
From Case-Based Reasoning to Traces-Based Reasoning

Alain Mille*

Abstract:CBR is an original paradigm to adapt solutions of past problems in order to solve new
similar problems. A case is a problem with its solution and cases are stored in a case library.
The reasoning process obeys to a cycle allowing to “learn” from new solved cases. This
approach is also viewed as a lazy learning method when applied for classification. This IA
technology is applied for various tasks as designing, planning, diagnosing, information
retrieving, etc. The talk will be the occasion to go a step further in reusing past experience, by
considering traces of computer use as experience knowledge containers for contextual and
situation based problem solving.

1 Case Based Reasoning

1.1 CBR foundations
Minsky, Schank, Abelson and others gave general directions for reusing past problem solving
schemes to solve new problems in new situations. In this paper, we focus on Minsky and
Schank pioneers works. Interested reader will find biographical information about them in
[Cre93] for example.

1.1.1 Marvin MINSKY draws main lines of what we could call
“Stereotypes Based Reasoning”

See [Min75] [http://web.media.mit.edu/~minsky/papers/Frames/frames.html]

Marvin Minsky argues that usual theoretical approaches in AI try to be too “precise”, local
and not really structured to face “real world” problems. He considers several approaches
through Artificial Intelligence and Cognitive Psychology:

• A common proposal, he made with Papert, to divide “knowledge” in structures they
called “microworlds”

• The definition of “problem spaces” by Newell and Simon
• The expression of linguistic objects by Schank, Abelson and Norman.

He describes these approaches as promising by contrast with classical ones attempting to
describe Knowledge as set of pieces of knowledge, with no particular structure. Marvin
Minsky proposes the notion of “Frame” as a convenient structure to support these theories. A
frame is supposed to describe the “context” in which the reasoning process has to be done.
As Minsky explains “Here is the essence of the theory: When one encounters a new situation
(or makes a substantial change in one's view of the present problem) one selects from memory
a structure called a Frame. This is a remembered framework to be adapted to fit reality by
changing details as necessary.”

A frame has three main parts:

* LIRIS UMR 5205, Insa-Lyon, Université Lyon1, Université Lyon2, ECL

amille
Je ne sais pas comment formater l'article...

• A part about its use (its goal and context of use)
• A part about what can occurs after using this frame
• A part about what to do if there is an unwanted result after frame application

“We can think of a frame as a network of nodes and relations. The "top levels" of a frame are
fixed, and represent things that are always true about the supposed situation. The lower levels
have many terminals–"slots" that must be filled by specific instances or data. Each terminal
can specify conditions its assignments must meet. (The assignments themselves are usually
smaller "sub-frames.") Simple conditions are specified by markers that might require a
terminal assignment to be a person, an object of sufficient value, or a pointer to a sub-frame
of a certain type. More complex conditions can specify relations among the things assigned to
several terminals”. [See Figure 1]

The complete frame-system works like a frame with “always true” things at the very top nodes
and “sensors on the world” at the lowest level.

Figure 1 Frame example (Minsky)

This theoretical approach lead mainly to Object and Frame Languages but the “analogical
reasoning process” has not really been implemented.

1.1.2 Roger Schank : one of the first to speak of Case Based Reasoning
See [82]

Understanding stories in natural language was one of the first objectives of Schank & al.
when he developed his theory on CBR. The basic idea is that mental schemes are guiding the
understanding of texts, allowing filling the “gaps” of what was not said. “Understanding is
Explaining” said Robert Schank.
Consider the following sentences: “John went to the restaurant. He got some ham. It was
good.”. Understanding this short text needs to know that when we got ham in a restaurant, it is
for eating. Nothing of that is said in the text, but we guess that John ate the ham… Robert
Schank proposes to represent the behavior (here, in a restaurant) by a “script” splitting it in
different steps which can be finer scripts and so on. See Figure 2 for an illustration of what
can be a script.

Figure 2 Illustration of a script (Schank)

So, a script describes an episode according to a known behaviour by the way of a sequence of
events as they are awaited (usual experimented situations). When a new situation is
encountered, the script is adapted to fit with this exception. In order to complete events with
useful information, scripts contain other information and mainly:

• Actual goals,
• Current plans,
• Social links,
• Played roles,
• Character traits,
• And generally speaking, anything indicating the behaviour of the script in a given

situation.
Scripts and schemas share many properties but what is really different is the status of
“immediate experience”. While Minsky argues that frames are “idealistic stereotypes” of
encountered situations, Schank proposes to keep in memory “concrete episodes” as they
occurred in reality. They are organized in a dynamic memory and reused by adaptation.
Episodes memory is self organized by a simple generalization process as illustrated in

Figure 3 Episodes E1 and E2 are combined in order to build their generalization EG. ES1 and ES2 are
specializations of EG.
 Many researches completed these pioneering works but main concepts were founded and AI
technologies integrate now this paradigm of CBR for Problem Solving and Lazzy Learning.

1.2 Knowledge and CBR principles
Minsky and Schank were CBR pioneers but Janet Kolodner worked explicitly on CBR and
wrote the first book on the subject in 1993 [Kol93]. From an engineering point of view, Agnar
Aamodt and Enric Plazza proposed a CBR reasoning cycle in 1994 [AamPla94] and a lot of

correlated research works and applications were developed since [http://www.ai-cbr.org]. A
paper to appear in “Knowledge Engineering Review” makes the state of the art on the subject
[Man05].

1.2.1 What is a Case?
A case is the description of a solving problem episode. Its structure fits the situation of the
task: diagnostic, planning, decision helping, design, etc. For pedagogical purpose, we consider
a case as a list of descriptors (which descriptors can be structures).
A case is composed of a problem part and a solution part:))(,(pbSolpbCase = . A source
case))(,(_ sourceSolsourcecasesource = is a case from which the solution)(sourceSol will
be reuse in order to solve a new problem we call a target case

))(,(_ sourceSoltargetcasetarget = .
A case is described by descriptors:

• source={ds
1..ds

n} where ds
i is a source problem descriptor.

• Sol(source)={Ds
1..Dsm} where Ds

i is a source solution descriptor
• cible={dc

1..dc
n} where dc

i is a target problem descriptor.
• Sol(cible)={Dc

1..Dc
n} where Dc

i is a target solution descriptor.

Example 1:

Consider a problem of finding the adequate price for a flat.

Problem part
ds

1 = Flat surface (real)
ds

2 = Flat location (a structure)
ds

3 = Flat state (a list of defects)
Solution part
Dc

1 = Sale price of the flat (real)
Dc

2 = Sale conditions (payment facilities for example)

Example 2

Consider a task of car diagnosis.
Problem part
ds

1 = Noises (list of symbolic descriptors)
ds

2 = External symptoms (list of symbolic descriptors)
ds

3 = Car model (symbolic descriptor)
ds

4 = First “circulation” date (date descriptor)
Solution part
Dc

1 = Mechanical pieces to troubleshoot (list of symbolic descriptors)
Dc

2 = Diagnosed faults on the mechanical pieces

1.2.2 Ontology of attributes of description
To match and compare cases, attribute values have to be compared for similarity evaluation
purpose. Each attribute has a type. Knowing the type allows to choose adequate comparison
operators. It is useful to describe the ontology of the types of attributes to enable efficient
similarity measure not for “describing the world”!

Figure 4 Examples of domain ontologies for Case descriptors

Ontology can be shared by a whole case base, but it is not mandatory to build such an
ontology. Each attribute can have a “facet” explaining how to manage the similarity measure
for each specific case. “Pure CBR” embodies any knowledge in cases.

1.2.3 What is a Case base?
A Case base is a collection of solved cases for a class of problems. For example, there are
separate and different case bases for the “Flat sale problem” and for the “Card diagnosis
problem”. For the “Flat sale problem”, a case is the description of a sale episode and
descriptors fit the corresponding ontology. On the following table, green lines stand for
problem descriptors and pink line stands for the solution description (here, the sale price).

Attribute label Case 1 Case 2 Case 3 Attribute type
Pb_Surface 55 35 55 Real
Pb_District_Location Rhône district Rhône district Ain district Symbol
Sol_Sale_Price 20000 45000 15000 Real
Pb_Flat_Type F2 F2 F2 Symbol
Pb_Town_Location Lyon Lyon Bourg en Bresse Symbol

Table 1 A small case base on the " Flat sale problem"
The district location can be easily inferred from the ontology (see Erreur ! Source du renvoi
introuvable.). Even if it seems that building a case base is easier that building a set of rules,
there exists Knowledge Engineering problems. Most of industrial CBR applications propose
forms to fill the case base. Case base can be small (if different possible types of cases are well
represented and that the domain knowledge is rich) or very large (if there exists a wide variety
of cases and that the domain knowledge is poor).
For each case base, there is an associated metric allowing to project cases on the “solution
plan”. Similar cases are cases that have similar solutions for similar problems.

1.2.4 What is the resolution process? How to choose a source case in
the case base?

There is a threshold of similarity to take into account when attempting to adapt a past case for
a new one. Moreover, there is no chance to use the same adaptation process for different kind
of problems (for example, adapting the price of an old flat is not the same thing than adapting
the price of a new one, even if anything else is very similar). Consequently, similarity
measures are used to build dynamic clusters of cases in order to choose which kind of
adaptation method has to be chosen for a given new problem.

Figure 5 Clustering cases by "type of
adaptation process"

Figure 6 Resolution process

The resolution process is illustrated in Figure 6: similarity of the new target case (C) is
computed with all other cases†. The algorithm chooses the type of adaptation which is the
significant and the most represented in the cluster of neighbors. (C) has been assessed to fit
with a “blue” adaptation process.
Case Based Reasoning needs a case base on which a metric and a similarity measure have
been defined.

1.2.5 CBR cycle
Aamodt and Plaza proposed a first CBR cycle to make evident the knowledge engineering
effort in CBR. This general cycle has been completed by an “Elaborate” step which was not
specified in the original cycle [AamPla94].
Each step has his proper way to use knowledge base and case base but “retrieve” and “adapt”
steps explain how to build knowledge representation for domain and cases.

Figure 7 CBR cycle steps

1.2.5.1 Elaborate
“Elaborate” a new case consists to decide what descriptors are useful for finding “adaptable”
cases in the case base. Similarity is synonym of “adaptability”. Adaptability depends directly
on the supposed effort to adapt a source case solution in the context of the target case

† Case base can be structured in order to cut the number of matches to do.

problem. A general method consists to complete or to filter the raw description of a problem
on the basis of domain knowledge, inferring new descriptors and importance weights.
Dependencies (β) are very important to be explicitly available at this step. This step
“elaborate” is illustrated in Table 2 and Table 3 while Figure 8 illustrates how the domain
knowledge can be used to infer a new descriptors from an other one.

Figure 8. Domain knowledge to infer « general status » from « list of defects »

1.2.5.2 Retrieve
The “retrieve” step is the key step in CBR because the quality of the adaptation depends on
the quality of the retrieval. Do not forget that we are searching for “similar” solutions by
matching source and target problems. It is necessary to define a similarity measure which will
take into account dependencies between problem and solution descriptors and adaptation
operators availability for observed discrepancies. There are numerous similarity measures in
literature (coming from data analysis for example) taking into account specificities of
descriptors (time, space, complex structures, plans, sequences, etc.). It is often possible to
translate these “special” similarity measures in simpler ones by transforming complex
descriptors in a set of simpler ones. Intuitively, we understand that we have to give a high
weight for problem descriptors exhibiting a high dependency with solution descriptors and for
which there is no simple adaptation operators. Conversely, we can put low weights for
problem descriptors exhibiting little dependency and for which it is easy to adapt
corresponding dependent solution descriptors.

Attribute label Attribute type Attribute value

General status Symbol
(inferred)

??

Nb kms Real 198000

Nb of years of the
cas

Real 10

Car Manufacturer Symbol
(inferred)

??

Car model Symbol 206

Car type Symbol Break

Defects List of symbols (superficial
problems)

Sale Price
(solution)

Real ???

Table 2 Problem description to elaborate

Attribute value

Good

198000

10

Peugeot

205

Break

(superficial problems)

???

Table 3 Elaborated Problem description

For reason of simplicity, we consider there the following distance measure:
∑

∑ ×
=

i
i

i
ii

p

dp
d the

distance between two problem descriptors is constituted by the weighted sum of attributes
distances. Weights ip hold the knowledge on the scale of “influence” of the problem
descriptor di on the solution.
Attribute label Attribute type Influence weight of the attribute on the solution

General Status Symbol (inferred) 20%

Nb of kms Real 35%

Nb of years of the car Real 25%

Manufacturer Symbol (inferred) 5%

Car Model Symbol 5%

Car type Symbol 10%

Observed defects list List of symbols No importance

Sale Price (solution) Real ???

Table 4 Attribute weights = influence importance of the attribute on the solution
Retrieval step consists to use these weights to choose the best case to adapt. The classical
algorithm is the KNN algorithm (K nearest neighbors).

1.2.5.3 Adapt
Adaptation is the end of the analogical inference by computing which could be a target
solution by adapting the solution of the most similar case. Adaptation rules have to express
how to manage discrepancies between source and target problems to guide adaptation of the
source solution. The following schema illustrates knowledge and inference process of
adaptation:

Équation 1

i
s
i

s
k

s
k

t
kk

s
k

t
k ddDDDDDD ∆×±=∆±=)/I(;

Figure 9 Illustration of a single simple adaptation

Équation 2

()
{ }
∫

=

∆×±=∆±=
mji

i
s
i

s
k

s
k

t
kk

s
k

t
k ddDDDDDD

,

)/I(;

Figure 10 General adaptation formula
The formula (Équation 1) expresses that Dk

t is computed by “adding” the influence I(Dk
s/di

s)
“in proportion of” the difference ∆di between source and problem descriptors. “adding”
operator and “in proportion of” operator can be very specific to the types of descriptors and to
the context of the case (the type of adaptation to process).
The formula (Équation 2) generalizes the previous one. There is a new operator
« integrating » the effect of several discrepancies on problems parts.

• id∆ = discrepancy between source and target problem descriptors values according to
a specific matching function.

•)/I(s
i

s
k dD = influence of a discrepancy of s

id on the value of s
kD .

• × = operator to compute Influence according to the observed problem descriptors
discrepancies.

• ()
{ }
∫

=

∆×
mji

i
s
i

s
k ddD

,

)/I(sums individual influence effects of problem descriptors

discrepancies for an “individual” source solution descriptor (there is no general
equation for several source solution descriptors).

• ± = operator of “addition” of the integrated computed influence to a source solution
descriptor to propose a value for the corresponding target solution descriptor.

Consider the following « car sale problem »

The adaptation rule could be the following:

In this rule, we consider only 2 influences of problem descriptors on the price: number of
kilometers and car status. Each positive (negative) discrepancy of 1 km on the first descriptor
adds (subtracts) 0.1 euros to the price while the fact to go from “bad status” to “good status”
(or vice-versa) adds 1000 euros (or subtracts) 1000 euros.‡

1.2.5.4 Revise
Revising is sometimes necessary when the adapted solution did not fit the current situation
and needs “revisions” to fit it. In order to revise, we can:

• Try the adapted solution in the “real” world (for example, we try to sell our car with
the adapted sale price…).

‡ In order to take into account the « car status », it would be possible to express it by a « mark » between 1 to 10
for example and to use classical metrics.

• Introspect the case base with the complete case in order to verify how similar
complete cases worked when applied (for example, we could verify that similar cars
were really sold with a similar price).

• Use an other problem solving process (simulator, expert system, …)
In each case, we can observe discrepancies between what the system proposed and what
would have been a correct proposal. After the revising step, we could use these discrepancies
as starting points to revise the domain knowledge and to learn about the retrieval/adaptation
process.

1.2.5.5 Memorize (learn)
Adding a new real solved case to the Case base is the basic “learning” mechanism of CBR.
Other important things can be capitalized:

• As noticed for the “revise” step, retrieval and adaptation knowledge:
o Similarity measure
o Influence knowledge
o New dependencies, etc

• The “trace” of the “reasoning process” as it was for the current new case. For example,
if we keep trace of the adaptation process, we can consider these traces as “adaptation
cases” usable for a CBR cycle for the adaptation problem.

1.3 CBR knowledge engineering
Very shortly, we can summarize important steps we usually find during knowledge
engineering for a CBR application:

o Collecting potential “cases”
o Describing case descriptors
o Testing cases structures with “users/experts”
o Trying to build an ontology of descriptors attributes
o Observing the reusing of cases by users/experts for real concrete problems.
o Focusing on the adaptation process
o Eliciting dependencies and influences as they are used in adaptation
o Building a similarity measure on the base of known dependencies and influences
o Testing similarity measure with the set of solved cases
o Building adaptation rules according to dependencies and influences
o Testing adaptation on the set of known cases
o Building new cases with “normal” users with “observers/experts” (we call this period

the “learning” period of the system)
o Revising the whole system
o Delivering the CBR system with an initial “case base” useful for reusing…and

continuous learning possibilities!

2 Traces Based Reasoning
For more detail see [CMP03]
We share the idea that human experience, temporally situated by definition, is well
represented by a temporal record or trace describing an implicit underlying process. CBR
claims also that property by addressing problem solving episodes, even if \emph{de facto}
CBR systems exploiting the temporal dimension of cases are not so numerous; case
descriptors are not compulsorily time stamped. Moreover, a problem solving episode is
considered independently of the different "stories" (contexts) where this episode occurred. A

case is described with a fixed granularity, in a specific temporality and contains intangible
description terms.
 According to our opinion, we proposed to exploit use traces of a computer environment as
possible indirect records of knowledge which emerged while the user did his/her tasks with
the help of the computer environment. We propose a theory defining what we call a "trace",
how it can be represented and which kind of computations can be done in order to retrieve
useful past sequences for new uses.
 When traces are exploited on the basis of pattern similarities allowing some adaptations to
new situations, we propose to call this kind of computation "Traces Based Reasoning" (TBR).
TBR is a kind of generalization of CBR principles.

By analogy with CBR, the TBR cycle would be illustrated as figured in

Figure 11 The CBR cycle handles cases, which are stored in a case base, under a predefined form; the

TBR cycle dynamically elaborates episodes which could be potentially useful in available traces according
to some "task signature"; the target episode is built with the help of other proposed episodes under the

user control. The target episode belongs to the current trace, it will be stored in it without particular
indexing. Stored traces are containers of potential episodes which will be revealed in new situations.

As for CBR, we consider that most of the reasoning cycle steps can be realized by the
computer environment or/and by the user himself.

3 Conclusion
Case-Based Reasoning is an efficient AI paradigm for problem solving. This approach is very
efficient and its robustness comes from its ability to “learn” from experience. Despite its big
success, it suffers from the “frame problem” which means that new case structures are very
difficult to manage with others. A case has to describe its “context” of use, which is difficult
to decide before any reuse and can change in time and space. We propose an extension of the
CBR paradigm by considering solving episodes as they can be found in computer use traces.
Traces offer the possibility to build dynamically new case structures and to extend the context
of cases if necessary.

[Man05] Ramon Lòpez De Màntaras et al. "Retrieval, reuse, revision and retension in case-based reasoning."
The Knowledge Engineering Review 0.1-2 (2005) (to appear)

[CMP03] Pierre-Antoine Champin, Alain Mille, Yannick Prié. "MUSETTE: Modelling USEs and Tasks for
Tracing Experience." ICCBR'03 : Workshop "From structured cases to unstructured problem solving episodes"
ICCBR'03: NTNU, 2003. 279-286.

[Cre93] Daniel Crevier. "AI, The tumultuous history of the search for Artificial Intelligence." Basic Books,
Harper-Collins, 1993.

[Min75] Marvin Minsky. "A framework for representing knowledge." The Psychology of Computer Vision Ed.
Patrick Winston Mc Graw Hill, 1975.

[Sch82] Roger C. Schank. "Dynamic Memory. A theory of reminding and learning in computers and people."
Cambridge University Press, 1982.

[AamPla94] Agnar Aamodt, Enric Plaza. "Case-Based Reasoning foundational issues, methodological variations
and system approaches." AI Communication 7.1 (1994): 39-59.

