
1

The knowledge model of Protégé-2000:
combining interoperability and flexibility
Natalya Fridman Noy, Ray W. Fergerson, Mark A. Musen

Stanford Medical Informatics, Stanford University, Stanford, CA 94305-5479
{noy, fergerson, musen}@smi.stanford.edu

Abstract

Knowledge-based systems have become ubiquitous in recent years. The World-Wide
Web consortium is developing the Resource Description Framework (RDF)—a system
for annotating even Web pages with knowledge elements. Knowledge-base developers
need to be able to share and reuse knowledge bases that they build. Therefore,
interoperability among different knowledge-representation systems is essential. The Open
Knowledge-Base Connectivity protocol (OKBC) is a common query and construction
interface for frame-based systems that facilitates this interoperability. Protégé-2000 is an
OKBC-compatible knowledge-base–editing environment developed in our laboratory.
Protégé-2000 has an easy-to-use and configurable interface. We describe its OKBC-
compatible knowledge model that makes the import and export of knowledge bases from
and to other knowledge-base servers easy. We discuss how the requirements of being
usable and configurable knowledge-acquisition tool affected our decisions in the
knowledge-model design. Protégé-2000 also has a flexible metaclass architecture which
provides configurable templates for new classes in the knowledge base. The use of
metaclasses makes Protégé-2000 easily extensible and enables its use with other
knowledge models. For example, we demonstrate that we can resolve many of the
differences between the knowledge models of Protégé-2000 and RDF by defining a new
metaclass set. Resolving the differences between the knowledge models in declarative
way enables easy adaptation of Protégé-2000 as an editor for other knowledge-
representation systems.

1 The trade-off between interoperability and usability of knowledge-
based systems

In recent years, knowledge sharing and reuse has become one of the primary goals of the
knowledge-based systems research community [12]. Enabling interoperability among
knowledge-representation systems is a crucial step in achieving this goal. The Open
Knowledge-Base Connectivity (OKBC) protocol [2, 7] facilitates this interoperability by
providing an application-programming interface (API) that serves as a common query and
construction interface for frame-based systems. A number of OKBC-compatible
knowledge-representation systems is currently available including Ontolingua [5], Loom
[11], and Protégé-2000, which was developed in our laboratory.

Protégé-2000 is the latest component-based and platform-independent generation of the
Protégé toolset [6]. Two goals have driven the design and development of Protégé-2000:
(1) achieving interoperability with other knowledge-representation systems, and (2) being

2

an easy-to-use and configurable knowledge-acquisition tool. We achieve the first goal by
making the knowledge model of Protégé-2000 compatible with OKBC (Section 2). As a
result, Protégé-2000 users can import ontologies from other OKBC-compatible servers
and export their ontologies to other OKBC knowledge servers. Protégé-2000 uses the
freedom allowed by the OKBC specification to maintain the model of structured
knowledge acquisition (Section 3) that was present in all the generations of the Protégé
tools and to achieve the second design goal of being a usable and extensible tool.

To function effectively as an access layer for many different knowledge-representation
systems, it was important for OKBC to have an extremely general knowledge model. The
set of representational commitments in the OKBC knowledge model is minimal and
OKBC allows knowledge-representation systems to define their own behavior for many
aspects of the knowledge model (e.g., default slot values). Protégé-2000 restricts the
OKBC knowledge model in the following two ways (Section 4):
(1) If implementing a general feature caused significant changes to the way that

knowledge acquisition is performed in Protégé and if OKBC allowed restricting the
feature and still remain OKBC-compatible, Protégé-2000 did that.

(2) If OKBC did not specify the behavior of a knowledge-model component at all,
Protégé-2000 specified the behavior explicitly.

Protégé-2000 also extends some features of the OKBC knowledge model in a way that is
not prohibited by OKBC. The Protégé-2000 metaclass architecture is one such extension
(Section 5). The use of metaclasses allows Protégé-2000 to apply the knowledge-
acquisition approach that it uses to acquire instance data to the ontology-editing process
itself. One of the central user-interface metaphors in Protégé-2000 is the use of forms to
acquire instance data. Protégé-2000 generates these forms automatically based on the
class definitions and the users can then custom-tailor the forms if necessary. Protégé-2000
uses metaclasses widely and it implements the internal structure of its own knowledge
model in a metaclass architecture. A metaclass is a template that is used to define new
classes in an ontology. Therefore, we can customize and lay out the forms for specifying
classes and slots in exactly the same way that we customize and lay out forms for
acquiring instances. The metaclass architecture in Protégé-2000 along with its component-
based approach also enables developers to use Protégé-2000 as an editor for knowledge-
representation systems with knowledge models different from that of Protégé-2000.

We have demonstrated this flexibility by defining a knowledge model of Resource
Description Framework (RDF) [13] as a new metaclass architecture in Protégé-2000.
RDF, developed by the World-Wide Web consortium, is an emerging standard for
defining metadata for encoding machine-readable semantics in Web documents. The
knowledge model underlying RDF—RDF Schema [1]—is different from the Protégé-
2000 knowledge model. However, it is possible to define the main elements of the RDF
knowledge model by defining the metaclasses that will add RDF-specific features to the
templates used to create new classes and slots (Section 6). This definition enables the
creation and editing of RDF documents in Protégé-2000. Our collaborators have
implemented an independent Protégé-2000 component that translates the RDF knowledge

3

base created in Protégé-2000 into standard RDF syntax effectively making Protégé-2000
an editor for RDF documents.

2 Protégé-2000 knowledge model

The knowledge model of Protégé-2000 is frame-based: frames are the principal building
blocks of a knowledge base. A Protégé ontology consists of classes, slots, facets, and
axioms. Classes are concepts in the domain of discourse. Slots describe properties or
attributes of classes. Facets describe properties of slots. Axioms specify additional
constraints. A Protégé-2000 knowledge base includes the ontology and individual
instances of classes with specific values for slots. The distinction between classes and
instances is not an absolute one, however, as we will discuss shortly.

We will use the task of modeling the knowledge about a newspaper-publishing
company as an example throughout the paper.1 This model must include such notions as
employees and authors of a newspaper, the newspaper itself, different newspaper sections,
layout of issues for each day of the week, and so on. We do not attempt to build a
comprehensive model of this domain but rather we use it solely as an illustration of the
concepts we discuss. In this domain, we can define a class Newspaper, where we will
store the general information of what a newspaper is and what properties it may have. The
January 1, 2000 issue of the New York Times will then be an individual instance of the
class Newspaper.

2.1 Classes and instances

Classes in Protégé-2000 constitute a taxonomic hierarchy. If a class A is a subclass of a
class B then every instance of A is also an instance of B. For example, a class representing
newspaper Editors is a subclass of the Employee class (Figure 1). Protégé-2000
visualizes the subclass relation in a tree. Protégé supports multiple inheritance: one class
can have more than one superclass. For example, Editor is subclass of both Employee
and Author, since a newspaper editor is both an employee and an author of the
newspaper. The root of the class hierarchy in Protégé-2000 (and in OKBC) is the built-in
class :THING.

In Protégé-2000, both individuals and classes themselves can be instances of classes.
A metaclass is a class whose instances are themselves classes (see Section 5).

2.2 Slots

Slots in Protégé describe properties of classes and instances, such as contents of a
newspaper, or the name of an author. A slot itself is a frame. In Protégé, as in OKBC,
slots are first-class objects: Slots are defined independently of any class. When a slot is

1 You can browse the complete example of the newspaper ontology at the Protégé-2000 Web site:

http://www.smi.stanford.edu/projects/protege/protege-2000/doc/users_guide/index.html

4

Figure 1. The representation of ontology in Protégé-2000. The left-hand panel contains the
class hierarchy. The selected class Editor is a subclass of two classes: Employee and
Author. The right-hand panel is the form for the class Editor containing the own slots for
the class and their values and the template slots attached to the class along with their value
restrictions—facets.

attached to a frame in the user’s ontology, it describes properties of that particular frame.
For example, we can define a slot name and attach it both to the class Newspaper and
to the class Author to represent the name of a newspaper and the name of an author
respectively. When a slot is attached to a frame it can have a value. For example, the
name slot for a specific issue of a newspaper (instance of the Newspaper class) may
have a string “New York Times” as the value.

2.3 Facets

One way to specify constraints on allowed slot values is through facets. The constraints
specified using facets include cardinality of a slot (how many values the slot can have),
restrictions on the value type of the slot (for example, integer, string, instance of a class),
minimum and maximum value for a numeric slot, and so on. Facets define restrictions on
an attachment of a slot to a class frame. For example, a slot salary can have type
Float and minimum value of 15,000. When the slot salary is attached to the class
Editor, we can increase the minimum value to 30,000.

5

Figure 2. Propagation of template and own slots through the subclass-of and
instance-of relations.

2.4 Template and own slots

A slot can be attached to a frame in one of two ways: as a template slot or as an own
slot. An own slot attached to a frame describes properties of an object represented by that
frame (an individual or a class). Own slots attached to a class do not get inherited to its
subclasses or propagated to its instances. Template slots can be attached only to class
frames. A template slot attached to a class is inherited by its subclasses. In addition, a
template slot on a class becomes an own slot on the instances of that class (Figure 2).

For example, a slot containing a name of a specific editor—a name slot attached to a
frame representing that individual instance of the class Editor—is an own slot attached
to that frame (Figure 2). All the other slots on the instance frame—salary, date
hired, and so on—are also own slots attached to this instance.

Classes can have own slots as well. For example, documentation for a class is an
own slot attached to that class since it describes the class itself rather than instances of that
class. If we represented synonyms for each class name, then the synonyms slot would
also be an own slot for a class: “Source” is a synonym for the class name Author in the
newspaper context, but it is not a synonym for John—a specific instance of the class
Author. Since both documentation and synonyms in this example are own slots
for a class, these slots and their values do not get inherited by subclasses. Indeed,
synonyms of the class name Author are not related to the synonyms for class name
Columnist—a subclass of Author.

Template slots describe properties that an instance of a class shall have. For example,
instances of the class Editor—individual editors themselves—have names, dates when

Class A

Template slot T1
Allowed-class: C1

Own slot O2
Value: V2

Class B

Template slot T1
Allowed-class: C2 (subclass of C1)

Instance I (Individual I)

Own slot T1
Value: I1 (instance of C1)

Instance C (class C)

Own slot T1
Value: I2 (instance of C1)

Template slot T3
Allowed-class: C4

Template slot is inherited
Allowed-classes in
subclass can be more
specific than in superclass

Own slot (or its value) does not
get propagated anywhere

Template slot becomes
own slot in instances

New template slots
can be added (they
will become own slots in
instances of C)su

bc
la

ss instance

instance

6

Figure 3. An instance of a class Editor. All the slots on the form are own slots.

they were hired, newspaper sections for which they are responsible, and so on. The slots
name, date hired, and sections are template slots for the class Editor (Figure 1).
Every instance of the class Editor has these slots as own slots with specific values
(Figure 3). Any subclass of Editor also will inherit these template slots. In fact, the
class Editor inherited most of its template slots from its superclasses: Author and
Employee (see Figure 1).

To summarize, own slots describe a property of a (class or individual) frame itself
rather than properties of instances of that frame. Template slots describe properties of
instances of a class. Own slots do not propagate to either subclasses or instances of the
frame to which they are attached. Template slots get inherited as template slots to the
subclasses, and they become own slots for instances.

Protégé-2000 does not allow direct attachment of own slots to classes or instances (we
explain why in Section 4). An individual instance can acquire own slots only by being an
instance of a class that has those slots as template slots and a class can acquire own slots
only by being an instance of a metaclass that has those slots as template slots.

3 Knowledge-acquisition forms

In Protégé-2000, structured data entry allows users to enter information about instances
quickly and easily and to verify the entered information directly. Protégé-2000 enables
structured data entry by using knowledge-acquisition forms to acquire instances
information. The form-based interface is one of the central user-interface metaphors in
Protégé. When a user defines a class and attaches template slots to it, Protégé
automatically generates a form to acquire instances of that class. The slots for the class,
their cardinality and value type determine the default layout and the content of the form.
For example, Protégé-2000 uses a text field as a default way to display and acquire a
value of a single-cardinality slot of type string. It uses a pull-down menu for a slot
whose values are limited to a set of symbols. It represents a boolean slot with a checkbox.
It uses a list for slots that have multiple values.

7

Figure 4. Customizing the form for class Editor. We choose to use a slider to acquire the
numeric value for the salary slot instead of a text field used in the form in Figure 1.

Users can customize the standard form that Protégé-2000 automatically generates for
each class to suit the requirements of the specific class better. Customization includes
changing the layout of the form components by moving the “important” information to the
top of the form, changing labels for the form fields, and choosing different ways of
displaying and acquiring slot values. For example, we can use a text field (with the
appropriate validation) to acquire an integer value or we can use a slider to set the value
instead (Figure 4). The component-based architecture of Protégé-2000 enables developers
to write their own domain-specific and task-specific components to acquire and display
slot values.

The current knowledge-acquisition process in Protégé-2000 consists of three steps: (1)
define a class and its template slots; (2) lay out the form that will be used to acquire
instances of that class; (3) acquire instance of the classes. Therefore, there is a form
associated with each class and this form is used to acquire instances of that class. This
user-interface approach resulted in some restrictions in our support of the OKBC
knowledge model. We discuss these restrictions in the next section.

4 OKBC and Protégé knowledge models

Protégé-2000 uses the OKBC knowledge model [3] as the basis for its own knowledge
model. The main goal of the OKBC developers was to ensure maximum generality and
interoperability among knowledge-representation systems. Therefore the OKBC
knowledge model makes minimal knowledge-representation commitments and it is
extremely general. OKBC incorporates all the features of the basic approaches to frame-

8

based systems. Some of these features contradict each other or are not mutually
compatible. The OKBC goal is to allow maximum flexibility. Therefore, when a conflict
or incompatibility between two features arose, the OKBC designers often allowed both
features without requiring the OKBC-compatible systems to implement either of them.2 In
some cases, OKBC did not specify the behavior at all leaving the implementation up to
the knowledge-representation systems completely. This approach—allowing as many
features as possible, requiring as few features as possible, and leaving some features
underspecified—is perhaps the best approach for a common-access protocol, but
designers of individual systems must make some design choices that restrict this
generality.

The Protégé-2000 knowledge model is completely compatible with OKBC: Protégé
implements everything that the OKBC knowledge model requires and everything in the
Protégé-2000 knowledge model is logically consistent with OKBC. For the features where
OKBC allows flexibility, Protégé-2000 preserves as much of the OKBC generality as
possible and restricts the OKBC model only when the current Protégé user-interface
paradigm requires it. Table 1 summarizes where the Protégé-2000 knowledge model is
less general than the OKBC model. The list in Table 1 demonstrates the tradeoffs between
an extremely general knowledge model (OKBC) and a system designed for knowledge
acquisition (Protégé-2000): we had to sacrifice some of the generality of OKBC to
maintain easy-to-use and configurable knowledge-acquisition interface. Table 1 does not
include all the differences between the knowledge models of Protégé-2000 and OKBC.
The exhaustive discussion of features where Protégé-2000 knowledge model diverges
from the OKBC one, such as own facets and template-slot values, is beyond the scope of
this paper.

OKBC Protégé-2000
1 A frame can be an instance of multiple

classes
A frame can be an instance of only one
class

2 A frame does not have to be an instance
of any class

A frame is always an instance of a class

3 An own slot can be attached directly to
any frame

An own slot attached to a frame is
always derived from the corresponding
template slot

4 Classes, slots, facets, and individuals do
not have to be frames

Every class, slot, facet, and individual is
a frame

5 A frame can be a class, a slot, and a
facet at the same time

A frame is either a class, or a slot, or a
facet

Table 1. Summary of differences between the knowledge models of OKBC and Protégé-2000.

2 The OKBC protocol enables the knowledge-based systems to specify the design choices that they

make.

9

We made the design choices in Protégé-2000 to enable optimal knowledge
acquisitions. As with any evolving system, the decisions may change if we no longer
believe that they are justified by the knowledge-acquisition requirements.

The first three differences in Table 1 result from the Protégé approach to modeling and
knowledge acquisition: Protégé generates a knowledge-acquisition interface based on the
users’ specification of the objects that they need to acquire. This specification includes
defining a class of objects to acquire, having Protégé generate a knowledge-acquisition
form based on the class definition, and, if necessary, custom-tailoring the form to acquire
that class of objects (Section 3). This approach to knowledge acquisition requires that
there is always a way to specify and to custom-tailor a form for acquiring information for
any instance. The first four items in Table 1 ensure that there is indeed a class form
associated with every instance. If an instance has more than one direct type, there is no
single place where the form can be laid out, since different own slots for the instance
come from different classes. Similarly, if an own slot is attached directly to an instance
and it does not come from a template slot, there is no place where the user can customize
how the values of the slot should be acquired. The same problem arises if a frame is not
an instance of any class: all the own slots need to be attached to it directly and there is no
place where the form can be laid out before the slot values for the instance are acquired.

Currently, the Protégé-2000 user interface is centered around frames and forms to
acquire values for slots. Therefore only primitive data types—numbers, strings, symbols,
and so on—do not have to be represented using frames. All the user-defined entities are
frames. This requirement is less general than the OKBC approach where objects do not
have to be frames. For example, a set {1, 2, 3, 4} can be a class.

The sets of classes, slots, and facets are disjoint in Protégé-2000. An object can be
either a class, or a slot, or a facet. Protégé imposes this requirement because the three
types of frames play inherently different roles in the knowledge acquisition process.
Classes are collections of terms organized in the hierarchy and each class defines what
knowledge will need to be acquired for its instances.

In summary, we used the flexibility that OKBC allows to restrict some of the features
of the extremely general knowledge model and thereby maintain the uniform knowledge-
acquisition interface. There are aspects of a knowledge-representation system for which
OKBC allows alternative behaviors or does not specify the behavior at all (leaving it up to
the individual systems to implement any behavior and still to remain compatible with the
OKBC). We utilized this flexibility to implement the Protégé metaclass architecture
described in the next section.

5 Metaclasses

The Protégé-2000 metaclass architecture enables us to extend the knowledge-acquisition
approach that we use to acquire instance data to the ontology-editing process itself. We
can customize and lay out the forms for specifying classes and slots in exactly the same
way that we customize and lay out forms for acquiring instances (Section 3). The
metaclass architecture in Protégé-2000 also enables developers to use Protégé-2000 as an

10

editor for knowledge-representation systems with knowledge models different from that
of Protégé-2000. For example, in Section 6 we describe an example implementation of an
editor for Resource Description Framework schema and instance data in Protégé-2000.
The Protégé-2000 metaclass architecture is modeled after the metaobject protocol [9] in
the Common Lisp Object System [8].

A metaclass is a class whose instances are themselves classes. Every frame in Protégé-
2000 is an instance of a class (see Table 1). Since classes are also frames, every Protégé-
2000 class is an instance of another class. Therefore, every class has a dual identity: It is a
subclass of a class in the class hierarchy—its superclass,—and it is an instance of another
class—its metaclass. In this section, we will describe how metaclasses work in Protégé-
2000, give examples of how metaclasses can be used in knowledge modeling and describe
the metaclass architecture of the Protégé-2000 knowledge model itself.

5.1 What is a metaclass

Metaclass is a template for classes that are its instances. A metaclass describes how a class
that instantiates this template will look: namely, which own slots it will have and what are
the constraints for the values of these slots. Similarly, a traditional class describes how
instances of that class will look: which own slots the instances will have and what are the
constraints for the values of these slots.

Own slots for a class—the slots that the class acquires from its metaclass—describe the
properties of the class itself and not of its instances. For example, a class’s role—
concrete or abstract—defines whether or not the class can have direct instances. (Abstract
classes do no have direct instances.) This property is an intrinsic property of the class
itself and not the property of its instances. Similarly, the value of the documentation
slot for a class describes the class itself and not the class’ subclasses or instances.

In Protégé (and in OKBC) all metaclasses inherit from the system class :CLASS. By
default, each class in Protégé is an instance of the :STANDARD-CLASS metaclass, which
is a subclass of :CLASS. The :STANDARD-CLASS metaclass has template slots to store
a class’s name, documentation, a list of template slots, a list of constraints, and so on
(Figure 7). These slots then become own slots for each of the newly created classes—
instances of :STANDARD-CLASS. We will discuss :STANDARD-CLASS in more detail
in Section 5.3. The form that Protégé uses to acquire the class information (for example,
the form on the right-hand side in Figure 1) is in fact the knowledge-acquisition form that
corresponds to the :STANDARD-CLASS class. Users can customize this form in exactly
the same manner as they customize forms for other classes.

Protégé-2000 allows users to define their own metaclasses and to define new classes as
instances of these user-defined metaclasses. They can then customize the forms to acquire
instances of these metaclasses, which are new classes in the ontology, effectively creating
new ontology editors [4].

11

Figure 5. Definition of the class Employee metaclass. The template slots defined here
will become own slots for classes that are instances of this metaclass.

5.2 User-defined metaclasses

Consider the earlier example of defining a newspaper ontology. Suppose we wanted to
record the recommended minimum and maximum salary for different employee positions
as well as whether or not a particular position is at the level of management. For example,
the recommended minimum salary for an editor is $30,000 and the recommended
maximum salary is $60,000. An editor is a management position. Since the two numbers
are only the recommended minimum and maximum, we cannot encode them as explicit
minimum and maximum constraints for the salary slot: our model should allow a very
good editor to earn more than $60,000. Also, we consider all editors to be managers and
we should not have to specify this fact for each new instance of the Editor class. These
three slots—the recommended minimum and maximum salary and whether or not the
position is a management position—are in fact own slots for the class Editor: the values
of these slots define properties of the Editor class, but not the properties of their
corresponding instances.

We will use metaclasses to implement this model. We define an Employee
metaclass class which we will then use as a template for the class Employee and all
of its subclasses. Protégé-2000 requires that all metaclasses be subclasses of the system
class :CLASS. In practice, most metaclasses are subclasses of :STANDARD-CLASS,

12

Figure 6. The definition of the Editor class as an instance of the Employee metaclass. The
definition has the additional own slots with the corresponding values. The Editor class in
Figure 1 was an instance of :STANDARD-CLASS and did not have these own slots.

since all the metaclasses usually include the slots defined in :STANDARD-CLASS (see
Section 5.1). We create additional template slots for the Employee metaclass
(Figure 5): the minimum recommended salary and maximum recommended
salary slots have value type Integer and cardinality Single; the management
position slot has the value type Boolean.

We define the Employee class and its subclasses as instances of the Employee
metaclass. These classes then have the three new slots as their own slots. The Editor
class in Figure 1 was an instance of the :STANDARD-CLASS metaclass and did not have
these domain-specific own slots. Figure 6 shows the definition of the class Editor as an
instance of Employee metaclass. Before defining the Editor class, we laid out the
form for the Employee metaclass class in a manner similar to the one demonstrated
in Figure 4. Protégé-2000 uses this form to acquire instances of the Employee
metaclass class such as the Editor class.

5.3 Protégé-2000 built-in metaclass architecture
Protégé-2000 uses the metaclass mechanism to implement its own internal class structure.
Metaclasses define the representation of all the frames in the system—classes, slots,
facets, and individuals. All the information about the frames, from name and

13

Figure 7. Definition of the :STANDARD-CLASS metaclass. Protégé-2000 uses the slots
attached to this class to store the information about all its classes.

documentation of a class to a list of its template slots and superclasses, is stored in the
class’s own slots. In other words, Protégé uses its own class structure to store the
information about itself. The users of Protégé-2000 do not need to see this internal
information (and very few users do indeed see it) unless they decide to explore the
ontology describing the Protégé-2000 knowledge model. The three system classes—
:CLASS, :SLOT, :FACET—serve as types for all the Protégé-2000 classes, slots, and
facets respectively. These classes do not have any template slots attached to them. This
feature allows Protégé-2000 developers to implement their own knowledge models in
Protégé-2000 without making the same knowledge-model assumptions that Protégé-2000
does if they do not need it. The Protégé-2000 knowledge model itself is implemented
using the three standard subclasses of these classes: :STANDARD-CLASS,
:STANDARD-SLOT, and :STANDARD-FACET. These three classes have the template
slots that define the structure of their instances—the Protégé-2000 classes, slots, and
facets respectively.

• :STANDARD-CLASS defines the default metaclass for Protégé-2000 classes.
Template slots of :STANDARD-CLASS (Figure 7) define the standard own slots
for classes in Protégé-2000. The slots store the class name, documentation, role,
direct subclasses, direct superclasses, and direct template slots for the class.
Usually, all the user-defined metaclasses will be subclasses of :STANDARD-
CLASS. The :STANDARD-CLASS is an instance of itself and therefore has the

14

same sets of slots attached to it twice: once as own slots with values and once as
template slots with value-type restrictions in the form of facets.

• :STANDARD-SLOT defines the default metaslot in Protégé-2000. Template slots
of :STANDARD-SLOT (Figure 8) define the standard own slots for slot frames in
Protégé-2000. These slots store the slot name, its documentation, value type,
numeric minimum and maximum, cardinality, and constraints. User-defined
metaslots are subclasses of :STANDARD-SLOT.

• :STANDARD-FACET define the class to which all the built-in and user-defined
facets belong. Currently there are no slots required for facets.

Since all the metaclasses are at the same time regular classes in Protégé-2000, we can
use the Protégé-2000 form mechanism to customize the forms for acquiring data for
instances of these classes. For example, if a customized version of the system does not
need to have the constraint or role slots on the class form, all that is necessary is to
customize the form for :STANDARD-CLASS to remove the elements acquiring these
values from the form.

To summarize, the metaclass architecture in Protégé-2000 enables users to adapt and
change the knowledge model of the system to suit the requirements of their domain and
task. This adaptation can be performed in two ways: (1) custom-tailoring the knowledge-
acquisition forms for class definitions and (2) extending the Protégé-2000 knowledge
model or defining a new knowledge model by extending the Protégé-2000 metaclass
architecture or defining a new metaclass architecture respectively.

Figure 8. Definition of the :STANDARD-SLOT metaslot. Protégé-2000 uses the slots
attached to this class to store the information about all its slots.

15

In the next section we demonstrate how we can use the Protégé-2000 metaclass
architecture to implement a different knowledge model in Protégé-2000—that of RDF.

6 Adapting to a different knowledge model—RDF

The combination of (1) the metaclass architecture, (2) the ability to define specialized
user-interface components to display and acquire slot values, and (3) the ability to
implement additional persistence layers as components in Protégé-2000 allows Protégé-
2000 users to adapt the tool to create and edit knowledge bases with knowledge models
that are different from the Protégé-2000 knowledge model.

Together with our collaborators, we have recently adapted Protégé-2000 to become an
editor for Resource Description Framework (RDF) Schema and RDF instance data. RDF
is a knowledge representation standard being defined by the World-Wide Web
Consortium [13]. The main goal for RDF is to make Web-based pages not only human-
readable but also machine-readable enabling computer agents to use the information.
Currently, HTML enables the Web-site developers to encode how the document is going
to appear on the page. RDF takes the representation further, allowing semantics to be
encoded in the markup tags as well. For example, two Web sites may describe the same
movie: the Internet Movie Database has a list of all the characters, awards, technical
details, and so on. Amazon.com has the information on purchasing the videotape. If the
two sites represent the information formally and use a shared ontology to do so, an agent
can link the two databases and can answer requests that require the knowledge of both.
The RDF and RDF Schema specification define the knowledge model that will be used to
express ontologies in RDF (RDF schema [1]) and the syntax to encode and instantiated
the schema (RDF syntax [10]).

Adapting Protégé-2000 to become an editor for RDF Schema and instance data
requires bridging the gap between the two knowledge models. We now describe what the
differences are and how we can resolve many of the differences by defining specialized
classes and metaclasses in Protégé-2000. We then discuss which differences we cannot
resolve declaratively and describe how they can be solved as part of the RDF persistence
layer—a Protégé-2000 component that translates between the Protégé-2000 internal
representation of classes and the RDF serialization format.

6.1 Summary of the RDF knowledge model

RDF is a model for describing resources. Anything can be a resource. Each resource has
a Uniform Resource Identifier (URI). An RDF document describes resources and the
relations among resources. An RDF Schema defines what classes of resources exist, how
resources are related to one another and what restrictions on those relations exist.

In RDF, classes of concepts constitute a hierarchy with multiple inheritance. Classes
have instances and a resource can be an instance of more than class. Resources have
properties associated with them. Properties describe attributes of a resource or a relation
of a resource to another resource. A property is represented as a predicate–subject–object

16

triple: predicate is the property class, object and subject are resources related by the
property. For example, a statement “John is a father of Alice” can be represent as a triple
consisting of the predicate father, subject John, and object Alice. A property can be
a specialization of another property. The RDF schema defines domain of a property—
resources that can be subjects of the property—and range of a property—resources that
can be objects of the property. For example, the property father may have a class
Person both as its domain and as its range.

RDF resources have a set of core properties, which includes, for example the
rdfs:seeAlso property, specifying another resource containing information about the
subject resource and the rdfs:isDefinedBy property, indicating the resource
defining the subject resource.

Therefore, a class (in the sense of frame-based languages) is defined by a resource and
all the properties describing the resource (all the properties where the resource is the
subject).

The following are the core classes in RDF:
• rdfs:Resource: the class containing all the resources—the superclass for all

the RDF classes
• rdfs:Class: the class containing all classes as its instances—the metaclass for

all the RDF classes
• rdf:Property: the class containing all the properties—the metaslot for the RDF

properties

6.2 Core RDF classes and metaclasses in Protégé-2000

Both RDF and Protégé-2000 are based on a frame-based paradigm and their knowledge
models have much in common. The notion of classes is the same. Classes are organized in
a taxonomic hierarchy in both cases. Classes can have instances. Properties in RDF are
slots in Protégé. Both properties and slots are first-class objects describing attributes of
classes and instances and relations among them.

We start by defining in Protégé-2000 the core RDF classes described in the Section 6.1
(Figure 9). The Protégé-2000 class rdfs:Resource is the root of the hierarchy of
classes defined in an RDF schema. Every class in the RDF project should be a subclass of
rdfs:Resource. This class has three template slots: resource URI to store a URI of
a resource and the core properties rdfs:seeAlso and rdfs:isDefinedBy, which
are required by each resource. All the classes that are subclasses of rdfs:Resource
inherit these slots from their parents.

The class rdfs:Class is a default metaclass for all the newly defined classes in the
RDF project. It is also a subclass of rdfs:Resource. Therefore, rdfs:Class
inherits the three template slots attached to rdfs:Resource. These template slots
become own slots for instances of rdfs:Class—all the classes in the RDF project. The
rdfs:Resource and rdfs:Class are themselves instances of rdfs:Class and
therefore they have these standard slots as their own slots as well.

17

Figure 9. The RDF project: definition of the rdfs:Resource class. The template slots
attached to this class will propagate to all the classes and instances in the project. The icon D
at the rdf:Property class signifies that rdf:Property is the default metaslot.

The class rdf:Property is a default metaslot in the RDF project. It is the template
for all newly defined slots. The metaslot rdf:Property is a subclass of both
rdfs:Resource and :STANDARD-SLOT. As a result all slots—properties—have the
standard own slots: resource URI, rdfs:seeAlso, and rdfs:isDefinedBy.

6.3 Differences between the Protégé-2000 and RDF knowledge models

Defining the RDF metaclass structure cannot resolve all the differences between the
Protégé-2000 and RDF knowledge models. The implementation of the RDF persistence
layer—a Protégé-2000 component that translates the knowledge base between the internal
Protégé-2000 representation and RDF documents—can resolve the remaining differences
between the knowledge models that could not be resolved by defining the metaclass
structure. The RDF persistence layer enables the direct import and export of RDF
documents making Protégé-2000 a graphical editor for RDF documents. Our collaborators
have implemented one such component.

Table 2 summarizes the main differences between the Protégé-2000 and the RDF
knowledge models that the persistence layer needs to resolve. As in OKBC, resources in
RDF can have more than one type (that is an instance can belong to more than one class).
In Protégé-2000 each instance is a member of only one class. However, multiple
inheritance enables Protégé-2000 to simulate the multi-class membership. If an imported
RDF schema has an instance I that belongs to several classes, C1, …, Cn, the persistence

18

Protégé-2000 RDF and RDF Schema
1 A frame can be an instance of only one

class
A resource can be an instance of
multiple classes

2 A value of a slot can be a value of a
primitive type or an instance of a class.
There can be one or more classes that
constrain the value

The range of a property is a single class
which constraints the objects of the
property to instances of that class

3 A slot in an individual instance and
cannot be a subclass of another slot

A property can be a specialization of
another property

4 Collections (containers) are
implemented as lists.

There are three types of container
objects: bag, sequence, and alternative

Table 2. Summary of differences between the knowledge models of Protégé-2000 and RDF.

layer can create a new class C that is a subclass of all of C1, …, Cn. All the template slots
from C1, …, Cn become template slots for the class C. The instance I will then be an
instance of the class C—it will get all the template slots from all the original classes C1,
…, Cn as its own slots.

In RDF Schema, the range of a property is constrained to a single class. That is, the
objects of a property have to be instances of that single class. In Protégé-2000, on the
other hand, slot range can be a primitive data type, can be constrained to instances of
several classes (“allowed classes” for the slot), or can be constrained to subclasses of
several classes (“allowed parents” for the slot). The semantics of the range property in
RDF Schema are modeled in Protégé-2000 by defining an Instance value type for the
slot and listing only one class in the "Allowed Classes" facet. If a Protégé-2000 slot has
multiple allowed classes, the RDF persistence layer can create a new class that is a
superclass of all of the intended allowed classes and use the new class as the range for the
RDF property.

The RDF Schema allows specializing properties. For example, the father property is
a specialization of the more general parent property: If John is a father of Alice, then
John is also a parent of Alice. In Protégé-2000, all slots are individual instances and
therefore cannot form a subclass–superclass hierarchy. If a domain model requires a
hierarchy of properties, the properties can be reified to become regular classes in the class
hierarchy.

RDF Schema defines three different possible types of containers for properties that
have multiple values: sequence, alternative, and bag. Protégé-2000 has a single
(implicit) container type: that of a list. The RDF persistence layer can store all multiple-
valued slots as RDF bags. The difference can be alleviated by implementing specialized
knowledge-acquisition components that will be used to acquire and display containers of
different types. The components will generate the appropriate internal representation for
the various types of containers.

19

To summarize, we extended the Protégé-2000 built-in metaclass architecture to
implement the structure of RDF Schema declaratively and the RDF persistence layer can
use the knowledge structures to hide or repair other differences programmatically.

7 Conclusions

We have presented the knowledge model of Protégé-2000—an ontology-editing and
knowledge-acquisition environment. The knowledge model’s OKBC-compatibility
enables the interoperability between Protégé-2000 and other OKBC-compatible systems.
We have discussed how the knowledge model was affected by the requirements for
structured knowledge acquisition. The Protégé-2000 metaclass architecture enables
elegant and powerful knowledge modeling as well as allows us to implement the internal
structure of Protégé-2000 explicitly in the ontology. We have described how Protégé-2000
uses its own metaclasses to describe itself. The flexibility of the knowledge model and the
component architecture of Protégé-2000 make it easy to adapt the tool to work as an
editor for other knowledge-representation systems. We demonstrated how Protégé-2000
can be adapted to become an editor for RDF.

Acknowledgments

Henrik Eriksson both inspired and was instrumental in the design of the Protégé-2000
metaclass architecture. Stefan Decker and William Grosso implemented the RDF
persistence layer. We would also like to thank William Grosso for comments on the paper.
This work was supported in part by the grants 5T16 LM0733 and 892154 from the
National Library of Medicine, by a grant from Spawar, and by a grant from FastTrack
Systems, Inc.

References

1. Brickley, D. and Guha, R.V., Resource Description Framework (RDF) Schema
Specification, World Wide Web Consortium, 1999.

2. Chaudhri, V.K., Farquhar, A., Fikes, R., Karp, P.D. and Rice, J.P. OKBC: A
programmatic foundation for knowledge base interoperability. In: Fifteenth National
Conference on Artificial Intelligence (AAAI-98). Madison, Wisconsin: AAAI
Press/The MIT Press, 1998.

3. Chaudhri, V.K., Farquhar, A., Fikes, R., Karp, P.D. and Rice, J.P., Open Knowledge
Base Connectivity 2.0.3., 1998.

4. Eriksson, H., Fergerson, R.W., Shahar, Y. and Musen, M.A. Automatic generation of
ontology editors. In: Twelfth Banff Workshop on Knowledge Acquisition, Modeling,
and Management. Banff, Alberta, 1999.

5. Farquhar, A., Fikes, R. and Rice, J., The Ontolingua server: a tool for collaborative
ontology construction. International Journal of Human-Computer Studies. 46: p. 707-
727, 1997.

20

6. Grosso, W.E., Eriksson, H., Fergerson, R.W., Gennari, J.H., Tu, S.W. and Musen,
M.A. Knowledge modeling at the millennium (the design and evolution of Protégé-
2000). In: Twelfth Banff Workshop on Knowledge Acquisition, Modeling, and
Management. Banff, Alberta, 1999.

7. Karp, P.D., Chaudhri, V.K. and Paley, S.M., A Collaborative Environment for
Authoring Large Knowledge Bases. Journal of Intelligent Information Systems(in
press), 2000.

8. Keene, S.E. and Gerson, D., Object-Oriented Programming in Common LISP: A
Programmer’s Guide to CLOS. Reading, Mass.: Addison-Wesley. xix, 266, 1989.

9. Kiczales, G., des Rivieres, J. and Bobrow, D.G., The Art of the Metaobject Protocol.
Cambridge, MA: The MIT Press, 1991.

10. Lassila, O. and Swick, R.R., Resource Description Framework (RDF) Model and
Syntax Specification, World Wide Web Consortium, 1999.

11. MacGregor, R., Retrospective on Loom, USC ISI, 1999.
12. Musen, M.A., Dimensions of knowledge sharing and reuse. Computers and

Biomedical Research. 25: p. 435-467, 1992.
13. W3C, Resource Description Framework (RDF), World-Wide Web Consortium,

http://www.w3.org/RDF/, 2000.

