How to use entropy compression for existential proofs?

Louis Esperet (G-SCOP, Grenoble, France) Aline Parreau (LIFL, Lille, France)

Liège, February 21st, 2013

IdeaTo prove the existence of an object with a property, show that a random
object satifies the property with probability > 0.

Idea

To prove the existence of an object with a property, show that a random object satifies the property with probability > 0.

Example: In a graph G with m edges, there is always a cut with $\frac{m}{2}$ edges.

Idea

To prove the existence of an object with a property, show that a random object satifies the property with probability > 0.

Example: In a graph G with m edges, there is always a cut with $\frac{m}{2}$ edges.

Proof:

- Make a random partition {X, Y} of the vertices: for each vertex, choose with probability ¹/₂ if it is in X or in Y.
- An edge has probability $\frac{1}{2}$ to be in the cut.
- The average number of edges in the cut is m/2:

Idea

To prove the existence of an object with a property, show that a random object satifies the property with probability > 0.

Example: In a graph G with m edges, there is always a cut with $\frac{m}{2}$ edges.

Proof:

- Make a random partition {X, Y} of the vertices: for each vertex, choose with probability ¹/₂ if it is in X or in Y.
- An edge has probability $\frac{1}{2}$ to be in the cut.
- The average number of edges in the cut is m/2:

 \rightarrow There exists a cut with m/2 edges. Construction ?

Local Lemma (symmetric version)

Let A_1, \dots, A_k be some 'bad' events. If:

- each event occurs with small probability, $Pr(A_i) \leq p$,
- each event is dependent of at most *d* events,
- 4pd ≤ 1,
- \Rightarrow with nonzero probability, no bad event occurs.

Local Lemma (symmetric version)

Let A_1, \dots, A_k be some 'bad' events. If:

- each event occurs with small probability, $Pr(A_i) \leq p$,
- each event is dependent of at most *d* events,
- 4pd ≤ 1,

 \Rightarrow with nonzero probability, no bad event occurs.

Example: Any *k*-SAT instance where the support of each clause intersects at most 2^{k-2} other clauses is satifisable.

Local Lemma (symmetric version)

Let A_1, \ldots, A_k be some 'bad' events. If:

- each event occurs with small probability, $Pr(A_i) \leq p$,
- each event is dependent of at most d events,
- 4pd ≤ 1,

 \Rightarrow with nonzero probability, no bad event occurs.

Example: Any *k*-SAT instance where the support of each clause intersects at most 2^{k-2} other clauses is satifisable.

- Choose true or false for each variable with probability 1/2.
- A_i = clause *i* is not satisfied, $Pr(A_i) = 1/2^k$
- A_i is dependent with at most 2^{k-2} events.

Local Lemma (symmetric version)

Let A_1, \ldots, A_k be some 'bad' events. If:

- each event occurs with small probability, $Pr(A_i) \leq p$,
- each event is dependent of at most d events,
- 4pd ≤ 1,

 \Rightarrow with nonzero probability, no bad event occurs.

Example: Any *k*-SAT instance where the support of each clause intersects at most 2^{k-2} other clauses is satifisable.

- Choose true or false for each variable with probability 1/2.
- A_i = clause *i* is not satisfied, $Pr(A_i) = 1/2^k$
- A_i is dependent with at most 2^{k-2} events.

Construction ?

Constructive proof of Moser

- 2009, Moser at STACS conference, and then, Moser and Tardos:
 → algorithmic and constructive proof of LLL.
- Idea: entropy compression

"a random string cannot be compressed"

Constructive proof of Moser

- 2009, Moser at STACS conference, and then, Moser and Tardos:
 → algorithmic and constructive proof of LLL.
- Idea: entropy compression

"a random string cannot be compressed"

- Used more specifically:
 - \rightarrow Non repetitive words (Grytczuk, Kozik and Micek, 2011)
 - \rightarrow Non repetitive colorings (Dujmović, Joret, Kozik and Wood, 2013)
 - \rightarrow Acyclic edge colorings of graphs (Esperet and P., 2013)

A sequence is non-repetitive if it does not contain a square *uu*.

What is the minimum size of an alphabet on which we can make arbitrary large non-repetitive sequences ?

With two letters ? aba

A sequence is non-repetitive if it does not contain a square *uu*.



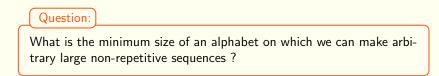
With two letters ? aba

Theorem Thue, 1906

The morphism $a \to abcab, \ b \to acabcb, \ c \to acbcacb$ is stable on non-repetitive sequences on $\{a, b, c\}$

 $\mathsf{a} \to \mathsf{abcab}$

A sequence is non-repetitive if it does not contain a square *uu*.



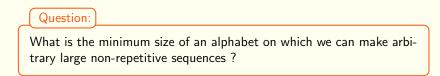
With two letters ? aba

Theorem Thue, 1906

The morphism $a \to abcab$, $b \to acabcb$, $c \to acbcacb$ is stable on non-repetitive sequences on $\{a, b, c\}$

 $\mathsf{a} \to \mathsf{abcab} \to \mathsf{abcabacabcbacbcacbabcabacabcb}$

A sequence is non-repetitive if it does not contain a square *uu*.



With two letters ? aba

Theorem Thue, 1906

The morphism $a \to abcab$, $b \to acabcb$, $c \to acbcacb$ is stable on non-repetitive sequences on $\{a, b, c\}$

 $\mathsf{a} \to \mathsf{abcab} \to \mathsf{abcabacabcbacbcacbabcabacabcb} \to \cdots$

List version

Question:

What is the smallest k such that, for all n, if L_1 , L_2 ,..., L_n are n lists of k letters, there always exists a non-repetitive sequence $a_1...a_n$ with $a_i \in L_i$, for all i?

Example: $L_1 = \{a, b, c\}, L_2 = \{a, b, d\}, L_3 = \{a, c, d\}, L_4 = \{b, c, d\}$

abcd is non-repetitive !

List version

Question:

What is the smallest k such that, for all n, if L_1 , L_2 ,..., L_n are n lists of k letters, there always exists a non-repetitive sequence $a_1...a_n$ with $a_i \in L_i$, for all i?

Example: $L_1 = \{a, b, c\}, L_2 = \{a, b, d\}, L_3 = \{a, c, d\}, L_4 = \{b, c, d\}$

abcd is non-repetitive !

Theorem Grytczuk, Przybylo and Zhu, 2010

It is possible to extract a non-repetitive sequence for any sequence of lists of size 4.

Algorithm:

- The sequence is constructed from left to right.
- Choose a_i randomly in L_i .
- If a square is created, remove the second part.

Example : with $L_1 = L_2 = L_3 = L_4$

Algorithm:

- The sequence is constructed from left to right.
- Choose a_i randomly in L_i .
- If a square is created, remove the second part.

Example : with $L_1 = L_2 = L_3 = L_4$

Theorem Grytczuk, Kozik and Micek, 2011

Theorem Grytczuk, Kozik and Micek, 2011

- Assume it is still running after t steps \rightarrow bad scenario.
- At each step, we record the number of letters we remove.

Theorem Grytczuk, Kozik and Micek, 2011

- Assume it is still running after t steps \rightarrow bad scenario.
- At each step, we record the number of letters we remove.
- Number of records ? \rightarrow Catalan number.

Theorem Grytczuk, Kozik and Micek, 2011

This algorithm stops with probability > 0.

- Assume it is still running after t steps \rightarrow bad scenario.
- At each step, we record the number of letters we remove.
- Number of records ? \rightarrow Catalan number.
- The record i enough to recover the whole history:

1 record + final sequence = 1 bad scenario

Theorem Grytczuk, Kozik and Micek, 2011

- Assume it is still running after t steps \rightarrow bad scenario.
- At each step, we record the number of letters we remove.
- Number of records ? \rightarrow Catalan number.
- The record i enough to recover the whole history:

```
1 \text{ record} + \text{final sequence} = 1 \text{ bad scenario}
\bigcap_{n \neq n} n 4^n
```

Theorem Grytczuk, Kozik and Micek, 2011

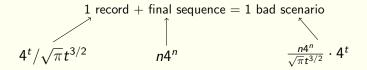
This algorithm stops with probability > 0.

- Assume it is still running after t steps \rightarrow bad scenario.
- At each step, we record the number of letters we remove.
- Number of records ? \rightarrow Catalan number.
- The record i enough to recover the whole history:

1 record + final sequence = 1 bad scenario \uparrow $4^t / \sqrt{\pi} t^{3/2} \qquad n4^n$

Theorem Grytczuk, Kozik and Micek, 2011

- Assume it is still running after t steps \rightarrow bad scenario.
- At each step, we record the number of letters we remove.
- Number of records ? \rightarrow Catalan number.
- The record i enough to recover the whole history:



Theorem Grytczuk, Kozik and Micek, 2011

This algorithm stops with probability > 0.

- Assume it is still running after t steps \rightarrow bad scenario.
- At each step, we record the number of letters we remove.
- Number of records ? \rightarrow Catalan number.
- The record i enough to recover the whole history:

$$1 \text{ record} + \text{final sequence} = 1 \text{ bad scenario}$$

$$1 \text{ record} + \text{final sequence} = 1 \text{ bad scenario}$$

$$1 \text{ record} + \text{ final sequence} = 1 \text{ bad scenario}$$

$$1 \text{ record} + \text{ final sequence} = 1 \text{ bad scenario}$$

$$1 \text{ record} + \text{ final sequence} = 1 \text{ bad scenario}$$

$$1 \text{ record} + \text{ final sequence} = 1 \text{ bad scenario}$$

$$1 \text{ record} + \text{ final sequence} = 1 \text{ bad scenario}$$

$$1 \text{ record} + \text{ final sequence} = 1 \text{ bad scenario}$$

$$1 \text{ record} + \text{ final sequence} = 1 \text{ bad scenario}$$

$$1 \text{ record} + \text{ final sequence} = 1 \text{ bad scenario}$$

$$1 \text{ record} + \text{ final sequence} = 1 \text{ bad scenario}$$

$$1 \text{ record} + \text{ final sequence} = 1 \text{ bad scenario}$$

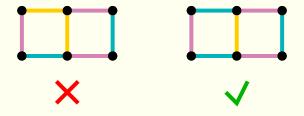
$$1 \text{ record} + \text{ final sequence} = 1 \text{ bad scenario}$$

• For large t, number of bad scenarios $\leq 4^t$.

 \Rightarrow Some scenarios are good !

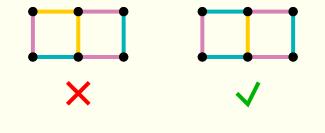
Another example : Acyclic edge coloring of graphs

A proper edge coloring of a graph is a coloring of the edges such that two edges sharing a vertex have different colors.



Another example : Acyclic edge coloring of graphs

A proper edge coloring of a graph is a coloring of the edges such that two edges sharing a vertex have different colors.



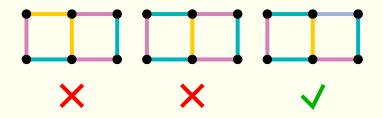
Theorem Vizing, 1964

If G has maximum degree $\Delta,$ there is a proper edge coloring in $\Delta+1$ colors.

Acyclic edge coloring of graphs

An acyclic edge coloring of a graph is:

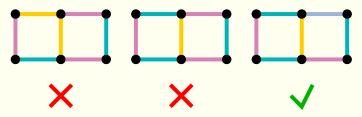
- a proper edge coloring,
- without bicolored cycles.



Acyclic edge coloring of graphs

An acyclic edge coloring of a graph is:

- a proper edge coloring,
- without bicolored cycles.

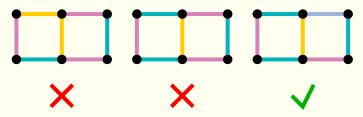


- a'(G): minimum number of colors in an acyclic edge coloring of G.
- If G has maximum degree Δ , $a'(G) \geq \Delta$.

Acyclic edge coloring of graphs

An acyclic edge coloring of a graph is:

- a proper edge coloring,
- without bicolored cycles.



- a'(G): minimum number of colors in an acyclic edge coloring of G.
- If G has maximum degree Δ , $a'(G) \geq \Delta$.

Conjecture Alon, Sudakov and Zaks, 2001

If G has maximum degree Δ , $a'(G) \leq \Delta + 2$.

Results

Using the Lovász Local Lemma and variations:

- $a'(G) \leq 64\Delta$ (Alon, McDiarmid and Reed, 1991)
- $a'(G) \leq 16\Delta$ (Molloy and Reed, 1998)
- $a'(G) \leq 9.62\Delta$ (Ndreca, Procacci and Scoppola, 2012)

Results

Using the Lovász Local Lemma and variations:

- $a'(G) \leq 64\Delta$ (Alon, McDiarmid and Reed, 1991)
- $a'(G) \leq 16\Delta$ (Molloy and Reed, 1998)
- $a'(G) \leq 9.62\Delta$ (Ndreca, Procacci and Scoppola, 2012)

Using entropy compression :

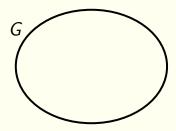
Theorem Esperet and P., 2013

If G has maximum degree Δ , $a'(G) \leq 4\Delta$.

Algorithm

Order the edge set. While there is an uncolored edge:

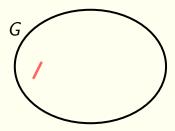
- Select the smallest uncolored edge e
- Give a random color in $\{1, ..., 4\Delta\}$ to e (not appearing in N[e])
- If *e* lies in a bicolored cycle *C*, uncolor *e* and all the other edges of *C*, except two edges.



Algorithm

Order the edge set. While there is an uncolored edge:

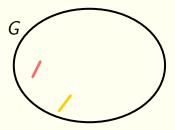
- Select the smallest uncolored edge e
- Give a random color in {1,...,4∆} to *e* (not appearing in *N*[*e*])
- If *e* lies in a bicolored cycle *C*, uncolor *e* and all the other edges of *C*, except two edges.



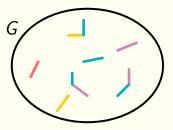
Algorithm

Order the edge set. While there is an uncolored edge:

- Select the smallest uncolored edge e
- Give a random color in {1,...,4∆} to *e* (not appearing in *N*[*e*])
- If *e* lies in a bicolored cycle *C*, uncolor *e* and all the other edges of *C*, except two edges.



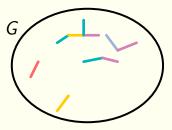
- Select the smallest uncolored edge e
- Give a random color in {1,...,4∆} to *e* (not appearing in *N*[*e*])
- If *e* lies in a bicolored cycle *C*, uncolor *e* and all the other edges of *C*, except two edges.



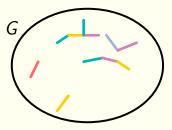
- Select the smallest uncolored edge e
- Give a random color in {1,...,4∆} to *e* (not appearing in *N*[*e*])
- If *e* lies in a bicolored cycle *C*, uncolor *e* and all the other edges of *C*, except two edges.

- Select the smallest uncolored edge e
- Give a random color in {1,...,4∆} to *e* (not appearing in *N*[*e*])
- If *e* lies in a bicolored cycle *C*, uncolor *e* and all the other edges of *C*, except two edges.

- Select the smallest uncolored edge e
- Give a random color in {1,...,4∆} to *e* (not appearing in *N*[*e*])
- If *e* lies in a bicolored cycle *C*, uncolor *e* and all the other edges of *C*, except two edges.



- Select the smallest uncolored edge e
- Give a random color in {1,...,4∆} to *e* (not appearing in *N*[*e*])
- If *e* lies in a bicolored cycle *C*, uncolor *e* and all the other edges of *C*, except two edges.



- Select the smallest uncolored edge e
- Give a random color in {1,...,4∆} to *e* (not appearing in *N*[*e*])
- If *e* lies in a bicolored cycle *C*, uncolor *e* and all the other edges of *C*, except two edges.

- Select the smallest uncolored edge e
- Give a random color in {1,...,4∆} to *e* (not appearing in *N*[*e*])
- If *e* lies in a bicolored cycle *C*, uncolor *e* and all the other edges of *C*, except two edges.

- Select the smallest uncolored edge e
- Give a random color in {1,...,4∆} to *e* (not appearing in *N*[*e*])
- If *e* lies in a bicolored cycle *C*, uncolor *e* and all the other edges of *C*, except two edges.

- Select the smallest uncolored edge e
- Give a random color in {1,...,4∆} to *e* (not appearing in *N*[*e*])
- If *e* lies in a bicolored cycle *C*, uncolor *e* and all the other edges of *C*, except two edges.

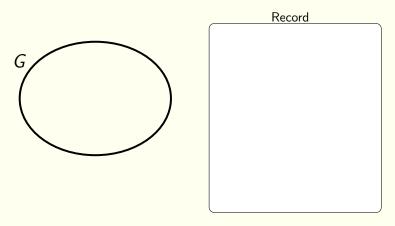
Order the edge set. While there is an uncolored edge:

- Select the smallest uncolored edge e
- Give a random color in $\{1, ..., 4\Delta\}$ to e (not appearing in N[e])
- If *e* lies in a bicolored cycle *C*, uncolor *e* and all the other edges of *C*, except two edges.

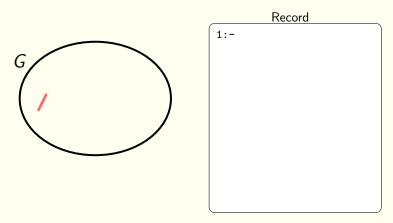
We prove that this algorithm ends with non zero probability. \Rightarrow Any graph has an acyclic edge coloring with 4 Δ colors.

- Execution determined by set of drawn colors : scenario
- Assume the algorithm is still running after t steps. \rightarrow bad scenario

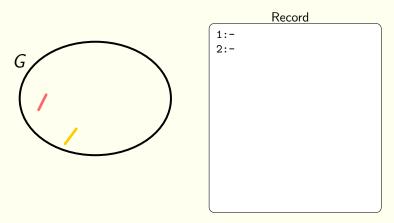
- Execution determined by set of drawn colors : scenario
- Assume the algorithm is still running after t steps. \rightarrow bad scenario
- We record in a compact way what happens during the algorithm.



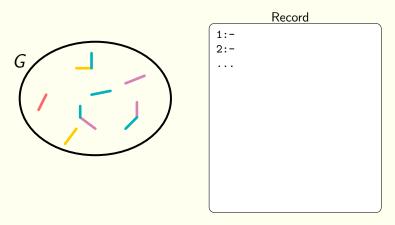
- Execution determined by set of drawn colors : scenario
- Assume the algorithm is still running after t steps. \rightarrow bad scenario
- We record in a compact way what happens during the algorithm.



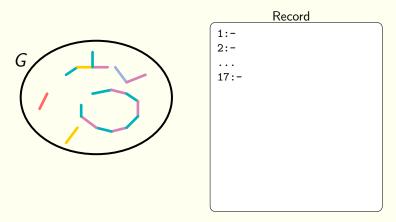
- Execution determined by set of drawn colors : scenario
- Assume the algorithm is still running after t steps. \rightarrow bad scenario
- We record in a compact way what happens during the algorithm.



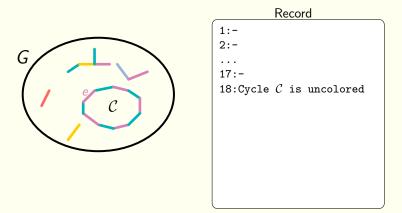
- Execution determined by set of drawn colors : scenario
- Assume the algorithm is still running after t steps. \rightarrow bad scenario
- We record in a compact way what happens during the algorithm.



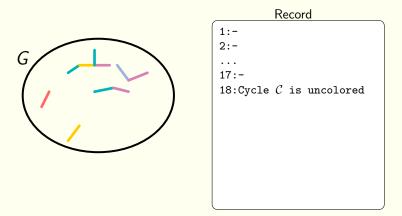
- Execution determined by set of drawn colors : scenario
- Assume the algorithm is still running after t steps. \rightarrow bad scenario
- We record in a compact way what happens during the algorithm.



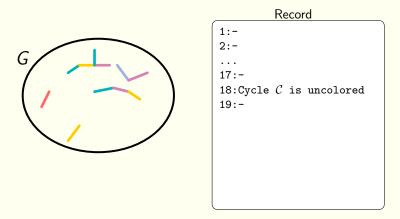
- Execution determined by set of drawn colors : scenario
- Assume the algorithm is still running after t steps. \rightarrow bad scenario
- We record in a compact way what happens during the algorithm.



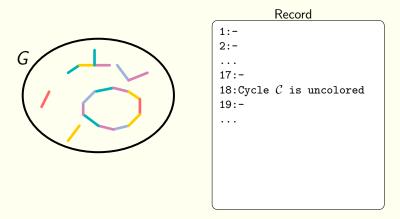
- Execution determined by set of drawn colors : scenario
- Assume the algorithm is still running after t steps. \rightarrow bad scenario
- We record in a compact way what happens during the algorithm.



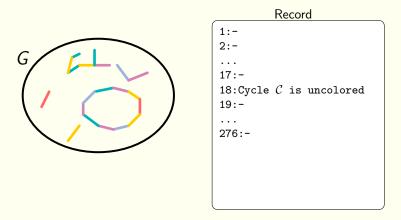
- Execution determined by set of drawn colors : scenario
- Assume the algorithm is still running after t steps. \rightarrow bad scenario
- We record in a compact way what happens during the algorithm.



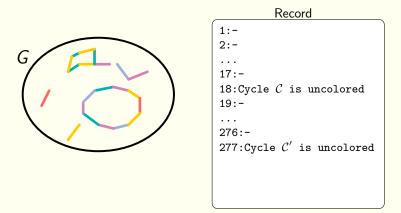
- Execution determined by set of drawn colors : scenario
- Assume the algorithm is still running after t steps. \rightarrow bad scenario
- We record in a compact way what happens during the algorithm.



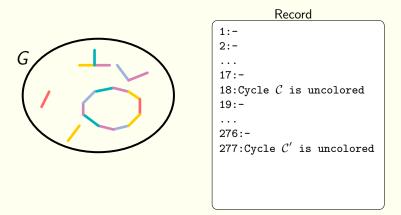
- Execution determined by set of drawn colors : scenario
- Assume the algorithm is still running after t steps. \rightarrow bad scenario
- We record in a compact way what happens during the algorithm.



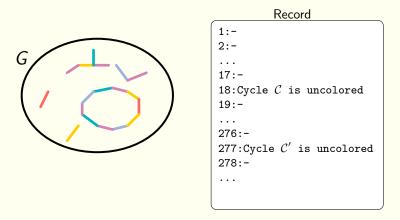
- Execution determined by set of drawn colors : scenario
- Assume the algorithm is still running after t steps. \rightarrow bad scenario
- We record in a compact way what happens during the algorithm.



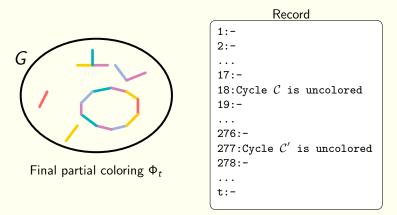
- Execution determined by set of drawn colors : scenario
- Assume the algorithm is still running after t steps. \rightarrow bad scenario
- We record in a compact way what happens during the algorithm.



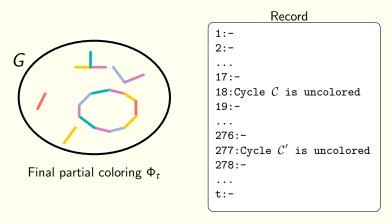
- Execution determined by set of drawn colors : scenario
- Assume the algorithm is still running after t steps. \rightarrow bad scenario
- We record in a compact way what happens during the algorithm.



- Execution determined by set of drawn colors : scenario
- Assume the algorithm is still running after t steps. \rightarrow bad scenario
- We record in a compact way what happens during the algorithm.



- Execution determined by set of drawn colors : scenario
- Assume the algorithm is still running after t steps. \rightarrow bad scenario
- We record in a compact way what happens during the algorithm.



 $1\ {\rm record} + 1\ {\rm final}\ {\rm partial}\ {\rm coloring} = 1\ {\rm bad}\ {\rm scenario}$

Rewrite the history I

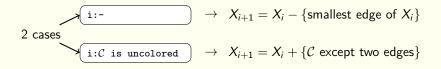
- X_i: set of uncolored edges after step i
- reading of the record to get X_i:

Rewrite the history I

- X_i: set of uncolored edges after step i
- reading of the record to get X_i:

$$\blacktriangleright X_0 = E$$

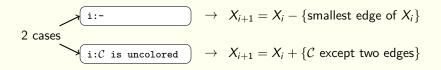
► Step i:



Rewrite the history I

- X_i: set of uncolored edges after step i
- reading of the record to get X_i:

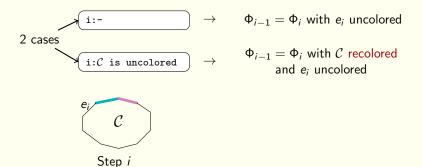
Step i:



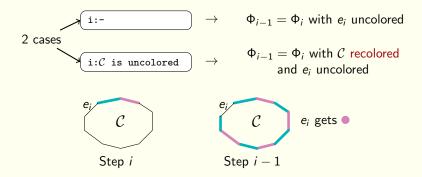
With the record, we can find the edge e_i which is colored at step *i*.

- Φ_i: partial coloring after step i
- Inverse reading of the record to get Φ_i :
 - Φ_t is known

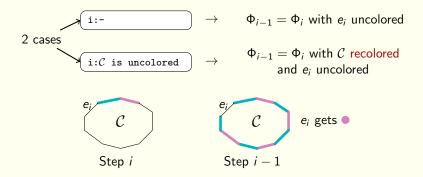
- Φ_i: partial coloring after step i
- Inverse reading of the record to get Φ_i :
 - Φ_t is known
 - Step i:



- Φ_i: partial coloring after step i
- Inverse reading of the record to get Φ_i :
 - Φ_t is known
 - Step i:



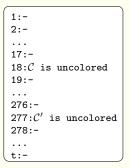
- Φ_i: partial coloring after step i
- Inverse reading of the record to get Φ_i :
 - Φ_t is known
 - Step i:



With Φ_t and the record, we can find the partial colorings and the scenario.

Rewrite the history - Summary

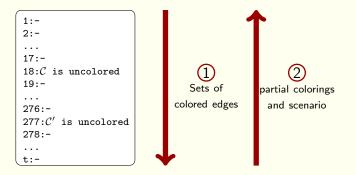
1. Top-down reading \rightarrow set of colored edges at each step.



(1) Sets of colored edges

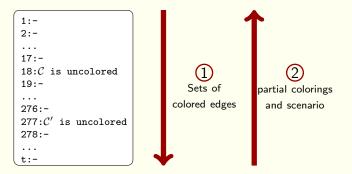
Rewrite the history - Summary

- 1. Top-down reading \rightarrow set of colored edges at each step.
- 2. Buttum-up reading \rightarrow partial coloring at each step and scenario.



Rewrite the history - Summary

- 1. Top-down reading \rightarrow set of colored edges at each step.
- 2. Buttum-up reading \rightarrow partial coloring at each step and scenario.



 \Rightarrow 1 record + 1 final partial coloring = 1 bad scenario

1 record +1 partial coloring = 1 bad scenario

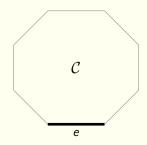
Summary

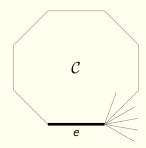
1 record +1 partial coloring = 1 bad scenario $\hat{\big|} \\ \leq (4\Delta+1)^m$

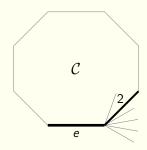
Summary

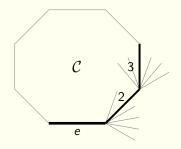
$$\begin{array}{c|c} 1 \ \text{record} \ +1 \ \text{partial coloring} \ = \ 1 \ \text{bad scenario} \\ \hline & & & \\ ? & & \leq (4\Delta+1)^m \end{array} ?$$

How many possible records ?





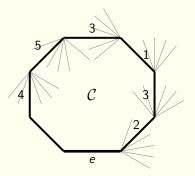


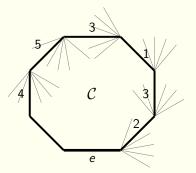


3 4 C 2 e

- We know one edge e of C.
- No choice for the last edge

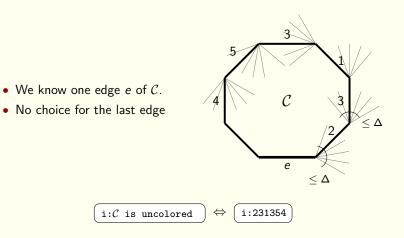
- We know one edge e of C.
- No choice for the last edge





- We know one edge e of C.
- No choice for the last edge

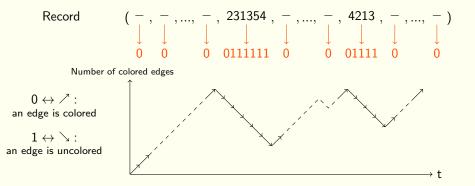
$$i:\mathcal{C} \text{ is uncolored } \Leftrightarrow (i:231354)$$

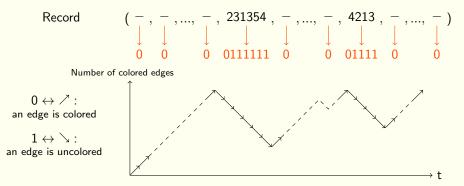


• Cycle coded by a word on $\{1, ..., \Delta\}^{2k-2}$ where 2k is the length of C.

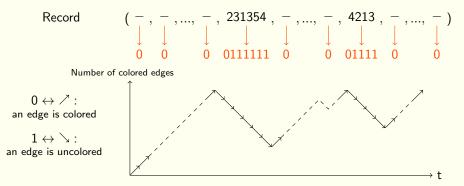
Record
$$(-, -, ..., -, 231354, -, ..., -, 4213, -, ..., -)$$

Record

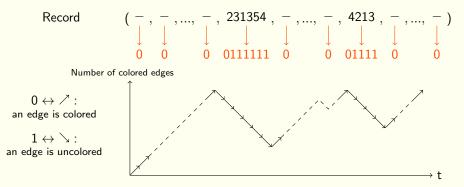




Partial Dyck word of length $\leq 2t$ and descents of even size .

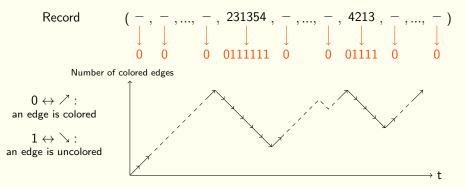


Partial Dyck word of length $\leq 2t$ and descents of even size > 2.



Partial Dyck word of length $\leq 2t$ and descents of even size > 2.

 \rightarrow Number of such words : $2^t/t^{3/2}$



Partial Dyck word of length $\leq 2t$ and descents of even size > 2.

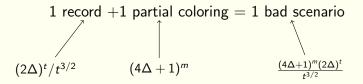
- \rightarrow Number of such words : $2^t/t^{3/2}$
- \rightarrow Number of records : $(2\Delta)^t/t^{3/2}$

1 record +1 partial coloring = 1 bad scenario
$$\hat{1}$$

 $(4\Delta + 1)^m$

$$1 \text{ record } +1 \text{ partial coloring} = 1 \text{ bad scenario}$$

 $(2\Delta)^t/t^{3/2}$ $(4\Delta+1)^m$



$$\begin{array}{c|c} 1 \ \text{record} \ +1 \ \text{partial coloring} = 1 \ \text{bad scenario} \\ & & & & \\ & & & & \\ 2\Delta)^t/t^{3/2} & (4\Delta+1)^m & \frac{(4\Delta+1)^m(2\Delta)^t}{t^{3/2}} \end{array}$$

- Number of scenarios: (2Δ)^t
- Number of bad scenarios: $\frac{(4\Delta+1)^m(2\Delta)^t}{t^{3/2}} = o((2\Delta)^t)$

 $\begin{array}{c|c} 1 \ \text{record} \ +1 \ \text{partial coloring} = 1 \ \text{bad scenario} \\ & & \uparrow \\ (2\Delta)^t/t^{3/2} & (4\Delta+1)^m & \frac{(4\Delta+1)^m(2\Delta)^t}{t^{3/2}} \end{array}$

Number of scenarios: (2Δ)^t

• Number of bad scenarios: $\frac{(4\Delta+1)^m(2\Delta)^t}{t^{3/2}} = o((2\Delta)^t)$

 \Rightarrow For t large enough, there are good scenarios.

 $\Leftrightarrow \mbox{The algorithm stops with nonzero probability } \\ \Leftrightarrow \mbox{There is a coloring in } 4\Delta \mbox{ colors.}$

Algorithmic aspect

• To have a small propability of a bad event in t steps, we should have:

$$\frac{\text{bad scenarios}}{\text{all scenarios}} = \frac{(4\Delta + 1)^m (2\Delta)^t / t^{3/2}}{(2\Delta)^t} < \delta$$

Equivalently:

$$t^{3/2} > \frac{(4\Delta + 1)^m}{\delta}$$

 \rightarrow t can be exponential in m.

Algorithmic aspect

• To have a small propability of a bad event in t steps, we should have:

$$\frac{\mathsf{bad scenarios}}{\mathsf{all scenarios}} = \frac{(4\Delta + 1)^m (2\Delta)^t / t^{3/2}}{(2\Delta)^t} < \delta$$

Equivalently:

$$t^{3/2} > \frac{(4\Delta + 1)^m}{\delta}$$

- \rightarrow t can be exponential in m.
 - But if we have $4\Delta + 1$ colors :

$$\frac{\mathsf{bad scenarios}}{\mathsf{all scenarios}} = \frac{(4\Delta + 2)^m (2\Delta)^t / t^{3/2}}{((2\Delta + 1)^t} < \delta$$

Algorithmic aspect

• To have a small propability of a bad event in t steps, we should have:

$$\frac{\mathsf{bad scenarios}}{\mathsf{all scenarios}} = \frac{(4\Delta + 1)^m (2\Delta)^t / t^{3/2}}{(2\Delta)^t} < \delta$$

Equivalently:

$$t^{3/2} > \frac{(4\Delta + 1)^m}{\delta}$$

- \rightarrow t can be exponential in m.
 - But if we have $4\Delta + 1$ colors :

$$rac{\mathsf{bad} \; \mathsf{scenarios}}{\mathsf{all} \; \mathsf{scenarios}} = rac{(4\Delta+2)^m (2\Delta)^t / t^{3/2}}{((2\Delta+1)^t} < \delta$$

 \rightarrow t is polynomial in m.

Girth: size of the smallest cycle in G.

With the same method, we get better bounds if the girth is $\geq \ell$

- \Leftrightarrow All the uncolored cycles have size at least ℓ
- \Leftrightarrow All the descents in the Dyck word have size 2k for some $k \ge \ell/2$

Girth: size of the smallest cycle in G.

With the same method, we get better bounds if the girth is $\geq \ell$

 \Leftrightarrow All the uncolored cycles have size at least ℓ

 \Leftrightarrow All the descents in the Dyck word have size 2k for some $k \ge \ell/2$

There are fewer Dyck words !

 \rightarrow Analytic combinatorics and generating function to count Dyck Words.

Conclusion

Entropy compression ?

- Input: large random vector
- Output: smaller record

Works well since :

- we can remove a lot of letters/colors
 - \rightarrow add entropy;
- while being able to recover the sequence/coloring with a small record \rightarrow compression.

Conclusion

Entropy compression ?

- Input: large random vector
- Output: smaller record

Works well since :

- ${\ensuremath{\,\bullet\,}}$ we can remove a lot of letters/colors
 - \rightarrow add entropy;
- while being able to recover the sequence/coloring with a small record \rightarrow compression.

Thanks !