Coloration acyclique des arêtes d'un graphe en utilisant la compression d'entropie

Louis Esperet (G-SCOP, Grenoble, France) Aline Parreau (LIFL, Lille, France)

> Séminaire de l'équipe GrAMA LIRIS, Vendredi 25 janvier 2013

Proper Edge Colorings of graphs

A proper edge coloring of a graph is a coloring of the edges such that two edges sharing a vertex have different colors.

Proper Edge Colorings of graphs

A proper edge coloring of a graph is a coloring of the edges such that two edges sharing a vertex have different colors.

- $\chi'(G)$: minimum number of colors in a proper edge coloring of G.
- If G has maximum degree Δ :

 $\chi'(G) \geq \Delta.$

Proper Edge Colorings of graphs

A proper edge coloring of a graph is a coloring of the edges such that two edges sharing a vertex have different colors.

- $\chi'(G)$: minimum number of colors in a proper edge coloring of G.
- If G has maximum degree Δ :

$$\chi'(G) \geq \Delta.$$

Theorem Vizing, 1964

If G has maximum degree Δ , $\chi'(G) \leq \Delta + 1$.

Acyclic edge coloring of graphs

An acyclic edge coloring of a graph is:

- a proper edge coloring,
- without bicolored cycles.

Acyclic edge coloring of graphs

An acyclic edge coloring of a graph is:

- a proper edge coloring,
- without bicolored cycles.

- a'(G): minimum number of colors in an acyclic edge coloring of G.
- If G has maximum degree Δ , $a'(G) \geq \Delta$.

Acyclic edge coloring of graphs

An acyclic edge coloring of a graph is:

- a proper edge coloring,
- without bicolored cycles.

- a'(G): minimum number of colors in an acyclic edge coloring of G.
- If G has maximum degree Δ , $a'(G) \geq \Delta$.

Conjecture Alon, Sudakov and Zaks, 2001

If G has maximum degree Δ , $a'(G) \leq \Delta + 2$.

Lovász Local Lemma

Theorem Lovász Local Lemma

- $A_1,...,A_k$ 'bad' events, each occurs with small probability,
- each event is independent of almost all the others,
- \Rightarrow with nonzero probability, no bad event occurs.

Lovász Local Lemma

Theorem Lovász Local Lemma

- $A_1,...,A_k$ 'bad' events, each occurs with small probability,
- each event is independent of almost all the others,
- \Rightarrow with nonzero probability, no bad event occurs.

Acyclic edge coloring:

- Take a uniform random coloring with K colors.
- Bad event: a cycle is bicolored or two adjacent edges have the same color.
- Dependancy: one edge is not in 'too many' cycles.

Results

Using the Lovász Local Lemma and variations:

- $a'(G) \leq 64\Delta$ (Alon, McDiarmid and Reed, 1991)
- $a'(G) \leq 16\Delta$ (Molloy and Reed, 1998)
- $a'(G) \leq 9.62\Delta$ (Ndreca, Procacci and Scoppola, 2012)

Results

Using the Lovász Local Lemma and variations:

- $a'(G) \leq 64\Delta$ (Alon, McDiarmid and Reed, 1991)
- $a'(G) \leq 16\Delta$ (Molloy and Reed, 1998)
- $a'(G) \leq 9.62\Delta$ (Ndreca, Procacci and Scoppola, 2012)

Using entropy compression :

Theorem Esperet and P., 2012

If G has maximum degree Δ , $a'(G) \leq 4\Delta$.

- Select the smallest uncolored edge e
- Give a random color in $\{1, ..., 4\Delta\}$ to e (not appearing in N[e])
- If *e* lies in a bicolored cycle *C*, uncolor *e* and all the other edges of *C*, except two edges.

- Select the smallest uncolored edge e
- Give a random color in {1,...,4∆} to *e* (not appearing in *N*[*e*])
- If *e* lies in a bicolored cycle *C*, uncolor *e* and all the other edges of *C*, except two edges.

- Select the smallest uncolored edge e
- Give a random color in {1,...,4∆} to *e* (not appearing in *N*[*e*])
- If *e* lies in a bicolored cycle *C*, uncolor *e* and all the other edges of *C*, except two edges.

- Select the smallest uncolored edge e
- Give a random color in {1,...,4∆} to *e* (not appearing in *N*[*e*])
- If *e* lies in a bicolored cycle *C*, uncolor *e* and all the other edges of *C*, except two edges.

- Select the smallest uncolored edge e
- Give a random color in {1,...,4∆} to *e* (not appearing in *N*[*e*])
- If *e* lies in a bicolored cycle *C*, uncolor *e* and all the other edges of *C*, except two edges.

- Select the smallest uncolored edge e
- Give a random color in {1,...,4∆} to *e* (not appearing in *N*[*e*])
- If *e* lies in a bicolored cycle *C*, uncolor *e* and all the other edges of *C*, except two edges.

- Select the smallest uncolored edge e
- Give a random color in {1,...,4∆} to *e* (not appearing in *N*[*e*])
- If *e* lies in a bicolored cycle *C*, uncolor *e* and all the other edges of *C*, except two edges.

- Select the smallest uncolored edge e
- Give a random color in {1,...,4∆} to *e* (not appearing in *N*[*e*])
- If *e* lies in a bicolored cycle *C*, uncolor *e* and all the other edges of *C*, except two edges.

- Select the smallest uncolored edge e
- Give a random color in {1,...,4∆} to *e* (not appearing in *N*[*e*])
- If *e* lies in a bicolored cycle *C*, uncolor *e* and all the other edges of *C*, except two edges.

- Select the smallest uncolored edge e
- Give a random color in {1,...,4∆} to *e* (not appearing in *N*[*e*])
- If *e* lies in a bicolored cycle *C*, uncolor *e* and all the other edges of *C*, except two edges.

- Select the smallest uncolored edge e
- Give a random color in {1,...,4∆} to *e* (not appearing in *N*[*e*])
- If *e* lies in a bicolored cycle *C*, uncolor *e* and all the other edges of *C*, except two edges.

- Select the smallest uncolored edge e
- Give a random color in {1,...,4∆} to *e* (not appearing in *N*[*e*])
- If *e* lies in a bicolored cycle *C*, uncolor *e* and all the other edges of *C*, except two edges.

Order the edge set. While there is an uncolored edge:

- Select the smallest uncolored edge e
- Give a random color in $\{1, ..., 4\Delta\}$ to e (not appearing in N[e])
- If *e* lies in a bicolored cycle *C*, uncolor *e* and all the other edges of *C*, except two edges.

We prove that this algorithm ends with non zero probability. \Rightarrow Any graph has an acyclic edge coloring with 4 Δ colors.

- Execution determined by set of drawn colors : scenario
- Assume the algorithm is still running after t steps. \rightarrow bad scenario

- Execution determined by set of drawn colors : scenario
- Assume the algorithm is still running after t steps. \rightarrow bad scenario
- We record in a compact way what happens during the algorithm.

- Execution determined by set of drawn colors : scenario
- Assume the algorithm is still running after t steps. \rightarrow bad scenario
- We record in a compact way what happens during the algorithm.

- Execution determined by set of drawn colors : scenario
- Assume the algorithm is still running after t steps. \rightarrow bad scenario
- We record in a compact way what happens during the algorithm.

- Execution determined by set of drawn colors : scenario
- Assume the algorithm is still running after t steps. \rightarrow bad scenario
- We record in a compact way what happens during the algorithm.

- Execution determined by set of drawn colors : scenario
- Assume the algorithm is still running after t steps. \rightarrow bad scenario
- We record in a compact way what happens during the algorithm.

- Execution determined by set of drawn colors : scenario
- Assume the algorithm is still running after t steps. \rightarrow bad scenario
- We record in a compact way what happens during the algorithm.

- Execution determined by set of drawn colors : scenario
- Assume the algorithm is still running after t steps. \rightarrow bad scenario
- We record in a compact way what happens during the algorithm.

- Execution determined by set of drawn colors : scenario
- Assume the algorithm is still running after t steps. \rightarrow bad scenario
- We record in a compact way what happens during the algorithm.

- Execution determined by set of drawn colors : scenario
- Assume the algorithm is still running after t steps. \rightarrow bad scenario
- We record in a compact way what happens during the algorithm.

- Execution determined by set of drawn colors : scenario
- Assume the algorithm is still running after t steps. \rightarrow bad scenario
- We record in a compact way what happens during the algorithm.

- Execution determined by set of drawn colors : scenario
- Assume the algorithm is still running after t steps. \rightarrow bad scenario
- We record in a compact way what happens during the algorithm.

- Execution determined by set of drawn colors : scenario
- Assume the algorithm is still running after t steps. \rightarrow bad scenario
- We record in a compact way what happens during the algorithm.

- Execution determined by set of drawn colors : scenario
- Assume the algorithm is still running after t steps. \rightarrow bad scenario
- We record in a compact way what happens during the algorithm.

- Execution determined by set of drawn colors : scenario
- Assume the algorithm is still running after t steps. \rightarrow bad scenario
- We record in a compact way what happens during the algorithm.

- Execution determined by set of drawn colors : scenario
- Assume the algorithm is still running after t steps. \rightarrow bad scenario
- We record in a compact way what happens during the algorithm.

 $1\ {\rm record} + 1\ {\rm final}\ {\rm partial}\ {\rm coloring} = 1\ {\rm bad}\ {\rm scenario}$

Rewrite the history I

- X_i: set of uncolored edges after step i
- reading of the record to get X_i:

Rewrite the history I

- X_i: set of uncolored edges after step i
- reading of the record to get X_i:

Step i:

Rewrite the history I

- X_i: set of uncolored edges after step i
- reading of the record to get X_i:

Step i:

With the record, we can find the edge e_i which is colored at step *i*.

- Φ_i: partial coloring after step i
- Inverse reading of the record to get Φ_i :
 - Φ_t is known

- Φ_i: partial coloring after step i
- Inverse reading of the record to get Φ_i :
 - Φ_t is known
 - Step i:

- Φ_i: partial coloring after step i
- Inverse reading of the record to get Φ_i :
 - Φ_t is known
 - Step i:

- Φ_i: partial coloring after step i
- Inverse reading of the record to get Φ_i :
 - Φ_t is known
 - Step i:

With Φ_t and the record, we can find the partial colorings and the scenario.

Rewrite the history - Summary

1. Top-down reading \rightarrow set of colored edges at each step.

(1) Sets of colored edges

Rewrite the history - Summary

- 1. Top-down reading \rightarrow set of colored edges at each step.
- 2. Buttum-up reading \rightarrow partial coloring at each step and scenario.

Rewrite the history - Summary

- 1. Top-down reading \rightarrow set of colored edges at each step.
- 2. Buttum-up reading \rightarrow partial coloring at each step and scenario.

 \Rightarrow 1 record + 1 final partial coloring = 1 bad scenario

1 record +1 partial coloring = 1 bad scenario

Summary

1 record +1 partial coloring = 1 bad scenario $\hat{\big|} \\ \leq (4\Delta+1)^m$

Summary

$$\begin{array}{c|c} 1 \ \text{record} \ +1 \ \text{partial coloring} \ = \ 1 \ \text{bad scenario} \\ \hline & & & \\ ? & & \leq (4\Delta+1)^m \end{array}$$

How many possible records ?

3 4 C 2 e

- We know one edge e of C.
- No choice for the last edge

- We know one edge e of C.
- No choice for the last edge

- We know one edge e of C.
- No choice for the last edge

$$i:\mathcal{C} \text{ is uncolored } \Leftrightarrow (i:231354)$$

• Cycle coded by a word on $\{1, ..., \Delta\}^{2k-2}$ where 2k is the length of C.

Record
$$(-, -, ..., -, 231354, -, ..., -, 4213, -, ..., -)$$

Record

Partial Dyck word of length $\leq 2t$ and descents of even size .

Partial Dyck word of length $\leq 2t$ and descents of even size > 2.

Partial Dyck word of length $\leq 2t$ and descents of even size > 2.

 \rightarrow Number of such words : $2^t/t^{3/2}$

Partial Dyck word of length $\leq 2t$ and descents of even size > 2.

- \rightarrow Number of such words : $2^t/t^{3/2}$
- \rightarrow Number of records : $(2\Delta)^t/t^{3/2}$

```
1 \mbox{ record } +1 \mbox{ partial coloring} = 1 \mbox{ bad scenario} \label{eq:alpha} \begin{picture}{l} 1 \mbox{ record} \\ (4\Delta+1)^m \end{picture}
```

$$1 \text{ record } +1 \text{ partial coloring} = 1 \text{ bad scenario}$$

 $(2\Delta)^t/t^{3/2}$ $(4\Delta+1)^m$

$$\begin{array}{c|c} 1 \ \text{record} \ +1 \ \text{partial coloring} = 1 \ \text{bad scenario} \\ & & & & \\ & & & & \\ 2\Delta)^t/t^{3/2} & (4\Delta+1)^m & \frac{(4\Delta+1)^m(2\Delta)^t}{t^{3/2}} \end{array}$$

- Number of scenarios: (2Δ)^t
- Number of bad scenarios: $\frac{(4\Delta+1)^m(2\Delta)^t}{t^{3/2}} = o((2\Delta)^t)$
End of the proof

 $\begin{array}{c|c} 1 \ \text{record} \ +1 \ \text{partial coloring} = 1 \ \text{bad scenario} \\ & & \uparrow \\ (2\Delta)^t/t^{3/2} & (4\Delta+1)^m & \frac{(4\Delta+1)^m(2\Delta)^t}{t^{3/2}} \end{array}$

Number of scenarios: (2Δ)^t

• Number of bad scenarios: $\frac{(4\Delta+1)^m(2\Delta)^t}{t^{3/2}} = o((2\Delta)^t)$

 \Rightarrow For t large enough, there are good scenarios.

 $\Leftrightarrow \mbox{The algorithm stops with nonzero probability } \\ \Leftrightarrow \mbox{There is a coloring in } 4\Delta \mbox{ colors.}$

Algorithmic aspect

• To have a small propability of a bad event in t steps, we should have:

$$\frac{\mathsf{bad scenarios}}{\mathsf{all scenarios}} = \frac{(4\Delta + 1)^m (2\Delta)^t / t^{3/2}}{(2\Delta)^t} < \delta$$

Equivalently:

$$t^{3/2} > \frac{(4\Delta + 1)^m}{\delta}$$

 \rightarrow t can be exponential in m.

Algorithmic aspect

• To have a small propability of a bad event in t steps, we should have:

$$\frac{\mathsf{bad scenarios}}{\mathsf{all scenarios}} = \frac{(4\Delta + 1)^m (2\Delta)^t / t^{3/2}}{(2\Delta)^t} < \delta$$

Equivalently:

$$t^{3/2} > \frac{(4\Delta + 1)^m}{\delta}$$

- \rightarrow t can be exponential in m.
 - But if we have $(4 + \epsilon)\Delta$ colors :

$$\frac{\mathsf{bad scenarios}}{\mathsf{all scenarios}} = \frac{((4+\epsilon)\Delta + 1)^m (2\Delta)^t / t^{3/2}}{((2+\epsilon)\Delta)^t} < \delta$$

Algorithmic aspect

• To have a small propability of a bad event in t steps, we should have:

$$\frac{\mathsf{bad scenarios}}{\mathsf{all scenarios}} = \frac{(4\Delta + 1)^m (2\Delta)^t / t^{3/2}}{(2\Delta)^t} < \delta$$

Equivalently:

$$t^{3/2} > \frac{(4\Delta + 1)^m}{\delta}$$

- \rightarrow t can be exponential in m.
 - But if we have $(4 + \epsilon)\Delta$ colors :

$$\frac{\mathsf{bad} \; \mathsf{scenarios}}{\mathsf{all} \; \mathsf{scenarios}} = \frac{((4+\epsilon)\Delta + 1)^m (2\Delta)^t / t^{3/2}}{((2+\epsilon)\Delta)^t} < \delta$$

 \rightarrow t is polynomial in m.

Girth: size of the smallest cycle in G.

 $\mathsf{Girth} \geq \ell$

- \Leftrightarrow All the uncolored cycles have size at least ℓ
- \Leftrightarrow All the descents in the Dyck word have size 2k for some $k \geq \ell/2$

Girth: size of the smallest cycle in G.

 $\mathsf{Girth} \geq \ell$

- \Leftrightarrow All the uncolored cycles have size at least ℓ
- \Leftrightarrow All the descents in the Dyck word have size 2k for some $k \geq \ell/2$

There are fewer Dyck words !

Counting Dyck Words

- E: set of integers
- $\mathcal{D}_{t,E}$: Dyck words of length 2t with descents in E
- Couting D_{t,E} ⇔ counting plane rooted trees on t + 1 vertices where each vertex as a number of children in E.

Generating function $f(x) = \sum_{t} \mathcal{D}_{t,E} x^{t}$:

$$f(x) = x + x \sum_{i \in E} f(x)^i$$

⇒ Using analytic combinatorics (Flageolet and Sedgwick, 2009), the asymptotic behaviour of $\mathcal{D}_{t,E}$ is $\gamma_E^t t^{-3/2}$.

Some results

Theorem Esperet and P., 2012

If G has maximum degree Δ and girth g:

- a'(G) ≤ 4Δ;
- if $g \ge 7$, $a'(G) \le 3.74\Delta$;
- if $g \ge 53$, $a'(G) \le 3.14\Delta$;
- if $g \ge 220$, $a'(G) \le 3.05\Delta$.

History of entropy compression

- Moser in 2009 and Moser, Tardos in 2010: constructive proof of LLL. \rightarrow Example of SAT with small intersections between clauses.
- Same ideas applied to
 - \rightarrow nonrepetitive sequences (Grytczuk, Kozik, Micek, 2012)
 - → nonrepetitive coloring (Dujmović, Joret, Kozik, Wood, 2012)

History of entropy compression

- Moser in 2009 and Moser, Tardos in 2010: constructive proof of LLL.
 → Example of SAT with small intersections between clauses.
- Same ideas applied to
 - \rightarrow nonrepetitive sequences (Grytczuk, Kozik, Micek, 2012)
 - \rightarrow nonrepetitive coloring (Dujmović, Joret, Kozik, Wood, 2012)

Entropy compression ?

- Input: large random vector
- Output: smaller record

History of entropy compression

- Moser in 2009 and Moser, Tardos in 2010: constructive proof of LLL.
 → Example of SAT with small intersections between clauses.
- Same ideas applied to
 - \rightarrow nonrepetitive sequences (Grytczuk, Kozik, Micek, 2012)
 - \rightarrow nonrepetitive coloring (Dujmović, Joret, Kozik, Wood, 2012)

Entropy compression ?

- Input: large random vector
- Output: smaller record

Works well since :

- we can remove a lot of colors (\rightarrow add entropy);
- while being able to recover the coloring (give compact record).

Generalization

Coloring with forbidden configuration H_i:

- *H_i* graph with a specific coloring *c_i*;
- For any vertex v of H_i , there are k_i fixed vertices that determines c_i ,
- l_i = |V(H_i)| k_i (number of vertices that will be uncolored),
 E = {l_i}
- d_{ℓ} : max number of configurations H_i , $\ell_i = \ell$, containing a vertex ;
- Bound :

$$\gamma_{E} imes \sup d_{\ell}^{1/\ell}$$

Example: star coloring, bound in $3\sqrt{2}\Delta^{3/2}$.

Generalization

Coloring with forbidden configuration H_i:

- *H_i* graph with a specific coloring *c_i*;
- For any vertex v of H_i , there are k_i fixed vertices that determines c_i ,
- l_i = |V(H_i)| k_i (number of vertices that will be uncolored),
 E = {l_i}
- d_{ℓ} : max number of configurations H_i , $\ell_i = \ell$, containing a vertex ;
- Bound :

$$\gamma_{E} imes \sup d_{\ell}^{1/\ell}$$

Example: star coloring, bound in $3\sqrt{2}\Delta^{3/2}$.

Thanks !