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Abstract. Currently computers are changing from
single isolated devices to entry points into a
worldwide network of information exchange and
business transactions called the World Wide Web
(WWW). A prerequisite for successfully integrating
various information sources is a standardized and
machine-processable description of their semantics.
In this paper, we will briefly describe two proposals
and will discuss how both can be combined. First,
we discuss the Ontology Inference Layer (OIL) that
is being proposed as a description language for
ontology interchange. That is, it is designed for
specifying static information. Second, we sketch
out UPML, which is being developed for describing
reasoning components. UPML helps to
automatically configure scattered reasoning
components that can be used as inference services
via networks. Integrating these two description
types is a necessary step toward a knowledge web,
where the distinction between static and dynamic
information sources will become transparent for the
user. The main contribution of the paper is the
comparison of these approaches. We achieve this
comparison by discussing several ways of
combining OIL and UPML. We assess the
importance of each perspective and point out what
enhancements would be necessary to improve their
usefulness.
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1 Introduction

Support for the exchange of data, information, and
knowledge is becoming a key issue in current computer
technology. Given the exponential growth of on-line
information available, the automatic processing of this
information becomes necessary for keeping it maintainable
and accessible. Providing shared and common domain
structures becomes essential. Being used to describe the
structure and semantics of information exchange, ontologies
will become a key asset in information exchange. Such
technologies will play a key role in areas such as knowledge
management and electronic commerce, which are market
niches with incredible growth potential. Information sources
will not only be passive entities. Instead, active software
components will be used as services via networks. These
components not only provide support for information
retrieval and extraction, but also provide direct support in
task completion. Again, machine-understandable
representation of their semantics is required to automatically
select and combine these reasoning services. Therefore, it is
natural that a number of proposals and projects deal with
these concerns. In the US, research fundings agencies have
already encountered the importance of such an issues by
setting up the DAML program1, that aims for machine
processable semantics of information sources accessible for
agents. 

The Worldwide Web (WWW) has already drastically
changed the availability of electronically available
information. This first generation of the World Wide Web
has changed our daily practice and these changes will
become even more significant in the near future. However,
the web itself will have to change if it is to achieve the next
level of service. Currently the Web is an incredibly large,
mainly static information source. The main burden in
information access, extraction and interpretation, however, is
left to the human user. Tim Berners-Lee coined the vision of
a Semantic Web that would provide much more automated
services based on machine-processable semantics of data and
heuristics that make use of these metadata. The explicit

1. http://www.darpa.mil/iso/ABC/BAA0007PIP.htm.



representation of the semantics of data accompanied by
domain theories (i.e., Ontologies) will enable a Knowledge
Web that provides a qualitatively new level of service. It
will weave together a net linking incredibly large segments
of human knowledge and complements it with machine
processability. Various automated services will support the
human user in achieving goals via accessing and providing
information present in a machine-understandable form.
This process will ultimately lead to an extremely
knowledgeable system with various specialized reasoning
services that may support us in nearly all aspects of our
daily life and become as essential as access to electric
power. For this knowledge web it is important to link
together semantic descriptions of information sources
with semantic descriptions of heuristic reasoners using
these information sources. Especially because we expect
that the difference between the two will become transparent
for the human user, i.e., it does not make any difference to
him whether a browser renders a static information source
or a virtual page that is generated on the fly.

In this paper we will compare two proposals developed in
relation to two European IST projects.

• The On-To-Knowledge project2 applies ontologies to
electronically available information to improve the
quality of knowledge management in large and
widespread organizations. Ontologies are used to
explicitly represent the semantics of semi-structured
information. This enables sophisticated automatic
support for acquiring, maintaining, and accessing
information. In cooperation with other external
partners, OIL is being developed (cf. [Fensel et al.,
2000], [Horrocks et al., to appear]) to define and
exchange ontologies between heterogeneous and
distributed information sources.

• The objective of the Ibrow project3 ([Benjamins et
al., 1999], [Fensel & Benjamins, 1998]) is to develop
intelligent brokers that are able to configure reusable
components and distribute them in knowledge-based
systems through the World-Wide Web. The WWW is

2. On-To-Knowledge: Content-driven Knowledge-
Management Tools through Evolving Ontologies. Project partner
are the Vreije Universiteit Amsterdam (VU); the Institute AIFB,
University of Karlsruhe, Germany; AIdministrator, the
Netherlands; British Telecom Laboratories, UK; Swiss Life,
Switzerland; CognIT, Norway; and Enersearch, Sweden. http://
www.ontoknowledge.com/
3. IBROW: An Intelligent Brokering Service for Knowledge-
Component Reuse on the World-Wide Web. Project partners are the
University of Amsterdam; the Open University, Milton Keynes,
England; the Spanish Council of Scientific Research (IIIA) in
Barcelona, Spain; the Institute AIFB, University of Karlsruhe,
Germany: Stanford University, US: Intelligent Software
Components S. A., Spain; and the Vrije Universiteit Amsterdam.
http://www.swi.psy.uva.nl/projects/ibrow/home.html
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changing the nature of software development to a
distributive plug & play process, which requires a new
kind of managing software: intelligent software
brokers. Ibrow will integrate research on
heterogeneous databases, interoperability and Web
technology with knowledge-system technology and
ontologies. A result of Ibrow has been the
development of a specification language for reasoning
components called UPML (cf. [Fensel et al., 1999]).

It is quite natural to compare the languages OIL and UPML
developed in the two projects. We can expect many
similarities because reasoning components can be viewed
as active information sources, i.e., as components providing
information as a result of input. Taking a more detailed
look at their relationship, it turns out that there are at least
six possible ways to combine both languages: We can ask
what OIL can provide for UPML, and we can ask what
UPML can provide for OIL. Each of these two cases comes
along with three subpossibilities.

• First, OIL can be used as a meta-language to define
UPML. A language like UPML could be viewed as a
specific ontology where the language primitives are
concepts to talk about a certain domain. In this case
this domain is the description of reasoning
components. OIL should be capable for such a purpose
because it must be possible to express an ontology in
it. Here we will examine, how the language primitives
of UPML can be expressed in OIL. We use OIL in a
similar way like the meta-meta model of MOF4 is used
to express the meta model of other modeling
frameworks. A meta ontology of UPML has already
been described in [Fensel et al., 1999] and we will
examine how it can be expressed in OIL.

• Second, OIL can be used as a language for writing
down UPML specifications. Here a component
specification in UPML should correspond to an
ontology in OIL. Therefore, several components
should be represented via several ontologies, each for
one component. Viewing the specifications of
reasoning components as ontologies has been
proposed in [Mizoguchi et al., 1995] and we will
examine how OIL fits for this purpose.

• Third, OIL can be used as an object language for
UPML. UPML primarily defines an architecture for
the description of reasoning components but has not
yet provided a defined language for defining the
elementary units of a component. Currently, it
provides three different styles: natural language

4. The Meta Object Facility (MOF) standard is a proposal of
the OMG’s group for expressing various modeling frameworks in
a joint representation (cf. [OMG, 1997]).
.2 D. Fensel et al.



definitions (like CML, [Schreiber et al., 1994]), order-
sorted logic (like (ML)2 [van Harmelen & Balder,
1992]), and frame logic (like KARL, [Fensel et al.,
1998]). In this paper, we will examine how OIL could
fill in the gap as a defined standard language for the
logical specification of the elementary elements of a
UPML specification.

• Fourth, can UPML be used as a meta-language to
define OIL? A language like OIL could be viewed as
a specific ontology where the language primitives are
concepts to describe a certain domain. In this case this
domain would be the specification of ontologies. In
principle, UPML would be applicable for such a
purpose, because one of its six components is an
ontology. We could define an ontology in UPML
defining the language primitives of OIL. However it is
not clear what we would gain from such an exercise.
Therefore, we will not examine this possibility further
in this paper.

• Fifth, UPML can be used as a language for writing
down ontologies in OIL. Here an ontology in OIL
corresponds to an ontology in UPML. This looks
interesting because it would provide the structuring
mechanisms of UPML for OIL ontologies. Currently,
OIL only provides an import mechanism to combine
ontologies. UPML provides bridges and refiners to
combine and adapt ontologies. Following this
combination strategy produces an architectural
structure on top of OIL.

• Sixth, can UPML be used as an object language for
OIL? No, this does not make any sense. OIL is
already a language and has no undefined elementary
slots that require further logical refinement. Therefore,
we will also not examine this possibility further.

The contents of this paper are organized as follows. In
Section 2, we provide a brief introduction to OIL and in
Section 3 we provide a brief introduction to UPML. Both
sections are necessary to keep the paper self-contained.
Section 4 provides the actual contribution of the paper. We
will investigate four different strategies to relate OIL and
UPML. We provide conclusions in Section 5.

2 OIL

Ontologies are a popular research topic in various
communities such as knowledge engineering, natural
language processing, cooperative information systems,
intelligent information integration, and knowledge
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management. They provide a shared and common
understanding of a domain that can be communicated
between people and application systems. They have been
developed in Artificial Intelligence to facilitate knowledge
sharing and reuse. Recent articles covering various aspects
of ontologies can be found in [Uschold & Grüninger,
1996], [van Heijst et al., 1997], [Gomez Perez &
Benjamins, 1999], [Fensel, to appear (b)]. Ontologies are a
good candidate for providing the shared and common
domain structures which are required for a truly semantic
integration of information sources. The question then
becomes: how can such ontologies be described and
exchanged? A prerequisite for such a widespread use of
ontologies for information integration and exchange is the
achievement of a joint standard for describing them. Take
the area of databases as an example. The huge success of
the relational model would have never been possible
without the SQL standard that provided an implementation
independent way for storing and accessing data. Any
approach that tries to achieve such a standard for the areas
of ontologies has to decide what modeling primitives are
appropriate for representing ontologies, how their
semantics should be defined, and what syntax is appropriate
for representing ontologies.

[Horrocks et al., to appear] defines the Ontology
Interchange Language (OIL) as a standard proposal. In this
section we will give a brief description of the OIL
language; more details can be found in [Horrocks et al., to
appear] and [Fensel et al., 2000]. An example ontology in
OIL is provided in Figure 1.5 This language has been
designed so that: (1) It provides most of the modeling
primitives commonly used in frame-based and Description
Logic (DL) oriented Ontologies. (2) It has a simple, clean
and well defined semantics. (3) Automated reasoning
support, (e.g., class consistency and subsumption checking)
can be provided. It is envisaged that this core language will
be extended in the future with sets of additional primitives,
with the proviso that full reasoning support may not be
available for ontologies using such primitives.

An ontology in OIL is represented via an ontology
container and an ontology definition. We will discuss both
elements of an ontology specification in OIL. We start with
the ontology container and will then discuss the backbone
of OIL, the ontology definition.

Ontology Container: We adopt the components as defined
by Dublin Core Metadata Element Set, Version 1.16 for the
ontology container part of OIL.

Apart from the container, an OIL ontology consists of a set
of definitions: 

5. For reasons of space limitations only parts of the language
are illustrated.
6. http://purl.oclc.org/dc/
.3 D. Fensel et al.



• import A list of references to other OIL modules that
are to be included in this ontology. XML schemas and
OIL provide the same (limited) means for composing
specifications. One can include specifications and the
underlying assumption is that names of different
specifications are different (via different prefixes).

• rule-base A list of rules (sometimes called axioms or
global constraints) that apply to the ontology. At
present, the structure of these rules is not defined (they
could be horn clauses, DL style axioms, etc.), and they
have no semantic significance. The rule base consists
simply of a type (a string) followed by the
unstructured rules (a string).

• class and slot definitions Zero or more class
definitions (class-def) and slot definitions (slot-def),
the structure of which will be described below.

A class definition (class-def) associates a class name with a
class description. A class-def consists of the following
OIL & UPML 14

ontology-container
title “African animals”
creator “Ian Horrocks”
subject “animal, food, vegetarians”
description "A didactic example ontology describing 
African animals"
description.release "1.01"
publisher "I. Horrocks"
type “ontology”
format "pseudo-xml"
format "pdf"
identifier 

“http://www.cs.vu.nl/~dieter/oil/TR/oil.pdf”
source "http://www.africa.com/nature/animals.html”
language “OIL”
language "en-uk"
relation.hasPart 

“http://www.ontosRus.com/animals/jungle.onto”

ontology-definitions
slot-def eats

inverse is-eaten-by
slot-def has-part

inverse is-part-of
properties transitive

class-def animal
class-def plant

subclass-of NOT animal
class-def tree

subclass-of plant

Fig. 1    An example
components:

• type The type of definition. This can be either
primitive or defined; if omitted, the type defaults to
primitive. When a class is primitive, its definition
(i.e., the combination of the following subclass-of and
slot-constraint components) is taken to be a necessary
but not sufficient condition for membership of the
class.

• subclass-of A list of one or more class-expressions,
the structure of which will be described below. The
class being defined in this class-def must be a sub-
class of each of the class expressions in the list.

• slot-constraint Zero or more slot-constraints, the
structure of which will be described below. The class
being defined in this class-def must be a sub-class of
each of the slot-constraints in the list (note that a slot-
constraint defines a class).
.4 D. Fensel et al.

 ontology in OIL

class-def branch
slot-constraint is-part-of

has-value tree
class-def leaf

slot-constraint is-part-of
has-value branch

class-def defined carnivore
subclass-of animal
slot-constraint eats

value-type animal
class-def defined herbivore

subclass-of animal
slot-constraint eats

value-type 
plant OR 
slot-constraint is-part-of plant

class-def giraffe
subclass-of animal
slot-constraint eats

value-type leaf
class-def lion
subclass-of animal
slot-constraint eats

value-type herbivore
class-def tasty-plant

subclass-of plant
slot-constraint eaten-by

has-value herbivore OR carnivore



A class-expression can be either a class name, a slot-
constraint, or a boolean combination of class expressions
using the operators AND, OR or NOT. Note that class
expressions are recursively defined, so that arbitrarily
complex expressions can be formed.

A slot-constraint is a list of one or more constraints
(restrictions) applied to a slot. A slot is a binary relation
(i.e., its instances are pairs of individuals), but a slot-
constraint is actually a class definition—its instances are
those individuals that satisfy the constraint(s). For example,
if the pair (Leo; Willie) is an instance of the slot eats, Leo
is an instance of the class lion and Willie is an instance of
the class wildebeest, then Leo is also an instance of the
has-value constraint wildebeest applied to the slot eats. A
slot-constraint consists of the following main components: 

• name A slot name (a string). The slot is a binary
relation that may or may not be defined in the
ontology. If it is not defined it is assumed to be a
binary relation with no globally applicable constraints,
i.e., any pair of individuals could be an instance of the
slot.

• has-value A list of one or more class-expressions.
Every instance of the class defined by the slot
constraint must be related via the slot relation to an
instance of each class-expression in the list. For
example, the has-value constraint:

slot-constraint eats
has-value zebra, wildebeest

defines the class each instance of which eats some
instance of the class zebra and some instance of the
class wildebeest. Note that this does not mean that
instances of the slot-constraint eat only zebra and
wildebeest: they may also be partial to a little gazelle
when they can get it.

• value-type A list of one or more class-expressions. If
an instance of the class defined by the slot-constraint is
related via the slot relation to some individual x, then x
must be an instance of each class-expression in the
list.

• max-cardinality A non-negative integer n followed
by a class-expression. An instance of the class defined
by the slot-constraint can be related to at most n
distinct instances of the class-expression via the slot
relation.

• min-cardinality and, as a shortcut, cardinality.

A slot definition (slot-def) associates a slot name with a slot
description. A slot description specifies global constraints
that apply to the slot relation, for example that it is a
transitive relation. A slot-def consists of the following main
components:

• subslot-of A list of one or more slots. The slot being
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defined in this slot-def must be a sub-slot of each of
the slots in the list. For example,

slot-def daughter
subslot-of child

defines a slot daughter that is a subslot of child, i.e.,
every pair of individuals that is an instance of
daughter must also be an instance of child.

• domain A list of one or more class-expressions. If the
pair (x,y) is an instance of the slot relation, then x
must be an instance of each class-expression in the
list.

• range A list of one or more class-expressions. If the
pair (x,y) is an instance of the slot relation, then y
must be an instance of each class-expression in the
list.

• inverse The name of a slot S that is the inverse of the
slot being defined. If the pair (x,y) is an instance of the
slot S, then (y,x) must be an instance of the slot being
defined.

• properties A list of one or more properties of the slot.
Valid properties are: transitive and symmetric.

The syntax of OIL is oriented on XML and RDF. [Horrocks
et al., to appear] defines a DTD, a XML schema definition,
and a definition of OIL in RDF.

3 UPML

Knowledge-based systems are computer systems that deal
with complex problems by making use of knowledge.
Creating knowledge on how to solve problems efficiently
explicit is the rationale that underlies problem-solving
methods (PSMs) (cf. [Stefik, 1995], [Benjamins & Fensel,
1998], [Benjamins & Shadbolt, 1998], [Fensel, to appear
(a)]). Problem-solving methods refine generic inference
engines to allow a more direct control of the reasoning
process. Problem-solving methods describe this control
knowledge independent from the application domain thus
enabling the reuse of this strategic knowledge for different
domains and applications. Finally, problem-solving
methods abstract from a specific representation formalism,
in contrast to the general inference engines that rely on a
specific representation of the knowledge. PSMs decompose
the reasoning task of a knowledge-based system in a
number of subtasks and inference actions that are
connected by knowledge roles. Therefore PSMs are a
special type of software architecture ([Shaw & Garlan,
1996]): software architectures for describing the reasoning
.5 D. Fensel et al.



part of knowledge-based systems. 

The IBROW project [Benjamins et al., 1999], [Fensel &
Benjamins, 1998] has been set up with the aim of enabling
the semi-automatic reuse of PSMs. This reuse is provided
by integrating libraries in an internet-based environment. A
broker that selects and combines PSMs of different libraries
is provided. A software engineer interacts with a broker that
supports him in this configuration process. As a
consequence, a description language for these reasoning
components (i.e., PSMs) must provide human-
understandable high-level descriptions with underpinned
formal means to allow automated support by the broker.
Therefore, we developed the Unified Problem-Solving
Method description Language UPML (cf. [Fensel et al.,
1999], [Fensel et al., to appear]). UPML is an architectural
description language specialized for a specific type of
systems providing components, adapters and a
configuration of how the components should be connected
using the adapters (called architectural constraints).

The UPML architecture for describing a knowledge-based
OIL & UPML 14

Fig. 2    A task ontology fo

ontology diagnoses
pragmatics

The task ontology defines diagnoses for a se
Dieter Fensel;
May 2, 1998;
D. Fensel: Understanding, Developing and R
Habilitation, Faculty of Economic Science, U

signature 
elementary sorts 

Finding; Hypothesis
constructed sorts 

Findings : set of Finding; Hypotheses : s
constants

observations : Findings; diagnosis : Hyp
functions

explain: Hypotheses → Findings
predicates 

< : Hypotheses x Hypotheses;
complete: Hypotheses x Findings;
parsimonious: Hypotheses

axioms
A hypothesis is complete for some findings i

complete(H,F) ↔ explain(H) = F;
A hypothesis is parsimonious iff there is no 
explanatory power.

parsimonious(H) ↔ ¬∃H’ (H’ < H ∧ exp
system consists of six different elements: a task that
defines the problem that should be solved, a problem-
solving method that defines the reasoning process, and a
domain model that describes the domain knowledge. Each
of these elements is described independently to enable the
reuse of task descriptions in different domains, the reuse of
problem-solving methods for different tasks and domains,
and the reuse of domain knowledge for different tasks and
problem-solving methods. Ontologies provide the
terminology used in tasks, problem-solving methods and
domain definitions. Again this separation enables
knowledge sharing and reuse. For example, different tasks
or problem-solving methods can share parts of the same
vocabulary and definitions. Further elements of a
specification of a knowledge-based system are adapters
which are necessary to adjust the other (reusable) parts to
each other and to the specific application problem. UPML
provides two types of adapters: bridges and refiners.
Bridges explicitly model the relationships between two
specific parts of an architecture, e.g. between domain and
task or task and problem-solving method. Refiners can be
used to express the stepwise adaptation of other elements of
a specification, e.g. a task is refined or a problem-solving
.6 D. Fensel et al.
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Fig. 3    The task specification of a diagnostic task.
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ontology 
diagnoses

specification
roles

input observations; output diagnosis
goal

task(input observations; output diagnosis) ↔ 
complete(diagnosis, observations) ∧ parsimonious(diagnosis)

preconditions
observations ≠ ∅

assumptions
If we receive input there must be a complete hypothesis.

observations ≠ ∅ → ∃H complete(H, observations);
Nonreflexivity of <.

¬ (H < H);
Transitivity of <.

(H < H´ )∧ (H´< H´´ )→ (H < H´´);
Finiteness of H.

Finite(H)
method is refined ([Fensel, 1997], [Fensel & Motta, to
appear]). Generic problem-solving methods and tasks can
be refined to more specific ones by applying a sequence of
refiners to them. Again, separating generic and specific
parts of a reasoning process enhances reusability. The main
distinction between bridges and refiners is that bridges
change the input and output of components to make them fit
together, whereas refiners may change internal details like
subtasks of a problem solving methods.

In the following we provide a brief example providing a
task definition together with its ontology. A task ontology
specifies a theory, i.e. a signature and a logical
characterization of the signature elements, that is used to
define tasks (i.e., a problem type). An example of a task
ontology, which is used to provide the elements for
defining a diagnostic problem, is illustrated in Figure 2. The
ontology introduces two elementary sorts Finding and
Hypothesis that will be grounded later in a domain model.
The former describes a phenomenon and the latter describe
possible explanations. The two constructed sorts Findings
and Hypotheses are sets of elements of these elementary
OIL & UPML 14
sorts. The function explain connects findings with
hypotheses. Domain knowledge must further characterize
this function. Three predicates are provided. An order <
used to define the optimality (i.e., parsimonity) of
hypotheses and finally completeness, which ensures that a
hypothesis explains a set of findings.

The description of a task specifies goals that are to be
achieved in order to solve a given problem. A second part
of a task specification is the definition of assumptions about
domain knowledge and preconditions on the input. These
parts establish the definition of a problem that is to be
solved by the knowledge-based system. In contrast to most
approaches in software engineering this problem definition
is kept domain independent, which enables the reuse of
generic problem definitions for different applications. A
second characteristic feature is the distinction between
preconditions on input and assumptions about knowledge.
In an abstract sense, both can be viewed as input. However,
distinguishing case data, that are processed (i.e., input)
from knowledge that is used to define the goal reflects a
distinctive feature of knowledge-based systems.
.7 D. Fensel et al.



Preconditions are conditions on dynamic inputs.
Assumptions are conditions on knowledge consulted by the
reasoner but not transformed. Often, assumptions can be
checked in advance during the system building process,
preconditions cannot. They rather restrict the valid inputs.
Input and output role definitions provide the terms that refer
to the input and the output of the task. These names must be
defined in the signature definition of the task (i.e., either in
the imported ontology or in the auxiliary terminology). The
assumptions ensure (together with the axioms of the
ontology) that the task can always be solved for legal input
(input for which the preconditions hold). For example,
when the goal is to find a global optimum, then the
assumptions have to ensure that such a global optimum
exists (i.e., that the preference relation is non-cyclic). A
task definition may import ontologies and other tasks. The
latter enable a hierarchical structuring of task
specifications. For example, parametric design can be
defined as a refinement of design (cf. [Fensel & Motta, to
appear]). 

An example of a task specification is given in Fig. 3. The
goal specifies a complete and parsimonious (i.e., minimal)
diagnosis. It is guaranteed that such a diagnosis exists if the
domain knowledge can provide a complete diagnosis for
each input which is non-empty. We are able to guarantee
the existence of a complete and parsimonious explanation if
we can guarantee that < is non-reflexive and transitive and
we assume the finiteness of the set of hypotheses.

Another important aspect of UPML are architectural
constraints that ensure well-defined components and
composed systems. The conceptual model of UPML
decomposes the overall specification and verification tasks
into subtasks of smaller grainsize and clearer focus. The
architectural constraints of UPML consist of requirements
that are imposed on the intra- and interrelationships of the
different parts of the architecture. They either ensure a valid
part (for example, a task or a problem-solving method) by
restricting possible relationships between its
subspecifications or they ensure a valid composition of
different elements of the architecture (for example, they are
constraints on connecting a problem-solving method with a
task). The constraints on well-defined components apply
for tasks, domain models, and PSMs. The constraints for
composition are introduced by constraints that apply to
bridges. As an example we provide the constraints for well-
defined task definitions. For a task specification we require
consistency, i.e:

T1 ontology axioms ∪ preconditions ∪ assumptions
must have a model.
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Otherwise we would define an inconsistent task
specification which would be unsolvable. In addition, the
following axiom must hold:

T2 Each model of ontology axioms ∪ preconditions ∪
assumptions 

must be an elementary substructure of at
least one model of goal7

That is, if the ontology axioms, preconditions, and
assumptions are fulfilled by a domain for a given case, then
the goal of a task must be achievable. This constraint
ensures that the task model makes the underlying
assumptions of a task explicit. For example, when defining
a global optimum as a goal of a task it must be ensured that
a preference relation exists and that this relation has certain
properties. It must be ensured that there is no pair (x,y)
where x < y and y < x (i.e., symmetry), because otherwise
the existence of a global optimum cannot be guaranteed. 

These are the two architectural constraints UPML imposes
to guarantee well-defined task specifications. A third
optional constraint ensures the minimality of assumptions
and preconditions and therefore maximizes the reusability
of the task specification. It prevents the overspecifity of
assumptions and preconditions. Otherwise they would
disallow the application of a task to a domain even in cases
where it would be possible to define the problem in the
domain.

T3 Each model of goal must be an elementary extension
of a model of 

ontology axioms ∪ preconditions ∪
assumptions

How minimality of assumptions can be proven and how
such assumptions can be found is described in [Fensel &
Schönegge, 1998]). A great number of further constraints
are described in [Fensel et al., to appear].

7. A structure R is an elementary substructure of a
structure S iff the universe of R is a subset of the universe of
S, and the interpretation of each relation, function and
constant symbol in R is the restriction of the corresponding
interpretation in S (see e.g. [Keisler, 1977]). In other words: S
can be constructed by “extending” R.
.8 D. Fensel et al.
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Fig. 4    Part of the Meta-ontology of UPML.

Entity
attribute → type

Concept < Entity
Binary Relation < Entity

argument1 → Concept1
argument2 → Concept2

Restricted Binary Relation < Binary Relation
in = argument1 → Concept1
out = argument2 → Concept2
with Concept1 = Concept2

Library < Concept
pragmatics → Pragmatics
ontology → Ontology
domain model → Domain Model
complex PSM → Complex PSM
primitive PSM → Primitive PSM
task → Task
ontology refiner → Ontology Refiner
cpsm refiner → CPSM Refiner Refiner
ppsm refiner → PPSM Refiner Refiner
task refiner → Task Refiner
domain refiner → Domain Refiner
psm-domain bridge → PSM-Domain Bridge
psm-task bridge → PSM-Task Bridge
task-domain bridge → Task-Domain Bridge

Ontology < Concept
uses → Ontology
pragmatics → Pragmatics
signature → Signature
theorems → Formula
axioms → Formula

Domain Model < Concept
uses → Domain Model
pragmatics → Pragmatics
ontologies → Ontology
theorems → Formula
assumptions → Formula
knowledge → Formula

PSM < Concept
pragmatics → Pragmatics
ontologies → Ontology
cost → Cost
communication → Communication
precondition → Formula
postcondition → Formula
input roles → Role
output roles → Role

Task < Concept
uses → Task
pragmatics → Pragmatics
ontologies → Ontology
goal → Formula
input roles → Role
output roles → Role
precondition → Formula
assumptions → Formula

Primitive PSM < PSM
knowledge roles→ Role
assumptions → Formula

Complex PSM < PSM
subtasks → Task

operational description → Operational
Description

Bridge < Binary Relation
argument1 → Concept1
argument2 → Concept2
pragmatics → Pragmatics
ontologies → Ontology
renaming → STRING
mapping axioms → Formula
assumptions → Formula

PSM-Domain Bridge < Bridge
argument1 → Domain
argument2 → PSM
uses → PSM-Domain Bridge, 

Task-Domain Bridge, 
PSM-Task Bridge

PSM-Task Bridge < Bridge
argument1 → PSM
argument2 → Task
uses → PSM-Task Bridge

Task-Domain Bridge < Bridge
argument1 → Task
argument2 → Domain
uses → Task-Domain Bridge

Refiner < Restricted Binary Relation
pragmatics → Pragmatics
ontologies → Ontology
in → Concept
out → Concept

Domain Refiner < Refiner
...
Ontology Refiner < Refiner

in → Ontology
out → Ontology
signature → Signature
theorems → Formula
axioms → Formula
renaming → Renaming 

Task Refiner[ < Refiner
in → Task
out → Task
goal → Formula
input roles → Role
output roles → Role
precondition → Formula
assumptions → Formula
axioms → Formula
renaming → Renaming

PSM Refiner < Refiner
...  

CPSM Refiner < PSM Refiner
...  

PPSM Refiner < PSM Refiner
...
Pragmatics < Concept

explanation → STRING
author→ STRING
...
where & when be used → STRING
evaluation → STRING



Fig. 5    Parts of the meta-ontology of UPML in OIL.

class-def Library
slot-constraint pragmatics

value-type Pragmatics
slot-constraint ontology

value-type Ontology
slot-constraint domain model 

value-type Domain Model
slot-constraint complex PSM

value-type Complex PSM
slot-constraint primitive PSM

value-type Primitive PSM
slot-constraint task

value-type Task
slot-constraint ontology refiner

value-type Ontology Refiner
slot-constraint cpsm refiner

value-type CPSM Refiner 
slot-constraint ppsm refiner

value-type PPSM Refiner 
slot-constraint task refiner

value-type Task Refiner Refiner
slot-constraint psm-domain bridge

value-type PSM-Domain Bridge
slot-constraint psm-task bridge

value-type PSM-Task Bridge
slot-constraint task-domain bridge 

value-type Task-Domain Bridge

class-def Ontology 
slot-constraint uses 

value-type Ontology
slot-constraint pragmatics 

value-type Pragmatics
slot-constraint signature 

value-type Signature
slot-constraint theorems 

value-type Formula
slot-constraint axioms 

value-type Formula

class-def Pragmatics 
slot-constraint explanation 

value-type STRING
slot-constraint author→ 

value-type STRING
slot-constraint last date of modification 

value-type STRING
slot-constraint reference 

value-type STRING
slot-constraint URL 

value-type STRING
slot-constraint where & when be used 

value-type STRING
slot-constraint evaluation 

value-type STRING
4 The relationship between 
OIL and UPML

OIL is designed for defining ontologies, i.e., static
information sources. UPML is designed for describing
dynamic information sources. The Web blurs the
differences between these two types of information sources.
Originally, web pages were static objects. Pages may be
active and created as a result of a user query. Many
software agents communicate with human users during
their web browsing. Therefore it is quite natural to compare
languages developed for static and dynamic information
sources. In the introduction we identified four meaningful
ways of relating OIL and UPML.

• OIL can be used as a meta-language to define UPML.

• OIL can be used as a language for writing down
UPML specifications.

• OIL can be used as an object language for UPML.

• UPML be used as a language for writing down
ontologies in OIL.
OIL & UPML 14.
4.1 OIL as a meta-language for 
UPML

The Meta Object Facility (MOF) standard is a proposal of
the OMG group for expressing various modeling
frameworks in a joint representation. Expressing the
various modeling frameworks in a joint language (where
the various modeling primitives are concepts and relations
of the same “meta”-language) facilitates information
exchange and reuse of software specifications expressed
within different modeling frameworks. Therefore, in this
section we will examine how useful OIL is for such a
purpose taking UPML as an example. That is, we take OIL
as the “meta”-language and examine how well a modeling
framework like UPML can be expressed in it.

[Fensel et al., to appear] developed a meta ontology of
UPML used to define its modeling constructs. This
ontology starts with concepts, binary relationships, and
restricted binary relationships. All three entities may have
attributes (Figure 4 shows some of its parts). The main
concept of UPML that are defined with this basic ontology
are Library, Ontology, Domain Model, PSM, and Task.
Besides uses, all attributes model part-of relationship. Sub
10 D. Fensel et al.



concepts (subclass-of relationship) of PSM are Complex
PSM and Primitive PSM. Binary relations connect two
different component types. The root binary relation of
UPML is Bridge. Restricted Binary Relations connect two
components of the same type. The root restricted binary
relation of UPML is Refiner.

Concept and Binary Relation do not have to be modeled
explicitly in OIL because they correspond to the two main
language primitives in OIL: classes and slots. OIL does not
provide a generic element entity that would reify both. Also
OIL fails to express Restricted Binary Relation because
of its lacking meta-language features. We can model a
specific slot in OIL that has the same specific concept as
domain and range restriction. But we cannot express
generically a slot that has to have the same concept as
domain and range restriction without specifying an actual
class (i.e., we cannot parameterize this definition because
we do not have variables for class names). 

Most of the components of UPML can be straightforwardly
modeled in OIL. Some examples are provided in Figure 5.
However, this also makes an additional shortcoming of OIL
apparent. The classes Pragmatics and Ontology refer to
classes like Formula and String. OIL does not provide any
OIL & UPML 14.

Fig. 6    A task ontology 

ontology-container
title diagnoses
creator Dieter Fensel
subject 

The task ontology defines diagnoses for a 
set of observations.

description.release 1.01.
publisher 

D. Fensel: Understanding, Developing and
Reusing Problem-Solving Methods.
Habilitation, Faculty of Economic Science,
University of Karlsruhe, 1998

date May 2, 1998.
type ontology 
format text/pdf.
language OIL
language UPML

ontology-definitions
rule-base

A hypothesis is parsimonious iff there is no 
smaller hypothesis with larger or equal
explanatory power.
parsimonious(H) ↔ 
¬∃H’ (H’ < H ∧ explain(H) ⊆ explain(H’))
A hypothesis is complete for some findings
iff it explains all of them.
axiomatic language and even in the case that it would
provide such a language, it will not be accessible via a class
definition. That is, the definition of formulas is provided in
the definition of the language and cannot be accessed
explicitly as a class. The class String points to another
shortcoming of OIL. At the moment, OIL does not support
concrete domains (e.g., integers, strings, etc.). However,
this may change in the near future (cf. [Horrocks et al., to
appear]) by using the Datatype definitions of the XML
schema language (cf. [Biron & Malhotra, 1999]) as a
pattern for extending OIL.

The situation gets even worse when trying to model bridges
and refiners with OIL. Binary relations (i.e., slots) do not
have attributes in OIL. Therefore, OIL fails completely as a
means for modeling the adapter components of UPML.

Finally, important aspects of the meta model of UPML are
the constraints that ensure well-defined components and
well-defined combination of components. However, none
of these constraints can be expressed in OIL.

In consequence we have to conclude that OIL provides very
restricted modeling primitives that fail in many aspects as a
meta language for expressing the modeling primitives of
11 D. Fensel et al.

specified with OIL.

complete(H,F) ↔ explain(H) = F;
slot-def <

domain Hypotheses
range Hypotheses

slot-def complete
subslot-of explain
domain Hypotheses
range Findings

slot-def explain
subslot-of complete
domain Hypotheses
range Findings
cardinality 1

class-def Finding
class-def Hypothesis

subclass-of NOT Finding
class-def Hypotheses

subclass-of POWERSET Hypothesis
class-def Findings

subclass-of POWERSET Finding
class-def parsimonious

subclass-of Hypotheses
class-def observations

subclass-of Findings
class-def diagnosis

subclass-of Hypotheses



Fig. 7    A task specified with OIL.

ontology-container
title complete and parsimonious diagnoses
creator Dieter Fensel
subject 

The task asks for a complete and minimal
diagnoses

description.release 1.01.
publisher 

D. Fensel: Understanding, Developing and
Reusing Problem-Solving Methods.
Habilitation, Faculty of Economic Science,
University of Karlsruhe, 1998

date May 2, 1998.
type task
format text/pdf.
language OIL
language UPML
relation

hasPart It uses the ontology diagnosis

ontology-definitions
import Ontology diagnosis
rule-base

If we receive input there must be a 
complete and finite hypothesis.
observations ≠ ∅ → 

∃H complete(H, observations) ∧ Finite(H)
slot-def <

properties non-reflexive, transitive
slot-def task

subslot-of complete
domain observations
range parsimonious

class-def observations
documentation input role
cardinality >0

class-def diagnosis
documentation output role
UPML. That is, OIL cannot be used to express the ontology
that describe the specification elements of reasoning
components. If OIL is to be of any use for ontology
interchange it must provide powerful language elements for
expressing these ontologies. Spoken in a nutshell, OIL must
be at least expressive enough to express OIL, an ontology
for ontology specification.

4.2 OIL as a language for UPML

In many respects, OIL fails as a meta language for UPML.
Here we can see whether it provides more usability for
directly expressing UPML specifications. At this level, a
component specification of an ontology or a task (see
Figure 2 and Figure 3) corresponds to an ontology in OIL.
We tried to model a task ontology and a task specification
in OIL. The OIL model of the task ontology is provided in
Figure 6. We made the following observations:

• The ontology container of OIL provides an excellent
and standardized way to provide meta data of an
ontology. The pragmatics slot of UPML looks rather
ad hoc and we expect that UPML will incorporate
DublinCore metadata in its next version, too.

• OIL cannot express the axioms of the ontology. They
are written down in the rule base that has currently no
semantics.
OIL & UPML 14.
• OIL does not provide the means to specify functional
slots. We did this by defining a cardinality constraint
but this is not yet part of the language definition for
slots.

• Finally and most serious, the ontology defines sets of
sets. An instance of findings is a set of instances of the
class finding (and an instance of hypotheses is a set of
instances of hypothesis). Therefore, we included a
powerset operator in our specification but it is not part
of the language definition and it may cause serious
problems for its semantics. However, without this
operator we failed to capture the essence of this small
and simple ontology.

Besides applying OIL directly to the ontology component
of UPML we also tried to use it to model a task
specification (still one of the most simplest components of
UPML). The result is provided in Figure 7. We encountered
problems similar to those we already described:

• An important axiom cannot be expressed directly.

• We extended OIL with the property of being non-
reflexive for slots and with cardinality constraints for
classes.

A problem when using OIL at this level is that the structure
of the specification units of UPML gets lost. Things like the
definition of an input role or an output role are only kept as
natural language comments in the documentation slot. We
will discuss the mismatch of architectural structures of OIL
and UPML in the following subsections.
12 D. Fensel et al.



Fig. 8    The architecture of OIL.

Ontology

Container Definition

Import Rule Class-definitions Slot-definitions
4.3 OIL is an object language for 
UPML

Using OIL as a logical language to define a semantics for
the elementary slots of UPML was the first way we
considered combining OIL and UPML. However, there are
two problems with this approach. First, OIL is already more
than just a logical language. It already comes along with an
architecture comparable to a refined version of the ontology
component in UPML (see Figure 8). Therefore, it does not
make much sense to provide an architectural specification
of each elementary slot of UPML. Second, OIL does not
provide adequate expressive power for many of the
axiomatic parts of UPML specifications. The first problem
indicates that OIL is more appropriate at the level discussed
in Section 4.2. It will require some work to synchronize the
slightly different component models of OIL and UPML but
then it should be possible to express a component of UPML
as an ontology in OIL. The second problem is more
fundamental. OIL fails at any level (i.e., as a meta-
language, language, and object-language) to express
important aspects of UPML. Extending the expressive
power of OIL appears absolutely necessary for making it
usable in this context.

4.4 UPML as a language (i.e., 
architecture) for OIL

Up to now we have asked what OIL can do for UPML.
Now we will deal with the reverse question: Can UPML
provide any help to OIL? Yes it can! OIL provides a very
simple construction to modularise ontologies. In fact, this
mechanism is identical to the namespace mechanism in
XML. It amounts to a textual inclusion of the imported
module, where name-clashes are avoided by prefixing
every imported symbol with a unique prefix indicating its
original location. However, much more elaborated
mechanisms are required for a structured representation of
OIL & UPML 14.
large ontologies. Renaming, restructuring, and redefinition
means must be applicable to imported ontologies. Here, we
can make use of the adapter concept of UPML. UPML
provides refiners and bridges to modify components. These
adapter components of UPML can be used to integrate the
need of ontology structuring into an existing architecture.
When combining UPML and OIL in this way we are also
able to specialize the generic adapter concept of UPML for
the fixed set of language primitives of OIL like [Gennari et
al., 1994], [Park et al., 1997] did for the fixed set of
language primitives of Protégé [Grosso et al., 1999] (i.e.,
OKBC [Chaudhri et al., 1998]).

The precise integration of the adaptation concept of UPML
in OIL is currently under investigation.

5 Conclusions

In this paper we attempted to relate two standardization
efforts:

• OIL provides a standard language for expressing and
interchanging ontologies, i.e., static information
sources.

• UPML provides a standard language for specifying
and reusing problem-solving methods, i.e., dynamic
information sources.

Currently, the web blurs the distinction between static and
dynamic information sources. There is a continuum of
static pages, dynamic generated pages, query-answering
services, and complex software services. Therefore it
appears quite reasonable to try to bring these languages
together to form a coherent framework for describing
services on the WWW. In principle this can also be done in
a fruitful way for both approaches because they currently
focus at different levels. On the one hand, OIL provides a
specification language with well defined semantics and
efficient reasoning support. The overall architecture of OIL
13 D. Fensel et al.



specifications is rather simple–not going beyond an import
statement. On the other hand, UPML provides a full-
fledged architecture for describing various aspects of a
reasoning service. However, no formal language has yet
been defined for it. Therefore OIL and UPML fit nicely
together compensating the weaknesses of each other.
However, in order to make this actually possible, the
language OIL needs to provide more expressive power.
Currently we fail to express the main aspects of any
example of a UPML specification in OIL. In a nutshell,
Description Logics seems too restricted for the functional
specification of software components (see also [Valente et
al., 1999] who encounter similar problems with Description
Logics in other application areas).

Synchronizing the architectures of OIL and UPML and
extending the expressive power of OIL could lead to a
unified language for content and reasoning description.
Such a language is an essential step in the direction of a
knowledgeable web where the difference between both
aspects should be transparent. 

An alternative would be to merge UPML directly with more
powerful languages such as Ontolingua [Farquhar et al.,
1997], KIF [Genesereth, 1991], and CycL8. However then
no reasoning support can be provided because these
languages are based on second order logic. Interesting in
our context is the language LARKS [Sycara et al., 1999]
used in the RETSINA framework for matchmaking in
multi-agent systems. Here Description Logic and Horn
Logic are loosely coupled and a component architecture is
provided similar, however, less complex, than UPML.
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