
Handbook of Software Engineering and Knowledge Engineering 
Vol. 0, No. 0 (2000) 000-000 
© World Scientific Publishing Company 

1 

CONCEPTUAL MODELLING IN SOFTWARE ENGINEERING AND 

KNOWLEDGE ENGINEERING: CONCEPTS, TECHNIQUES AND TRENDS 

OSCAR DIESTE
1, NATALIA JURISTO

1, ANA M. MORENO
1, JUAN PAZOS

1, ALMUDENA SIERRA
2 

1 
Facultad de Informática 

Universidad Politécnica de Madrid 
Campus de Montegancedo, 28660-Boadilla del Monte, Madrid (Spain) 

{odieste, natalia, ammoreno, jpazos}@fi.upm.es 

2 
Escuela Superior de Ciencias Experimentales y Tecnología 

Universidad Rey Juan Carlos 
C/ Tulipán s/n, 28933-Mostoles, Madrid (Spain) 

asierra@escet.urjc.es 

Conceptual modelling is a crucial software development activity for both Software Engineering 
and Knowledge Engineering. Each discipline, however, has developed its own techniques for 
conceptual modelling, and there is no agreement about a common set of techniques that can be 
used in both disciplines. This chapter will describe such techniques, paying special attention to 
the more recent and innovative ones, as well as to the concepts shared by the techniques used in 
the two disciplines.  

The chapter will, therefore, outline the field of conceptual modelling within these two disciplines. 
Although the situation in the field is satisfactory, as can be inferred from the review conducted, 
there is still a lot of work to be done. Indeed, a series of shortcomings besetting the different 
techniques will be identified and an alternative perspective will be described, which points to a 
way of quieting such objections. 
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1. Introduction 

The software development process is a kind of problem-solving process. 
Problem, here, means a context, environment or situation where a software 
system shall be developed and operated. For a successful software system 
development, Software Engineers (and Knowledge Engineers) shall understand 
all problem components, relations, rules, constraints, etc. Such an understanding 
is a hard and time-consuming process, which requires specialised tools for being 
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performed. These tools, which allow the Software/Knowledge Engineer to 
understand the problem to solve, are known as conceptual models (CMs). 

The process of creating CMs in software development is generally referred 
to as conceptual modelling, although it may be given other pet names depending 
on the actual discipline in which it is performed; for example, problem analysis 
in Software Engineering (SE) [1] or conceptualisation in Knowledge 
Engineering (KE) [2] (there are specific materials about Knowledge 
Engineering in “The Knowledge Modelling Paradigm in Knowledge 
Engineering”, by E. Motta, in this same volume). 

The design of CMs is a crucial activity in traditional and intelligent software 
development. CMs are essential for: 
 
• Making real-world concepts and relationships tangible [3]. 
• Recording parts of reality that are important for performing the task in 

question, and downgrading other elements that are insignificant [4]. 
• Supporting communication among the various “stakeholders” (customers, 

users, developers, testers, etc.) [5]. 
• Detecting missing information, and errors or misinterpretations, before 

going ahead with system construction [6].  
• Providing an orientation on how the software should meet a need [7]. 
• Providing a specification of the behaviour of the system under 

construction [8]. 
 

Taking into account the above citations, it can be said that CMs are critical 
in the problem identification and solution proposal activities of any 
development project. As software systems become more complex and the 
problem domain moves further away from knowledge familiar to developers, 
conceptual modelling is gaining in importance. The reason is that modelling acts 
as the starting point for understanding and, thus, being able to solve customer 
and/or user problems. This is clear from the work of several researchers in the 
disciplines of both SE and KE, who claim that proper conceptual modelling is 
crucial for the future development of software. So, for example, the papers by 
McGregor [9], Bonffati [10] or Høydalsvik [11] concerning SE stress how 
important conceptual modelling is in ensuring that CMs faithfully represent the 
problem to be solved in the user domain. Similarly, researchers in the field of 
KE, like Schreiber [6], Hoppenbrouwers [12] and Adelman [13], underscore the 
fact that the quality of the resulting expert system is critically dependent on the 
CM produced, because the CM contains the knowledge to be implemented in 
the future software system. 

SE and KE have developed their own conceptual modelling techniques. 
Nevertheless, techniques in each discipline have been developed in isolation, 
with little or no relationship among them. Although interactions between SE and 
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KE are becoming stronger [14] [15], practitioners in each discipline do not 
know which techniques are available to solve problems in the other discipline. 

Moreover, this lack of knowledge makes difficult an interchange of 
experience between SE and KE, and much more a possible integration of 
techniques from both disciplines into a common toolkit, which could be used for 
developing traditional and intelligent systems [16]. As will be discussed in this 
chapter, some common ideas and principles, which have gone beyond the 
boundaries of their discipline and influenced the CMs used in the other, can be 
identified. 

In this chapter, the general state of conceptual modelling in SE and KE will 
be reviewed, with the following objectives: 
 
• Systematically examine the state-of-the-practice of conceptual modelling 

in SE and KE. 
• Show the relationship between the ideas and principles used by different 

modelling techniques in both disciplines. 
• Identify common principles and concepts in both SE and KE disciplines. 
• Discuss how well adapted conceptual modelling and the existing 

techniques are to the functions that they should perform and the goals 
they should achieve in the development process. 

 
For this purpose, this chapter will be structured as follows. Section 2 will 

discuss the concept of model within software development and will go on to 
stress the usefulness of the different sorts of models, typifying a special type of 
models called conceptual models, which will be specifically addressed in 
section 3. Sections 4 and 5, introduce the major models in SE and KE, 
respectively. Once having explained such models, section 6 discusses the 
interchange of some principles and ideas between the models of the two 
disciplines. Section 7 then analyses the models described from the viewpoint of 
how good they are as CMs, according to the definition given in section 3. It will 
be concluded that the existing models generally fail to attain the established 
goals, and these shortcomings will be described. Finally, an approach to the 
conceptual modelling process will be proposed in section 8, which could 
possibly help to solve the problems discussed in the preceding section. 

2. Types of Models in Software Development 

The term model is extremely polysemic in colloquial speech. As a representative 
sample of the diversity of meanings of the term model, take look at the 
definitions given by Webster’s dictionary [17]:  
 
1. A small but exact copy of something (for instance, a ship model). 
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2. A pattern or figure of something to be made (for instance, clay models for 
a statue). 

3. A description or analogy used to help visualize something that cannot be 
directly observed (for instance, a model of the atom). 

4. A system of postulates, data and inferences used to describe 
mathematically an object or state of affairs. 

5. A theoretical projection of a possible or imaginary system. 
 

Each of the above definitions, and probably any other possible suggestion, 
refers to a particular purpose of models, that is, what they are useful for, what 
results their application will yield, etc., answering the question “what do we 
want to build a model for?” Now, let’s take a look at the circumstances 
surrounding software development and the use to which models are put during 
development. 

In the case of software development, there are two, clearly distinct reasons 
for using models. Firstly, models are used to describe the problem raised by the 
user and to be solved by the software system. Secondly, models are used to 
describe what the software system that solves this problem will be like. This 
means that the term model is used twice during software construction, for two 
different purposes [18]: 
 
• Descriptive or conceptual model. The CM describes an existing part of 

the world, and is the output of the conceptual modelling activity. The CM 
matches Webster’s definitions (3) and (4); that is, a model is derived 
from reality for the purpose of gaining an understanding of such reality.  

• Prescriptive or computational model (CpM). The CpM is the definition 
of a software product, and is the output of requirements specification and 
design activities. CpM matches Webster definitions (1) and (2); that is, a 
reality, the software system, is built from the model. 

 
Blum [19] gives a very clear view of this distinction, indicating that 

software development can be seen as two successive and separate moments. 
Figure 1 shows Blum’s approach (the box in the figure symbolise the whole 
development process, and arrows the flow of activities): 

Computational Model

Conceptual Model

Implementation
domain

Problem
domain

 

Figure 1. Software development process from the viewpoint of the types of models used 
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• A first problem-oriented phase. This is the phase where CMs are used to 
record the important concepts of the problem domain. 

• A second system-oriented phase. This is the phase where CpMs are used 
to univocally determine the structure and functionality of the software 
system for implementation. 
 
This chapter focuses on the first group of models, that is, on CMs. In the 

following section it will be described how this term emerged and how it is 
gaining in importance within the development process. 

3. Conceptual Models in Software Development 

The term CM originally emerged in the field of DataBases. CMs were used to 
represent data and relations, which were to be managed by an information 
system, irrespective of any implementation feature [20]. The scope of the term 
CM has gradually broadened since the approval of the ISO conceptual 
modelling standard [21], where its goal was to represent the domain of 
discourse. The domain of discourse is the set of data involved in the problem to 
be solved and the operations that affect the above data. In this context, only the 
operations that represented domain rules or, in other words, specific integrity 
constraints of the problem to be solved were represented in the CM. 

CMs are used in the field of SE for more than is acknowledged by the above 
definition. The following citations show how CMs are considered in SE: 
 
• Describe the universe of discourse in the language and in the way of 

thinking of the domain experts and users [22]. 
• Formally define aspects of the physical and social world around us for the 

purposes of understanding and communication [23]. 
• Help requirements engineers understand the domain [24]. 
 

Generally, the meaning of CM in SE is representation of the problem 
domain performed for the purpose of understanding and communication 
between developers and users. 

CMs are also used in KE, where their goal is to model the expert knowledge 
without referring to any implementation mechanism. Newell [25] termed the 
level of abstraction at which CMs are located as knowledge level. Clancey [26] 
said that the knowledge level “accounts for behaviour in terms of interaction 
between agents and their environment”.  Importance of CMs in KE is crucial, 
because they facilitate the understanding of the problem, and represent the 
knowledge needed by the software system to solve this problem [6] [27]. 
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Despite their slightly different meanings in each discipline, the main 
characteristics of any CM are description and understanding; that is, the CM 
can be used by developers to: 
 
1. Understand the needs raised by users. 
2. Reach agreement with users on the scope of the system and how it is to 

be built. 
3. Use the information represented in the model as a basis for building a 

traditional or intelligent software system to meet this need. 

4. Conceptual Models in Software Engineering 

Conceptual modelling takes a pre-eminent place in the discipline of SE. This has 
heightened in recent years, as the importance attached to the software 
development requirements specification phase has grown [28]. 

A wide variety of markedly different CMs has been defined in the discipline 
of SE. Firstly, the underlying ontology of all these CMs is very diverse. 
Ontology means the type of problem domain concepts that each CM is capable 
of representing [29]. In this respect, the CMs in SE range from models like the 
state transition diagram [1], which can represent only changes of state over time, 
to models like KAOS [30], which can represent a huge amount of both static 
(entities, relations, etc.) and dynamic (goals, processes, etc.) aspects of the 
problem domain.  

Secondly, the intermediate representations, also known as builders, used by 
the different CMs, that is, the set of notations and symbols used by each CM to 
describe a given domain, is also very diverse. There are graphic-type models, 
such as are used by the object diagrams [31][32][33]; languages, such as are 
used by TELOS [34]; or models that combine graphic and informal 
representations, like the DFD [35], for which process specifications have to be 
created, normally using natural language text. 

Taking into account the diversity of the approaches to conceptual modelling 
in SE, this section will be divided into two parts to assure a clearer discussion of 
the different models. 

The first part will refer to what can be termed “classical” CMs. The oldest 
and most widely used models in SE, like SADT [36], DFD [35], object diagrams 
[31][32][33] or state transition diagrams [1], were termed classical models. The 
main characteristic of this type of models is how limited their ontologies are, 
that is, the fact that they can be used to represent a relatively small number of 
concepts about the problem domain. Individual classical CMs will not be 
discussed, as they are very well known. Instead, a description of groups of 
models will be given, classified according to the similarity of their respective 
ontologies.  
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The second part of this section will be devoted to a set of models developed 
during the 90s, which, unlike the classical CMs are characterised by having 
powerful ontologies that can be used to describe novel aspects, like goals, 
agents, etc. This set of models, called “advanced” CMs, include TELOS [34], 
KAOS [30], EM [37] and i*i* [38]. They will be discussed according to the 
strategy they have used to extend their capability of representation beyond the 
classical CMs. 

There are no good reviews of the CMs which will be discussed. Therefore, 
readers are referred to the original references for more details. However, the 
papers by Wieringa [39], which investigates the structured, that is, functional, 
and object-oriented methods, and by Davis [1], which explains at length the 
classical approaches to conceptual modelling in SE and offers several 
illustrative examples, are recommended reading. 

4.1. Classical conceptual models in SE 
As discussed earlier, a wide variety of CMs have been used in the discipline of 
SE, most of which belong to the set termed classical CMs. The best way of 
examining the models belonging to this set is to group them according to their 
orientation, as Davis [1] did, or using the terminology of this chapter, depending 
on the similarity of their ontologies. The groups defined thus are as follows: 
 
• Functional CMs, whose paradigm is the DFD [35]. This kind of models 

describes the transformations of the data used in the problem domain. 
The transformations are described by means of the process concept, 
which receives an input data-set and generates an output data-set. 

• Object-oriented CMs, whose utmost representatives are object diagrams 
[31][32][33] and use cases [40]. However, use cases should, strictly 
speaking, be considered as functional CMs. Object-oriented CMs 
describe the objects or object classes and the interrelations between them 
in the problem domain.  

• State-oriented CMs, including state transition diagrams [1]. These CMs 
describe the configuration of objects, facts, phenomena, etc. on the 
problem domain, and the changes produced in this configuration along 
time. 

 
Classical CMs have several advantages and serious drawbacks. This kind of 

models allows the modeller to express many things about the problem to solve, 
but they allow expressing only a partial view of the problem domain, that is, 
each kind of CMs is specialised in representing a set of facts about the problem 
domain. For example, let’s consider the (canonical) problem of organising a 
conference (this example will be used in further sections). We can model this 
problem using the utmost representatives of each above-mentioned group, that 
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is, DFD, object diagrams and state-transition diagrams, as it is shown in Figures 
2, 3 and 4, respectively. 
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Figure 2. DFD for the conference problem. 
 
Functional models (in the case of Figure 2, DFD) show the processes that 

transform input data into output data (for example, the generation of the 
“Conference program” using the “Papers” and “Sessions” data”). Nevertheless, 
this kind of models cannot express any other information, as the data structure, 
or the ordered sequence of events that occur in the conference organisation. 
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Figure 3. Object diagram for the conference problem. 
 
For representing data, entity-relationship [41], object-role [42] or object-

oriented CMs can be used (although it is not very strict, several authors, as 
Davis [1], consider that entity-relationship and object-role models belong to the 
object-oriented CMs group). Figure 3 shows an object-oriented CM built using 
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the UML notation. It is clear that, using object diagrams, it is impossible to 
express something like a data transformation (for doing this, it is needed to 
include methods in the object diagram, which is a controversial topic due to 
such a introduction makes the model harder to understand). Object-oriented 
cannot express time-ordered sequences of events, as DFD cannot either. 
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Figure 4. State-transition diagram for the conference problem. 
 
The sequence of events in time can be expressed by means of a state 

transition diagram, as show in figure 4. Nevertheless, this model provides a 
partial view of the problem again, because data structure or data transformations 
are hidden behind the states and transitions of the diagram. In short, classical 
CM, as it was shown in the examples, possess enough power to express 
situations they are intended to, but it is impossible to improve their 
representation capabilities far from their frame of validity. For obtaining better 
results in the modelling activity, it was needed to define new CMs, which are 
introduced in next section. 

4.2. Advanced Conceptual Models in Software Engineering 
As specified earlier, the characteristic of a classical CM is that it can describe a 
given set of concepts in the client and/or user domain. For example, a DFD can 
be used to describe only the transformations that take place in the domain, 
whereas an object diagram can be used to describe the types of objects, as well 
as their interrelations. 

Such a process of conceptual modelling has two drawbacks. Firstly, only a 
small set of domain concepts can be described, where the limit is established by 
each individual CMs capability of representation. Taking all the CMs used in 
SE as a whole, for example, the most important concepts that they can be used 
to describe are: inputs, outputs, processes, agents, data, objects, relations, states 
and transitions. 
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Secondly, as a result of the above, more than one CM, each of which 
describes partial aspects of the domain, has to be used at the same time to 
faithfully describe the problem domain. For example, structured approaches are 
characterised by using three CMs together [43]: a process model, built using 
DFD; a data model, usually described by means of a entity-relationship model, 
and a control model, based on the state transition diagram. Although the 
structured approach is a paradigmatic example, the joint use of different CMs is 
also a common feature of other approaches, like object-oriented methods, for 
example. Thus, object diagrams, DFD and state transition diagrams are all used 
together in OMT [31], whereas UML employs use case diagrams, object 
diagrams and other type of representations like interaction diagrams [44]. 
Nevertheless, CMs can be used together when it is not possible joining them in 
just one CM. For example, light is described in two ways in physics: as particles 
or as waves. Both representations are incompatible, that is, one of them 
excludes the other. Therefore, it is not possible to join them in just one single 
model, but they both are needed for understanding the essence and behaviour of 
light. 

The advanced CMs emerged as a means of surmounting the above-
mentioned drawbacks. For this purpose, these models include richer and more 
powerful mechanisms of representation. Advanced CMs employ two different 
strategies to improve their capability of representation: 
 
• Enriching the CM ontology, that is, increasing the number of concepts 

covered by the above models. This means that they can represent novel 
concepts, which the classical CMs could not represent, like goals, 
dependencies, constraints, rules, etc. 

• Defining extendible ontologies, that is, allowing the user of the CM to 
define the type of concepts to be represented. This means that the CMs 
can be extended and adapted depending on the domain and problems in 
question. 

 
These two improvements do not operate simultaneously, that is, advanced 

CMs use only one of the two strategies. Indeed, the possibility of extending and 
adapting concepts that a CM can represent makes it possible to simulate any 
other model type, irrespective of the number of concepts covered. The two 
strategies and the advanced CMs that implement them are described below. 

4.2.1. Enriching the ontology 

There are two possible mechanisms for enriching the ontology underlying a CM. 
The first is to broaden the concepts that can be represented by a CM, defining 
special-purpose builders that represent the above concepts. The second is to 
define a meta-model, that is, a generic structure on the basis of which to build 
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individual CMs. The following two sections describe each of the above 
mechanisms. 

4.2.1.1. Definition of special-purpose builders 

The first of the above-mentioned mechanisms has been the most commonly used 
for defining new CMs. This mechanism entails increasing the number of 
concepts that can be described by a model by adding new builders to the model. 
Each new builder represents a given concept. Also, semantics, that is, an 
interpretation, must be defined for each new builder by means of which its 
meaning can be unambiguously understood. 

By way of an example, suppose that we want to represent processes in an 
entity-relationship diagram. The easiest, albeit not a very strict, solution would 
be as follows. 
 
1. Define a new builder, called “process”. 
2. Define a graphic notation for the above builder. For example, a pentagon 

could symbolise the “process” builder. 
3. Define semantics for the builder. The semantics could be similar to the 

process semantics in a DFD. The semantics would involve the “process” 
transforming the data. The necessary input data are obtained from the 
entities or model attributes. The output data are also entities or attributes. 

 
Figure 5 shows an example of the entity-relationship model, modified as 

described above, which shows how the process “Assign session to paper” would 
be described in a conference or workshop domain. In this figure, the static 
perspective has been described by means of the classical symbols of entity-
relationship models. Using this diagrammatic convention, we can express that 
each session includes several papers, and each paper is written by several 
authors and has several reviewers.  The new builder, symbolised by a pentagon, 
lets us to express a dynamic perspective, that is, the process of assigning a paper 
to a session once we assure it has the required quality. 
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Referee

AuthorHas
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Session Include
n1

Assigning 
paper 

to session

 

Figure 5. Entity-relationship model modified to represent processes. 
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Introduction of new concepts and builders has been the mechanism used in 
the i* i* advanced CM. i*i* (which stands for Distributed Intentionally) was 
originally defined in [38]. This CM can be used to describe how different actors 
in a domain depend on others to achieve their objectives, as well as to specify 
the internal motivations by which they are guided. The actors are obviously not 
people, they are entities that operate autonomously and have their own internal 
dynamics. i*i* is composed of two different and complementary sub-models: the 
Strategic Dependency Model (SDM) and the Strategic Rationale Model (SRM).  

SDM can be used to describe a set of dependencies among actors. When 
there is a dependency between two actors, one depends on the other to achieve a 
goal, perform a task or get a resource. The actor that provides the means for 
satisfying the dependency is termed depender. The actor that is benefited when 
the dependency is satisfied (or harmed, otherwise) is termed dependee. 

i* i* makes a distinction between four types of dependencies: goal 
dependency, where one actor depends on another to reach a given state or assure 
that a given condition is met [45]; task dependency, where one actor depends on 
another to be able to perform a given activity; resource dependency, where one 
actor depends on another to get any physical utility, like a tool, or logical utility, 
like information of some kind; and, finally, soft-goal dependency, which is 
similar to a goal dependency, except that there is no “a priori” procedure for 
determining whether or not the goal is attained. 

For example, soft-goal dependency arises when a conference programme 
committee asks referees to select the best papers. “Select the best papers” is a 
goal that can be attained to a greater or lesser extent rather than in absolute 
terms. Figure 6 shows how the above example would be represented in i*i*, using 
its associated graphic notation. 
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Soft-goal dependency

LEGEND

 

Figure 6. Example of the use of soft goals in i*i*. 
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SRM can be used to describe the reasoning or internal motivation of each 
actor. The above description is carried out in relation to the dependencies of 
each actor on other actors, albeit from the private viewpoint. This means that the 
description is made within the internal province of each actor, which is called 
actor boundary and is not shared with the other actors. The SDM and SRM are, 
therefore, strongly interrelated: SDM describes the goals shared by a set of 
actors, whereas SRM describes which mechanisms are brought into play by each 
actor to achieve its own goals.  

4.2.1.2. Definition of meta-models 

The second mechanism for enriching the ontology of a CM involves explicitly 
defining a meta-model. A meta-model is the description of the concepts that can 
be represented by a CM. Figure 7, for example, presents a simple meta-model 
for the DFD. 

As shown in Figure 7, the meta-model is (usually) described similarly to the 
entity-relationship diagram. This sort of description can be used to specify what 
the model components (diagram entities), and the relations between these 
builders (relations between diagram entities) are. The meta-model shown in 
Figure 7 briefly indicates that data flow diagrams are composed of “processes”, 
“data stores”, “external entities” and “data flows”. Additionally, it also 
indicates, using the relations “input” and “output”, that the processes, stores and 
external entities generate (output relation) and receive (input relation) data 
flows. Nevertheless, Figure 7 does not include all the aspects for describing 
DFDs, such as, for example, the permitted connections (an external entity 
cannot be directly linked with a data store) or the decomposition of processes 
into subprocesses. 
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Figure 7. DFD meta-model. 
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If a meta-model is defined, it is possible to distinguish between the levels at 
which modelling takes place, which are used unconsciously in practice. These 
are the meta-level, which defines the concepts that a given CM is capable of 
recording; the domain-level, at which the concepts of the meta-level are 
instantiated using specific information about a domain; and, finally, the 
instance-level, at which a distinction is made between each of the possible 
domain-level occurrences [46].  

These three levels are shown graphically in Figure 8, using a DFD. As 
above, this DFD represents the organisation of a hypothetical conference. In the 
upper side of the figure, the META-level symbols and rules appear. These 
symbols and rules are the highest level of model abstraction, and they state what 
facts, at the domain level, the model can express. The DOMAIN-level, in the 
middle of figure 8, is what we usually know as a “model”, that is, a meaningful 
combination of symbols with meaning, which follows the rules defined at the 
META-level. The INSTANCE-level, in the bottom side, is the lowest level of 
abstraction and it is never considered in practical modelling. 

Two advanced CMs that explicitly use the meta-model concept are: KAOS 
(Knowledge Acquisition in autOmated Specification), originally defined by 
Lamsweerde [30] and described at length by Dardenne [47], and EM (Enterprise 
Modelling), described by Kirikova [37]. Figure 9 presents a simplification of the 
KAOS meta-model, which is described with more or less evident adaptations of 
entity-relationship diagrams. Although it introduces different concepts, the EM 
meta-model is also defined as a complex network of interrelations similar to the 
KAOS meta-model. 
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Figure 8. Meta, domain and instance levels for the conference problem using DFD. 
 
KAOS and EM can be used to represent both static and dynamic aspects of a 

domain. This is achieved by explicitly including builders for entities and 
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relations in the meta-model, for example, apart from builders for processes or 
activities. Additionally, both models introduce novel concepts, like goal, agent 
or constraint, which did not exist in the classical models and are very useful in 
the CM. This becomes perfectly clear from comparing the meta-model shown in 
Figure 9 with the meta-model for the data flow diagram presented in Figure 7. 
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Figure 9. KAOS meta-model. 
 
The notation used by the two CMs is complex, and a complex algebraic 

definition can even be provided for KAOS. Therefore, it is a better idea to 
illustrate the use of these CMs with an example rather than giving the notation. 
The example again models a conference using KAOS. This model is illustrated 
in Figure 10. 
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Figure 10. Partial model of a hypothetical conference in KAOS. 



16 Handbook of Software Engineering and Knowledge Engineering 

For the sake of clarity, Figure 10 shows the meta-level, plus the domain-
level, making it easier to interpret. A more extensive example using KAOS is 
given in [48], where it is also shown how this CM can co-exist with i*i*. 

4.2.2. Extendible ontologies 

The use of fixed ontologies, even especially rich ones, always has the drawback 
of them not being able to encompass the wealth of concepts and shades of 
meaning that actually exist in the real world. For example, suppose that we need 
to model the control of an industrial furnace. Suppose, also, that control 
involves keeping the furnace within a temperature range, above which there is a 
danger of explosion. Again using KAOS, the set of concepts discussed could be 
modelled as indicated in Figure 11. 

There is no doubt that an important concept in the above problem definition 
is risk. This is due to the fact that an explosion of the furnace, for example, 
could lead to financial losses or even to the loss of human lives. However, as 
KAOS does not explicitly account for the concept of risk, there are only two 
possible actions during modelling:  
 
1. Obviate the above concept, as we did in Figure 11. 
2. Ascribe the concept of risk to a pre-existing model builder. It would be 

ascribed on the basis of some relationship of similarity between the 
concept to be represented and the meaning of the model builder. 
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Figure 11. Model of an industrial furnace in KAOS. 
 
Generally, most classical or advanced models that have fixed ontologies 

take action (2). Ascribing domain concepts to model-specific builders involves 
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creating an injection rather than a bijection from the real world to the CM. Some 
shades of the real-world meaning are inevitably lost in this way, as shown in 
Figure 12.  

This loss of knowledge is not due to an abstraction, as one might think at 
first glance. Abstraction means that two (or more) different objects, facts, 
phenomena, etc. of real world are considered in the model as similar, due to the 
important properties to the modeller are perceived as similar. Nevertheless, 
when there exists objects, facts, phenomena, etc. in the real world that the 
modeller cannot assign univocally to a concept in the model, but these objects, 
are important to the problem in question, modeller should decide how register 
such information. This decision is a trade-off among several alternatives, any of 
them losing some information (perhaps important) about the real world. The 
trade-off usually ends assigning the object, fact, phenomena, etc. to the more 
similar concept available in the model. 

One mechanism for solving the above-mentioned problem is to make 
provision for defining the type of builders to be used for each individual 
problem. This means that the CM is “reinvented” in each modelling process and 
adapted to the problem in question. 

TELOS (from the Greek τελος, which means purpose, end) [34] falls within 
this group. TELOS is a model whose main builder is the class. As in object 
orientation, a class is an abstraction by means of which to group a set of real-
world elements under one name. 

Conceptual ModelReal World
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Builder #n

Directly
assignable
concepts

Indirectly
assignable
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Builder #2

Abstraction

Assignation
by similarity

 

Figure 12. Modelling using a CM having a fixed ontology. 
 
TELOS permits the classical object-oriented operations on classes: 

aggregation, classification and inheritance. Additionally, rules and constraints, 
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which represent invariants, preconditions, postconditions or deductive rules that 
are applied to the instances of different classes, can also be specified in 
predicate logic.  

Extendibility is determined by the possibility of building a specific model, 
using predefined classes of TELOS, including the predefined class 
MetaClass. The mechanism used is similar to the creation of a specialisation 
hierarchy. The root of the hierarchy is the class MetaClass, whereas the 
terminal classes provide the concepts for modelling. An example of the above 
hierarchy is illustrated in Figure 13.  

Unlike a specialisation hierarchy, however, the child classes are instances 
rather than a refinement of the parent classes. This is an important difference, as 
the child classes can be defined by entering the constraints on parent class 
attributes. Defined thus, classes can be used as first-order objects to model 
individual problems. 

Any sort of CM can be defined by means of a mechanism for creating 
extendible ontologies. A definition of SADT [36], for example, is given in [34], 
and TELOS was used in practice to build some models within the ESPRIT-II 
NATURE project [49]. 
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Figure 13. Definition of a new ontology in TELOS. 

5. Conceptual Models in Knowledge Engineering 

As discussed above, conceptual modelling plays just as an important role in KE 
as it does in SE, since it is the activity by means of which to define expert 
problem-solving behaviour and is the essential starting point for entering the 
above behaviour into a knowledge-based system (KBS). 

There are several approaches to modelling knowledge: Problem-Solving 
Methods (PSM), ontologies and Knowledge-Based Systems (KBS) development 
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methodologies. In this chapter, all we address are methodologies, since PSMs 
cannot be considered as techniques for building CM, the main goal of this 
chapter. Additionally, the CMs for ontologies can be regarded as part of the 
CMs for KBS, whose construction is covered by the development 
methodologies. 

KBS development methodologies explicitly address the definition of CMs 
[50] [51] [52]. Unlike SE, where, as discussed in the preceding section, the most 
commonly used CMs are relatively simple, the CMs in KE are fairly rich and 
complex, recording a huge number of concepts about the problem domain. All 
the methodologies described divide the CM into three different representation 
levels, aimed at proposing an order in which concepts should be acquired. These 
CM representations, or knowledge levels, are referred to slightly differently 
depending on the methodology in question. We will use the following 
terminology in this chapter:  
 
• Strategy models. Strategy models identify and describe the task 

performed by the expert in order to carry out a given job. Additionally, 
they identify the (sub)tasks resulting from the decomposition of each 
main task, as well as the order in which the above (sub)tasks have to be 
performed, when they have to be executed and under what conditions. 
Although, owing to the slight differences between the methodologies, it is 
risky to generalise, the goal of this sort of models could be said to be to 
describe the task hierarchy, which, at a given level of decomposition, is 
simple enough to be implemented by a PSM or an ad hoc method, built 
especially for the case in question. This strategic level is called task level 
in other papers. 

• Reasoning models. Reasoning models are used to represent the 
reasoning that the system is to carry out to perform the (sub)tasks 
represented in the task model, specifying which sorts of domain 
knowledge are required for each reasoning step and what knowledge is 
gained as a result of the above reasoning. This level is also sometimes 
termed inference level. 

• Domain models. Domain models represent the domain structure, which 
has to be known to make inferences and execute tasks. Domain models 
are the static part of the CM, whereas the strategy and reasoning levels 
make up the dynamic part of the model. 

 
In the following, we will analyse the CMs used by the KE methodologies, 

focusing attention on how each knowledge level of the expertise model is 
described. We will actually describe the following modelling languages: CML 
[53] [54], linked to CommonKADS [50], KARL [55] [56], linked to MIKE [52], 
and MODEL [57], linked to PROTÉGÉ-II [51]. These languages have special 
builders for each knowledge level.  
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5.1. Domain level 
All the above methodologies describe the structural aspects of the problem 
domain at the domain level. These methodologies structure this knowledge level 
around the concepts of classes of objects and relations, like SE object-oriented 
models do. However, the syntax and nomenclature varies from KE to SE and 
even from one KBS development methodology to another. Thus, for example, 
classes are called concepts in CML [53] [54], whereas they are termed frames in 
MODEL [57] and are referred to as classes only in MIKE [55] [56]. Each of 
these languages also presents other builders for modelling other aspects of 
reality. Although the aspects they aim to model are basically the same, there are, 
as for classes, some differences in the nomenclature and representation methods. 

Apart from concepts and relations, CML has the following builders [6]. 
 
• Attributes that define concepts. 
• Structures that are concepts that the modeller does not want to describe in 

detail at any given time. 
• Expressions that can be used to define domain constraints and axioms. 

These expressions can be used to define set membership, set inclusion, 
relationships of order or equality between attribute values, etc. For 
example, one cannot be one’s own supervisor. 

 
Apart from classes and relations, MIKE also includes the following for 

defining the domain level [55]. 
 
• Attributes to define concepts. 
• Formulas by means of which to define any constraints there are in the 

domain, like expressions in CML.  
 

MODEL can be used to represent the domain concepts by means of a 
builder called frame [57]. A series of slots can be defined for each frame, which 
describe the attributes that describe the concept. Constraints on the values of the 
attributes can also be defined by means of a builder, called facet. The relations 
in MODEL must be defined as frame-type attributes; that is, a definition closer 
to the symbolic than the conceptual level. 

Both CML and KARL [54] [55] have a graphic notation that is very similar 
to the one used by object languages, such as shown in Figure 14. Rectangles 
symbolise classes of object, and lines symbolise relations (inheritance relation is 
allowed, and it is symbolised by a triangle, as show in Figure 14). 

Note that the three languages represent classes and their attributes, relations 
between them and constraints, although each has its particularities. Only CML 
has an additional element, structure, by means of which to indicate when a class 
has not yet been fully defined. 
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Concept

Concept Concept

Concept

 

Figure 14. Graphic notation used by CML and KARL 

5.2. Reasoning level 
The static domain concepts are not enough to define how an expert behaves 
when solving problems, as they do not include the reasoning required to yield 
new facts, conclusions, etc., on the basis of the existing knowledge represented 
at the domain level. Therefore, the goal of the reasoning level is to explicitly 
define the reasoning to be pursued to solve the KBS target problem, that is, the 
inferences can be made using the domain knowledge and the knowledge roles 
that model inference input and output.  

CML has two builders for modelling the reasoning level [6], which are as 
follows. 
 
• The basic inferences, known as sources of knowledge. CML sets apart a 

group of special basic inferences: transfer functions. These inferences 
represent the operations of communication with the outside of the system. 

• The metaclasses or roles that participate in the inferences as inference 
input or output.  

 
MIKE has the same builders, but makes a distinction between several types 

of roles [56]:  
 
• Views: supply an inference with domain knowledge 
• Stores: model the data flow dependencies among inferences 
• Terminators: are used to give the final results. 
 

An example of the diagram of the two languages is given in Figure 15, 
where roles or metaclasses are symbolised as rectangles, and inferences or 
knowledge sources as ovals. The rationale behind this figure is to show that in 
CommonKADS and MIKE roles (note that terminology is different in both 
approaches) are the inputs required and outputs generated by the inference 
process. 

The problem-solving method is composed of the inferences and roles, as 
well as the data flow dependencies between inferences, in both CommonKADS 
and MIKE [52]. At the conceptual level, these two languages define which 
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inferences and which knowledge roles are required to solve the problem. 
However, they do not specify how this reasoning is done. This means that they 
specify what PSM to use. However, a PSM is not detailed at the conceptual 
level, it is a design or computational model, as mentioned above. 

CommonKADS

MC

MC

MC

MCKS

KS

KS

MC

MIKE

View

View

StoreInference

Terminator

Inference

Inference

Legend:
MC: metaclass
KS: knowledge source  

Figure 15. Structure of inferences in CML and KARL. 
 
In PROTEGE-II, the reasoning level has a slightly different structure that in 

CommonKADS or MIKE. In these two methodologies, the reasoning level 
contains the allowed inferences. These inferences are related to domain 
knowledge, in one side, and to a PSM, in the other. In PROTEGE-II, there not 
exists the “inference” concept. The relationship between domain knowledge and 
PSM is implemented using the “mapping relations” concept [58], instead. A 
mapping relation is a translation that makes possible the PSM to use the 
knowledge of the domain level. 

5.3. Strategy level 
The basic inferences represented at the reasoning level along with their input 
and output knowledge are not enough to solve the KBS target problem. The 
basic inferences indicate the reasoning to be carried out. However, they make no 
reference to the control of this reasoning, that is, how the above basic inferences 
are to be sequenced to solve the problem. There are several courses of action 
and several inferences applicable at any one time in a somewhat complex 
domain, which means that they have to be controlled to arrive at the right 
solution. 

The goal of the strategy level, therefore, is to identify and define the 
sequence of valid actions in the problem domain, controlling the number and 
type of inferences that are to be made. 

The structure of the strategy level of the three languages is illustrated 
similarly using a decomposition tree [6] [58] [59]. The tasks that appear at the 
bottom of the tree are basic inferences in CML and KARL and mechanisms in 
MODEL, as shown in Figure 16. They are described at the reasoning level. This 
is all as far as task decomposition is concerned.  
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Figure 16. Decomposition of the task in each language. 
 
As far as the sequence in which these basic inferences or mechanisms are 

executed is concerned, that is, task control, this is defined in all three languages 
using similar builders to 3rd generation programming languages (selections, 
repetitions, sequences and assignations), although each language has its own 
syntax.  

5.4. Relationship between the knowledge levels  
The languages described may appear to represent different facets of reality 
separately, but this is not the case. The elements or, better still, knowledge that 
is represented at the domain level is used to define the inferences. The roles of 
the reasoning level are covered by domain level concepts or classes. The 
strategy level is also related to the inference level, as the subtasks are no longer 
divided, they are basic inferences and are described at the reasoning level. This 
relationship is illustrated in Figure 17. 
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Figure 17. Interrelationship of the CM knowledge levels. 
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The above sections discussed the CMs used in the disciplines of SE and KE. 
In the following, we will discuss several issues that generally affect all the 
above-mentioned CMs. The common features of all the methods of 
conceptualisation will be discussed in section 6, and a series of problems 
pointed out by several researchers concerning the above methods of 
conceptualisation will be specified in section 7. This chapter will conclude by 
discussing an approach to conceptual modelling that can solve the above-
mentioned problems in section 8. 

6. Similarities between Software Engineering and Knowledge 
Engineering Conceptual Models 

The classical and advanced models used in the disciplines of SE and KE were 
described above. Taken as a whole, the general impression we get is that the 
CMs used by the two disciplines have things in common. Indeed, as we said 
earlier, the disciplines of SE and KE have influenced each other, and some of 
the concepts created in one discipline have been absorbed to a greater or lesser 
extent by the other. 

Generally, all the approaches described, except for the oldest methods used 
in SE, that is, function models and state-oriented models, can be said to have 
two common characteristics: 
 
• As a general rule, the ontology underlying the set of formalisms and 

languages is based on the concepts of classes and relations. This is only 
logical considering that they have to represent the structure of the real 
world. 

• Concepts like agent, goal, rule or constraint are used extensively. These 
concepts can be used to model many aspects of the problem domain.  

 
These concepts are much more patent in some models than in others. For 

example, the object-oriented models explicitly include objects and relations as 
builders, as do TELOS and all the KE languages described. However, the 
representation formalism used by each individual model can make the above 
concepts more or less apparent. It is very easy to identify the objects and 
relations in TELOS, for example, and a bit more difficult in MODEL. As far as 
the concepts of goal, agent, rule or constraint are concerned, their use is 
confined to the KE languages and advanced SE models, and it is more difficult 
to identify the above concepts in the classical SE models. There are exceptions, 
however: the concept of agent or “actor” is used in use cases, whereas some 
constraints can be specified by means of pre- and post-conditions in some 
object-oriented approaches, as is advocated by Eiffel [33]. 



Conceptual Modelling in SE & KE: Concepts, Techniques and Trends 25 
 

There are several reasons for the existence of the above-mentioned 
characteristics. The first is the need to represent the problem domain more 
objectively and in more detail to ease its understanding and make for a more 
efficient development process. The above need is felt in both SE and KE and is 
causing the CMs to evolve, gradually becoming more powerful and having 
greater capability of representation.  

The second reason is the realisation that the CMs used in each discipline are 
insufficient and that it can be beneficial to include concepts from other 
disciplines. This is especially patent in SE, which has borrowed concepts from 
other disciplines for its CMs. Some have been added directly and without 
adaptation, as was the case of data models. Others, like the concepts of goal, 
agent or constraint, were adopted only partially. 

The fact that there are influences and common characteristics indicates that 
all the disciplines are converging, as the use of common concepts implies that 
there is some uniformity between the methods of conceptual modelling. 
Nonetheless, it is clear that we still have not reached the point of developing 
CMs that can be shared by disciplines and we are even further away from single 
formalisms, which could be used simultaneously in SE and KE. 

Despite the mutual influence of one method on another, the dearth of such 
“interchangeable” models indicates that any sort of total unification of 
conceptual modelling concepts between the disciplines of SE and KE is still a 
long way off. Indeed, each discipline is like an island, whose only means of 
communication are glass bottles thrown into the water. 

Nonetheless, the reasons for this isolation are not to be found in the 
individual characteristics of each discipline, the particular problems they solve 
or the methods and tools they use. The reason underlying the diversity of 
conceptualisation methods is due to each one being linked to a given software 
development approach. This approach or computational paradigm restricts the 
possibility of using the conceptual modelling method in other settings apart 
from the one for which it was specifically designed. The following section 
addresses this idea in more detail. 

7. Limitations of the Current Approach to Conceptual 
Modelling 

The CMs now used in SE and KE are conditioned by computational constraints 
proper to given development approaches, that is, they are more like prescriptive 
or computational models (CpM) than CM, which, as mentioned above, are 
characterised by being user oriented.  

The criticisms of the conceptualisation methods go in two directions. The 
first refers to the orientation of the conceptualisation methods, stressing the fact 
that most CMs are oriented to getting a computational solution to the problem or 
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need raised and not to easing the understanding of the user need. The second 
point refers to the association between CMs and specific approaches to software 
development. Here, the use of a given CM during the early phases of the 
development process limits the number of possible implementation alternatives 
and means that only the options that are compatible with the CM used originally 
are feasible. The above-mentioned problems are discussed in more detail below. 

7.1. Computational orientation of the methods of conceptual modelling 
Many of the CMs are oriented to providing a computational solution to the 
problem raised in the user domain. This orientation to the solution is 
necessitated by the fact that the representations of the different CMs include 
computer-related concepts. Several researchers have pointed out that 
conceptualisation methods suffer from this limitation, mainly in the object-
oriented community, as the following: 
 
• It is argued that object-oriented methods are a ‘natural’ representation of 

the world. Nevertheless, this idea is a dangerous over-simplification [60]. 
• Object-oriented analysis has several shortcomings, most important in 

being target-oriented rather than problem oriented [11]. 
• Object-oriented analysis techniques are strongly affected by 

implementative issues [10]. 
 
There are authors that extend the critics to other models, too. For example, 
M. Jackson argues that: 
 
• DFD’s are vague pictures suggesting what someone thinks might be the 

shape of a system to solve a problem, but they do not say what the 
problem is [61]. 

• There exists no theory of how a model relates to the real world [62]. 
 

Thus, for example, the data flow diagrams are clearly guided by functions, 
key components of structured software and, likewise, the models used in object-
oriented analysis lead directly towards software developed by means of classes, 
objects, messages, polymorphism, etc., basic concepts of object-oriented 
software. On the other hand, the CMs used in KE are oriented to heuristic 
problem solving, proper to experts. The problem with including computational 
considerations within the CM is that the software or knowledge engineer is 
forced to make a solution-oriented decision during the early development 
phases, when the problem to be solved is still not well enough understood. This 
means making design decisions when not all the variables relevant to the 
problem are known. Engineers thus run the risk of making the wrong decision 
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because they are not in possession of all the information. This has quality-
related implications for the final software product [63].  

7.2. Association between conceptual models and development approaches 
If computational characteristics are included in CMs, these are linked to a 
particular implementation approach, that is, once a given conceptualisation 
method has been selected to describe the problem domain, it is practically 
impossible to change the above method “a posteriori” without having to 
reanalyse the problem. This has also been stressed by several researchers: 
 
• The use of a CM during analysis defines nearly univocally how the 

design shall be done [64]. 
• Perhaps the most difficult aspect of problem analysis is avoiding software 

design [1]. 
• It is sometimes mistakenly believed that the structures produced during 

analysis will and should be carried through in design [65]. 
• The boundaries between analysis and design activities in the object-

oriented model are fuzzy [66]. 
• The software system development approach is preconditioned by the CM 

used [67]. 
 

Owing to this limitation, for example, if data flow diagrams have been used 
to model the problem domain, it will almost certainly be necessary to use the 
structured method in later development phases; a method of object-oriented 
development will have to be used following upon an object-oriented analysis. 
Similarly, if the problem has been conceptualised in KE, it will be practically 
impossible to use a SE development method if it is discovered that the 
knowledge level does not call for a knowledge-based system. 

Therefore, if we intended to switch development paradigms, that is, for 
example, pass from a data flow diagram to an object-oriented design, this 
transformation would lead to an information gap very difficult to fill. This gap 
between CMs and CpMs is caused by the fact that each CM acts like a pair of 
glasses used by the engineer to observe the domain and user reality. These 
glasses highlight certain features, tone down others and hide others. Once the 
real world has been filtered through the CM, it is difficult to retrieve anything 
that has been lost or condensed, even if this information is required by the CpM. 
The only way of recovering the features lost in the CM filter is to reanalyse 
reality using a different pair of glasses; that is, to repeat the operation using 
another CM. This situation has already been discussed by authors like Coleman 
[68], Champeaux [69] or Wieringa [70], who address the incompatibility 
between the CMs used in the structured approach and object-oriented CMs, 
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owing to the conceptual difference between the elements used in the two 
approaches. 

Despite this limitation, some attempts have been made to derive object-
oriented models from structured models [71] [72] [73]. However, the guidelines 
proposed are confined to mere heuristics, which are not applicable in all cases. 
Moreover, Henderson-Sellers [64] claims that the reverse transformation is 
impossible and even that any transformation of structured models to object-
oriented models would be partial and indirect.  

Additionally, these switches from a CM of one approach to a CpM of 
another paradigm, even if they were possible, are not usually feasible in practice 
in view of the time and cost constraints and size of projects nowadays. Mostly, 
the CMs used are those with which developers are familiar, called for by 
individual standards or even, as specified by Mylopoulos [74], the models that 
are “in fashion”. So, in the era when the structured approach was in vogue, 
techniques such as DFDs were used for conceptual modelling, whereas, today, 
with the rise of object-oriented programming and design, techniques like object 
diagrams, interaction diagrams, etc., are employed. 

Finally, the software system development approach can be said to be 
preconditioned from the very start, when the CMs are built. Moreover, 
excepting trivial problems, this precondition means that the development 
approach is chosen before the user need has been understood, which is the job 
of conceptual modelling. 

7.3. An alternative solution 
Due to all the above-mentioned conceptual modelling problems, it can be said 
that, on the one hand, CMs have to be brought closer to users, using a language 
that they can understand, which will improve validation. On the other, they need 
to include all the information required about the problem for developers to later 
address the software system that is to solve the problem. Indeed, it is necessary 
to define conceptualisation methods that meet the following formal criteria of 
adjustment: 
 
1. Understanding the need raised by the user before considering an approach 

for developing a software system that meets this need. 
2. The understanding of the need must be independent of the chosen 

problem-solving approach, that is, it must not precondition the use of any 
development approach. 

3. Having criteria for deciding which is the best development approach once 
the user need has been understood. 

 
These criteria can only be met by redefining the conceptual modelling 

process as now carried out in SE and KE. The only way of redefining this 
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process is by taking into account that, as specified earlier, the software 
development process is related to both the user need space and the machine 
space of the software that is to meet the need raised by the above user, as shown 
in Figure 18. 
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Figure 18. Problem Space versus Machine Space. 
 
This double relationship means first that it is not feasible to build any sort of 

CM without always taking into account the fact that the end purpose of the 
development is to build a software product. Second, and as mentioned earlier, it 
is not advisable to bring design-related issues into the conceptual modelling 
stage.  

Therefore, the only solution is to redefine what are considered to be two 
different moments in conceptual modelling. The first moment is oriented to the 
problem, where the attention focuses on customer and/or user needs. The second 
moment is oriented to the system, where implementation alternatives must start 
to be considered. These two moments define the conceptual modelling approach 
presented in the following section. 

8. Conceptual models as separate from computational models  

Traditionally, as mentioned above, conceptualisation methods have been 
conditioned by computational constraints. The proposed solution seeks to bring 
the conceptual modelling process closer to the user domain. Figure 19 shows 
this approach, where conceptual modelling is composed of two activities: need-
oriented modelling and software system-oriented modelling. The need-oriented 
modelling process is directly linked to the user need and is independent of the 
chosen development approach. On the other hand, the software system-oriented 
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modelling is dependent on the development approach and is, therefore, further 
removed from the user need. 
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Figure 19. Tasks of a Development Process with Generic CMs. 
 
The goal of need-oriented modelling is to give the software or knowledge 

engineer an understanding of the procedure used by an expert to solve a 
problem, and/or, the needs of the users. The software or knowledge engineer, 
therefore, needs to know what the need is and how it is satisfied in the user’s 
world. So, this need will have to be outlined in a CM, which does not 
precondition the use of any development approach. This model will be termed 
generic CM to distinguish them it from the CMs used today. Generic CMs 
would benefit the development process as follows [10]: 
 
• Independence between conceptual modelling and subsequent 

development phases, that is, the possibility of carrying out analysis before 
choosing a given development approach 

• Independence from the computer system, that is, the possibility of using 
conceptual modelling results for developing software using any of the 
possible development approaches 

• Independence from evolving technology, that is, the possibility of the 
same modelling approach being valid even if the form of software 
development is modified. 

 
During the software system-oriented modelling process, the software 

engineer has to select the best current development approach (structured, object-
oriented, knowledge-based, database, etc.), or any other approach that could be 
discovered in the future, for building the software that is to meet the above need, 
depending on the features of the generic model. The software engineer may opt 
to adopt different approaches for different parts of the system. Therefore, a set 
of heuristics have to be defined to determine what would be the best approach 
for computationally solving a specific need.  

Having selected the best suited development approach, the traditional 
models used by each approach (data flow diagrams, object models, rules, etc.) 
have to be derived, models which, as mentioned above, are characterised by 
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their computational bonds. In order to promote this process of transformation, a 
set of rules will be required for deriving each of the most commonly used 
CpMs, like object-oriented or structured development models, from the generic 
CM. Figure 20 describes the possible products to be outputted during problem 
analysis. 
 

NEED-ORIENTED
MODELLING

 SOFTWARE SYSTEM-
ORIENTED MODELLING

Generic Conceptual Model

Structured Models

Object-oriented Models

Real Time Models ...

KE Models ...

 

Figure 20. Proposed conceptual modelling process. 

9. Conclusions 

In this chapter, we have outlined the state of the art in the field of conceptual 
modelling in SE and KE. Although there are considerable differences in the 
number and type of CMs in each discipline, the underlying concepts they use all 
clearly converge. These are: first, object-oriented concepts from the discipline 
SE; and second, goal, belief or intention, from the discipline of KE. Obviously, 
the above-mentioned convergence is not due to any effort at standardisation, but 
to the permeability of the different disciplines, which have managed to take the 
best from the others. 

However, although the current state of the field could be rated as 
satisfactory, owing to the number and wealth of formalisms used, quite a few 
researchers who point out a series of shortcomings in all the CMs used. These 
shortcomings can be divided into two types. Firstly, the modelling formalisms 
and languages still include too many computational, that is, implementation-
related, considerations concerning the concepts they handle, artificially limiting 
how the problem domain can be described. Secondly, the use of a given 
representation formalism obliges software or knowledge engineers to adopt a 
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given development approach, as ensues precisely from the inclusion of the 
above-mentioned implementation-related considerations. 

Therefore, apart from outlining the state of the field of conceptual 
modelling, an approach has been proposed in this chapter, whose goal is to 
overcome the shortcomings of the conceptual modelling methods. The main 
characteristic of this approach is the division of modelling (called analysis in SE 
or conceptualisation in KE) into two different and separate phases. The first 
phase is problem oriented and is characterised by the use of a generic CM. The 
second phase is solution oriented, and the formalisms to be used are 
prescriptive, including the computational considerations proper to a given 
development approach. 
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