

A survey of coordination middleware for
XML-centric applications*

P A O L O C I A N C A R I N I , 1 R O B E R T T O L K S D O R F 2 and
F R A N C O Z A M B O N E L L I 3

1 Dipartimento di Scienze dell’Informazione, Università of Bologna, Mura Anteo Zamboni, 40126 Bologna, Italy; e-mail:
cianca@cs.unibo.it
2 Freie Universität Berlin Institut für Informatik, Takustrasse 9, D-14195 Berlin, Germany; e-mail: tolk@inf.fu-berlin.de
3 Dipartimento di Scienze e Metodi dell’Ingegneria, Università di Modena e Reggio Emilia, Via Allegri 13 – 42100 Reggio
Emilia, Italy; e-mail: franco.zambonelli@unimo.it

Abstract

This paper focuses on coordination middleware for distributed applications based on active documents
and XML technologies. First, the paper introduces the main concepts underlying active documents and
XML, and identifies the strict relations between active documents and mobile agents (“document
agents”). Then, the paper goes into details about the problem of defining a suitable middleware
architecture to support coordination activities in applications including active documents and mobile
agents, by specifically focusing on the role played by XML technologies in that context. A simple
taxonomy is introduced to characterise coordination middleware architectures depending on the way
they exploit XML documents in supporting coordination. The characteristics of several middleware
infrastructures are then surveyed and evaluated, also with the help of a simple example scenario in the
area of distributed workflow management. This analysis enables us to identify the advantages and
the shortcomings of the different approaches, and the basic requirements of a middleware for XML-
centric applications.

1 Introduction

The Internet and the Web are intrinsically document-centred. We use the Web mostly for accessing
contents, that is, information contained in some sort of document and/or accessible via specific Web
services. In addition, several Internet applications explicitly deal with document exchanges and
manipulations. These include, for instance, digital libraries, systems for Computer-Supported
Cooperative Work (CSCW) and electronic marketplaces.

As a consequence of the above scenario, scientists and engineers are very active in developing novel
methods, tools and infrastructures for document management. More generally, we envision a shift from
process- and service-centred computing models towards document-centric computing models,
specifically centered around the concepts of active and mobile documents (Chang & Znati, 2001;
Lange et al., 1999; Satoh, 2000; Dourish et al., 2000). On the one hand, documents will be no longer
only be the passive part of a software system but, instead, will integrate active behaviour (e.g. internal
code and threads) and will be able to handle themselves and to coordinate with other application
components (Chang & Znati, 2001; Lange et al., 1999). On the other hand, such behaviour will include
the capability for documents to move themselves over a network (Chang & Znati, 2001; Satoh, 2000).
The success of XML technologies (World Wide Web Consortium, 2001a; World Wide Web

* This paper has been partially supported by a grant of Microsoft Research Europe, by Italian MIUR project
SALADIN, and by Italian MURST Project MUSIQUE.

The Knowledge Engineering Review, Vol. 17:4, 389–405. © 2002, Cambridge University Press
DOI: 10.1017/S0269888903000547 Printed in the United Kingdom

Consortium, 2001b) concurs to accelerate this trend towards active and mobile documents by
providing easy document processing and data portability (Ciancarini et al., 1999b; DecisionSoft
Limited, 2001). However, for such a shift to become viable, it is necessary to clarify the role and the
characteristics of the middleware that should support active document applications.

In the presence of multi-component and multi-document applications (as, e.g., CSCW systems and
digital libraries), suitable coordination middleware infrastructures (Ciancarini et al., 1999a; Tolksdorf,
2000) are needed to orchestrate the activities of components and active documents (e.g. to maintain
consistency across related documents and to synchronise accesses to documents). Interestingly, when
focusing on XML-based active documents, it is possible not only to conceive a coordination
middleware to support activities in XML-based multi-component applications (Bompani et al., 1999),
but also to exploit XML-based active documents as the core of a general-purpose coordination
middleware (Cabri et al., 2001; Mascolo et al., 2002; Tolksdorf, 2002), i.e. as the active artefacts in
charge of mediating and ruling coordination in a generic multi-component application (Ricci et al.,
2002).

The contribution of this paper is to analyse the role that XML can play in modern coordination
middleware for applications centered on active and mobile documents. A very simple taxonomy is
introduced to identify and characterise document-centric middleware and the possible exploitations of
XML in that context. Then, several XML-centric middleware infrastructures are surveyed and
evaluated according to this taxonomy, also with the help of a simple example scenario. By this, we try
to identify the advantages and the drawbacks of the different approaches and identify several questions
and problems that remain as future research challenges.

The remainder of this paper is organised as follows. Section 2 introduces the basic concepts
underlying active documents. Section 3, after having introduced the taxonomy and the example
scenario, surveys and evaluates several examples of XML-centric coordination middleware, supporting
and exploiting XML active documents at different levels. Section 4 discusses some open research
issues. Section 5 draws our conclusions.

2 Documents as agents

What are active documents? From a software designer perspective, an electronic document is any kind
of data structure that applications can exchange and process. By definition, a document has some
kind of contents (e.g. data, text, images, music), representing the very information the document is
intended to store. In addition, any document typically includes some sorts of structural information
(e.g. index, tags, formatting commands) used by external, document-processing entities (e.g. humans,
search engines, browsers, printers and so on) required to understand and elaborate the content. Thus,
in general,

(passive) document = content + structure.

A glossary in a book, or the header of a .bmp file are examples of meta-level structural information
needed to understand the content of the document itself. Tags in HTML files and in TEX documents
are examples of structural information needed to elaborate the document.

When dealing with structure representation in a document, it is quite important to distinguish the
declarative power of structural information (e.g. a tag specifying that a paragraph is the title of one
section) from the procedural interpretation that is necessary to render or generically process a
document according to its structure (e.g. the fact that section titles must be rendered with a specific font
style). In many approaches, the structural information is mixed up with the procedural interpretation
in badly structured ways. For instance, HTML mixes the structural information with the procedural:
an h1 header in a file specifies both that the enclosed text is a section title and that it has to be properly
emphasised when rendered in the browser. Still, HTML does not fully associate the procedural
behaviour with the document, leaving different browsers free to render h1 tags in different ways.

One of the key factors in the success of XML technologies is their capability to overcome the above
problems by promoting a clear and well-structured approach to the representation of structural and

P. C I A N C A R I N I E T A L .390

procedural information. XML tags, while able to effectively represent structural information, are not
associated with any predefined procedural behaviour (WorldWide Web Consortium, 2001a).
Procedural information, for the rendering or manipulation of XML documents can be associated with
the XML document using a companion XSL stylesheet (WorldWide Web Consortium, 2001b). The
XSLT language component of XSL allows one to define rules manipulating a document (i.e.
transforming it into a different XML tree), whereas the XSL-FO language component can be used to
define the rendering behaviour. Moreover, it is also possible to use any programming language (usually
a Turing-equivalent language) instead of XSLT and XSL-FO, to specify how a document should be
manipulated and rendered. In this way, a document can be associated with any kind of Turing-
expressable behaviour. This is the case, for instance, of an XML document associated with external
JavaScript or ActiveX functions in charge of dynamically manipulating its content and its rendering.

The above characteristics make XML intrinsically prone to the definition of active documents, i.e.
of documents including (or being associated with) computational behaviour, other than content and
structure. In other words,

(active) document = content + structure + behaviour.

2.1 Towards document agents

When a document encapsulates document-specific behaviour, determining how the document itself has
to be handled, it can no longer be considered simply a document. Instead, such an active document can
be assimilated to a software component or – in some cases – even to a software agent (Jennings &
Wooldridge, 1999). In particular, we can recognise two different classes of document that can be
considered active:

• When the internal behaviour of a document is intended as a service, to be used by external
applications or components to handle the document, the document can be assimilated to an object
and, as such, its nature is simply reactive: the internal activity of the document is triggered by
requests to access the document. A large number of examples of reactive documents can be found
both in the literature (Gaines & Shaw, 1999; Dourish et al., 2000) and in commerce (for instance,
JavaScript-enriched documents can be assimilated to reactive documents).

• When the document integrates autonomous threads of control (e.g. a Java thread running within the
document or,1 in the simple case, a Java applet included in the document), the document can exhibit
proactive behaviour and, as such, it can be somehow assimilated to a software agent (Jennings &
Wooldridge, 1999). For this class of document, we use the term document agents to characterise their
twofold nature as documents and as software agents.

Several research works have recently suggested interesting applications of document agents. For
instance, a proactive agenda can be able to alert users and proactively reorganise the schedule of a
meeting by interacting with the proactive agendas of the other users involved in the meeting (Satoh,
2000). A proactive Web-based document can look in the Web for further related documents of potential
interest for the user (Ciancarini et al., 1999a).

2.2 Mobility and coordination

If active documents can be assimilated to software components – whether they are objects or software
agents – they can be used as building blocks for the development of complex distributed applications.
This requires providing documents with two additional features: the capability of transferring

1 Of course, a thread runs in the operating systems, not in the document. However, if the thread is intrinsically
associated with the document and executes by accessing and manipulating document data, it can be perceived and
abstracted as part of the document itself.

A survey of coordination middleware 391

themselves over the nodes of a network and the capability of coordinating their actions with other
active documents.

The first feature, mobility, is intrinsic to the very concept of information and, so, of document: a
document is created to transfer and move information around. By adopting open data formats, like
XML, mobility of passive documents is automatically achieved. When the document includes
behaviour and threads of execution that enable it to move from one place to another, there is another
requirement. Such a mobile agent (Cabri et al., 2002) requires also code portability as well as the
presence of a software infrastructure – i.e. of a middleware – enabling and supporting active document
mobility (Satoh, 2000).

The second feature, coordination, is necessary for the building of complex multi-component (or,
better, multi-document) applications. When only reactive documents are involved in an application,
coordination between documents often assumes the form of simple client-server interactions. This is
also what happens in object-oriented applications: as reactive documents, objects are entities that can
only act upon requests for services, thus promoting a client-server approach to application
development. However, as soon as the application is built by making use of document agents,
interactions and coordination activities are needed to express more complex and dynamic patterns, as
can be the case of an active agenda trying to reschedule a meeting. In fact, as it happens in multi-agent
applications (Jennings & Wooldridge, 1999), proactivity of components enables services and data to
be not only requested but negotiated. Of course, such complex coordination activities can take place
only in the presence of a suitable infrastructure capable of supporting a variety of coordination patterns
in a flexible way (i.e. a trivial Remote Procedure Call (RPC) infrastructure to support simple client-
server forms of interaction is not enough).

3 Coordination middleware and XML

Middleware is conceived as a software layer to support the execution of distributed applications by
abstracting from the heterogeneous characteristics of different architectures, operating systems,
programming languages and networks. It integrates this heterogeneity into one uniform system,
capable of providing functionalities and services according to a given common programming
abstraction implemented on top of the named heterogeneous components.

Among the various services typically offered by middleware, we are most interested in facilities for
the coordination of document-centric activities. Coordination is usually considered to be the
management of dependencies amongst activities (Malone & Crowston, 1994). As such, coordination
middleware is intended to integrate functionalities and services needed to enable and rule (Ossowski,
2001; Tolksdorf, 2000a) the coordination activities of heterogeneous software components.

Coordination middleware is difficult to design. The provided abstraction has to deal with the central
issues of how data are communicated and how activities are started and synchronised.2 The
heterogeneity ranges from RPCs, object invocations and component usage to agent interaction with
different characteristics such as one-to-one or one-to-many communication and synchronisation. In
addition, modern middleware has to effectively support mobility of application components, users and
devices.

3.1 Document-centric middleware

With the beginning of the 1990s, several companies tried to establish standards for middleware
architectures supporting active documents and their coordination (Adler, 1995).

These middleware architectures – grounded in the works of distributed object applications and
middleware, like CORBA – established notions of documents in which “components” or “objects”

2 In its general terms, middleware is intended to support a larger set of services, including lookup services,
directory services, load-balancing services, transactions and so on. However, when speaking of “coordination
middleware” we explicitly restrict our focus to coordination services.

P. C I A N C A R I N I E T A L .392

were included. The components contained data or software to manipulate the data in other components.
They were displayed to the user and accepted input for direct manipulation. Some control
infrastructure offered services to coordinate via client-server interactions the internetworking of
different components. As the components could be of difference sources, different services serving
different components were integrated into an application represented as a document.

The two major players in the middle of the 1990s were OpenDoc from Component Integration
Laboratories, a consortium supported by Apple, IBM, Taligent, Novell and SunSoft, and OLE2 from
Microsoft. Both offered similar functionality with some differences in the object models.

In contrast to today’s XML-oriented middleware, objects and data were represented in a binary
format in both OpenDoc and OLE2, and both frameworks were rather heavy. While OpenDoc was not
able to gain wider acceptance, OLE2 can be considered one of the grandfathers of Microsoft’s COM
and.NET frameworks. The latter, however, has definitely lost the document-orientation of its ancestors,
being considered a pure object-oriented middleware. {CORBA} established a component- and object-
standard at the same time that found great acceptance as a general-purpose middleware in the
mid-1990s. However, CORBA did not (and does not currently) incorporate a strong document
metaphor.

With XML, document-centric abstractions are revitalised, and several interesting middleware
systems for coordination have been proposed since the late 1990s in which XML and document agents
play a central role. We discuss in the following what role XML can play in middleware for modern
document-centric applications, with a specific focus on coordination. The systems under review fall
into three main categories (Figure 1):

• systems that can offer services not based on XML for the use of XML-based document agents
(middleware for XML agents),

• at the other extreme, systems can offer coordination services based on XML technologies and XML
active documents (XML middleware for agents), or

• systems can adopt a fully integrated approach for XML-based coordination services in a world of
XML document agents (XML middleware for XML agents).

The analysis of the above classes of XML-centric systems will be the focus of the following section.
To better proceed with it, however, we introduce an example scenario that will be used to evaluate the
characteristics of the systems in these classes.

As a simple example for a conceptual comparative analysis of XML-centric middleware systems, we
use a small scenario from financial services which is motivated by (Andrade & Fiadeiro, 1999).
Assume that a person has two bank accounts, A and B. If he or she wants to withdraw an amount from
account A which is larger than the current balance there, the banking system shall automatically try to
transfer the missing sum from B and proceed with the transaction. Only if A and B together hold less
money than requested does the transaction fail. Aside from those data and services needed to represent
and handle accounts A and B, an additional coordinator service has to offer the functional interface to
the user and, more relevant for our purposes, it has to be able to coordinate (or support) actions such
as evaluating whether a transfer is necessary from different accounts and providing for these
withdrawal operations. Central issues for the coordination middleware used here are (1) to provide its
service in a rather transparent manner and (2) to integrate A and B even though they might be located
at different banks possibly using different systems.

3.2 Middleware for XML document agents

The first category we look at concerns middleware that offers services for agents that are specified
using XML and “run” in an XML environment. The world the agents live in is completely XML-
oriented and the middleware under study offers services to make documents become active and to let
them coordinate with the outside world, although the middleware itself is implemented outside the
XML world, i.e. without exploiting XML technologies.

A survey of coordination middleware 393

Figure 1 Document-centric middleware

P
.

C
IA

N
C

A
R

IN
I

E
T

A

L
.

394

3.2.1 Displets
The basic idea of the Displets approach (Ciancarini et al., 1999b) is to provide an active document
environment, where XML documents can be enriched with application-specific behaviour in order to,
say, let them be effectively rendered or transferred over a network. Specifically, displets are software
modules that are attached to an XML document and activated when some pre-declared tags are parsed
during the manipulation of the document. In short, a displet supports the specification of the treatment
of either existing or new tags. A displet may print text strings, display images or make use of graphical
primitives, and more generally do any needed action in the context of a multi-document application.

The first release of displets was proposed mainly for creating HTML extensions in a structured and
general way. The idea was to be able to support new tags on a per-document basis, without any explicit
support from commercial browsers, and to provide the document with the procedural rendering support
needed to create in a document and visualise any kind of graphical object with styles, font, images and
graphical primitives. With the advent of XML, the displets approach has been adopted as a tool for the
rendering of XML documents. Now, displets are going to become a general-purpose environment for
the definition and the execution of XML document agents.

The central idea of displets is to attach behaviour, in terms of Java classes, to XML documents. An
XML transformation stylesheet (XSLT) can be defined to transform a “normal” XML document into
an active one. The displets parser transforms the document into a DOM tree, after which the XML
stylesheet can transform it into a different tree. The latter step is performed also by attaching to the
generated tree the specification of Java classes devoted to associating specific behaviour with a specific
portion of the tree. The new XML document obtained from this transformation can thus be an active
document. There, Java classes determine the behaviour of the document when manipulated by external
applications (e.g. browsers and printers), and runnable threads can determine the autonomous
behaviour of the document when launched for execution.

A private internal behaviour can be associated with displets document agents, in order to define the
behaviour of the document itself, as a stand-alone entity. However, it is also possible to think of
attaching to a document a behaviour related to the interaction of a document with other documents, in
the context of a multi-component application. Figure 2 illustrates the displets approach to coordination:
in addition to the behaviour related to the internal handling of a document, a set of documents can
share and being attached the behaviour devoted to implement and control the execution of coordination
patterns among the set.

In the example scenario, a client document agent could be in charge of receiving inputs from the
client, storing them internally in XML format, and rendering back to the client the XML data reporting
the results of the account operations. All these operations are handled via some proper behaviour

Figure 2 The displets approach

A survey of coordination middleware 395

attached to the document agent. In addition, it is possible to attach to the client document agent the
behaviour needed to coordinate – i.e. to negotiate withdrawal – with the document agents devoted to
managing bank accounts. The document agents handling bank account, then, can integrate the
coordination policies needed to handle the situation in which a client requests a sum which is not
locally available, by making it start a negotiation with the document agents handling the other accounts
of the user.

The main problem of the displets approach is that document behaviour, which includes the
behaviour devoted to the implementation of coordination patterns, is hardwired into documents at
compile time (i.e. during the transformation of the XML document into an active document). This can
make it hard to exploit displets in open environments and in a mobile setting, where a document can
move across different sites and needs to interact with different documents according to different
coordination patterns. For the example scenario, changes to the policies adopted by the banks to handle
accounts and withdrawals would require a change in the coordination behaviour attached to an applet,
and would require rebuilding the document.

3.2.2 Other approaches
Other proposals exist that provide frameworks for making XML documents active by enriching them
with some sort of internal behaviour. JXML (La Forge, 2001) is one such proposal. However, most of
these frameworks are quite limited with regard to multi-document coordination. In most cases,
coordination between documents simply amounts to enabling client-server object-oriented inter-
actions, and there is no possibility of expressing more complex coordination patterns and coordination
laws.

An interesting approach is adopted in the adlets system for information retrieval (Chang & Znati,
2001). There, the basic idea is to enrich Web-based documents (XML, but not necessarily) with a
proactive declarative behaviour. The goal is to make a document able to look autonomously in the
network for related documents. To this end, the adlets middleware enables a document to proactively
move across the Internet (as if it were a mobile agent) and to coordinate with other documents to
discover relations between documents and, possibly, to return to users clusters of related documents.

3.3 XML middleware for document agents

The coordination middleware described in this subsection exploits XML at the very core of the
middleware. In particular, these systems assume that the coordination activities of application agents
occur and are ruled via accesses to shared XML information spaces, in which the laws ruling
coordination reside and are enacted. To some extent, these systems make information spaces in
themselves become active document agents, active artefacts mediating coordination activities and
specifying the laws according to which they can be accessed and modified by application agents.

3.3.1 XMLSpaces
In the Linda coordination language, coordination activities takes place via exchanges of structured
tuples, i.e. ordered set of primitive (typed) fields. In particular, two active entities in an application can
exchange data and/or synchronise with each other via a built-in mechanism of pattern-matching over
a shared memory of tuples.

While the pattern-matching approach is indeed powerful and simple, Web-based and document-
oriented systems may be in need of adapting it so as to support richer forms of data than ordered sets
of typed fields. In particular, there is the need to capture any needed application-specific data structures
easily, while encoding them in the form of primitive tuples would be quite complex. The format has
to be open so that new types of data can be specified. Moreover, it has to be standardised in some way,
so that data-items can be exchanged between entities that have different designs. XML fulfils all these
criteria.

XMLSpaces (Tolksdorf & Glaubitz, 2001) is an extension to the Linda model which serves as
middleware for XML. Here, XML documents can be placed into tuple fields and are considered for
matching with templates.

P. C I A N C A R I N I E T A L .396

A multitude of relations amongst XML documents can be used for making two documents match
with each other, and consequently support a process of pattern-matching much more flexible than in
Linda. While the basic pattern-matching relations shown in Table 1 are automatically supplied by
XMLSpaces, the system is open for extension with further relations. XMLSpaces is distributed so that
multiple dataspace servers at different locations form one logic dataspace. A clearly encapsulated
distribution policy can easily be tailored to different network restrictions. Distributed events are
supported so that clients can be notified when a tuple is added or removed somewhere in the
dataspace.

For the example scenario, the state of the accounts would be represented in some XML format and
stored in XMLSpaces. The documents could be protected from access by unauthorised parties by
additional encryption following the XML security framework (World Wide Web Consortium, 2002;
World Wide Web Consortium IETF, 2002). An appropriately extended matching mechanism would
have to be supplied to the XMLSpaces. The coordinator service would have to be implemented in some
language running on the Java Virtual Machine.

3.3.2 MARS-X
The MARS-X coordination architecture (Cabri et al., 2001), implemented as an extension of the
MARS architecture (Cabri et al., 2000), defines a Linda-like middleware model to enable agents
(specifically, mobile Java agents) to coordinate their activities via Linda-like access to shared spaces
of XML documents.

Unlike XMLSpaces, which operates at the granularity of XML documents, MARS-X adopts a more
fine-grained approach, and considers any XML document in terms of unstructured sets of tuples. For
instance, the records of an XML document describing bank accounts with data values tagged as name,
number, amount, could be interpreted as a bag of tuples in the form account(name,number,amount).
Accordingly to this perspective, a document and its data can be accessed and modified by exploiting
the associative operation typical of the Linda model, and agents can coordinate with each other via
exchange of document tuples, and via synchronisation over tuple occurrences. Specifically, MARS-X
provides agents with a JavaSpace interface to access a set of XML documents in terms of Java object
tuples. This choice forces agents to be Java agents.

To support wide-area computation, MARS-X promotes an architecture based on a multiplicity of
independent XML dataspaces, each to be considered as a local resource of an Internet node or of a
local domain of nodes (see Figure 3). By moving across the Internet, mobile agents can access different
XML dataspaces: when an agent arrives at a node, it is automatically provided with the reference to
a MARS-X tuple space interface associated with the XML dataspace.

A peculiar characteristic of MARS-X dataspaces is that their behaviour in response to agent accesses
can be programmed to implement specific access methods and specific synchronisation and
coordination patterns. Both administrators and mobile agents (the latter in a quite restricted way) can

Table 1 Matching relations in XMLSpaces

Relation Meaning

Exact equality Exact textual equality
Restricted equality Textual equality ignoring comments, processing instructions etc.
DTD Valid towards a DTD
DOCTYPE Uses specific DOCTYPE name
XPath Fulfils an XPath expression
XQL Fulfils an XQL expression
AND Fulfils two matching relations
NOT Does not fulfil matching relation
OR Fulfils one or two matching relations
XOR Fulfils one and only one matching relation

A survey of coordination middleware 397

install in an XML dataspace reactions associated with specific access operations, performed by specific
agents, with specific parameters. These reactions override the default behaviour of the performed
operations and, for instance, can modify the result of the operations they are associated with,
manipulate the content of the XML dataspace, and access whatever kind of external entity they need
to access.

The programmability of MARS-X dataspaces makes the XML dataspace itself become an active
document. In fact, although agents can access the dataspace always with the same limited set of
operations, the dataspace itself can react to these accesses by behaving in different ways. The reaction
in the dataspace can decide who and when can read and/or modify which XML documents. In addition,
since coordination between agents occurs via data exchanged by means of the dataspace, the behaviour
of the dataspace can be used globally to rule the activities of multi-agent applications.

Coming back to the example scenario, and by assuming the availability of the MARS-X middleware,
one can think that each bank makes an XML dataspace with data account available to agents. When
in need of withdrawal, the client can send his personal agent to account A first, to query the dataspace
for his own data, to check the needed availability. On availability, the client agent can eventually
withdraw the required amount by putting a specific tuple in a specific XML document. The insertion
of that tuple can trigger the activity of the object devoted to managing account data, which will take
care of actually performing the transaction and sendingthe result back to the client agent, again in
terms of a tuple inserted in the dataspace.

The programmability of the tuple space can be effectively exploited in the example scenario to
orchestrate, transparently to client agents, the cross-checking for availability in different accounts, and
the possible need of withdrawing a portion of the total sum from different accounts. An example is the
situation where the client agent requests an amount from account A which is more than the current
balance of A.

The reactions in the dataspace can then cause another agent to become active. This agent is in charge
of going to the account B dataspace to check if enough further money is available there. If so, it can
let the account A dataspace reply to the client agent with the amount requested after withdrawing it in
part from A and in part from B.

The possibility of controlling the execution of complex coordination patterns via specific behaviour
of the XML dataspace and transparently to agents is, beyond the example scenario, a general advantage
of the MARS-X approach.

A drawback of the MARS-X approach is that it introduces a big mismatch between the format of
the data in the dataspace and the format of the data privately managed by the agent – the former being
XML documents, the latter Java objects. This can make an application more complex. For instance, let
us suppose that the client agent of the example scenario has to report back to the client its results via
an XML page. In MARS-X, this activity report is fully in charge of the client agent, while there is no
possibility of directly reporting in terms of XML documents the information that the agent has
retrieved from the accessed dataspaces. This would require the client agent to directly manipulate and
represent its world in XML terms or, in other words, would require agents to be themselves XML
document agents, as in displets. A more detailed analysis of the ideal requirements for an XML
middleware will be analysed later in this section.

Figure 3 The MARS-X architecture

P. C I A N C A R I N I E T A L .398

3.3.3 XMIDDLE
The XMIDDLE middleware (Mascolo et al., 2002) implements a coordination architecture somewhat
similar to that of MARS-X: coordination between agents occurs via accesses to shared XML
documents, and a limited form of programmability is made possible to rule these accesses. However,
XMIDDLE implements specific architectural solutions to make it a suitable middleware for mobile
computing and, specifically, for ad hoc networking.

The basic idea of XMIDDLE is to make coordination among agents (or, in general, among the
processes of a distributed computation) occur by accessing a shared XML tree, via a specific language
for querying and manipulating semi-structured data. However, in mobile settings, where processes or
agents can disconnect and reconnect at any time, this introduces peculiar problems related to the
accesses to the tree. In fact, in XMIDDLE an agent can access and modify the data on an XML tree,
as well as its structure (see Figure 4). When that process disconnects from the network or becomes out
of reach in the case of an ad hoc network, it is provided with a local replica of the tree (or of one of
its sub-trees). When the agent reconnects, or is in reach again, the global tree has to be reconstructed,
as it could have been possibly independently modified by different agents. To handle this situation,
XMIDDLE enables the programmability, in the tree, of specific event handlers, in charge of
implementing application-specific reconciliation policies, devoted to coherently reconstructing the
structure of a tree.

In the example scenario, it is possible to conceive that a bank makes available one or more XML
trees with the bank account data, to be accessed, as in MARS-X, by client agents. But unlike in
MARS-X, these client agents could also be PDA and mobile devices, and XMIDDLE could
automatically handle the problems related to mobility. In addition, since agents can directly manipulate
the XML tree (while in MARS this manipulation occurred in the form of Java tuple objects),
XMIDDLE can facilitate agents in directly reporting back XML data.

However, XMIDDLE has only a limited form of programmability of the XML tree, devoted to the
handling of connection events. This makes it difficult to implement any complex coordination pattern
in terms of transparent coordination policies, which include that required to withdraw partial amounts
of money from different accounts. In XMIDDLE, this coordination pattern has to be directly
implemented by the agent code.

3.3.4 Other approaches
There are some other approaches for XML middleware. Most prominent is the current XML Protocol
activity of the World Wide Web Consortium (2001a). XML Protocol is an approach to follow up on
SOAP and XML-RPC in order to have distributed peers communicate by using XML as the
communication language. For communication amongst objects, for example, this boils down to
representing a method invocation with name and parameters in a simple XML document.

The XML Protocol approach offers only a low-level abstraction for coordination and currently
supports only client-server-style interactions.

3.4 Self-contained XML middleware

XML is a standard for representing data in networked documents. However, the specification of
activities can also be expressed as an active document. Thus, if scripts and so on can be XML
documents, a complete system can be based on XML representation and even activity and its
coordination can be expressed within that framework. Thus the agents can be represented as some
XML documents as well as the data they operate on and the laws ruling their coordination activities.
The main effect of this self-containment is the uniformity of the language used. On the one hand, this
makes programming easier since one does not have to switch to an external language like Java. On the
other hand, and even more relevantly, the scripts themselves then become first-class data objects for
the middleware. The same infrastructure used for applications can be used to manage the programs
themselves.

A survey of coordination middleware 399

Figure 4 Connections and disconnections on XMIDDLE trees

P
.

C
IA

N
C

A
R

IN
I

E
T

A

L
.

400

3.4.1 WorkSpaces
WorkSpaces (Tolksdorf, 2002b) combines workflow concepts with standard Internet technologies. The
documents involved in the workflow are assumed to use application-specific markup languages
expressed in XML. A workflow is composed of steps which are represented as XSL rules that are
executed by an extended XSL processor, the WorkSpaces engine. It reads such a step and tries to
retrieve the respective input document. It then applies transformations to the matching document found
to generate the output document. The medium used to store all XML documents is XMLSpaces
described in Section 3.3.1.

Figure 5 shows the flow of XML documents in the system. First a step description is retrieved with
an in-operation that asks for a document that validates the step-DTD (interactions 1 and 2). Then the
document to which the step should be applied is retrieved (interactions 3 and 4). This document is
specific to a running instance of a workflow. This instance is represented by a unique identifier which
is marked as an attribute of an XML element. This identifier is used during matching to find the specific
document. After the step is performed, the resulting document is put into the repository by an out
(interaction 5).

There are several classes of step. Automatic steps are pure document transformations and require
only activity of some transformation component within the system. External steps involve applications
that take a document as input, let the user perform some activity on it, and generate an output
document. User steps are performed by a user without any support from the system. Coordination
steps only coordinate the flow of work. Workflow procedures describe temporal and causal
dependencies among activities represented as steps. The management of these dependencies is the
central issue for any workflow system.

Steps are not specified individually. The whole workflow is represented as a graph of steps using the
WorkSpaces Coordination Language, WSCL. WSCL is, again, an XML language and is based on the
Workflow Process Description Language as defined by the WfMC in the Interface 1 of the Reference
Model (Workflow Management Coalition, 1998).

In order to execute such a workflow, the WSCL description must be transformed into individual
steps first. One can consider the workflow graph as the “program” written in a higher-level language
and the individual steps as “instructions” as in microprocessors. The necessary “compilation” of the
graph into steps is the transformation of one XML document into a set of XML documents. In
WorkSpaces, it is called a meta-step. The compiler itself is another XSL script that is started by the
workflow designer.

The unique distinctions of this approach from other workflow management systems with proprietary
workflow engines are universal accessibility and ease of deployment due to Internet standards, and
support for distribution and uncoupled operation due to coordination technology.

Figure 5 Access to documents in WorkSpaces

A survey of coordination middleware 401

The example scenario above would be implemented in WorkSpaces as a workflow. The documents
considered would represent the respective accounts in some XML-grammar, just as with the
XMLSpaces example scenario. The coordinator component, however, would be “implemented” by a
workflow of several steps that access the accounts by matching the account documents and by
the selection of one of three branches in a so-called SPLIT-step (which is a coordination step) of the
workflow depending on the current balances.

3.4.2 Other approaches
There is not much fully XML-integrated middleware such as WorkSpaces. With some limitations, one
could consider XML-based scripting languages as middleware. Currently, two scripting languages with
both the script and the data manipulated represented as XML are offered: XSL by the World Wide Web
Consortium (2001b) and XML Script (DecisionSoft Ltd, 2001). While XSL is a transformation
language for XML trees with strong declarative influences, XML Script is a rather traditional
imperative scripting language. Both take an XML document as input and generate an output document
as the result of the computation.

However, both offer no support for coordinating multiple activities. Thus their middleware service
capabilities are very limited.

The Agent Definition Format (ADF) (Lange et al., 1999) is slightly more powerful. It offers a way
to specify agents in an XML representation. Agents have their own state and coordinate with others
using HTTP communication. Calls to other agents’ functionalities are encoded as parts of the URLs
that reference agents. The underlying model of coordination is again client-server. Moreover, the
coordination behaviour of document agents is totally mixed with their computational behaviour, thus
providing no separation between computation and coordination.

3.5 Discussion

The above analysis has identified the main features – as well as the main limitations – of several
middleware systems for XML-centric applications. The results of the analysis can be summarised as
follows.

• Displets is the most suitable system for the definition and implementation of document agent
applications, in that it enables one to embed behaviour in XML documents and enables this
behaviour to directly manipulate the XML data they represent. Unfortunately, the displet approach
is too static to meet the needs of open coordinated applications, in that it does not enable the dynamic
definition of coordination patterns, which have to be statically hardwired into documents.

• MARS-X is particular suited for the definition of complex coordination patterns, even dynamically,
in the access and manipulation of shared XML documents by mobile agents. However, it restricts the
application to using Java agents, and therefore limits the possibility of defining coordinable
document agents directly manipulating XML data.

• XMIDDLE coordinates activities over XML documents in the presence of mobility, but the
possibility of defining suitable coordination laws is very limited.

• WorkSpaces provides more uniformity than the above systems, by exploiting XML both at the level
of application agents and at the coordination level: XML document agents execute in the context of
a common XMLSpaces, where also the definition of the coordination patterns (i.e. of the workflow
rules) can be expressed in terms of XML documents. Still, WorkSpaces lacks an explicit support for
mobility and – being mainly oriented to workflow applications – it is not clear whether it would be
general-purpose enough to meet the need of any kind of multi-component application.

In an ideal scenario we envision that a suitable middleware is available that integrates the best features
of all the systems analysed in this paper. These include the capabilities of:

• directly handling, at the application level, the activities of XML document agents, as in displets;
• making coordination activities occur in terms of manipulations of (portions of) shared XML

documents, as in MARS-X, XMIDDLE and XMLSpaces;

P. C I A N C A R I N I E T A L .402

• being flexible enough to support user-defined XML grammars and relations among them as in
XMLSpaces;

• effectively handling mobility and associated issues, as in XMIDDLE;
• enabling the ruling of the coordination activities between application-level document agents in a

dynamic way, as in MARS-X; and
• expressing not only document agents’ behaviour but also the laws ruling their coordination activities

in term of XML documents and XML rules, as in WorkSpaces.

In our opinion, the large amount of research efforts currently carried on in the area, including ours, will
lead soon to the definition of further XML-centred coordination infrastructures, closely approaching
our ideal requirements, and possibly defining solutions to a number of additional open research
issues.

4 Open research directions

In addition to the need of defining a suitable coordination middleware, as from Subsection 3.5, there
are several other issues that, in our opinion, need to find suitable solution for XML document agent
applications to be effectively engineered and developed.

First of all, there may be the need of defining new “document-oriented” computational models, able
to take into account and somehow formally analyse properties of coordinated applications based on
XML document agents. Such models should take into account that the execution of a document-centric
application can be better perceived in terms of manipulations on XML data rather than, as in more
traditional computational models, in terms of state transitions in processes. A promising approach in
that direction is represented by the work of Luca Cardelli (1999) on semi-structured computation. The
basic intuition is that not only can manipulations of XML documents be represented in terms of a few
basic tree transformations, but also the execution of a mobile computation can be modelled the same
way, thus leading to a uniform model of XML document agents’ computations in a mobile setting.

Strictly related to the above problem is the issue of handling with proper abstractions and
middleware infrastructures the presence of mobility. In today’s application scenarios, mobility comes
in different forms, i.e. the logical mobility of software components migrating over different sites
during their lives (as may be the case of an XML document agent being transferred from one site to
another) and the physical mobility of devices such as laptops and PDAs (which necessarily implies
mobility of the software components and of the documents installed on such devices) (Picco et al.,
2000). Thus a proper coordination middleware should be able to deal with both types of mobility in
a uniform way, to diminish the overall complexity of application design. In addition, it is being
recognised that handling mobility in an open and dynamic world requires application components with
the capability of explicitly handling changes in the surrounding computational environment, i.e. in the
“context”. Accordingly, the concept of context and of context-aware computing must be properly
supported by a coordination middleware (Cabri et al., 2002).

A further promising research issue relates to the fact that, more and more, Web-based applications
– and so document agent applications – tend to resemble, in their architecture, human and social
organisations. This is mainly due to the fact that, first, applications are often intended to support the
activities of some real-world organisations, and mimic them accordingly and, second, the autonomy of
application components invites considering them in terms of individuals playing specific roles in an
ensemble rather than in terms of components in charge of providing mechanical functionalities.
Therefore, those software engineering approaches exploiting the research results of organisational
management and social sciences may provide, in the near future, effective methodologies for the
design and development of Web-based document agent applications and useful guidelines for the
development of coordination middleware (Zambonelli et al., 2000; Omicini, 2001).

As a final note, we think that the dramatic increase of embedded computer-based and software
components, envisioning a future where uncountable multitudes of interconnected autonomous and
mobile components will always execute and interact with each other, will challenge most of today’s

A survey of coordination middleware 403

approaches to software development as well as today’s model of coordination and associated
middleware (Tennenhouse, 2000; Tolksdorf, 2002; Zambonelli & Parunak, 2002).

5 Conclusions

XML is emerging as a suitable technology for representing not only data but also computations,
leading to the concept of XML document agents, as autonomous software components embedding both
data and behaviour. However, for complex applications to be developed in terms of XML document
agents, suitable middleware is needed to effectively enable and rule the coordination activities of
application components.

In this paper, we have analysed several middleware systems proposed and implemented so far that,
to different extents and with different architectural solutions, aim at providing a coordination
framework for a world of XML document agents. The analysis, performed with the help of a simple
example scenario, has outlined the main features and limitations of these systems, and has permitted
us to sketch the requirements for an “ideal” coordination middleware for XML document agents.

Our current research focus deals with understanding how to make the identified ideal middleware an
implemented system, although these may require facing further design and implementation issues not
identified by this paper. In addition, we feel that it is important to investigate further general issues
related to the engineering of complex distributed applications. These issues include the proper
modelling and handling of mobility (Cardelli 1999; Picco et al., 2000) and openness (Zambonelli et
al., 2000) in software systems, and the effective engineering very large-scale and embedded
applications (Tennenhouse, 2000).

References

Andrade, LF and Fiadeiro, JL, 1999, “Interconnecting objects via contracts” Proceedings of the 2nd International
Conference on the Unified Modeling Language (UML’99) 566–583.

Bompani, L, Ciancarini, P and Vitali, F, 1999, “Active documents in XML” ACM SigWeb Newsletter 8(1)
27–32.

Cabri, G, Leonardi, L and Zambonelli, F, 2000a, “MARS: a programmable coordination architecture for mobile
agents” IEEE Internet Computing 4(4) 26–35.

Cabri, G, Leonardi, L and Zambonelli, F, 2000b, “Mobile-agent coordination models for Internet applications”
Computer 33(2) 82–89.

Cabri, G, Leonardi, L and Zambonelli, F, 2001, “XML dataspaces for mobile agent coordination” Journal of
Applied Artificial Intelligence 15(1) 35–58.

Cabri, G, Leonardi, L and Zambonelli, F, 2002, “Engineering mobile agent applications via context-dependent
coordination” IEEE Transactions on Software Engineering 28(11) 1039-1055.

Cardelli, L, 1999, “Semistructured computation” Proceedings of DBLP 99 1-16.
Cardelli, L and Gordon, AD, 2000, “Mobile ambients” Theoretical Computer Science 240(1) 177–213.
Chang, S and Znati, T, 2001, “Adlet: an active document abstraction for multimedia information fusion” IEEE

Transactions on Knowledge and Data Engineering 13(1) 112-123.
Ciancarini, P, Omicini, A and Zambonelli, F, 1999, “Coordination technologies for Internet agents” Nordic

Journal of Computing 6(3) 215–240.
Ciancarini, P, Vitali, F and Mascolo, C, 1999, “Managing complex documents over the WWW: a case study for

XML” IEEE Transactions on Knowledge and Data Engineering, 11(4) 629–638.
DecisionSoft Limited, 2001, “XML Script” (http://www.xmlscript.org/) last checked 29 August 2001.
Dourish, P, Edwards, W, Howell, J, La Marca, A, Lamping, J, Petersen, K, Salisbury, M, Terry, D and Thornton,

J, 2000, “A programming model for active documents” Proceedings of the ACM Symposium on User Interface
and Software Technology 1-5.

Gaines, B and Shaw, M, 1999, “Embedding formal knowledge models in active documents” Communications of
the ACM 42(1) 57–74.

Jennings, N and Wooldridge, M, 1999, “Intelligents agents: theory and practice” The Knowledge Engineering
Review 10(2) 115-152,

La Forge, B, 2001, “The JXML home page” www.jxml.com.
Lange, D, Hill, T and Oshima, M, 1999a, “A new internet agent scripting language using XML” Proceedings of

the AAAI-99 Workshopon AI in Electronic Commerce 115-128.
Malone, TW and Crowston, K, 1994, “The interdisciplinary study of coordination” ACM Computing Surveys

26(1) 87–119.

P. C I A N C A R I N I E T A L .404

Mascolo, C, Capra, L, Zachariadis, S and Emmerich, W, 2002, “XMIDDLE: a data-sharing middleware for
mobile computing” Personal and Wireless Communications 21(1).

Omicini, A, 2001, “SODA: societies and infrastructures in the analysis and design of agent-based systems”
Proceedings of the 1st International Workshop on Agent-Oriented Software Engineering.

Omicini, A, Zambonelli, F, Klusch, M and Tolksdorf, R (eds), 2001, Coordination of Internet Agents: Models,
Technologies, and Applications Springer-Verlag.

Ossowski, S, 2001, “Constraint-based coordination of autonomous agents” Electronic Notes in Theoretical
Computer Science 48.

Picco, GP, Roman, GC and Murphy, A, 2000, “Software engineering and mobility: a roadmap” Proceedings of
the 22nd International Conference on Software Engineering (ICSE 2000) 241-258.

Ricci, A, Omicini, A and Denti, E, 2002, “Activity Theory as a framework for MAS coordination” 3rd
International Workshop “Engineering Societies in the Agents World” (ESAW’02) 195–208.

Richard M Adler, 1995, “Emerging standards for component software” IEEE Computer 28(3) 68–77.
Satoh, I, 2000, “MobiDoc: a framework for building mobile compound documents” Proceedings of the 2nd

International Symposium on Agent System, Applications, and Mobile Agents (ASAMA 2000) 19-28.
Stauch, M and Tolksdorf, R, 2001, “Design and implementation of an XSL-T and XML-based workflow system”

Proceedings of XML Europe 2001 229-241.
Tennenhouse, D, 2000, “Embedding the Internet: proactive computing” Communications of the ACM 43(5) 43.
Tolksdorf, R, 2000a, “Coordination technology for workflows on the Web: Workspaces” Proceedings of the

Fourth International Conference on Coordination Models and Languages (COORDINATION 2000) 36–50.
Tolksdorf, R, 2000b, “Coordinating work on the Web with Workspaces” Proceedings of the Ninth IEEE

International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises WET ICE
2000 225-229.

Tolksdorf, R, 2000a, “Models of coordination” Engineering Societies in the Agent World First International
Workshop (ESAW 2000) 78–92.

Tolksdorf, R, 2002b, “Workspaces: A Web-based workflow management system” IEEE Internet Computing 6(5)
18–26,

Tolksdorf, R and Glaubitz, D, 2001, “Coordinating Web-based systems with documents in XMLSpaces”
Proceedings of the Sixth IFCIS International Conference on Cooperative Information Systems (CoopIS 2001)
356–370.

Tolksdorf, R and Glaubitz, D, 2001, “XMLSpaces for coordination in Web-based systems” Proceedings of the
Tenth IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises
(WET ICE 2001) 171-180.

Tolksdorf, R and Stauch, M, 2001, “Using XSL to coordinate workflows” Proceedings of Kommunikation in
Verteilten Systemen (KiVS) 127–138.

Workflow Management Coalition, 1998, “Interface 1: process definition interchange process model” http:/
/www.wfmc.org.

World Wide Web Consortium IETF, 2002, “XML signature” (http://www.w3.org/Signature/) last checked
25November 2002.

World Wide Web Consortium, 2001a, “XML protocol activity” (http://www.w3.org/2000/xp/) last checked 29
August 2001.

World Wide Web Consortium, 2001b, “XSL Transformations (XSLT) Version 1.0” (http://www.w3.org/TR/xslt)
last checked 29 August 2001.

World Wide Web Consortium, 2002, “XML encryption” (http://www.w3.org/Encryption/2001/) last checked 25
November 2002.

Zambonelli, F and Van Dyke Parunak, H, 2002, “From design to intention: signs of a revolution” Proceedings of
the 1st ACM Joint Conference on Autonomous Agents and Multi-Agent Systems 445-446.

Zambonelli, F, Jennings, NR and Wooldridge, M, 2000, “Organizational abstraction for the analysis and design
of multiagent systems” in P Ciancarini and M Wooldridge (eds) Agent-Oriented Software Engineering
Springer-Verlag 235–251.

Zambonelli, F, Jennings, NR, Omicini, A and Wooldridge, M, 2000, “Agent-oriented software engineering for
internet applications” in A Omicini, F Zambonelli, M Klusch and R Tolksdorf (eds) Coordination of Internet
Agents: Models, Technologies, and Applications Springer-Verlag 320–341.

A survey of coordination middleware 405

