Coloration acyclique des arétes d'un graphe en
utilisant la compression d’entropie

Louis Esperet (G-SCOP, Grenoble, France)
Aline Parreau (LIFL, Lille, France)

Séminaire de I'équipe GrAMA
LIRIS, Vendredi 25 janvier 2013

SCIENCES POUR LA CONCEPTION,

1/20



Proper Edge Colorings of graphs

A proper edge coloring of a graph is a coloring of the edges such that two
edges sharing a vertex have different colors.
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A proper edge coloring of a graph is a coloring of the edges such that two
edges sharing a vertex have different colors.
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e /(G): minimum number of colors in a proper edge coloring of G.
e If G has maximum degree A:

X'(G) > A.

Theorem Vizing, 1964)

If G has maximum degree A, x'(G) < A+ 1. ]

2/20



Acyclic edge coloring of graphs
An acyclic edge coloring of a graph is:
e a proper edge coloring,
e without bicolored cycles.

3/20



Acyclic edge coloring of graphs
An acyclic edge coloring of a graph is:
e a proper edge coloring,
e without bicolored cycles.

[ ] [ ] I [ s I | s I
[ — | [ — [ —

e 3'(G): minimum number of colors in an acyclic edge coloring of G.
e If G has maximum degree A, a'(G) > A.

3/20



Acyclic edge coloring of graphs
An acyclic edge coloring of a graph is:
e a proper edge coloring,
e without bicolored cycles.

X X v

e 3'(G): minimum number of colors in an acyclic edge coloring of G.

e If G has maximum degree A, 3'(G) > A.

Conjecture Alon, Sudakov and Zaks, 2001]

If G has maximum degree A, a'(G) < A+ 2.
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Lovasz Local Lemma

Theorem Lovasz Local Lemma)

o Ap,...,Ax 'bad’ events, each occurs with small probability,
e each event is independent of almost all the others,

= with nonzero probability, no bad event occurs.
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Lovasz Local Lemma

Theorem Lovasz Local Lemma)

o Ap,...,Ax 'bad’ events, each occurs with small probability,
e each event is independent of almost all the others,

= with nonzero probability, no bad event occurs.

Acyclic edge coloring:
e Take a uniform random coloring with K colors.

e Bad event: a cycle is bicolored or two adjacent edges have the same
color.

e Dependancy: one edge is not in 'too many’ cycles.
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Results

Using the Lovéasz Local Lemma and variations:
e 3'(G) < 64A (Alon, McDiarmid and Reed, 1991)
e 2'(G) < 16A (Molloy and Reed, 1998)
e 3'(G) < 9.62A (Ndreca, Procacci and Scoppola, 2012)

5/20



Results

Using the Lovéasz Local Lemma and variations:
e 3'(G) < 64A (Alon, McDiarmid and Reed, 1991)
e 2'(G) < 16A (Molloy and Reed, 1998)
e 3'(G) < 9.62A (Ndreca, Procacci and Scoppola, 2012)

Using entropy compression :

Theorem Esperet and P., 2012]

If G has maximum degree A, a'(G) < 4A.
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Algorithm
Order the edge set.
While there is an uncolored edge:
e Select the smallest uncolored edge e
e Give a random color in {1,...,4A} to e (not appearing in N[e])

o If e lies in a bicolored cycle C, uncolor e and all the other edges of
C, except two edges.
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Algorithm
Order the edge set.
While there is an uncolored edge:
e Select the smallest uncolored edge e
e Give a random color in {1,...,4A} to e (not appearing in N[e])

o If e lies in a bicolored cycle C, uncolor e and all the other edges of
C, except two edges.

G

We prove that this algorithm ends with non zero probability.
= Any graph has an acyclic edge coloring with 4A colors.
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Recording

e Execution determined by set of drawn colors : scenario
e Assume the algorithm is still running after t steps. — bad scenario
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Recording

e Execution determined by set of drawn colors : scenario

e Assume the algorithm is still running after t steps. — bad scenario
e We record in a compact way what happens during the algorithm.
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Recording

e Execution determined by set of drawn colors : scenario

e Assume the algorithm is still running after t steps. — bad scenario
e We record in a compact way what happens during the algorithm.

Final partial coloring &,

Record

r

1._
2:-

17:-

18:Cycle C is uncolored
19:-

276:-

277:Cycle C' is uncolored
278:-

1 record + 1 final partial coloring = 1 bad scenario
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Rewrite the history |

e X;: set of uncolored edges after step i
e reading of the record to get X;:
> XO = E
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e X;: set of uncolored edges after step i
e reading of the record to get X;:

> XO = E

> Step i

/,[i:— ] —  Xj11 = X; — {smallest edge of X;}
2 cases

\)[i:C is uncolored ] —  Xit1 = X;i + {C except two edges}

With the record, we can find the edge e; which is colored at step i.
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Rewrite the history Il partial colorings

e ®;: partial coloring after step i
e [nverse reading of the record to get ®;:

> &, is known
> Step i

/.[i:- ] — ®;_1 = ®; with ¢ uncolored
2 cases

\[i-c is uncolored ] - ®;_1 = &; with C recolored
- and e; uncolored

= € N\
C C e gets
/

—
Step i Stepi—1

With &, and the record, we can find the partial colorings and the
scenario.
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Rewrite the history - Summary

1. Top-down reading — set of colored edges at each step.

r
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18:C is uncolored
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276: -

277:C’ is uncolored

278:-

Sets of
colored edges
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Rewrite the history - Summary

1. Top-down reading — set of colored edges at each step.

2. Buttum-up reading— partial coloring at each step and scenario.

r

-

1:-
2:-
17:-
18:C is uncolored
19:-

276:-
277:C’ is uncolored

278:-

t:-

~N

©) &)

Sets of partial colorings

colored edges and scenario
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Rewrite the history - Summary

1. Top-down reading — set of colored edges at each step.

2. Buttum-up reading— partial coloring at each step and scenario.

r

Lt:

1:-

2:-

17:-

18:C is uncolored
19:-

276: -

277:C’ is uncolored

278:-

~N

©) &)

Sets of partial colorings

colored edges and scenario

= 1 record + 1 final partial coloring = 1 bad scenario
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1 record +1 partial coloring = 1 bad scenario

11/20



Summary

1 record +1 partial coloring = 1 bad scenario

< (4D +1)m

11/20



Summary

1 record +1 partial coloring = 1 bad scenario

? < (40 +1)m ?

How many possible records ?
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Compact records of cycles

e We know one edge e of C.
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Compact records of cycles

e We know one edge e of C.

e No choice for the last edge

[i:C is uncolored ] 54 [i:231354]

e Cycle coded by a word on {1, ..., A}?=2 where 2k is the length of C.
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Number of records

Record (=, =,y —, 231354 — . — 4213 — . —)
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Number of records

Record (=, =, —, 231354 — . — 4213 — . —)
L e A e
0 O 0 0111111 O 0 01111 O 0

Number of colored edges
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Partial Dyck word of length < 2t and descents of even size > 2.

— Number of such words : 2t/t3/2
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Number of records

Record

]

0 O

Number of colored edges

0+ /7
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1+ N\ 7
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Partial Dyck word of length < 2t and descents of even size > 2.

— Number of such words : 2t/t3/2
— Number of records : (2A)t/t3/2
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End of the proof

1 record +1 partial coloring = 1 bad scenario
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End of the proof

1 record +1 partial coloring = 1 bad scenario

a \

(2A)t/t3/2 (4A + 1)m (4A+1)"(2A)°

372

e Number of scenarios: (2A)*

e Number of bad scenarios: M?# = o((2A)Y)

= For t large enough, there are good scenarios.

& The algorithm stops with nonzero probability !
& There is a coloring in 4A colors.
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Algorithmic aspect

e To have a small propability of a bad event in t steps, we should have:

bad scenarios  (4A + 1)™(2A)t/t3/?

all scenarios (2A0)t

Equivalently:

32 4Aa+1)m
0
— t can be exponential in m.
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Algorithmic aspect

e To have a small propability of a bad event in t steps, we should have:

bad scenarios  (4A + 1)™(2A)t/t3/?

all scenarios (2A0)t

Equivalently:

32 4Aa+1)m
0
— t can be exponential in m.

e But if we have (4 + ¢)A colors :

bad scenarios  ((4 + €)A + 1)™(2A)t/t3/2

all scenarios (24 e)A) <0

— t is polynomial in m.
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With larger girth

Girth: size of the smallest cycle in G.

Girth > ¢
< All the uncolored cycles have size at least ¢
< All the descents in the Dyck word have size 2k for some k > /2
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With larger girth

Girth: size of the smallest cycle in G.

Girth > ¢
< All the uncolored cycles have size at least ¢
< All the descents in the Dyck word have size 2k for some k > /2

There are fewer Dyck words !
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Counting Dyck Words

o E: set of integers
e D g: Dyck words of length 2t with descents in E

o Couting D; g < counting plane rooted trees on t + 1 vertices where
each vertex as a number of children in E.

Generating function f(x) = >, D; gx":

f(x) :X+XZ f(x)'

i€E

= Using analytic combinatorics (Flageolet and Sedgwick, 2009), the
asymptotic behaviour of D, g is yEt—3/2.
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Some results

/_[Theorem Esperet and P., 2012]

If G has maximum degree A and girth g:
e J(G) <4A;
o if g >7,d(G) <3T74A;
o if g >53, 3(G) <3.14A;
o if g >220, a'(G) < 3.05A.
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History of entropy compression

e Moser in 2009 and Moser, Tardos in 2010: constructive proof of LLL.
— Example of SAT with small intersections between clauses.

e Same ideas applied to
— nonrepetitive sequences (Grytczuk, Kozik, Micek, 2012)
— nonrepetitive coloring (Dujmovié, Joret, Kozik, Wood, 2012)
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History of entropy compression

e Moser in 2009 and Moser, Tardos in 2010: constructive proof of LLL.
— Example of SAT with small intersections between clauses.

e Same ideas applied to
— nonrepetitive sequences (Grytczuk, Kozik, Micek, 2012)
— nonrepetitive coloring (Dujmovié, Joret, Kozik, Wood, 2012)

Entropy compression ?
e |nput: large random vector

e QOutput: smaller record

Works well since :
e we can remove a lot of colors (— add entropy);

e while being able to recover the coloring (give compact record).
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Generalization

Coloring with forbidden configuration H;:

e H; graph with a specific coloring ¢;;

e For any vertex v of H;, there are k; fixed vertices that determines c¢;,
¢; = |V(H;)| — ki (number of vertices that will be uncolored),

E={¢}
e d; : max number of configurations H;, ¢; = ¢, containing a vertex ;
e Bound :

YE X sup dj/z

Example: star coloring, bound in 3v/2A3/2,
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Coloring with forbidden configuration H;:

e H; graph with a specific coloring ¢;;

e For any vertex v of H;, there are k; fixed vertices that determines c¢;,
¢; = |V(H;)| — ki (number of vertices that will be uncolored),

E={¢}
e d; : max number of configurations H;, ¢; = ¢, containing a vertex ;
e Bound :

YE X sup dj/z

Example: star coloring, bound in 3v/2A3/2,

Thanks !
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