
An Annotation Framework for the Semantic Web

Steffen Staab, Alexander Maedche and Siegfried Handschuh
Institute AIFB, University of Karlsruhe, 76128 Karlsruhe, Germany

fsst, ama, shag@aifb.uni-karlsruhe.de
http://www.aifb.uni-karlsruhe.de/WBS

Abstract
Creating metadata by annotating documents is
one of the major techniques for putting machine
understandable data on the Web. Though there
exist many tools for annotating web pages, few
of them fully support the creation of semanti-
cally interlinked metadata, such as necessary for
a truely Semantic Web. In this paper, we present
an ontology-based annotation environment, On-
toAnnotate, which offers comprehensive support
for the creation of semantically interlinked meta-
data by human annotators.

1 Introduction
With the upswing of metadata on the Semantic
Web for means like semantic web portals (Staab
et al., 2000a), there comes the urgent need for
adding semantic metadata to existing web pages
such that they are digestible for humans and ma-
chines. Though there exists a wide range of so-
phisticated, even professional, annotation tools
(cf. Section 4 on related work), none of the ones
that we know of has yet fully exploited the new
wealth of possibilities that come with RDF (Las-
sila & Swick, 1999) and RDF-Schema (Brickley
& Guha, 1999) as metadata formats. In partic-
ular, semantic annotation has so far mostly re-
stricted to describing documents or items in doc-
uments in isolation of each other. In light of the
Semantic Web, what intelligent agents crave for
are web pages and items on web pages that are
not only described in isolation from each other,
but that are also semantically interlinked.

We have used semantically interlinked in-
formation for gathering knowledge relevant in
a particular community of users (Staab et al.,
2000a). The underlying idea was that for that
domain a group of users would provide seman-
tic metadata about the content of relevant web

pages. Thus, our Community Web Portal could
present all this knowledge, taking great advan-
tage of semantic structures: personalization by
semantic bookmarks (“Fred is interested in RDF
research”), conceptual browsing, or the deriva-
tion of implicit knowledge (e.g., if John works
in a project, which is about XML then he knows
something about XML), have been some of the
features that thrived by having semantically in-
terlinked information. Similarly, we envision
that intelligent agents may profit from semanti-
cally interlinked information on the Web in the
future.1

Building the Community Web Portal we found
that there were a number of tricky issues with
providing semantic annotation in this manner:
First of all, the semantic annotation task does
not adhere to a strict template structure, such as
Dublin Core to name one of the more sophis-
ticated ones in use. Rather it needs to follow
the structure given by schema definitions that
may vary with, e.g., domain and purpose. In
fact, our intelligent agents rely on domain on-
tologies. Semantic annotations need to be con-
gruent with ontology definitions in order to al-
low for the advantages we have indicated above.
Secondly, semantically interlinked metadata is
labor-intensive to produce and, hence, expen-
sive. Therefore duplicate annotation must be
avoided. Because semantic annotation is a con-
tinuous process in a distributed setting there are
several sources for duplication. There is knowl-
edge generated by other annotators. In order to
allow for the reuse of their annotations it is im-
portant that one does not start from scratch when

1Similar projects like WebKB (Martin & Eklund, 1999),
SHOE (Heflin & Hendler, 2000), and, more recently,
DAML (http://www.daml.org) point in the same di-
rection.

annotating sources, but that one builds on oth-
ers efforts (in particular their creation of IDs).
Then, there is a multitude of schema descrip-
tions (ontologies) that also change over time to
reflect changes in the world. Because manual
re-annotation of old web pages seems practically
infeasible, one needs an annotation framework
that allows to handle ontology creation, map-
pings and versioning. Thirdly, purely manual an-
notation is very expensive. Therefore, only very
valuable information will be annotated and it is
necessary to help the human annotator with his
task. What is needed is support for automatic —
or at the least, semi-automatic — semantic an-
notation of web pages. Finally, there is a lack of
experience in creating semantically interlinked
metadata for web pages. It is not clear how hu-
man annotators perform overall and, hence, it is
unclear what can be assumed as a baseline for
the machine agent. Though there are correspond-
ing investigations for only indexing documents,
e.g. in library science (Leonard, 1977), a corre-
sponding richer assignment of interlinked meta-
data that takes advantage of the object structures
of RDF is lacking.

In this paper, we deal with the first three of the
above mentioned issues. Regarding the fourth
problem on evaluating semantic annotation we
refer the interested reader to a companion paper
(Staab et al., 2000b).

We first (Section 2) present our basic tool for
ontology-based semantic annotation and, then,
consider the issue of semantic annotation as an
ongoing process. In particular, interlinkage be-
tween objects and evolving metadata schema
need to be managed to avoid redundant annota-
tions and re-annotating, respectively. Section 3
describes the different layers for semi-automatic
semantic annotation and introduces the tech-
niques that we use in our tool. Before con-
cluding, we discuss related work in the areas of
evolving schemata and crawling, semi-automatic
semantic annotation — prerequisite experiences
and techniques for useful, semantically inter-
linked metadata on the Semantic Web.

2 Ontology-based Semantic Annotation

An ontology is commonly defined as an explicit,
formal specification of a shared conceptualiza-
tion of an domain of interest. This means that

an ontology describes some application-relevant
part of the world in a machine-understandable
way. The concepts and concept definitions that
are part of the ontology have been agreed upon
by a community of people who have an interest
in the corresponding ontology. The core “ingre-
dients” of an ontology are its set of concepts, its
set of properties, and the relationships between
the elements of these two sets.

Ontological structures may give additional
value to semantic annotations. They allow for
additional possibilities on the resulting semantic
annotations, such as inferencing or conceptual
navigation that we have mentioned before. But
also the reference to a commonly agreed set of
concepts by itself constitutes an additional value
through its normative function. Furthermore, an
ontology directs the attention of the annotator to
a predefined choice of semantic structures and,
hence, gives some guidance about what and how
items residing in the documents may be anno-
tated.

Besides of these advantages that ontology-
based semantic annotation yields in compari-
son to “free text metadata generation”, the ex-
tended set of capabilities also entails some new
problems that need to be solved. In partic-
ular, semantic interlinkage between document
items incurs the difficulty to adequately manage
these interlinkages. Essentially, this means that
an ontology-based annotation tool must address
the issue of object identity and its management
across many documents. Also, ontologies may
have elaborate definitions of concepts. When
their meaning changes, when old concepts need
to be erased, or when new concepts come up,
the ontology changes. Because updating previ-
ous annotations is generally too expensive, one
must deal with change management of ontolo-
gies in relation to their corresponding annota-
tions. Finally, one must prevent redundant an-
notation which stem from duplicate pages on the
web or annotation work done by fellow annota-
tors. Hence, we provide two basic mechanisms
for recognizing document identity. In the re-
mainder of this section we embed these require-
ments into a coherent framework.

2.1 OntoAnnotate — The Core Tool
While most annotation tools implicitly subscribe
to a particular ontology (e.g., Dublin Core), our
tool, OntoAnnotate, makes the relationship be-
tween particular ontologies and their parts, i.e.
concepts and properties, explicit. OntoAnnotate,
presents to the user an interface that dynami-
cally adapts to the given ontology. It has been
developed based on our earlier experiences with
manual ontology-based semantic annotation that
have been described in (Erdmann et al., 2000).

As principal language for semantic annota-
tions and ontologies, OntoAnnotate relies on
RDF and RDF Schema. RDF Schema can be
seen as a language for lightweight ontology de-
scriptions, allowing to define the interlinkage
between different concepts (called “classes” in
RDFS), properties, and objects (i.e “class mem-
bers”, also called “instances”). To name but a
few other possible formats, WebKB uses Con-
ceptual Graphs (Martin & Eklund, 1999), SHOE
employs horn logic rules (Heflin & Hendler,
2000), and we have formerly exploited F-Logic
(Staab et al., 2000a). RDF and RDF Schema,
however, provide completely web compatible
common denominator that everyone agrees on
now. Therefore we have replaced proprietory
formats we have used originally.

OntoAnnotate allows for the easy annotation
of HTML documents. One may create objects
with URIs and relate them to text passages,
which are then highlighted. The semantic mean-
ing of the objects and the text passages is given
by four semantic categories:

1. Object identification: New objects are cre-
ated by asserting the existence of an object
with a unique identifier. The annotation tool
supports the creation of object identifiers
from text passages.

This is a mostly syntactic operation, the
only semantic consequence is that the set of
existing objects is augmented by one.

2. Object–class relationships: Each object is
assigned to a class of objects by the human
annotator. In general, objects may be as-
serted to belong to multiple classes. To keep
the user interface and the evaluation sim-
pler, OntoAnnotate only allows single clas-
sification.

3. Object–attribute relationships: Each ob-
ject may be related to attribute values by
an attribute. Each attribute value is either
a text passage chosen by highlighting or
a string typed in by the annotator. For a
given object the annotator can only create
object–attribute relationships if the object’s
class definition allows its creation, i.e. if the
class definition includes a corresponding at-
tribute.

An attribute is a property the domain of
which is a literal.

4. Object–object relationships: Each object
may be related to all existing objects (in-
cluding itself) via an (object) relation. For a
given object the annotator can only create
object–object relationships if the object’s
class definition allows its creation, i.e. if
the class definition includes a correspond-
ing (object) relation.

An relation is a property the domain of
which is a resource.

Figure 1 shows the screen for navigating the
ontology and creating annotations in OntoAnno-
tate. The left pane displays the document and
the right panes show the ontological structures
contained in the ontology, namely classes, at-
tributes and relations. In addition, the right pane
shows the current semantic annotation knowl-
edge base, i.e. existing objects, their classifi-
cation, object–attribute relationships and object–
object relationships created during the semantic
annotation.

To illustrate the annotation process with On-
toAnnotate, we sketch a small annotation sce-
nario using our tool: Annotation typically starts
with identifying a new object. The user pro-
vides a new object identifier and selects the ap-
propriate class of this object from a tree view.
In our example, the object identifier RStuder
is typed in and the class FULLPROFESSOR is
selected from the ontology. Upon categoriza-
tion of a new object into a class C , OntoAn-
notate shows the possible attributes of C (cf.
the attributes ADDRESS, NAME, PHONE, etc. of
FULLPROFESSOR in the right upper pane of

Figure 1: Screenshot of the OntoAnnotate GUI.

Figure 1) and the actual attributes of the cho-
sen object (cf. Karlsruhe, Rudi Studer,
etc. in right upper pane of Figure 1). In
addition, one may look at the object rela-
tions of C (cf. affiliation, cooperate-
With, etc. in the right lower pane of Fig-
ure 1) and the actual relations of the chosen ob-
ject. In order to dynamically display the prop-
erties of classes and their instances, OntoAn-
notate queries the annotation inference server.
The annotator continues with marking text pas-
sages and drags them into empty fields of the
attribute table, thereby creating new attributes
relationships between the currently chosen ob-
ject and the currently marked text passage (e.g.,
between RStuder and studer@aifb.uni-
karlsruhe.de in Figure 1). The annotator
may create metadata describing new object–
object relationships by choosing an object re-

lation and, then, either creating a new object
on the fly or by choosing one of the objects,
pre-selected by OntoAnnotate according to the
range restriction of the chosen relation. For in-
stance, the AFFILIATION of a PERSON must be an
ORGANIZATION. Therefore, only organizations
are offered as potential fillers for the affiliation
relation of RStuder.

2.2 Object Identity

The first version of OntoAnnotate already relied
on ontology structures to guide annotation, but
it did not consider annotation as being a pro-
cess carried through in a complex environment.
The general problem stems from the fact that
without corresponding tool support, annotators
would too often create new objects rather than re-
use existing ones. Therefore new properties were
not attached to existing objects, but to new enti-

ties. In case studies, like the Community Web
Portal (Staab et al., 2000a) annotators came up
with many different object identifiers for single
persons, which made it impossible to combine
all the data about these persons.

Considering semantic annotation as a contin-
uous process, we came up with two new require-
ments:

1. The annotation inferencing server needs to
maintain object identifiers during the anno-
tation process.

2. A crawler needs to gather relevant object
identifiers for the start of the annotation.

The first requirement is solved by the annota-
tion inference server, by adding objects to and
querying objects from the server during actual
annotation as described in the previous subsec-
tion.

The second requirement has been solved by al-
lowing the annotator to start a focused crawl of
RDF facts — covering the document and annota-
tion server, but also relevant parts of the Web —
which provides the annotation inference server
with an initial set of object identifiers, categories,
attributes and relations. Thus, the metadata pro-
vided by other annotaters may be used as the
starting point that one may contribute additional
data to.

Currently, RDF data is comparatively weakly
interlinked. Hence, it is sufficient to restrict the
focus of the crawl by web server restrictions and
depth of the crawl. With more metadata on the
Web, one needs to employ more sophisticated
techniques in the future.

2.3 Ontology Changes

There exists a tight interlinkage between evolv-
ing ontologies and the semantic document anno-
tation. In any realistic application scenario, in-
coming information that is to be annotated does
not only require some more annotating, but also
continuous adaptation to new semantic terminol-
ogy and relationships.

Heflin and Hendler (Heflin & Hendler, 2000)
have elaborated in great detail on how ontology
revisioning may influence semantic annotations.
Therefore, we here only sketch one example re-
vision and its effects:

When an existing class definition is refined,
the maintainer of the semantic annotations may
explore the objects that belong to this class. He
may decide individually or for all objects

� that the objects stay in the class and, hence,
the semantic meaning of the annotations
is extended by additional semantic con-
straints;

� that the objects are categorized to belong
only to the superclasses of the re-defined
class and, hence the semantic meaning of
the annotations is reduced by cutting away
semantic constraints;

� that the objects are moved to another class.

Along similar lines, other cases of ontology revi-
sions are treated.

The annotation maintainer may explore all the
possibilities in the ontology engineering tool,
OntoEdit (Staab & Maedche, 2000) and may
define mapping rules to bridge between differ-
ent ontology revisions. Later on, querying may
take advantage of these mappings to also retrieve
“old” annotations.

2.4 Document Identity

In order to avoid duplicate annotation, existing
semantic annotations of documents should be
recognized. Because interesting semantic an-
notations will eventually refer to external web
pages that change, the annotator needs some
hints when he encounters a document that has
been annotated before, but that may have slightly
changed since. Finally, the annotator also needs
to recognize that this may be a duplication of
another document seen before (e.g. on a mirror
site).

For these recognition tasks we provide the fol-
lowing mechanisms: In our local setting we have
a document management system where anno-
tated documents and their metadata are stored.
OntoAnnotate uses the URI to detect the re-
encounter of previously annotated documents
and highlights annotations in the old document
for the user. Then the user may decide to ignore
or even delete the old annotations and create new
metadata, he may augment existing data, or he
may just be satisfied with what has been anno-
tated before.

In order to recognize that a document has been
annotated before, but now appears under a differ-
ent URI, OntoAnnotate searches in the document
management system computing similarity with
existing documents by document vector models.
If there appear documents the similarity which
to the currently viewed document is near 1, then
these are indicated to the annotator such that he
may check for congruency.

These two techniques for recognizing docu-
ment identity are very basic, but effective for
maintaining document identity in OntoAnnotate,
given a dynamic environment such as the Web.

2.5 OntoAnnotate — The Semantic
Annotation Environment

The overall annotation environment as outlined
in this section is depicted in Figure 2: The core
OntoAnnotate is used for viewing web pages and
actually providing annotations. It also stores an-
notated documents in the document management
system and adds new metadata to the annota-
tion inference server. The latter is also queried
for providing conceptual restrictions given by the
ontology. Thus, the annotator’s view is restricted
to conceptual structures that are congruent with
the given ontology.

The annotation process is started either with an
annotation inference server without objects, or
the server process is fed with metadata crawled
from the Web and the document server. The an-
notation inference server supports multiple on-
tologies. Annotations refer to the classes and
properties that were used for their creation by
namespaces. F-Logic rules are finally used to
map between different namespaces, thus allow-
ing to keep track of semantic annnotations (at
least to some degree) even when the currently
used ontology is replaced by an update.

The user additionally has the possibility to
use semi-automatic means for recognizing class
instances and properties between them. In
the subsequent section we will further describe
the text analysis component that supports semi-
automatic semantic text annotation.

3 Semi-Automatic Annotation
Based on our experiences and the existing anno-
tation tool for supporting ontology-based seman-

tic annotation of texts, we now approach semi-
automatic annotation of documents. In gen-
eral, one may distinguish between different kinds
of semi-automatic annotation mechanisms, that
have already researched in existing work:

� Wrapper Generation: Especially in the
case of annotating web pages that mainly
consist of HTML tables, one may annotate
the first row of the table and automatically
enumerate over the residual rows of the ta-
ble.

� Pattern Matching: Regularity of word
expressions may be captured by regular
expression based patterns. For example
given the pattern fwordg*fGmbHg yields
for the german language to generic pattern
for company names, and, thus, successfully
recognize instances of the class COMPANY

of the ontology. Patterns are stored with the
concepts of the domain ontology.

� Information Extraction: The most com-
plex mechanism for semi-automatic anno-
tation is full fledged ontology-based infor-
mation extraction based on a shallow text
processing strategy.

Depending in the structure given in the docu-
ments one may apply one of the methods listed
above. We here only shortly describe the mecha-
nisms that we currently use in our tool OntoAn-
notate. In real-world documents typically all
three methods (and more) will have to be applied
in combination. In our future work we will ana-
lyze the structures contained in the documents to
derive a suitable processing strategy for the doc-
uments and document parts.

Wrapper Generation. Recently, several ap-
proaches have been proposed for wrapping semi-
structured documents, such as HTML docu-
ments. Wrapper factories (cf. Sahuguet et al.
(Sahuguet & Azavant, 2000)) and wrapper in-
duction (cf. Kushmerick (Kushmerick, 2000))
have considerably facilitated the task of wrap-
per construction. In order to wrap directly into
OntoAnnotate we have developed our own wrap-
per approach that directly alignes regularities
in semi-structured documents with their corre-
sponding ontological meaning.

Annotation

Inference

Server

Distributed RDF stored

document annotations
(according to the domain

ontology)

Document Server

with RDF statements

crawl

Access &

annotate

web pages

versioned

domain
ontology

validate

local copy

WWW

Onto

Annotate

GUI

Text

Analysis

Component

Figure 2: OntoAnnotate — The Semantic Annotation Environment.

Pattern Matching. We use a very simple
mechanism for recognizing patterns in HTML
documents. We use OroMatcher2 based on Perl
5.003 regular expressions. Patterns are devel-
oped and tested in our regular expression work-
bench.

Information Extraction. At the highest level
of processing we conceive an information
extraction-based approach for semi-automatic
annotation, which has been implemented on top
of SMES (Saarbrücken Message Extraction Sys-
tem), a shallow text processor for German (cf.
(Neumann et al., 1997)). This is a generic com-
ponent that adheres to several principles that are
crucial for our objectives. (i), it is fast and robust,
(ii), it realizes a mapping from terms to ontolog-
ical concepts, (iii) it yields dependency relations
between terms, and, (iv), it is easily adaptable to
new domains.3

2OroMatcher 1.1 is freely available at
http://www.savarese.org/oro/software/
OROMatcher1.1.html

3The interlinkage between the information extraction
system SMES and domain ontologies is described in fur-
ther detail in (Staab et al., 1999).

We here give a short survey on SMES in or-
der to provide the reader with a comprehensive
picture of what underlies our system. The ar-
chitecture of SMES comprises a tokenizer based
on regular expressions, a lexical analysis compo-
nent including a word and a domain lexicon, and
a chunk parser. The tokenizer scans the text in
order to identify boundaries of words and com-
plex expressions like “$20.00” or “Mecklenburg-
Vorpommern”4, and to expand abbreviations.
The lexicon contains more than 120,000 stem
entries and more than 12,000 subcategorization
frames describing information used for lexical
analysis and chunk parsing. Furthermore, the
domain-specific part of the lexicon associates
word stems with concepts that are available in
the concept taxonomy. Lexical Analysis uses the
lexicon to perform, (1), morphological analysis,
i.e., the identification of the canonical common
stem of a set of related word forms and the anal-
ysis of compounds, (2), recognition of name en-
tities, (3), retrieval of domain-specific informa-
tion, and, (4), part-of-speech tagging. While the

4Mecklenburg-Vorpommern is a region in the north east
of Germany.

steps (1),(2) and (4) can be a viewed as standard
for information extraction approaches (cf. (Ap-
pelt et al., 1993; Neumann et al., 1997)), the step
(3) is of specific interest for our annotation task.
This step associates single words or complex ex-
pressions with a concept from the ontology if a
corresponding entry in the domain-specific part
of the lexicon exists. E.g., the expression “Hotel
Schwarzer Adler” is associated with the concept
HOTEL.

SMES includes a chunk parser based on
weighted finite state transducers to efficiently
process phrasal and sentential patterns. The
parser works on the phrasal level, before it
analyzes the overall sentence. Grammatical
functions (such as subject, direct-object) are
determined for each dependency-based senten-
tial structure on the basis of subcategorizations
frames in the lexicon. Our primary output de-
rived from SMES consists of dependency rela-
tions (Hudson, 1990) found through lexical anal-
ysis (compound processing) and through parsing
at the phrase and sentential level. Thereby, the
grammatical dependency relation need not even
hold directly between two conceptually mean-
ingful entities. For instance, in the sentence
”The Hotel Schwarzer Adler in Rostock
celebrates Christmas.“, “Hotel Schwarzer Adler”
and “Rostock”, the concepts of which appear in
the ontology as HOTEL and CITY, respectively,
are not directly connected by a dependency re-
lation. However, the preposition “in” acts as a
mediator that incurs the conceptual pairing of
HOTEL with CITY.

4 Related Work

This paper is motivated by the urgent need for
adding metadata to existing web pages in an ef-
ficient and flexible manner that takes advantage
of the rich possibilities offered by RDF (Lassila
& Swick, 1999) and RDF-Schema (Brickley &
Guha, 1999). Tools and practices so far have not
reflected the new possibilities.

There are only a few tools that support adding
metadata to existing web pages. We will present
related work in this area and show how our ap-
proach and our implemented tool described in
section 2 compares to the existing work. Ad-
ditionally, our paper introduces semantic anno-
tation as a continuous process. We therefore

shortly review existing work in this area.

Related Work on Annotation Tools.
Koivunen et. al. (Koivunen et al., 2000)
introduce a framework for categorizing annota-
tion tools distinguishing between a proxy–based
and a browser–based approach. The proxy-based
approach stores and merges the annotation and
therefore preprocesses the annotated documents
to be viewable for a standard web-browser.
Within the browser–based approach the browser
is modified to merge the document with the
annotation data just prior to presenting the
content to the user.

Many of the annotation tools rely on special-
ized browsers to offer a better user interface. One
of them is Amaya. Amaya (Guetari et al., 1998;
Vatton, 2000) is a web-browser that acts both
as an editor and as a browser. It has been de-
signed at W3C with the primary purpose of be-
ing a testbed for experimenting and demonstrat-
ing new languages, protocols and formats for
the Web. It includes a WYSIWYG editor for
HTML and XML. It can publish documents re-
motely, through the HTTP protocol. It han-
dles Cascading Style Sheets (CSS) and the new
MathML language, for representing mathemat-
ical expressions. An experiment for including
vector graphics into Web documents is also de-
scribed. Amaya is the primary browser /editor
for the annotation approach in (Koivunen et al.,
2000). The annotation data itself is exchanged in
RDF/XML form to provide other clients access
to the annotation database. Currently, however,
it does not provide comprehensive support with
annotation inference server and crawling.

ComMentor (Roescheisen et al., 1994) is an-
other browser-based tool as part of the Stanford
Integrated Digital Library Project. It manages
the meta-information independently of the docu-
ments on separate meta-information servers. The
research prototype implementation was com-
pleted in 1994, the code of the tool is no longer
maintained.

ThirdVoice5 is a commercial product that uses
plug-ins to enhance web browsers. This en-
hancement allows the access to the annotation
stored at the ThirdVoice database located on a
centralized server from the company. The an-

5http://www.thirdvoice.com

notated text parts will appear in the browser as
underlined links. These links point to the infor-
mation on the database that will be presented on
the user request in a separate viewer. Most of
the annotation stored there seems to be links to
further information, so that ThirdVoice is mainly
used as a kind of an extended link-list. Along the
same lines, JotBot (Vasudevan & Palmer, 1999)
follows a browser–based approach that uses Java
applets to modify the browsers behavior.

Yawas (Denoue & Vignollet, 2000) is an anno-
tation tool that is based on the Document Object
Model (DOM) and Dynamic HTML. It codes the
annotations into an extended URL format and
uses local files similar to bookmark files to store
and retrieve the annotations. A modified browser
can then transform the URL format into DOM
events. Locally stored annotation files can be
sent to other users.

The CritLink (Yee, 1998) annotation tool fol-
lows the proxy approach. This approach has
the advantage that it works with any exist-
ing browser. The system is simply used by
prefixing the URL with http://crit.org e.g. to
see the annotated version of semanticweb.org
someone can access the system with the URL
http://crit.org/http://semanticweb.org.

The approach closest to OntoAnnotate is the
SHOE Knowledge Annotator. The Knowledge
Annotator is a Java program that allows users
to mark-up web pages with the SHOE ontology.
The SHOE system (Luke et al., 1997) defines ad-
ditional tags that can be embedded in the body of
HTML pages. In SHOE there is no direct rela-
tionship between the new tags and the original
text of the page, i.e. SHOE tags are not annota-
tions in a strict sense.

According to the above mentioned classifi-
cation OntoAnnotate follows the browser-based
approach with the exception that it is not devel-
oped as an web-browser extension. OntoAnno-
tate can be regarded as a workbench for semantic
annotation of documents using domain-specific
ontologies and this enriching HTML pages with
semantics that an software agent is capable to au-
tomatically process the content of the page and
reason about it.

Related Work on Semantic Annotation as a
Continuous Process. There is only little re-
search that considers the maintenance of ontolo-

gies or more general the maintenance of knowl-
edge bases. In (Menzies, 1998) an overview over
knowledge maintenance is given. Menzies re-
views systems that contribute to different types
of knowledge maintenance. The paper analyzes
the AI and software engineering literature ac-
cording to 35 different knowledge maintenance
tasks. It concludes that there is no overall strat-
egy that covers all 35 tasks.

The phenomenon of dynamic ontologies has
nicely been described in (Heflin & Hendler,
2000). In their work they discuss the prob-
lems associated with managing ontologies in dis-
tributed environments such as the web. The
underlying representation language is SHOE, a
web-based representation language that supports
multiple versions of ontologies. Foo (Foo, 1995)
has published some initial, theoretical thoughts
on ontology revision. Foo outlines the main
ideas on the topic of ontology revision and con-
stitutes ontology change as a frontier of knowl-
edge systems research.

Related Work on Semi-Automatic Annota-
tion. Pustejovsky et al. (Pustejovsky et al.,
1997) describe their approach for semantic in-
dexing and typed hyperlinking. As in our ap-
proach finite state technologies support lexical
acquisition as well as semantic tagging. The
goal of the overall process is the generation of
so called lexical webs that can be utilized to en-
able automatic and semi-automatic construction
of web-based texts.

In (Bod et al., 1997) approaches for learn-
ing syntactic structures from syntactically tagged
corpus has been transferred to the semantic
level. In order to tag a text corpus with type-
logical formulae, they created tool environment
called SEMTAGS for semi-automatically enrich-
ing trees with semantic annotations. SEMTAGS
incrementally creates a first order markov model
based on existing annotations and proposes a se-
mantic annotation of new syntactic trees. The
authors report promising results: After the first
100 sentences of the corpus had been annotated,
SEMTAGS already produced the correct annota-
tions for 80% of the nodes for the immediately
subsequent sentences.

5 Conclusion

This paper presents an approach for creating
meta data by (semi-automatic) annotating web
pages. Starting from our ontology-based anno-
tation environment OntoAnnotate, we have col-
lected experiences in an actual evaluation study.

Future work will have to start on current stud-
ies that have looked at the feasibility of auto-
matic building of knowledge bases from the web
(cf. (Craven et al., pear)). In our future work,
we want to integrate such methods into an even
more comprehensive annotation environment —
including e.g. the learning of ontologies from
web documents (Maedche & Staab, 2000) and
(semi-)automatic ontology-based semantic an-
notation. The general task of knowledge mainte-
nance, including evolving ontologies and seman-
tic annotation knowledge bases, remains a topic
for much further research in the near future.

Acknowledgements. We thank Stefan Decker
for initiating the first version of an annotation
tool. We thank our students Mika Maier-Collin
and Jochen Klotzbuecher for building the Anno-
tation Tool; Dirk Wenke for the Ontology En-
gineering Environment OntoEdit; and our col-
league Kalvis Apsitis for the RDF Crawler. We
gratefully acknowledge the dedication of our stu-
dents who annotated web pages for our exper-
iments. This work was partially supported by
DARPA in the project DAML/OntoAgents and
by Ontoprise GmbH.

References
Appelt, D., Hobbs, J., Bear, J., Israel, D., & Tyson,

M. (1993). FASTUS: A finite state processor
for information extraction from real world text.
In Proceedings of IJCAI-93, Chambery, France.

Bod, R., Bonnema, R., & Scha, R. (1997). Data-
oriented semantic interpretation. In In Pro-
ceedings of the Second International Workshop
on Computational Semantics (IWCS), Tilburg,
1997.

Brickley, D. & Guha, R. (1999). Resource description
framework (RDF) schema specification. Tech-
nical report, W3C. W3C Proposed Recommen-
dation. http://www.w3.org/TR/PR-rdf-schema/.

Craven, M., DiPasquo, D., Freitag, D., McCallum,
A., Mitchell, T., Nigam, K., & Slattery, S. (to
appear). Learning to construct knowledge bases
from the world wide web. Artificial Intelligence.

Denoue, L. & Vignollet, L. (2000). An annota-
tion tool for web browsers and its applications
to information retrieval. In In Proceedings of
RIAO2000, Paris.

Erdmann, M., Maedche, A., Schnurr, H.-P., & Staab,
S. (2000). From manual to semi-automatic se-
mantic annotation: About ontology-based text
annotation tools. In P. Buitelaar & K. Hasida
(eds). Proceedings of the COLING 2000 Work-
shop on Semantic Annotation and Intelligent
Content, Luxembourg.

Foo, N. (1995). Ontology Revision. In Proceedings of
the 3rd International Conference on Conceptual
Structures. Springer Lecture Notes in Artificial
Intelligence. Springer.

Guetari, R., Quint, V., & Vatton, I. (1998). Amaya:
an Authoring Tool for the Web. In Maghrebian
Conference on Software Engineering and Artifi-
cial Intelligence. Tunis, Tunsia.

Heflin, J. & Hendler, J. (2000). Dynamic Ontolo-
gies on the Web. In Proceedings of Ameri-
can Association for Artificial Intelligence Con-
ference (AAAI-2000). Menlo Park, California,
AAAI Press.

Hudson, R. (1990). English Word Grammar. Basil
Blackwell, Oxford.

Koivunen, M.-R., Brickley, D., Kahan, J., Hom-
meaux, E. P., & Swick, R. R. (2000). The W3C
Collaborative Web Annotation Project ... or how
to have fun while building an RDF infrastruc-
ture.

Kushmerick, N. (2000). Wrapper Induction: Effi-
ciency and Expressiveness. Artificial Intelli-
gence, 118(1).

Lassila, O. & Swick, R. (1999). Resource description
framework (RDF) model and syntax specifica-
tion. Technical report, W3C. W3C Recommen-
dation. http://www.w3.org/TR/REC-rdf-syntax.

Leonard, L. (1977). Inter-Indexer Consistence Stud-
ies, 1954-1975: A Review of the Literature
and Summary of the Study Results. Graduate
School of Library Science, University of Illi-
nois. Occasional Papers No.131.

Luke, S., Spector, L., Rager, D., & Hendler, J. (1997).
Ontology-based Web agents. In Johnson, W. L.
(Ed.), Proceedings of the 1st International Con-
ference on Autonomous Agents, pages 59–66.
ACM.

Maedche, A. & Staab, S. (2000). Discovering con-
ceptual relations from text. In ECAI-2000 -
European Conference on Artificial Intelligence.
Proceedings of the 13th European Conference
on Artificial Intelligence. IOS Press, Amster-
dam.

Martin, P. & Eklund, P. (1999). Embedding Knowl-
edge in Web Documents. In Proceedings of
the 8th Int. World Wide Web Conf. (WWW‘8),
Toronto, May 1999, pages 1403–1419. Elsevier
Science B.V.

Menzies, T. (1998). Knowledge maintenance: The
state of the art. The Knowledge Engineering Re-
view, 10(2).

Neumann, G., Backofen, R., Baur, J., Becker, M.,
& Braun, C. (1997). An information extraction
core system for real world german text process-
ing. In In Proceedings of ANLP-97, pages 208–
215, Washington, USA.

Pustejovsky, J., Boguraev, B., Verhagen, M., Buite-
laar, P., & Johnston, M. (1997). Semantic in-
dexing and typed hyperlinking. In Proceedings
of AAAI Spring Symposium, NLP for WWW.

Roescheisen, M., Mogensen, C., & Winograd, T.
(1994). Shared Web Annotations as a Plat-
form for Third-Party Value-Added Information
Providers: Architecture, Protocols, and Usage
Examples. Technical report stan-cs-tr-97-1582,
Computer Science Dept., Stanford University.

Sahuguet, A. & Azavant, F. (2000). Building In-
telligent Web Applications Using Lightweight
Wrappers. to appear in: Data and Knowledge
Engineering.

Staab, S., Angele, J., Decker, S., Erdmann, M.,
Hotho, A., Maedche, A., Studer, R., & Sure, Y.
(2000a). Semantic Community Web Portals. In
Proceedings of the 9th World Wide Web Confer-
ence (WWW-9), Amsterdam, Netherlands.

Staab, S., Braun, C., Düsterhöft, A., Heuer, A., Klet-
tke, M., Melzig, S., Neumann, G., Prager, B.,
Pretzel, J., Schnurr, H.-P., Studer, R., Uszkoreit,
H., & Wrenger, B. (1999). GETESS — search-
ing the web exploiting german texts. In Pro-
ceedings of the 3rd Workshop on Cooperative
Information Agents, LNCS, Berlin. Springer.

Staab, S. & Maedche, A. (2000). Ontology engineer-
ing beyond the modeling of concepts and rela-
tions. In Benjamins, V., Gomez-Perez, A., &
Guarino, N. (Eds.), Proceedings of the ECAI-
2000 Workshop on Ontologies and Problem-
Solving Methods. Berlin, August 21-22, 2000.

Staab, S., Maedche, A., & Handschuh, S. (2000b).
Creating Metadata for the Semantic Web - A
Annotation Environment and its Evaluation.
Technical Report 412, Institute AIFB, Karl-
sruhe University.

Vasudevan, V. & Palmer, M. (1999). On Web Annota-
tions: Promises and Pittfalls of Current Web In-
frastucture. In Proceedings of HICSS’99, pages
5–8, Maui, Hawaii.

Vatton, I. (2000). W3C’s Amaya 4.0 Edi-
tor/Browser. Technical report, W3C.
http://w3c1.inria.fr/Amaya/.

Yee, K.-P. (1998). CritLink: Better Hyperlinks for
the WWW. http://crit.org/ ping/ht98.html.

