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Proper Edge Colorings of graphs
A proper edge coloring of a graph is a coloring of the edges such that two
edges sharing a vertex have different colors.

• χ′(G ): minimum number of colors in a proper edge coloring of G .

• If G has maximum degree ∆:

χ′(G ) ≥ ∆.

If G has maximum degree ∆, χ′(G ) ≤ ∆ + 1.

Theorem Vizing, 1964
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Acyclic edge coloring of graphs
An acyclic edge coloring of a graph is:

• a proper edge coloring,

• without bicolored cycles.

• a′(G ): minimum number of colors in an acyclic edge coloring of G .

• If G has maximum degree ∆, a′(G ) ≥ ∆.

If G has maximum degree ∆, a′(G ) ≤ ∆ + 2.

Conjecture Alon, Sudakov and Zaks, 2001
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Lovász Local Lemma

• A1,...,Ak ’bad’ events, each occurs with small probability,

• each event is independent of almost all the others,

⇒ with nonzero probability, no bad event occurs.

Theorem Lovász Local Lemma

Acyclic edge coloring:

• Take a uniform random coloring with K colors.

• Bad event: a cycle is bicolored or two adjacent edges have the same
color.

• Dependancy: one edge is not in ’too many’ cycles.
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Results

Using the Lovász Local Lemma and variations:

• a′(G ) ≤ 64∆ (Alon, McDiarmid and Reed, 1991)

• a′(G ) ≤ 16∆ (Molloy and Reed, 1998)

• a′(G ) ≤ 9.62∆ (Ndreca, Procacci and Scoppola, 2012)

Using entropy compression :

If G has maximum degree ∆, a′(G ) ≤ 4∆.

Theorem Esperet and P., 2012
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Algorithm

Order the edge set.
While there is an uncolored edge:

• Select the smallest uncolored edge e

• Give a random color in {1, ..., 4∆} to e (not appearing in N[e])

• If e lies in a bicolored cycle C, uncolor e and all the other edges of
C, except two edges.

G

e
C

We prove that this algorithm ends with non zero probability.
⇒ Any graph has an acyclic edge coloring with 4∆ colors.
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Recording
• Execution determined by set of drawn colors : scenario

• Assume the algorithm is still running after t steps. → bad scenario

• We record in a compact way what happens during the algorithm.

G

e
C

Final partial coloring Φt

Record

1:-

2:-

...

17:-

18:Cycle C is uncolored

19:-

...

276:-

277:Cycle C′ is uncolored

278:-

...

t:-

1 record + 1 final partial coloring = 1 bad scenario
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Rewrite the history I

• Xi : set of uncolored edges after step i

• reading of the record to get Xi :
I X0 = E

I Step i :

2 cases

i:-

i:C is uncolored

→

→

Xi+1 = Xi − {smallest edge of Xi}

Xi+1 = Xi + {C except two edges}

With the record, we can find the edge ei which is colored at step i .
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Rewrite the history II: partial colorings
• Φi : partial coloring after step i

• Inverse reading of the record to get Φi :
I Φt is known

I Step i :

2 cases

i:-

i:C is uncolored

→

→

Φi−1 = Φi with ei uncolored

Φi−1 = Φi with C recolored
and ei uncolored

ei
C

Step i

ei
C ei gets

Step i − 1

With Φt and the record, we can find the partial colorings and the
scenario.
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Rewrite the history - Summary

1. Top-down reading → set of colored edges at each step.

2. Buttum-up reading→ partial coloring at each step and scenario.

1:-

2:-

...

17:-

18:C is uncolored

19:-

...

276:-

277:C′ is uncolored

278:-

...

t:-

1
Sets of

colored edges

2
partial colorings

and scenario

⇒ 1 record + 1 final partial coloring = 1 bad scenario
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Summary

1 record +1 partial coloring = 1 bad scenario

≤ (4∆ + 1)m? ?

How many possible records ?
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Compact records of cycles

• We know one edge e of C.

• No choice for the last edge

C

e

2

3

1

3

5

4

≤ ∆

≤ ∆

i:C is uncolored i:231354⇔

• Cycle coded by a word on {1, ...,∆}2k−2 where 2k is the length of C.
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Number of records

( − , − , ..., − , 231354 , − , ..., − , 4213 , − , ..., − )Record

0 0 0 0111111 0 0 01111 0 0

0↔ :
an edge is colored

1↔ :
an edge is uncolored

t

Number of colored edges

Partial Dyck word of length ≤ 2t and descents of even size .

→ Number of such words : 2t/t3/2

→ Number of records : (2∆)t/t3/2
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End of the proof

1 record +1 partial coloring = 1 bad scenario

(4∆ + 1)m

(2∆)t/t3/2 (4∆+1)m(2∆)t

t3/2

• Number of scenarios: (2∆)t

• Number of bad scenarios: (4∆+1)m(2∆)t

t3/2 = o((2∆)t)

⇒ For t large enough, there are good scenarios.

⇔ The algorithm stops with nonzero probability !
⇔ There is a coloring in 4∆ colors.
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Algorithmic aspect

• To have a small propability of a bad event in t steps, we should have:

bad scenarios

all scenarios
=

(4∆ + 1)m(2∆)t/t3/2

(2∆)t
< δ

Equivalently:

t3/2 >
(4∆ + 1)m

δ

→ t can be exponential in m.

• But if we have (4 + ε)∆ colors :

bad scenarios

all scenarios
=

((4 + ε)∆ + 1)m(2∆)t/t3/2

((2 + ε)∆)t
< δ

→ t is polynomial in m.
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With larger girth

Girth: size of the smallest cycle in G .

Girth ≥ `
⇔ All the uncolored cycles have size at least `

⇔ All the descents in the Dyck word have size 2k for some k ≥ `/2

There are fewer Dyck words !
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Counting Dyck Words

• E : set of integers

• Dt,E : Dyck words of length 2t with descents in E

• Couting Dt,E ⇔ counting plane rooted trees on t + 1 vertices where
each vertex as a number of children in E .

Generating function f (x) =
∑

t Dt,Ex t :

f (x) = x + x
∑
i∈E

f (x)i

⇒ Using analytic combinatorics (Flageolet and Sedgwick, 2009), the
asymptotic behaviour of Dt,E is γtE t−3/2.
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Some results

If G has maximum degree ∆ and girth g :
• a′(G ) ≤ 4∆;

• if g ≥ 7, a′(G ) ≤ 3.74∆;

• if g ≥ 53, a′(G ) ≤ 3.14∆;

• if g ≥ 220, a′(G ) ≤ 3.05∆.

Theorem Esperet and P., 2012
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History of entropy compression

• Moser in 2009 and Moser,Tardos in 2010: constructive proof of LLL.
→ Example of SAT with small intersections between clauses.

• Same ideas applied to
→ nonrepetitive sequences (Grytczuk, Kozik, Micek, 2012)
→ nonrepetitive coloring (Dujmović, Joret, Kozik, Wood, 2012)

Entropy compression ?

• Input: large random vector

• Output: smaller record

Works well since :

• we can remove a lot of colors (→ add entropy);

• while being able to recover the coloring (give compact record).
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Generalization

Coloring with forbidden configuration Hi :

• Hi graph with a specific coloring ci ;

• For any vertex v of Hi , there are ki fixed vertices that determines ci ,

• `i = |V (Hi )| − ki (number of vertices that will be uncolored),
E = {`i}

• d` : max number of configurations Hi , `i = `, containing a vertex ;

• Bound :
γE × sup d

1/`
`

Example: star coloring, bound in 3
√

2∆3/2.

Thanks !
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