Tardos:

— algorithmic and constructive proof of LLL.

e |dea: entropy compression

“a random string cannot be compressed”

o Used more specifically:
— Non repetitive words (Grytczuk, Kozik and Micek, 2011)
— Non repetitive colorings (Dujmovié, Joret, Kozik and Wood, 2013)
— Acyclic edge colorings of graphs (Esperet and P., 2013)
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Non repetitive words

A sequence is non-repetitive if it does not contain a square uu.

Question:

What is the minimum size of an alphabet on which we can make arbi-
trary large non-repetitive sequences ?

With two letters ? aba
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A sequence is non-repetitive if it does not contain a square uu.

Question:

What is the minimum size of an alphabet on which we can make arbi-
trary large non-repetitive sequences ?

With two letters ? aba

Theorem Thue, 1906

The morphism a — abcab, b — acabcb, ¢ — acbcacbh is stable on
non-repetitive sequences on {a, b, c}

a — abcab
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What is the minimum size of an alphabet on which we can make arbi-
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With two letters ? aba

Theorem Thue, 1906

The morphism a — abcab, b — acabcb, ¢ — acbcacbh is stable on
non-repetitive sequences on {a, b, c}
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Non repetitive words

A sequence is non-repetitive if it does not contain a square uu.

Question:

What is the minimum size of an alphabet on which we can make arbi-
trary large non-repetitive sequences ?

With two letters ? aba

Theorem Thue, 1906

The morphism a — abcab, b — acabcb, ¢ — acbcacbh is stable on
non-repetitive sequences on {a, b, c}

a — abcab — abcabacabcbacbcacbabcabacabech — - - -
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List version

Question:

What is the smallest k such that, for all n, if Ly, Lo,...,L, are n lists
of k letters, there always exists a non-repetitive sequence a;...a, with
a,el; forallj?

Example: Ly ={a, b,c}, Ly ={a, b,d}, L3 ={a,c,d}, Ly ={b,c,d}

abcd is non-repetitive !
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List version

Question:

What is the smallest k such that, for all n, if Ly, Lo,...,L, are n lists
of k letters, there always exists a non-repetitive sequence aj...a, with
a,el; forallj?

Example: Ly ={a, b,c}, Ly ={a, b,d}, L3 ={a,c,d}, Ly ={b,c,d}

abcd is non-repetitive !

Theorem Grytczuk, Przybylo and Zhu, 2010]

It is possible to extract a non-repetitive sequence for any sequence of
lists of size 4.

6/23



Proof

Algorithm:

e The sequence is constructed from left to right.

e Choose a; randomly in L;.

e If a square is created, remove the second part.

Example : with Ly = L, = L3 = L4
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Proof

Algorithm:
e The sequence is constructed from left to right.
e Choose a; randomly in L;.

e If a square is created, remove the second part.

Example : with Ly = L, = L3 = L4

Theorem Grytczuk, Kozik and Micek, 2011]

This algorithm stops with probability > 0. ]
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Proof

Theorem Grytczuk, Kozik and Micek, 2011]

This algorithm stops with probability > 0. ]

e Assume it is still running after t steps — bad scenario.
o At each step, we record the number of letters we remove.
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Proof

Theorem Grytczuk, Kozik and Micek, 2011]

This algorithm stops with probability > 0. ]

Assume it is still running after t steps — bad scenario.

At each step, we record the number of letters we remove.

Number of records ? — Catalan number.

The record i enough to recover the whole history:
1 record + final sequence = 1 bad scenario

/ [ N\

4t/ﬁt3/2 n4n \/;lr;t;ﬂ .4t
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Proof

Theorem Grytczuk, Kozik and Micek, 2011]

This algorithm stops with probability > 0. ]

Assume it is still running after t steps — bad scenario.

At each step, we record the number of letters we remove.

Number of records ? — Catalan number.

The record i enough to recover the whole history:

1 record + final sequence = 1 bad scenario

/ [ N\

4t/ﬁt3/2 n4n \/:7+2/2 .4t

For large t, number of bad scenarios < 4°.

= Some scenarios are good !
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Another example : Acyclic edge coloring of graphs

A proper edge coloring of a graph is a coloring of the edges such that two
edges sharing a vertex have different colors.

® @@
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Another example : Acyclic edge coloring of graphs

A proper edge coloring of a graph is a coloring of the edges such that two
edges sharing a vertex have different colors.

® @@
H H

X v

Theorem Vizing, 1964]

If G has maximum degree A, there is a proper edge coloring in A + 1
colors.
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Acyclic edge coloring of graphs
An acyclic edge coloring of a graph is:
e a proper edge coloring,
e without bicolored cycles.
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Acyclic edge coloring of graphs
An acyclic edge coloring of a graph is:
e a proper edge coloring,
e without bicolored cycles.

[ ] [ ] I [ s I | s I
[ — | [ — [ —

e 3'(G): minimum number of colors in an acyclic edge coloring of G.
e If G has maximum degree A, a'(G) > A.
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Acyclic edge coloring of graphs
An acyclic edge coloring of a graph is:
e a proper edge coloring,
e without bicolored cycles.

X X v

e 3'(G): minimum number of colors in an acyclic edge coloring of G.

e If G has maximum degree A, 3'(G) > A.

Conjecture Alon, Sudakov and Zaks, 2001]

If G has maximum degree A, a'(G) < A+ 2.
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Results

Using the Lovéasz Local Lemma and variations:
e 3'(G) < 64A (Alon, McDiarmid and Reed, 1991)
e 2'(G) < 16A (Molloy and Reed, 1998)
e 3'(G) < 9.62A (Ndreca, Procacci and Scoppola, 2012)
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Results

Using the Lovéasz Local Lemma and variations:
e 3'(G) < 64A (Alon, McDiarmid and Reed, 1991)
e 2'(G) < 16A (Molloy and Reed, 1998)
e 3'(G) < 9.62A (Ndreca, Procacci and Scoppola, 2012)

Using entropy compression :

Theorem Esperet and P, 2013]

If G has maximum degree A, a'(G) < 4A.
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Algorithm
Order the edge set.
While there is an uncolored edge:
e Select the smallest uncolored edge e
e Give a random color in {1,...,4A} to e (not appearing in N[e])

o If e lies in a bicolored cycle C, uncolor e and all the other edges of
C, except two edges.

G
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Algorithm
Order the edge set.
While there is an uncolored edge:
e Select the smallest uncolored edge e
e Give a random color in {1,...,4A} to e (not appearing in N[e])

o If e lies in a bicolored cycle C, uncolor e and all the other edges of
C, except two edges.

G

We prove that this algorithm ends with non zero probability.
= Any graph has an acyclic edge coloring with 4A colors.
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Recording

e Execution determined by set of drawn colors : scenario
e Assume the algorithm is still running after t steps. — bad scenario
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Recording
e Execution determined by set of drawn colors : scenario
e Assume the algorithm is still running after t steps. — bad scenario
e We record in a compact way what happens during the algorithm.

Record
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1._
2:-
17:-
18:Cycle C is uncolored
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Recording
e Execution determined by set of drawn colors : scenario
e Assume the algorithm is still running after t steps. — bad scenario
e We record in a compact way what happens during the algorithm.

Record
( 7
1._
G 2:-
17:-
18:Cycle C is uncolored
19:-
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Recording
e Execution determined by set of drawn colors : scenario
e Assume the algorithm is still running after t steps. — bad scenario
e We record in a compact way what happens during the algorithm.
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Recording
e Execution determined by set of drawn colors : scenario
e Assume the algorithm is still running after t steps. — bad scenario
e We record in a compact way what happens during the algorithm.

Record
( 7
1._
G 2:-
17:-
18:Cycle C is uncolored
19:-
276:-
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Recording
e Execution determined by set of drawn colors : scenario
e Assume the algorithm is still running after t steps. — bad scenario
e We record in a compact way what happens during the algorithm.

Record
s N

1._
2:-

17:-

18:Cycle C is uncolored
19:-

276:-

277:Cycle C' is uncolored
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Recording

e Execution determined by set of drawn colors : scenario

e Assume the algorithm is still running after t steps. — bad scenario
e We record in a compact way what happens during the algorithm.

Final partial coloring &,

Record

r

1._
2:-

17:-

18:Cycle C is uncolored
19:-

276:-

277:Cycle C' is uncolored
278:-
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Recording
e Execution determined by set of drawn colors : scenario
e Assume the algorithm is still running after t steps. — bad scenario
e We record in a compact way what happens during the algorithm.

Record
s N

1._
2:-

17:-

18:Cycle C is uncolored
19:-

276:-

277:Cycle C' is uncolored

. . . 278:-
Final partial coloring &,

1 record + 1 final partial coloring = 1 bad scenario
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Rewrite the history |

e X;: set of uncolored edges after step i
e reading of the record to get X;:
> XO = E
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e reading of the record to get X;:

> XO = E

> Step i

/,[i:— ] —  Xj11 = X; — {smallest edge of X;}
2 cases

\{i:C is uncolored ] —  Xit1 = X;i + {C except two edges}
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Rewrite the history |

e X;: set of uncolored edges after step i
e reading of the record to get X;:

> XO = E

> Step i

/,[i:— ] —  Xj11 = X; — {smallest edge of X;}
2 cases

\)[i:C is uncolored ] —  Xit1 = X;i + {C except two edges}

With the record, we can find the edge e; which is colored at step i.
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Rewrite the history Il partial colorings

e ®;: partial coloring after step i
e [nverse reading of the record to get ®;:
> &, is known
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Rewrite the history Il partial colorings

e ®;: partial coloring after step i
e [nverse reading of the record to get ®;:

» O; is known
> Step i
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2 cases

\[i-c is uncolored ] - ®;_1 = P; with C recolored
- and e; uncolored

Step i
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2 cases

\[i-c is uncolored ] - ®;_1 = &; with C recolored
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C C e gets
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Rewrite the history Il partial colorings

e ®;: partial coloring after step i
e [nverse reading of the record to get ®;:

> &, is known
> Step i

/.[i:- ] — ®;_1 = ®; with ¢ uncolored
2 cases

\[i-c is uncolored ] - ®;_1 = &; with C recolored
- and e; uncolored

= € N\
C C e gets
/

—
Step i Stepi—1

With &, and the record, we can find the partial colorings and the
scenario.
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Rewrite the history - Summary

1. Top-down reading — set of colored edges at each step.

r

Lt:

1:-

2:-

17:-

18:C is uncolored
19:-

276: -

277:C’ is uncolored

278:-

Sets of
colored edges
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Rewrite the history - Summary

1. Top-down reading — set of colored edges at each step.

2. Buttum-up reading— partial coloring at each step and scenario.

r

-

1:-
2:-
17:-
18:C is uncolored
19:-

276:-
277:C’ is uncolored

278:-

t:-

~N

©) &)

Sets of partial colorings

colored edges and scenario
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Rewrite the history - Summary

1. Top-down reading — set of colored edges at each step.

2. Buttum-up reading— partial coloring at each step and scenario.

r

Lt:

1:-

2:-

17:-

18:C is uncolored
19:-

276: -

277:C’ is uncolored

278:-

~N

©) &)

Sets of partial colorings

colored edges and scenario

= 1 record + 1 final partial coloring = 1 bad scenario
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Summary

1 record +1 partial coloring = 1 bad scenario
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Summary

1 record +1 partial coloring = 1 bad scenario

< (4D +1)m
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Summary

1 record +1 partial coloring = 1 bad scenario

? < (40 +1)m ?

How many possible records ?
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Compact records of cycles

e We know one edge e of C.
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Compact records of cycles

e We know one edge e of C.

e No choice for the last edge

[i:C is uncolored ] 54 [i:231354]
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Compact records of cycles

e We know one edge e of C.

e No choice for the last edge

[i:C is uncolored ] 54 [i:231354]

e Cycle coded by a word on {1, ..., A}?=2 where 2k is the length of C.
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Number of records

Record (=, =,y —, 231354 — . — 4213 — . —)
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Number of records

Record (—, —, —, 231354 | —

.........

A A R R |

0 O 0 O111111 O 0 01111 O 0
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Number of records

Record

||

0 O

Number of colored edges

0«

an edge is colored

14N\

an edge is uncolored

|

0 0111111

(=, =,y —, 231354 —

|

0

— 4213, — .

!

0 01111

|

0

/N /
7 N e
, ,
, ,
, ,
, ,
,
,
,

|

0

> )

t
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Number of records

Record

]

0 O

Number of colored edges

an edge is uncolored

I

0 0111111

(=, =,y —, 231354 —

J

0

— 4213, — .

!

0 01111

J

0

0<—>/ s //\\/ //
an edge is colored // iz ’
1+ N\ 7

> )

|

0

t

Partial Dyck word of length < 2t and descents of even size .
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Record

||

0 O

Number of colored edges

an edge is uncolored

|

0 0111111

(=, =,y —, 231354 —

|

0

— 4213, — .

!

0 01111

|

0

0<—>/ s //\\/ //
an edge is colored // iz ’
1+ N\ 7

> )

|

0

t

Partial Dyck word of length < 2t and descents of even size > 2.
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Number of records

Record (=, =, —, 231354 — . — 4213 — . —)
L e A e
0 O 0 0111111 O 0 01111 O 0

Number of colored edges

0<—>/ ’ PN //
an edge is colored R L ’
1\ 7

an edge is uncolored

Partial Dyck word of length < 2t and descents of even size > 2.

— Number of such words : 2t/t3/2
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Number of records

Record

]

0 O

Number of colored edges

0+ /7
an edge is colored /
1+ N\ 7
an edge is uncolored ’

(_7_""7—72313547_7"'7_’42137_7"'7_)

[

0 O111111 O 0 01111 O 0

2N /
, ,
P VRS 4
,
, ,
,
s
,

Partial Dyck word of length < 2t and descents of even size > 2.

— Number of such words : 2t/t3/2
— Number of records : (2A)t/t3/2
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End of the proof

1 record +1 partial coloring = 1 bad scenario

(48 +1)"
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End of the proof
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End of the proof

1 record +1 partial coloring = 1 bad scenario
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(2A)t/t3/2 (4A + 1)m (4A+1)"(2A)°
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e Number of scenarios: (2A)*

e Number of bad scenarios: (“Atﬂ)# = o((2A)Y)
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End of the proof

1 record +1 partial coloring = 1 bad scenario

a \

(2A)t/t3/2 (4A + 1)m (4A+1)"(2A)°

372

e Number of scenarios: (2A)*

e Number of bad scenarios: M?# = o((2A)Y)

= For t large enough, there are good scenarios.

& The algorithm stops with nonzero probability !
& There is a coloring in 4A colors.
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Algorithmic aspect

e To have a small propability of a bad event in t steps, we should have:

bad scenarios  (4A + 1)™(2A)t/t3/?

all scenarios (2A0)t

Equivalently:

32 4Aa+1)m
0
— t can be exponential in m.
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Algorithmic aspect

e To have a small propability of a bad event in t steps, we should have:

bad scenarios  (4A + 1)™(2A)t/t3/?

all scenarios (2A0)t

Equivalently:

32 4Aa+1)m
0
— t can be exponential in m.

e But if we have 4A + 1 colors :

bad scenarios  (4A + 2)™(2A)t/t3/2
all scenarios (A +1)t

— t is polynomial in m.
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With larger girth

Girth: size of the smallest cycle in G.

With the same method, we get better bounds if the girth is > ¢
< All the uncolored cycles have size at least ¢
< All the descents in the Dyck word have size 2k for some k > £/2
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With larger girth

Girth: size of the smallest cycle in G.

With the same method, we get better bounds if the girth is > ¢
< All the uncolored cycles have size at least ¢
< All the descents in the Dyck word have size 2k for some k > £/2

There are fewer Dyck words !

— Analytic combinatorics and generating function to count Dyck Words.
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Conclusion

Entropy compression ?
e |nput: large random vector

e Qutput: smaller record

Works well since :

e we can remove a lot of letters/colors
— add entropy;

e while being able to recover the sequence/coloring with a small record
— compression.
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Conclusion

Entropy compression ?
e |nput: large random vector

e Qutput: smaller record

Works well since :

e we can remove a lot of letters/colors
— add entropy;

e while being able to recover the sequence/coloring with a small record
— compression.

Thanks !

23/23



