
How to use entropy compression for existential
proofs?

Louis Esperet (G-SCOP, Grenoble, France)

Aline Parreau (LIFL, Lille, France)

Liège, February 21st , 2013

1/23

Probabilistic method in Combinatorics

To prove the existence of an object with a property, show that a random
object satifies the property with probability > 0.

Idea

Example: In a graph G with m edges, there is always a cut with m
2 edges.

Proof:

• Make a random partition {X ,Y } of the vertices: for each vertex,
choose with probability 1

2 if it is in X or in Y .

• An edge has probability 1
2 to be in the cut.

• The average number of edges in the cut is m/2:

→ There exists a cut with m/2 edges.
Construction ?

2/23

Probabilistic method in Combinatorics

To prove the existence of an object with a property, show that a random
object satifies the property with probability > 0.

Idea

Example: In a graph G with m edges, there is always a cut with m
2 edges.

Proof:

• Make a random partition {X ,Y } of the vertices: for each vertex,
choose with probability 1

2 if it is in X or in Y .

• An edge has probability 1
2 to be in the cut.

• The average number of edges in the cut is m/2:

→ There exists a cut with m/2 edges.
Construction ?

2/23

Probabilistic method in Combinatorics

To prove the existence of an object with a property, show that a random
object satifies the property with probability > 0.

Idea

Example: In a graph G with m edges, there is always a cut with m
2 edges.

Proof:

• Make a random partition {X ,Y } of the vertices: for each vertex,
choose with probability 1

2 if it is in X or in Y .

• An edge has probability 1
2 to be in the cut.

• The average number of edges in the cut is m/2:

→ There exists a cut with m/2 edges.
Construction ?

2/23

Probabilistic method in Combinatorics

To prove the existence of an object with a property, show that a random
object satifies the property with probability > 0.

Idea

Example: In a graph G with m edges, there is always a cut with m
2 edges.

Proof:

• Make a random partition {X ,Y } of the vertices: for each vertex,
choose with probability 1

2 if it is in X or in Y .

• An edge has probability 1
2 to be in the cut.

• The average number of edges in the cut is m/2:

→ There exists a cut with m/2 edges.
Construction ?

2/23

Lovász Local Lemma

Let A1,...,Ak be some ’bad’ events. If:
• each event occurs with small probability, Pr(Ai) ≤ p,

• each event is dependent of at most d events,

• 4pd ≤ 1,

⇒ with nonzero probability, no bad event occurs.

Local Lemma (symmetric version)

Example: Any k-SAT instance where the support of each clause
intersects at most 2k−2 other clauses is satifsiable.

• Choose true or false for each variable with probability 1/2.

• Ai = clause i is not satisfied, Pr(Ai) = 1/2k

• Ai is dependant with at most 2k−2 events.

Construction ?

3/23

Lovász Local Lemma

Let A1,...,Ak be some ’bad’ events. If:
• each event occurs with small probability, Pr(Ai) ≤ p,

• each event is dependent of at most d events,

• 4pd ≤ 1,

⇒ with nonzero probability, no bad event occurs.

Local Lemma (symmetric version)

Example: Any k-SAT instance where the support of each clause
intersects at most 2k−2 other clauses is satifsiable.

• Choose true or false for each variable with probability 1/2.

• Ai = clause i is not satisfied, Pr(Ai) = 1/2k

• Ai is dependant with at most 2k−2 events.

Construction ?

3/23

Lovász Local Lemma

Let A1,...,Ak be some ’bad’ events. If:
• each event occurs with small probability, Pr(Ai) ≤ p,

• each event is dependent of at most d events,

• 4pd ≤ 1,

⇒ with nonzero probability, no bad event occurs.

Local Lemma (symmetric version)

Example: Any k-SAT instance where the support of each clause
intersects at most 2k−2 other clauses is satifsiable.

• Choose true or false for each variable with probability 1/2.

• Ai = clause i is not satisfied, Pr(Ai) = 1/2k

• Ai is dependant with at most 2k−2 events.

Construction ?

3/23

Lovász Local Lemma

Let A1,...,Ak be some ’bad’ events. If:
• each event occurs with small probability, Pr(Ai) ≤ p,

• each event is dependent of at most d events,

• 4pd ≤ 1,

⇒ with nonzero probability, no bad event occurs.

Local Lemma (symmetric version)

Example: Any k-SAT instance where the support of each clause
intersects at most 2k−2 other clauses is satifsiable.

• Choose true or false for each variable with probability 1/2.

• Ai = clause i is not satisfied, Pr(Ai) = 1/2k

• Ai is dependant with at most 2k−2 events.

Construction ?

3/23

Constructive proof of Moser

• 2009, Moser at STACS conference, and then, Moser and Tardos:
→ algorithmic and constructive proof of LLL.

• Idea: entropy compression

“a random string cannot be compressed”

• Used more specifically:
→ Non repetitive words (Grytczuk, Kozik and Micek, 2011)

→ Non repetitive colorings (Dujmović, Joret, Kozik and Wood, 2013)

→ Acyclic edge colorings of graphs (Esperet and P., 2013)

4/23

Constructive proof of Moser

• 2009, Moser at STACS conference, and then, Moser and Tardos:
→ algorithmic and constructive proof of LLL.

• Idea: entropy compression

“a random string cannot be compressed”

• Used more specifically:
→ Non repetitive words (Grytczuk, Kozik and Micek, 2011)

→ Non repetitive colorings (Dujmović, Joret, Kozik and Wood, 2013)

→ Acyclic edge colorings of graphs (Esperet and P., 2013)

4/23

Non repetitive words

A sequence is non-repetitive if it does not contain a square uu.

What is the minimum size of an alphabet on which we can make arbi-
trary large non-repetitive sequences ?

Question:

With two letters ? aba

The morphism a → abcab, b → acabcb, c → acbcacb is stable on
non-repetitive sequences on {a, b, c}

Theorem Thue, 1906

a

→ abcab → abcabacabcbacbcacbabcabacabcb → · · ·

5/23

Non repetitive words

A sequence is non-repetitive if it does not contain a square uu.

What is the minimum size of an alphabet on which we can make arbi-
trary large non-repetitive sequences ?

Question:

With two letters ? aba

The morphism a → abcab, b → acabcb, c → acbcacb is stable on
non-repetitive sequences on {a, b, c}

Theorem Thue, 1906

a → abcab

→ abcabacabcbacbcacbabcabacabcb → · · ·

5/23

Non repetitive words

A sequence is non-repetitive if it does not contain a square uu.

What is the minimum size of an alphabet on which we can make arbi-
trary large non-repetitive sequences ?

Question:

With two letters ? aba

The morphism a → abcab, b → acabcb, c → acbcacb is stable on
non-repetitive sequences on {a, b, c}

Theorem Thue, 1906

a → abcab → abcabacabcbacbcacbabcabacabcb

→ · · ·

5/23

Non repetitive words

A sequence is non-repetitive if it does not contain a square uu.

What is the minimum size of an alphabet on which we can make arbi-
trary large non-repetitive sequences ?

Question:

With two letters ? aba

The morphism a → abcab, b → acabcb, c → acbcacb is stable on
non-repetitive sequences on {a, b, c}

Theorem Thue, 1906

a → abcab → abcabacabcbacbcacbabcabacabcb → · · ·

5/23

List version

What is the smallest k such that, for all n, if L1, L2,...,Ln are n lists
of k letters, there always exists a non-repetitive sequence a1...an with
ai ∈ Li , for all i ?

Question:

Example: L1 = {a, b, c}, L2 = {a, b, d}, L3 = {a, c , d}, L4 = {b, c , d}

abcd is non-repetitive !

It is possible to extract a non-repetitive sequence for any sequence of
lists of size 4.

Theorem Grytczuk, Przybylo and Zhu, 2010

6/23

List version

What is the smallest k such that, for all n, if L1, L2,...,Ln are n lists
of k letters, there always exists a non-repetitive sequence a1...an with
ai ∈ Li , for all i ?

Question:

Example: L1 = {a, b, c}, L2 = {a, b, d}, L3 = {a, c , d}, L4 = {b, c , d}

abcd is non-repetitive !

It is possible to extract a non-repetitive sequence for any sequence of
lists of size 4.

Theorem Grytczuk, Przybylo and Zhu, 2010

6/23

Proof

Algorithm:

• The sequence is constructed from left to right.

• Choose ai randomly in Li .

• If a square is created, remove the second part.

Example : with L1 = L2 = L3 = L4

This algorithm stops with probability > 0.

Theorem Grytczuk, Kozik and Micek, 2011

7/23

Proof

Algorithm:

• The sequence is constructed from left to right.

• Choose ai randomly in Li .

• If a square is created, remove the second part.

Example : with L1 = L2 = L3 = L4

This algorithm stops with probability > 0.

Theorem Grytczuk, Kozik and Micek, 2011

7/23

Proof

This algorithm stops with probability > 0.

Theorem Grytczuk, Kozik and Micek, 2011

• Assume it is still running after t steps → bad scenario.

• At each step, we record the number of letters we remove.

• Number of records ? → Catalan number.

• The record i enough to recover the whole history:

1 record + final sequence = 1 bad scenario

n4n4t/
√
πt3/2 n4n√

πt3/2 · 4t

• For large t, number of bad scenarios ≤ 4t .

⇒ Some scenarios are good !

8/23

Proof

This algorithm stops with probability > 0.

Theorem Grytczuk, Kozik and Micek, 2011

• Assume it is still running after t steps → bad scenario.

• At each step, we record the number of letters we remove.

• Number of records ? → Catalan number.

• The record i enough to recover the whole history:

1 record + final sequence = 1 bad scenario

n4n4t/
√
πt3/2 n4n√

πt3/2 · 4t

• For large t, number of bad scenarios ≤ 4t .

⇒ Some scenarios are good !

8/23

Proof

This algorithm stops with probability > 0.

Theorem Grytczuk, Kozik and Micek, 2011

• Assume it is still running after t steps → bad scenario.

• At each step, we record the number of letters we remove.

• Number of records ? → Catalan number.

• The record i enough to recover the whole history:

1 record + final sequence = 1 bad scenario

n4n4t/
√
πt3/2 n4n√

πt3/2 · 4t

• For large t, number of bad scenarios ≤ 4t .

⇒ Some scenarios are good !

8/23

Proof

This algorithm stops with probability > 0.

Theorem Grytczuk, Kozik and Micek, 2011

• Assume it is still running after t steps → bad scenario.

• At each step, we record the number of letters we remove.

• Number of records ? → Catalan number.

• The record i enough to recover the whole history:

1 record + final sequence = 1 bad scenario

n4n

4t/
√
πt3/2 n4n√

πt3/2 · 4t

• For large t, number of bad scenarios ≤ 4t .

⇒ Some scenarios are good !

8/23

Proof

This algorithm stops with probability > 0.

Theorem Grytczuk, Kozik and Micek, 2011

• Assume it is still running after t steps → bad scenario.

• At each step, we record the number of letters we remove.

• Number of records ? → Catalan number.

• The record i enough to recover the whole history:

1 record + final sequence = 1 bad scenario

n4n4t/
√
πt3/2

n4n√
πt3/2 · 4t

• For large t, number of bad scenarios ≤ 4t .

⇒ Some scenarios are good !

8/23

Proof

This algorithm stops with probability > 0.

Theorem Grytczuk, Kozik and Micek, 2011

• Assume it is still running after t steps → bad scenario.

• At each step, we record the number of letters we remove.

• Number of records ? → Catalan number.

• The record i enough to recover the whole history:

1 record + final sequence = 1 bad scenario

n4n4t/
√
πt3/2 n4n√

πt3/2 · 4t

• For large t, number of bad scenarios ≤ 4t .

⇒ Some scenarios are good !

8/23

Proof

This algorithm stops with probability > 0.

Theorem Grytczuk, Kozik and Micek, 2011

• Assume it is still running after t steps → bad scenario.

• At each step, we record the number of letters we remove.

• Number of records ? → Catalan number.

• The record i enough to recover the whole history:

1 record + final sequence = 1 bad scenario

n4n4t/
√
πt3/2 n4n√

πt3/2 · 4t

• For large t, number of bad scenarios ≤ 4t .

⇒ Some scenarios are good !
8/23

Another example : Acyclic edge coloring of graphs

A proper edge coloring of a graph is a coloring of the edges such that two
edges sharing a vertex have different colors.

If G has maximum degree ∆, there is a proper edge coloring in ∆ + 1
colors.

Theorem Vizing, 1964

9/23

Another example : Acyclic edge coloring of graphs

A proper edge coloring of a graph is a coloring of the edges such that two
edges sharing a vertex have different colors.

If G has maximum degree ∆, there is a proper edge coloring in ∆ + 1
colors.

Theorem Vizing, 1964

9/23

Acyclic edge coloring of graphs
An acyclic edge coloring of a graph is:

• a proper edge coloring,

• without bicolored cycles.

• a′(G): minimum number of colors in an acyclic edge coloring of G .

• If G has maximum degree ∆, a′(G) ≥ ∆.

If G has maximum degree ∆, a′(G) ≤ ∆ + 2.

Conjecture Alon, Sudakov and Zaks, 2001

10/23

Acyclic edge coloring of graphs
An acyclic edge coloring of a graph is:

• a proper edge coloring,

• without bicolored cycles.

• a′(G): minimum number of colors in an acyclic edge coloring of G .

• If G has maximum degree ∆, a′(G) ≥ ∆.

If G has maximum degree ∆, a′(G) ≤ ∆ + 2.

Conjecture Alon, Sudakov and Zaks, 2001

10/23

Acyclic edge coloring of graphs
An acyclic edge coloring of a graph is:

• a proper edge coloring,

• without bicolored cycles.

• a′(G): minimum number of colors in an acyclic edge coloring of G .

• If G has maximum degree ∆, a′(G) ≥ ∆.

If G has maximum degree ∆, a′(G) ≤ ∆ + 2.

Conjecture Alon, Sudakov and Zaks, 2001

10/23

Results

Using the Lovász Local Lemma and variations:

• a′(G) ≤ 64∆ (Alon, McDiarmid and Reed, 1991)

• a′(G) ≤ 16∆ (Molloy and Reed, 1998)

• a′(G) ≤ 9.62∆ (Ndreca, Procacci and Scoppola, 2012)

Using entropy compression :

If G has maximum degree ∆, a′(G) ≤ 4∆.

Theorem Esperet and P., 2013

11/23

Results

Using the Lovász Local Lemma and variations:

• a′(G) ≤ 64∆ (Alon, McDiarmid and Reed, 1991)

• a′(G) ≤ 16∆ (Molloy and Reed, 1998)

• a′(G) ≤ 9.62∆ (Ndreca, Procacci and Scoppola, 2012)

Using entropy compression :

If G has maximum degree ∆, a′(G) ≤ 4∆.

Theorem Esperet and P., 2013

11/23

Algorithm

Order the edge set.
While there is an uncolored edge:

• Select the smallest uncolored edge e

• Give a random color in {1, ..., 4∆} to e (not appearing in N[e])

• If e lies in a bicolored cycle C, uncolor e and all the other edges of
C, except two edges.

G

e
C

We prove that this algorithm ends with non zero probability.
⇒ Any graph has an acyclic edge coloring with 4∆ colors.

12/23

Algorithm

Order the edge set.
While there is an uncolored edge:

• Select the smallest uncolored edge e

• Give a random color in {1, ..., 4∆} to e (not appearing in N[e])

• If e lies in a bicolored cycle C, uncolor e and all the other edges of
C, except two edges.

G

e
C

We prove that this algorithm ends with non zero probability.
⇒ Any graph has an acyclic edge coloring with 4∆ colors.

12/23

Algorithm

Order the edge set.
While there is an uncolored edge:

• Select the smallest uncolored edge e

• Give a random color in {1, ..., 4∆} to e (not appearing in N[e])

• If e lies in a bicolored cycle C, uncolor e and all the other edges of
C, except two edges.

G

e
C

We prove that this algorithm ends with non zero probability.
⇒ Any graph has an acyclic edge coloring with 4∆ colors.

12/23

Algorithm

Order the edge set.
While there is an uncolored edge:

• Select the smallest uncolored edge e

• Give a random color in {1, ..., 4∆} to e (not appearing in N[e])

• If e lies in a bicolored cycle C, uncolor e and all the other edges of
C, except two edges.

G

e
C

We prove that this algorithm ends with non zero probability.
⇒ Any graph has an acyclic edge coloring with 4∆ colors.

12/23

Algorithm

Order the edge set.
While there is an uncolored edge:

• Select the smallest uncolored edge e

• Give a random color in {1, ..., 4∆} to e (not appearing in N[e])

• If e lies in a bicolored cycle C, uncolor e and all the other edges of
C, except two edges.

G

e
C

We prove that this algorithm ends with non zero probability.
⇒ Any graph has an acyclic edge coloring with 4∆ colors.

12/23

Algorithm

Order the edge set.
While there is an uncolored edge:

• Select the smallest uncolored edge e

• Give a random color in {1, ..., 4∆} to e (not appearing in N[e])

• If e lies in a bicolored cycle C, uncolor e and all the other edges of
C, except two edges.

G

e
C

We prove that this algorithm ends with non zero probability.
⇒ Any graph has an acyclic edge coloring with 4∆ colors.

12/23

Algorithm

Order the edge set.
While there is an uncolored edge:

• Select the smallest uncolored edge e

• Give a random color in {1, ..., 4∆} to e (not appearing in N[e])

• If e lies in a bicolored cycle C, uncolor e and all the other edges of
C, except two edges.

G

e
C

We prove that this algorithm ends with non zero probability.
⇒ Any graph has an acyclic edge coloring with 4∆ colors.

12/23

Algorithm

Order the edge set.
While there is an uncolored edge:

• Select the smallest uncolored edge e

• Give a random color in {1, ..., 4∆} to e (not appearing in N[e])

• If e lies in a bicolored cycle C, uncolor e and all the other edges of
C, except two edges.

G

e
C

We prove that this algorithm ends with non zero probability.
⇒ Any graph has an acyclic edge coloring with 4∆ colors.

12/23

Algorithm

Order the edge set.
While there is an uncolored edge:

• Select the smallest uncolored edge e

• Give a random color in {1, ..., 4∆} to e (not appearing in N[e])

• If e lies in a bicolored cycle C, uncolor e and all the other edges of
C, except two edges.

G

e
C

We prove that this algorithm ends with non zero probability.
⇒ Any graph has an acyclic edge coloring with 4∆ colors.

12/23

Algorithm

Order the edge set.
While there is an uncolored edge:

• Select the smallest uncolored edge e

• Give a random color in {1, ..., 4∆} to e (not appearing in N[e])

• If e lies in a bicolored cycle C, uncolor e and all the other edges of
C, except two edges.

G

e
C

We prove that this algorithm ends with non zero probability.
⇒ Any graph has an acyclic edge coloring with 4∆ colors.

12/23

Algorithm

Order the edge set.
While there is an uncolored edge:

• Select the smallest uncolored edge e

• Give a random color in {1, ..., 4∆} to e (not appearing in N[e])

• If e lies in a bicolored cycle C, uncolor e and all the other edges of
C, except two edges.

G

e
C

We prove that this algorithm ends with non zero probability.
⇒ Any graph has an acyclic edge coloring with 4∆ colors.

12/23

Algorithm

Order the edge set.
While there is an uncolored edge:

• Select the smallest uncolored edge e

• Give a random color in {1, ..., 4∆} to e (not appearing in N[e])

• If e lies in a bicolored cycle C, uncolor e and all the other edges of
C, except two edges.

G

e
C

We prove that this algorithm ends with non zero probability.
⇒ Any graph has an acyclic edge coloring with 4∆ colors.

12/23

Algorithm

Order the edge set.
While there is an uncolored edge:

• Select the smallest uncolored edge e

• Give a random color in {1, ..., 4∆} to e (not appearing in N[e])

• If e lies in a bicolored cycle C, uncolor e and all the other edges of
C, except two edges.

G

e
C

We prove that this algorithm ends with non zero probability.
⇒ Any graph has an acyclic edge coloring with 4∆ colors.

12/23

Recording
• Execution determined by set of drawn colors : scenario

• Assume the algorithm is still running after t steps. → bad scenario

• We record in a compact way what happens during the algorithm.

G

e
C

Final partial coloring Φt

Record

1:-

2:-

...

17:-

18:Cycle C is uncolored

19:-

...

276:-

277:Cycle C′ is uncolored

278:-

...

t:-

1 record + 1 final partial coloring = 1 bad scenario

13/23

Recording
• Execution determined by set of drawn colors : scenario

• Assume the algorithm is still running after t steps. → bad scenario

• We record in a compact way what happens during the algorithm.

G

e
C

Final partial coloring Φt

Record

1:-

2:-

...

17:-

18:Cycle C is uncolored

19:-

...

276:-

277:Cycle C′ is uncolored

278:-

...

t:-

1 record + 1 final partial coloring = 1 bad scenario

13/23

Recording
• Execution determined by set of drawn colors : scenario

• Assume the algorithm is still running after t steps. → bad scenario

• We record in a compact way what happens during the algorithm.

G

e
C

Final partial coloring Φt

Record
1:-

2:-

...

17:-

18:Cycle C is uncolored

19:-

...

276:-

277:Cycle C′ is uncolored

278:-

...

t:-

1 record + 1 final partial coloring = 1 bad scenario

13/23

Recording
• Execution determined by set of drawn colors : scenario

• Assume the algorithm is still running after t steps. → bad scenario

• We record in a compact way what happens during the algorithm.

G

e
C

Final partial coloring Φt

Record
1:-

2:-

...

17:-

18:Cycle C is uncolored

19:-

...

276:-

277:Cycle C′ is uncolored

278:-

...

t:-

1 record + 1 final partial coloring = 1 bad scenario

13/23

Recording
• Execution determined by set of drawn colors : scenario

• Assume the algorithm is still running after t steps. → bad scenario

• We record in a compact way what happens during the algorithm.

G

e
C

Final partial coloring Φt

Record
1:-

2:-

...

17:-

18:Cycle C is uncolored

19:-

...

276:-

277:Cycle C′ is uncolored

278:-

...

t:-

1 record + 1 final partial coloring = 1 bad scenario

13/23

Recording
• Execution determined by set of drawn colors : scenario

• Assume the algorithm is still running after t steps. → bad scenario

• We record in a compact way what happens during the algorithm.

G

e
C

Final partial coloring Φt

Record
1:-

2:-

...

17:-

18:Cycle C is uncolored

19:-

...

276:-

277:Cycle C′ is uncolored

278:-

...

t:-

1 record + 1 final partial coloring = 1 bad scenario

13/23

Recording
• Execution determined by set of drawn colors : scenario

• Assume the algorithm is still running after t steps. → bad scenario

• We record in a compact way what happens during the algorithm.

G

e
C

Final partial coloring Φt

Record
1:-

2:-

...

17:-

18:Cycle C is uncolored

19:-

...

276:-

277:Cycle C′ is uncolored

278:-

...

t:-

1 record + 1 final partial coloring = 1 bad scenario

13/23

Recording
• Execution determined by set of drawn colors : scenario

• Assume the algorithm is still running after t steps. → bad scenario

• We record in a compact way what happens during the algorithm.

G

e
C

Final partial coloring Φt

Record
1:-

2:-

...

17:-

18:Cycle C is uncolored

19:-

...

276:-

277:Cycle C′ is uncolored

278:-

...

t:-

1 record + 1 final partial coloring = 1 bad scenario

13/23

Recording
• Execution determined by set of drawn colors : scenario

• Assume the algorithm is still running after t steps. → bad scenario

• We record in a compact way what happens during the algorithm.

G

e
C

Final partial coloring Φt

Record
1:-

2:-

...

17:-

18:Cycle C is uncolored

19:-

...

276:-

277:Cycle C′ is uncolored

278:-

...

t:-

1 record + 1 final partial coloring = 1 bad scenario

13/23

Recording
• Execution determined by set of drawn colors : scenario

• Assume the algorithm is still running after t steps. → bad scenario

• We record in a compact way what happens during the algorithm.

G

e
C

Final partial coloring Φt

Record
1:-

2:-

...

17:-

18:Cycle C is uncolored

19:-

...

276:-

277:Cycle C′ is uncolored

278:-

...

t:-

1 record + 1 final partial coloring = 1 bad scenario

13/23

Recording
• Execution determined by set of drawn colors : scenario

• Assume the algorithm is still running after t steps. → bad scenario

• We record in a compact way what happens during the algorithm.

G

e
C

Final partial coloring Φt

Record
1:-

2:-

...

17:-

18:Cycle C is uncolored

19:-

...

276:-

277:Cycle C′ is uncolored

278:-

...

t:-

1 record + 1 final partial coloring = 1 bad scenario

13/23

Recording
• Execution determined by set of drawn colors : scenario

• Assume the algorithm is still running after t steps. → bad scenario

• We record in a compact way what happens during the algorithm.

G

e
C

Final partial coloring Φt

Record
1:-

2:-

...

17:-

18:Cycle C is uncolored

19:-

...

276:-

277:Cycle C′ is uncolored

278:-

...

t:-

1 record + 1 final partial coloring = 1 bad scenario

13/23

Recording
• Execution determined by set of drawn colors : scenario

• Assume the algorithm is still running after t steps. → bad scenario

• We record in a compact way what happens during the algorithm.

G

e
C

Final partial coloring Φt

Record
1:-

2:-

...

17:-

18:Cycle C is uncolored

19:-

...

276:-

277:Cycle C′ is uncolored

278:-

...

t:-

1 record + 1 final partial coloring = 1 bad scenario

13/23

Recording
• Execution determined by set of drawn colors : scenario

• Assume the algorithm is still running after t steps. → bad scenario

• We record in a compact way what happens during the algorithm.

G

e
C

Final partial coloring Φt

Record
1:-

2:-

...

17:-

18:Cycle C is uncolored

19:-

...

276:-

277:Cycle C′ is uncolored

278:-

...

t:-

1 record + 1 final partial coloring = 1 bad scenario

13/23

Recording
• Execution determined by set of drawn colors : scenario

• Assume the algorithm is still running after t steps. → bad scenario

• We record in a compact way what happens during the algorithm.

G

e
C

Final partial coloring Φt

Record
1:-

2:-

...

17:-

18:Cycle C is uncolored

19:-

...

276:-

277:Cycle C′ is uncolored

278:-

...

t:-

1 record + 1 final partial coloring = 1 bad scenario

13/23

Recording
• Execution determined by set of drawn colors : scenario

• Assume the algorithm is still running after t steps. → bad scenario

• We record in a compact way what happens during the algorithm.

G

e
C

Final partial coloring Φt

Record
1:-

2:-

...

17:-

18:Cycle C is uncolored

19:-

...

276:-

277:Cycle C′ is uncolored

278:-

...

t:-

1 record + 1 final partial coloring = 1 bad scenario

13/23

Rewrite the history I

• Xi : set of uncolored edges after step i

• reading of the record to get Xi :
I X0 = E

I Step i :

2 cases

i:-

i:C is uncolored

→

→

Xi+1 = Xi − {smallest edge of Xi}

Xi+1 = Xi + {C except two edges}

With the record, we can find the edge ei which is colored at step i .

14/23

Rewrite the history I

• Xi : set of uncolored edges after step i

• reading of the record to get Xi :
I X0 = E
I Step i :

2 cases

i:-

i:C is uncolored

→

→

Xi+1 = Xi − {smallest edge of Xi}

Xi+1 = Xi + {C except two edges}

With the record, we can find the edge ei which is colored at step i .

14/23

Rewrite the history I

• Xi : set of uncolored edges after step i

• reading of the record to get Xi :
I X0 = E
I Step i :

2 cases

i:-

i:C is uncolored

→

→

Xi+1 = Xi − {smallest edge of Xi}

Xi+1 = Xi + {C except two edges}

With the record, we can find the edge ei which is colored at step i .

14/23

Rewrite the history II: partial colorings
• Φi : partial coloring after step i

• Inverse reading of the record to get Φi :
I Φt is known

I Step i :

2 cases

i:-

i:C is uncolored

→

→

Φi−1 = Φi with ei uncolored

Φi−1 = Φi with C recolored
and ei uncolored

ei
C

Step i

ei
C ei gets

Step i − 1

With Φt and the record, we can find the partial colorings and the
scenario.

15/23

Rewrite the history II: partial colorings
• Φi : partial coloring after step i

• Inverse reading of the record to get Φi :
I Φt is known
I Step i :

2 cases

i:-

i:C is uncolored

→

→

Φi−1 = Φi with ei uncolored

Φi−1 = Φi with C recolored
and ei uncolored

ei
C

Step i

ei
C ei gets

Step i − 1

With Φt and the record, we can find the partial colorings and the
scenario.

15/23

Rewrite the history II: partial colorings
• Φi : partial coloring after step i

• Inverse reading of the record to get Φi :
I Φt is known
I Step i :

2 cases

i:-

i:C is uncolored

→

→

Φi−1 = Φi with ei uncolored

Φi−1 = Φi with C recolored
and ei uncolored

ei
C

Step i

ei
C ei gets

Step i − 1

With Φt and the record, we can find the partial colorings and the
scenario.

15/23

Rewrite the history II: partial colorings
• Φi : partial coloring after step i

• Inverse reading of the record to get Φi :
I Φt is known
I Step i :

2 cases

i:-

i:C is uncolored

→

→

Φi−1 = Φi with ei uncolored

Φi−1 = Φi with C recolored
and ei uncolored

ei
C

Step i

ei
C ei gets

Step i − 1

With Φt and the record, we can find the partial colorings and the
scenario.

15/23

Rewrite the history - Summary

1. Top-down reading → set of colored edges at each step.

2. Buttum-up reading→ partial coloring at each step and scenario.

1:-

2:-

...

17:-

18:C is uncolored

19:-

...

276:-

277:C′ is uncolored

278:-

...

t:-

1
Sets of

colored edges

2
partial colorings

and scenario

⇒ 1 record + 1 final partial coloring = 1 bad scenario

16/23

Rewrite the history - Summary

1. Top-down reading → set of colored edges at each step.

2. Buttum-up reading→ partial coloring at each step and scenario.

1:-

2:-

...

17:-

18:C is uncolored

19:-

...

276:-

277:C′ is uncolored

278:-

...

t:-

1
Sets of

colored edges

2
partial colorings

and scenario

⇒ 1 record + 1 final partial coloring = 1 bad scenario

16/23

Rewrite the history - Summary

1. Top-down reading → set of colored edges at each step.

2. Buttum-up reading→ partial coloring at each step and scenario.

1:-

2:-

...

17:-

18:C is uncolored

19:-

...

276:-

277:C′ is uncolored

278:-

...

t:-

1
Sets of

colored edges

2
partial colorings

and scenario

⇒ 1 record + 1 final partial coloring = 1 bad scenario

16/23

Summary

1 record +1 partial coloring = 1 bad scenario

≤ (4∆ + 1)m? ?

How many possible records ?

17/23

Summary

1 record +1 partial coloring = 1 bad scenario

≤ (4∆ + 1)m

? ?

How many possible records ?

17/23

Summary

1 record +1 partial coloring = 1 bad scenario

≤ (4∆ + 1)m? ?

How many possible records ?

17/23

Compact records of cycles

• We know one edge e of C.

• No choice for the last edge

C

e

2

3

1

3

5

4

≤ ∆

≤ ∆

i:C is uncolored i:231354⇔

• Cycle coded by a word on {1, ...,∆}2k−2 where 2k is the length of C.

18/23

Compact records of cycles

• We know one edge e of C.

• No choice for the last edge

C

e

2

3

1

3

5

4

≤ ∆

≤ ∆

i:C is uncolored i:231354⇔

• Cycle coded by a word on {1, ...,∆}2k−2 where 2k is the length of C.

18/23

Compact records of cycles

• We know one edge e of C.

• No choice for the last edge

C

e

2

3

1

3

5

4

≤ ∆

≤ ∆

i:C is uncolored i:231354⇔

• Cycle coded by a word on {1, ...,∆}2k−2 where 2k is the length of C.

18/23

Compact records of cycles

• We know one edge e of C.

• No choice for the last edge

C

e

2

3

1

3

5

4

≤ ∆

≤ ∆

i:C is uncolored i:231354⇔

• Cycle coded by a word on {1, ...,∆}2k−2 where 2k is the length of C.

18/23

Compact records of cycles

• We know one edge e of C.

• No choice for the last edge
C

e

2

3

1

3

5

4

≤ ∆

≤ ∆

i:C is uncolored i:231354⇔

• Cycle coded by a word on {1, ...,∆}2k−2 where 2k is the length of C.

18/23

Compact records of cycles

• We know one edge e of C.

• No choice for the last edge
C

e

2

3

1

3

5

4

≤ ∆

≤ ∆

i:C is uncolored i:231354⇔

• Cycle coded by a word on {1, ...,∆}2k−2 where 2k is the length of C.

18/23

Compact records of cycles

• We know one edge e of C.

• No choice for the last edge
C

e

2

3

1

3

5

4

≤ ∆

≤ ∆

i:C is uncolored i:231354⇔

• Cycle coded by a word on {1, ...,∆}2k−2 where 2k is the length of C.

18/23

Compact records of cycles

• We know one edge e of C.

• No choice for the last edge
C

e

2

3

1

3

5

4

≤ ∆

≤ ∆

i:C is uncolored i:231354⇔

• Cycle coded by a word on {1, ...,∆}2k−2 where 2k is the length of C.

18/23

Number of records

(− , − , ..., − , 231354 , − , ..., − , 4213 , − , ..., −)Record

0 0 0 0111111 0 0 01111 0 0

0↔ :
an edge is colored

1↔ :
an edge is uncolored

t

Number of colored edges

Partial Dyck word of length ≤ 2t and descents of even size .

→ Number of such words : 2t/t3/2

→ Number of records : (2∆)t/t3/2

19/23

Number of records

(− , − , ..., − , 231354 , − , ..., − , 4213 , − , ..., −)Record

0 0 0 0111111 0 0 01111 0 0

0↔ :
an edge is colored

1↔ :
an edge is uncolored

t

Number of colored edges

Partial Dyck word of length ≤ 2t and descents of even size .

→ Number of such words : 2t/t3/2

→ Number of records : (2∆)t/t3/2

19/23

Number of records

(− , − , ..., − , 231354 , − , ..., − , 4213 , − , ..., −)Record

0 0 0 0111111 0 0 01111 0 0

0↔ :
an edge is colored

1↔ :
an edge is uncolored

t

Number of colored edges

Partial Dyck word of length ≤ 2t and descents of even size .

→ Number of such words : 2t/t3/2

→ Number of records : (2∆)t/t3/2

19/23

Number of records

(− , − , ..., − , 231354 , − , ..., − , 4213 , − , ..., −)Record

0 0 0 0111111 0 0 01111 0 0

0↔ :
an edge is colored

1↔ :
an edge is uncolored

t

Number of colored edges

Partial Dyck word of length ≤ 2t and descents of even size .

→ Number of such words : 2t/t3/2

→ Number of records : (2∆)t/t3/2

19/23

Number of records

(− , − , ..., − , 231354 , − , ..., − , 4213 , − , ..., −)Record

0 0 0 0111111 0 0 01111 0 0

0↔ :
an edge is colored

1↔ :
an edge is uncolored

t

Number of colored edges

Partial Dyck word of length ≤ 2t and descents of even size > 2.

→ Number of such words : 2t/t3/2

→ Number of records : (2∆)t/t3/2

19/23

Number of records

(− , − , ..., − , 231354 , − , ..., − , 4213 , − , ..., −)Record

0 0 0 0111111 0 0 01111 0 0

0↔ :
an edge is colored

1↔ :
an edge is uncolored

t

Number of colored edges

Partial Dyck word of length ≤ 2t and descents of even size > 2.

→ Number of such words : 2t/t3/2

→ Number of records : (2∆)t/t3/2

19/23

Number of records

(− , − , ..., − , 231354 , − , ..., − , 4213 , − , ..., −)Record

0 0 0 0111111 0 0 01111 0 0

0↔ :
an edge is colored

1↔ :
an edge is uncolored

t

Number of colored edges

Partial Dyck word of length ≤ 2t and descents of even size > 2.

→ Number of such words : 2t/t3/2

→ Number of records : (2∆)t/t3/2

19/23

End of the proof

1 record +1 partial coloring = 1 bad scenario

(4∆ + 1)m

(2∆)t/t3/2 (4∆+1)m(2∆)t

t3/2

• Number of scenarios: (2∆)t

• Number of bad scenarios: (4∆+1)m(2∆)t

t3/2 = o((2∆)t)

⇒ For t large enough, there are good scenarios.

⇔ The algorithm stops with nonzero probability !
⇔ There is a coloring in 4∆ colors.

20/23

End of the proof

1 record +1 partial coloring = 1 bad scenario

(4∆ + 1)m(2∆)t/t3/2

(4∆+1)m(2∆)t

t3/2

• Number of scenarios: (2∆)t

• Number of bad scenarios: (4∆+1)m(2∆)t

t3/2 = o((2∆)t)

⇒ For t large enough, there are good scenarios.

⇔ The algorithm stops with nonzero probability !
⇔ There is a coloring in 4∆ colors.

20/23

End of the proof

1 record +1 partial coloring = 1 bad scenario

(4∆ + 1)m(2∆)t/t3/2 (4∆+1)m(2∆)t

t3/2

• Number of scenarios: (2∆)t

• Number of bad scenarios: (4∆+1)m(2∆)t

t3/2 = o((2∆)t)

⇒ For t large enough, there are good scenarios.

⇔ The algorithm stops with nonzero probability !
⇔ There is a coloring in 4∆ colors.

20/23

End of the proof

1 record +1 partial coloring = 1 bad scenario

(4∆ + 1)m(2∆)t/t3/2 (4∆+1)m(2∆)t

t3/2

• Number of scenarios: (2∆)t

• Number of bad scenarios: (4∆+1)m(2∆)t

t3/2 = o((2∆)t)

⇒ For t large enough, there are good scenarios.

⇔ The algorithm stops with nonzero probability !
⇔ There is a coloring in 4∆ colors.

20/23

End of the proof

1 record +1 partial coloring = 1 bad scenario

(4∆ + 1)m(2∆)t/t3/2 (4∆+1)m(2∆)t

t3/2

• Number of scenarios: (2∆)t

• Number of bad scenarios: (4∆+1)m(2∆)t

t3/2 = o((2∆)t)

⇒ For t large enough, there are good scenarios.

⇔ The algorithm stops with nonzero probability !
⇔ There is a coloring in 4∆ colors.

20/23

Algorithmic aspect

• To have a small propability of a bad event in t steps, we should have:

bad scenarios

all scenarios
=

(4∆ + 1)m(2∆)t/t3/2

(2∆)t
< δ

Equivalently:

t3/2 >
(4∆ + 1)m

δ

→ t can be exponential in m.

• But if we have 4∆ + 1 colors :

bad scenarios

all scenarios
=

(4∆ + 2)m(2∆)t/t3/2

((2∆ + 1)t
< δ

→ t is polynomial in m.

21/23

Algorithmic aspect

• To have a small propability of a bad event in t steps, we should have:

bad scenarios

all scenarios
=

(4∆ + 1)m(2∆)t/t3/2

(2∆)t
< δ

Equivalently:

t3/2 >
(4∆ + 1)m

δ

→ t can be exponential in m.

• But if we have 4∆ + 1 colors :

bad scenarios

all scenarios
=

(4∆ + 2)m(2∆)t/t3/2

((2∆ + 1)t
< δ

→ t is polynomial in m.

21/23

Algorithmic aspect

• To have a small propability of a bad event in t steps, we should have:

bad scenarios

all scenarios
=

(4∆ + 1)m(2∆)t/t3/2

(2∆)t
< δ

Equivalently:

t3/2 >
(4∆ + 1)m

δ

→ t can be exponential in m.

• But if we have 4∆ + 1 colors :

bad scenarios

all scenarios
=

(4∆ + 2)m(2∆)t/t3/2

((2∆ + 1)t
< δ

→ t is polynomial in m.

21/23

With larger girth

Girth: size of the smallest cycle in G .

With the same method, we get better bounds if the girth is ≥ `
⇔ All the uncolored cycles have size at least `

⇔ All the descents in the Dyck word have size 2k for some k ≥ `/2

There are fewer Dyck words !

→ Analytic combinatorics and generating function to count Dyck Words.

22/23

With larger girth

Girth: size of the smallest cycle in G .

With the same method, we get better bounds if the girth is ≥ `
⇔ All the uncolored cycles have size at least `

⇔ All the descents in the Dyck word have size 2k for some k ≥ `/2

There are fewer Dyck words !

→ Analytic combinatorics and generating function to count Dyck Words.

22/23

Conclusion

Entropy compression ?

• Input: large random vector

• Output: smaller record

Works well since :

• we can remove a lot of letters/colors
→ add entropy;

• while being able to recover the sequence/coloring with a small record
→ compression.

Thanks !

23/23

Conclusion

Entropy compression ?

• Input: large random vector

• Output: smaller record

Works well since :

• we can remove a lot of letters/colors
→ add entropy;

• while being able to recover the sequence/coloring with a small record
→ compression.

Thanks !

23/23

