
RacerPro Reference Manual

Version 1.9.2

Racer Systems GmbH & Co. KG

October 18, 2007

http://www.sts.tu-harburg.de/~r.f.moeller/racer

Contents

1 Knowledge Base Management Functions 1

1.1 TBox Management . 10

1.2 ABox Management . 19

2 Knowledge Base Declarations 29

2.1 Built-in Concepts . 29

2.2 Concept Axioms . 30

2.3 Role Declarations . 33

2.4 Concrete Domain Attribute Declaration . 43

2.5 Assertions . 44

2.6 Concrete Domain Assertions . 52

3 Reasoning Modes 57

4 Evaluation Functions and Queries 61

4.1 Queries for Concept Terms . 61

4.2 Role Queries . 66

4.3 TBox Evaluation Functions . 74

4.4 ABox Evaluation Functions . 81

4.5 ABox Queries . 84

5 Retrieval 91

5.1 TBox Retrieval . 91

5.2 ABox Retrieval . 102

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

ii CONTENTS

6 The API of the nRQL Query Processing Engine 115

6.1 Basic Commands . 117

6.2 Query Management . 125

6.3 Rule Management . 126

6.4 Query Life Cycle . 127

6.5 Rule Life Cycle . 133

6.6 Execution Control . 136

6.7 ABox Queries . 147

6.8 TBox Queries . 158

6.9 Getting Answers . 161

6.10 Defined Queries . 167

6.11 Rules . 172

6.12 Querying Modes . 181

6.13 Inference . 200

6.14 Query Repository . 204

6.15 The Substrate Representation Layer . 206

6.16 The nRQL Persistency Facility . 222

7 Publish and Subscribe Functions 227

8 The Racer Persistency Services 231

Index 235

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

Chapter 1

Knowledge Base Management
Functions

A knowledge base is just a tuple consisting of a TBox and an associated ABox. Note that
a TBox and its associated ABox may have the same name. This section documents the
functions for managing TBoxes and ABoxes and for specifying queries.

Racer provides a default knowledge base with a TBox called default and an associated
ABox with the same name.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2 CHAPTER 1. KNOWLEDGE BASE MANAGEMENT FUNCTIONS

in-knowledge-base macro

Description: This form is an abbreviation for the sequence:
(in-tbox TBN)
(in-abox ABN TBN). See the appropriate documentation for these

functions.

Syntax: Two forms are possible:
(in-knowledge-base TBN &optional ABN) or
(in-knowledge-base TBN &key (init t))

Arguments: TBN - TBox name

ABN - ABox name

init - t or nil

Remarks: If no ABox is specified an ABox with the same name as the TBox is created
(or initialized if already present). The ABox is associated with the TBox.
If the keyword :init is specified with value nil no new knowledge base is
created but just the current TBox and ABox is set. If :init is specified, no
ABox name may be given.

Examples: (in-knowledge-base peanuts peanuts-characters)
(in-knowledge-base peanuts)
(in-knowledge-base peanuts :init nil)

racer-read-file function

Description: A file in RACER format (as described in this document) containing TBox
and/or ABox declarations is loaded.

Syntax: (racer-read-file pathname)

Arguments: pathname - is the pathname of a file

Examples: (racer-read-file "kbs/test.lisp")

See also: Function include-kb

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

3

racer-read-document function

Description: A file in RACER format (as described in this document) containing TBox
and/or ABox declarations is loaded.

Syntax: (racer-read-document URL)

Arguments: URL - is the URL of a text document with RACER statements.

Remarks: The URL can also be a file URL. In this case, racer-read-file is used on the
pathname of the URL.

Examples: (racer-read-document "http://www.fh-wedel.de/mo/test.lisp")
(racer-read-document "file:///home/mo/kbs/test.lisp")

See also: Function racer-read-file

include-kb function

Description: A file in RACER format (as described in this document) containing TBox
and/or ABox declarations is loaded. The function include is used for parti-
tioning a TBox or ABox into several files.

Syntax: (include-kb pathname)

Arguments: pathname - is the pathname of a file

Examples: (include-kb "project:onto-kb;my-knowledge-base.lisp")

See also: Function racer-read-file

import-kb macro

Description: Macro equivalent of racer-read-file, Page 2.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

4 CHAPTER 1. KNOWLEDGE BASE MANAGEMENT FUNCTIONS

daml-read-file function

Description: A file in DAML format (e.g., produced OilEd) is loaded and represented as
a TBox and an ABox with appropriate declarations.

Syntax: (daml-read-file pathname &key (init t) (verbose nil) (kb-name
nil)))

Arguments: pathname - is the pathname of a file

init - specifies whether the kb is initialized or extended (the default is to
(re-)initialize the kb.

verbose - specifies whether ignored triples are indicated (the default is to just
suppress any warning).

kb-name - specifies the name of the kb (TBox and ABox). The default is the
file specified in the pathname argument (without file type).

Examples: (daml-read-file "oiled:ontologies;madcows.daml") reads the file
"oiled:ontologies;madcows.daml" and creates a TBox madcows and an
associated ABox madcows.

daml-read-document function

Description: A text document in DAML format (e.g., produced OilEd) is loaded from
a web server and represented as a TBox and an ABox with appropriate
declarations.

Syntax: (daml-read-document URL &key (init t) (verbose nil) (kb-name
nil)))

Arguments: URL - is the URL of a text document

init - specifies whether the kb is initialized or extended (the default is to
(re-)initialize the kb.

verbose - specifies whether ignored triples are indicated (the default is to just
suppress any warning).

kb-name - specifies the name of the kb (TBox and ABox). The default is the
document name specified in the URL argument (without file type).

Examples: (daml-read-document "http://www.fh-wedel.de/mo/madcows.daml")
reads the specified text document from the corresponding web server and
creates a TBox madcows and an associated ABox madcows. A file URL may
also be specified (daml-read-document "file://mo/madcows.daml")

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

5

owl-read-file function

Description: A file in OWL format (e.g., produced OilEd) is loaded and represented as a
TBox and an ABox with appropriate declarations.

Syntax: (owl-read-file pathname &key (init t) (verbose nil) (kb-name
nil)))

Arguments: pathname - is the pathname of a file
init - specifies whether the kb is initialized or extended (the default is to

(re-)initialize the kb.
verbose - specifies whether ignored triples are indicated (the default is to just

suppress any warning).
kb-name - specifies the name of the kb (TBox and ABox). The default is the

file specified in the pathname argument (without file type).

Examples: (owl-read-file "oiled:ontologies;madcows.owl") reads the file
"oiled:ontologies;madcows.owl" and creates a TBox madcows and an
associated ABox madcows.

owl-read-document function

Description: A text document in OWL format (e.g., produced OilEd) is loaded from
a web server and represented as a TBox and an ABox with appropriate
declarations.

Syntax: (owl-read-document URL &key (init t) (verbose nil) (kb-name
nil)))

Arguments: URL - is the URL of a text document
init - specifies whether the kb is initialized or extended (the default is to

(re-)initialize the kb.
verbose - specifies whether ignored triples are indicated (the default is to just

suppress any warning).
kb-name - specifies the name of the kb (TBox and ABox). The default is the

document name specified in the URL argument (without file type).

Examples: (owl-read-document "http://www.fh-wedel.de/mo/madcows.owl")
reads the specified text document from the corresponding web server and
creates a TBox madcows and an associated ABox madcows. A file URL may
also be specified (owl-read-document "file://mo/madcows.owl")

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6 CHAPTER 1. KNOWLEDGE BASE MANAGEMENT FUNCTIONS

mirror function

Description: If you are offline, importing OWL or DAML ontologies may cause problems.
However, editing documents and inserting local URLs for ontologies is in-
convenient. Therefore, Racer provides a facility to declare local mirror URLs
for ontology URLs

Syntax: (mirror URL mirror −URL)

Arguments: URL - a URL used to refer to an ontology in a DAML-OIL or OWL doc-
ument

mirror −URL - a URL that refers to the same ontology. Possibly, a file URL
may be supplied.

clear-mirror-table function

Description: Delete all mirror entries

Syntax: (clear-mirror-table)

Arguments:

dig-read-file function

Description: A file in dig format (e.g., produced OilEd) is loaded and represented as a
TBox and an ABox with appropriate declarations.

Syntax: (dig-read-file pathname &key (init t) (verbose nil) (kb-name
nil)))

Arguments: pathname - is the pathname of a file
init - specifies whether the kb is initialized or extended (the default is to

(re-)initialize the kb.
verbose - specifies whether ignored triples are indicated (the default is to just

suppress any warning).
kb-name - specifies the name of the kb (TBox and ABox). The default is the

file specified in the pathname argument (without file type).

Examples: (dig-read-file "oiled:ontologies;madcows.dig") reads the file
"oiled:ontologies;madcows.dig" and creates a TBox madcows and an
associated ABox madcows.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

7

dig-read-document function

Description: A text document in dig format (e.g., produced OilEd) is loaded from a web
server and represented as a TBox and an ABox with appropriate declara-
tions.

Syntax: (dig-read-document URL &key (init t) (verbose nil) (kb-name
nil)))

Arguments: URL - is the URL of a text document

init - specifies whether the kb is initialized or extended (the default is to
(re-)initialize the kb.

verbose - specifies whether ignored triples are indicated (the default is to just
suppress any warning).

kb-name - specifies the name of the kb (TBox and ABox). The default is the
document name specified in the URL argument (without file type).

Examples: (dig-read-document "http://www.fh-wedel.de/mo/madcows.dig")
reads the specified text document from the corresponding web server and
creates a TBox madcows and an associated ABox madcows. A file URL may
also be specified (dig-read-document "file://mo/madcows.dig")

kb-ontologies function

Description: A document in DAML+OIL or OWL format can import other ontologies.
With this function one can retrieve all ontologies that were imported into
the specified knowledge base

Syntax: (kb-ontologies KBN)

Arguments: KBN - is the name of the knowledge base.

get-namespace-prefix function

Description: Returns the prefix of the default namespace of a TBox loaded from an OWL
resource.

Syntax: (get-namespace-prefix TBN)

Arguments: TBN - TBox name

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

8 CHAPTER 1. KNOWLEDGE BASE MANAGEMENT FUNCTIONS

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

9

save-kb function

Description: If a pathname is specified, a TBox is saved to a file. In case a stream is
specified the TBox is written to the stream (the stream must already be
open) and the keywords if -exists and if -does-not -exist are ignored.

Syntax: (save-kb pathname-or-stream
&key (tbox (current-tbox)) (abox (current-abox))
(syntax :krss) (if -exists :supersede)
(if -does-not-exist :create)
(uri "")
(ns0 ""))

Arguments: pathname-or -stream - is the pathname of a file or is an output stream
tbox - TBox name or TBox object
abox - ABox name or ABox object
syntax - indicates the syntax of the KB to be generated. Possible values for

the syntax argument are :krss (the default), :xml, or :daml. Note
that concerning KRSS only a KRSS-like syntax is supported by
RACER. Therefore, instead of :krss it is also possible to specify
:racer.

if -exists - specifies the action taken if a file with the specified name already
exists. All keywords for the Lisp function with-open-file are sup-
ported. The default is :supersede.

if -does-not -exist - specifies the action taken if a file with the specified
name does not yet exist. All keywords for the Lisp function
with-open-file are supported. The default is :create.

uri - The keyword :uri specifies the URI prefix for names. It is only
available if syntax :daml is specified. This argument is useful in
combination with OilEd. See the OilEd documentation.

ns0 - The keyword :uri is also provided for generating DAML files to
be processed with OilEd. The keyword :ns0 specifies the name of
the OilEd namespace 0. This keyword is important for the ABox
part. If the value of :uri is /home/user/test#, the value of :ns0
should probably be /home/user/. Some experimentation might be
necessary to find the correct values for :uri and :ns0 to be used
with OilEd.

Examples: (save-kb "project:onto-kb;my-knowledge-base.krss"
:syntax :krss
:tbox ’family
:abox ’smith-family)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

10 CHAPTER 1. KNOWLEDGE BASE MANAGEMENT FUNCTIONS

(save-kb "family.daml" :syntax :daml

:tbox ’family
:abox ’smith-family
:uri "http://www.fh-wedel.de/family.daml")
:ns0 "http://www.fh-wedel.de/")

1.1 TBox Management

If RACER is started, there exists a TBox named DEFAULT, which is set to the current
TBox.

in-tbox macro

Description: The TBox with the specified name is taken or a new TBox with that name
is generated.

Syntax: (in-tbox TBN &key (init t))

Arguments: TBN - is the name of the TBox.

init - boolean indicating if the TBox should be initialized.

Values: TBox object named TBN

Remarks: Usually this macro is used at top of a file containing a TBox. This macro
can also be used to create new TBoxes.

The specified TBox is the (current-tbox) until in-tbox is called again.

Examples: (in-tbox peanuts)
(implies Piano-Player Character)

...

See also: Macro signature on page 12.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

1.1. TBOX MANAGEMENT 11

init-tbox function

Description: Generates a new TBox or initializes an existing TBox. During the initializa-
tion all user-defined concept axioms and role declarations are deleted, only
the concepts *top* and *bottom* remain in the TBox.

Syntax: (init-tbox tbox)

Arguments: tbox - TBox object

Values: tbox

Remarks: This is the way to create a new TBox object.

signature macro

Description: Defines the signature for a knowledge base.

If any keyword except individuals or objects is used, the (current-tbox) is
initialized and the signature is defined for it.

If the keyword individuals or objects is used, the (current-abox) is initial-
ized. If all keywords are used, the (current-abox) and its TBox are both
initialized.

Syntax: (signature &key (atomic-concepts nil) (roles nil)
(transitive-roles nil) (features nil) (attributes nil)
(individuals nil) (objects nil))

Arguments: atomic-concepts - is a list of all the concept names, specifying C.

roles - is a list of role declarations.

transitive-roles - is a list of transitive role declarations.

features - is a list of feature declarations.

attributes - is a list of attributes declarations.

individuals - is a list of individual names.

objects - is a list of object names.

Remarks: Usually this macro is used at top of a file directly after the macro
in-knowledge-base, in-tbox or in-abox.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

12 CHAPTER 1. KNOWLEDGE BASE MANAGEMENT FUNCTIONS

Actually it is not necessary in RACER to specify the signature, but it helps
to avoid errors due to typos.

Examples: Signature for a TBox:
(signature

:atomic-concepts (Character Baseball-Player...)
:roles ((has-pet)
(has-dog :parents (has-pet) :domain human :range dog)
(has-coach :feature t))

:attributes ((integer has-age) (real has-weight)))

Signature for an ABox:
(signature

:individuals (Charlie-Brown Snoopy ...)
:objects (age-of-snoopy ...))

Signature for a TBox and an ABox:
(signature

:atomic-concepts (Character Baseball-Player...)
:roles ((has-pet)
(has-dog :parents (has-pet) :domain human :range dog)
(has-coach :feature t))

:attributes ((integer has-age) (real has-weight))
:individuals (Charlie-Brown Snoopy ...)
:objects (age-of-snoopy ...))

See also: For role definitions see define-primitive-role, on page 35, for feature
definitions see define-primitive-attribute, on page 36, for attribute def-
initions see define-concrete-domain-attribute, on page 44.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

1.1. TBOX MANAGEMENT 13

ensure-tbox-signature function

Description: Defines the signature for a TBox and initializes the TBox.

Syntax: (ensure-tbox-signature tbox &key (atomic-concepts nil)
(roles nil) (transitive-roles nil) (features nil) (attributes nil))

Arguments: tbox - is a TBox name or a TBox object.

atomic-concepts - is a list of all the concept names.

roles - is a list of all role declarations.

transitive-roles - is a list of transitive role declarations.

features - is a list of feature declarations.

attributes - is a list of attributes declarations.

See also: Definition of macro signature.

get-tbox-signature function

Description: Gets the signature for a TBox.

Syntax: (get-tbox-signature &optional tbox)

Arguments: tbox - is a TBox name or a TBox object.

current-tbox function

Description: The function returns a TBox name.

Syntax: (current-tbox)

Arguments:

set-current-tbox function

Description: The function sets the current TBox.

Syntax: (set-current-tbox tbox)

Arguments:

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

14 CHAPTER 1. KNOWLEDGE BASE MANAGEMENT FUNCTIONS

get-tbox-version Function

Description: Gets a version indicator for a TBox.

Syntax: (get-tbox-version tbox)

Arguments: tbox - is a TBox name or a TBox object.

save-tbox function

Description: If a pathname is specified, a TBox is saved to a file. In case a stream is
specified the TBox is written to the stream (the stream must already be
open) and the keywords if -exists and if -does-not -exist are ignored.

Syntax: (save-tbox pathname-or-stream &optional (tbox (current-tbox))
&key (syntax :krss) (transformed nil) (if -exists :supersede)
(if -does-not-exist :create)
(uri ""))

Arguments: pathname-or -stream - is the pathname of a file or is an output stream
tbox - TBox object
syntax - indicates the syntax of the KB to be generated. Possible values for

the syntax argument are :krss (the default), :xml, or :daml. Note
that only a KRSS-like syntax is supported by RACER. Therefore,
instead of :krss it is also possible to specify :racer.

if -exists - specifies the action taken if a file with the specified name already
exists. All keywords for the Lisp function with-open-file are sup-
ported. The default is :supersede.

if -does-not -exist - specifies the action taken if a file with the specified
name does not yet exist. All keywords for the Lisp function
with-open-file are supported. The default is :create.

Values: TBox object

Remarks: A file may contain several TBoxes.
The usual way to load a TBox file is to use the Lisp function load.
If the server version is used, it must have been started with the option -u in
order to have this function available.

Examples: (save-tbox "project:TBoxes;tbox-one.lisp")
(save-tbox "project:TBoxes;final-tbox.lisp"

(find-tbox ’tbox-one) :if-exists :error)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

1.1. TBOX MANAGEMENT 15

forget-tbox function

Description: Delete the specified TBox from the list of all TBoxes. Usually this enables
the garbage collector to recycle the memory used by this TBox.

Syntax: (forget-tbox tbox)

Arguments: tbox - is a TBox object or TBox name.

Values: List containing the name of the removed TBox and a list of names of option-
ally removed ABoxes

Remarks: All ABoxes referencing the specified TBox are also deleted.

Examples: (forget-tbox ’smith-family)

delete-tbox macro

Description: Delete the specified TBox from the list of all TBoxes. Usually this enables
the garbage collector to recycle the memory used by this TBox.

Syntax: (delete-tbox TBN)

Arguments: TBN - is a TBox name.

Values: List containing the name of the removed TBox and a list of names of option-
ally removed ABoxes

Remarks: Calls forget-tbox

Examples: (delete-tbox smith-family)

delete-all-tboxes function

Description: Delete all known TBoxes except the default TBox called default. Usu-
ally this enables the garbage collector to recycle the memory used by these
TBoxes.

Syntax: (delete-all-tboxes)

Values: List containing the names of the removed TBoxes and a list of names of
optionally removed ABoxes

Remarks: All ABoxes are also deleted.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

16 CHAPTER 1. KNOWLEDGE BASE MANAGEMENT FUNCTIONS

create-tbox-clone function

Description: Returns a new TBox object which is a clone of the given TBox. The clone
keeps all declarations from its original but it is otherwise fresh, i.e., new
declarations can be added. This function allows one to create new TBox
versions without the need to reload the already known declarations.

Syntax: (create-tbox-clone tbox &key (new-name nil) (overwrite nil))

Arguments: tbox - is a TBox name or a TBox object.

new -name - if bound to a symbol, this specifies the name of the clone. A new
unique name based on the name of tbox is generated otherwise.

overwrite - if bound to t an existing TBox with the name given by new -
name is overwritten. If bound to nil an error is signaled if a TBox
with the name given by new -name is found.

Values: TBox object

Examples: (create-tbox-clone ’my-TBox)
(create-tbox-clone ’my-TBox :new-name ’my-clone :overwrite t)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

1.1. TBOX MANAGEMENT 17

clone-tbox macro

Description: Returns a new TBox object which is a clone of the given TBox. The clone
keeps all declarations from its original but it is otherwise fresh, i.e., new
declarations can be added. This function allows one to create new TBox
versions without the need to reload the already known declarations.

Syntax: (clone-tbox TBN &key (new-name nil) (overwrite nil))

Arguments: TBN - is a TBox name.

new -name - if bound to a symbol, this specifies the name of the clone. A new
unique name based on the name of tbox is generated otherwise.

overwrite - if bound to t an existing TBox with the name given by new -
name is overwritten. If bound to nil an error is signaled if a TBox
with the name given by new -name is found.

Values: TBox object

Remarks: The function create-tbox-clone is called.

Examples: (clone-tbox my-TBox)
(clone-tbox my-TBox :new-name my-clone :overwrite t)

See also: Function create-tbox-clone on page 16.

find-tbox function

Description: Returns a TBox object with the given name among all TBoxes.

Syntax: (find-tbox TBN &optional (errorp t))

Arguments: TBN - is the name of the TBox to be found.

errorp - if bound to t an error is signaled if the TBox is not found.

Values: TBox object

Remarks: This function can also be used to get rid of TBoxes or to rename TBoxes as
shown in the examples.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

18 CHAPTER 1. KNOWLEDGE BASE MANAGEMENT FUNCTIONS

set-find-tbox function

Description: Changes the name of an TBox.

Syntax: (set-find-tbox tbox − name − 1 tbox − name − 2)

Arguments: tbox − name − 1 - is the old name of the TBox.

tbox − name − 2 - is the new name of the TBox. This argument may be nil

Values: TBox

Remarks: This function can also be used to delete TBoxes or rename TBoxes as shown
in the examples.

Examples: Get rid of an TBox, i.e. make the TBox garbage collectible:
(set-find-tbox ’tbox1 nil)

Renaming an TBox tbox1 to tbox2:
(set-find-tbox tbox1 ’tbox2)

clear-default-tbox function

Description: This function initializes the default TBox.

Syntax: (clear-default-tbox)

Arguments:

associated-aboxes function

Description: Returns a list of ABoxes or ABox names which are defined wrt. the TBox
specified as a parameter.

Syntax: (associated-aboxes TBN)

Arguments: TBN - is the name of a TBox.

Values: List of ABox objects

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

1.2. ABOX MANAGEMENT 19

xml-read-tbox-file function

Description: A file in XML format containing TBox declarations is parsed and the result-
ing TBox is returned.

Syntax: (xml-read-tbox-file pathname)

Arguments: pathname - is the pathname of a file

Values: TBox object

Remarks: Only XML descriptions which correspond the so-called FaCT DTD are
parsed, everything else is ignored.

Examples: (xml-read-tbox-file "project:TBoxes;tbox-one.xml")

rdfs-read-tbox-file function

Description: A file in RDFS format containing TBox declarations is parsed and the re-
sulting TBox is returned. The name of the TBox is the filename without file
type.

Syntax: (rdfs-read-tbox-file pathname)

Arguments: pathname - is the pathname of a file

Values: TBox object

Remarks: If the file to be read also contains RDF descriptions, use the function
daml-read-file instead. The RDF descriptions are represented using ap-
propriate ABox assertions. The function rdfs-read-tbox-file is supported
for backward compatibility.

Examples: (rdfs-read-tbox-file "project:TBoxes;tbox-one.rdfs")

1.2 ABox Management

If RACER is started, there exists a ABox named DEFAULT, which is set to the current
ABox.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

20 CHAPTER 1. KNOWLEDGE BASE MANAGEMENT FUNCTIONS

in-abox macro

Description: The ABox with this name is taken or generated. If a TBox is specified, the
ABox is also initialized.

Syntax: (in-abox ABN &optional (TBN (current-tbox)))

Arguments: ABN - ABox name

TBN - name of the TBox to be associated with the ABox.

Values: ABox object named ABN

Remarks: If the specified TBox does not exist, an error is signaled.

Usually this macro is used at top of a file containing an ABox. This macro
can also be used to create new ABoxes. If the ABox is to be continued in
another file, the TBox must not be specified again.

The specified ABox is the current abox until in-abox is called again. The
TBox of the ABox is made the (current-tbox).

Examples: (in-abox peanuts-characters peanuts)
(instance Schroeder Piano-Player)

...

See also: Macro signature on page 12.

init-abox function

Description: Initializes an existing ABox or generates a new ABox. During the initializa-
tion all assertions and the link to the referenced TBox are deleted.

Syntax: (init-abox abox &optional (tbox (current-tbox)))

Arguments: abox - ABox object to initialize

tbox - TBox object associated with the ABox

Values: abox

Remarks: The tbox has to already exist before it can be referred to by init-abox.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

1.2. ABOX MANAGEMENT 21

ensure-abox-signature function

Description: Defines the signature for an ABox and initializes the ABox.

Syntax: (ensure-abox-signature abox &key (individuals nil) (objects nil))

Arguments: abox - ABox object

individuals - is a list of individual names.

objects - is a list of concrete domain object names.

See also: Macro signature on page 12 is the macro counterpart. It allows to specify
a signature for an ABox and a TBox with one call.

get-abox-signature function

Description: Gets the signature for an ABox.

Syntax: (get-abox-signature &optional ABN)

Arguments: ABN - is an ABox name

get-kb-signature function

Description: Gets the signature for a knowledge base.

Syntax: (get-kb-signature &optional KBN)

Arguments: KBN - is a name for a knowledge base.

current-abox function

Description: Returns the current ABox.

Syntax: (current-abox)

Arguments:

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

22 CHAPTER 1. KNOWLEDGE BASE MANAGEMENT FUNCTIONS

set-current-abox function

Description: The function sets the current ABox.

Syntax: (set-current-abox abox)

Arguments:

get-abox-version Function

Description: Gets a version indicator for a ABox.

Syntax: (get-abox-version abox)

Arguments: abox - is a ABox name.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

1.2. ABOX MANAGEMENT 23

save-abox function

Description: If a pathname is specified, an ABox is saved to a file. In case a stream is
specified, the ABox is written to the stream (the stream must already be
open) and the keywords if -exists and if -does-not -exist are ignored.

Syntax: (save-abox pathname-or-stream &optional (abox (current-abox))
&key (syntax :krss) (transformed nil) (if -exists :supersede)
(if -does-not-exist :create))

Arguments: pathname-or -stream - is the name of the file or an output stream.

abox - ABox object

syntax - indicates the syntax of the TBox. Possible value for the syntax
argument are :krss (the default), :xml, or :daml.

transformed - if bound to t the ABox is saved in the format it has after
preprocessing by RACER.

if -exists - specifies the action taken if a file with the specified name already
exists. All keywords for the Lisp function with-open-file are sup-
ported. The default is :supersede.

if -does-not -exist - specifies the action taken if a file with the specified
name does not yet exist. All keywords for the Lisp function
with-open-file are supported. The default is :create.

Values: ABox object

Remarks: A file may contain several ABoxes.
The usual way to load an ABox file is to use the Lisp function load.
If the server version is used, it must have been started with the option -u in
order to have this function available.

Examples: (save-abox "project:ABoxes;abox-one.lisp")
(save-abox "project:ABoxes;final-abox.lisp"

(find-abox ’abox-one) :if-exists :error)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

24 CHAPTER 1. KNOWLEDGE BASE MANAGEMENT FUNCTIONS

forget-abox function

Description: Delete the specified ABox from the list of all ABoxes. Usually this enables
the garbage collector to recycle the memory used by this ABox.

Syntax: (forget-abox abox)

Arguments: abox - is a ABox object or ABox name.

Values: The name of the removed ABox

Examples: (forget-abox ’family)

delete-abox macro

Description: Delete the specified ABox from the list of all ABoxes. Usually this enables
the garbage collector to recycle the memory used by this ABox.

Syntax: (delete-abox ABN)

Arguments: ABN - is a ABox name.

Values: The name of the removed ABox

Remarks: Calls forget-abox

Examples: (delete-abox family)

delete-all-aboxes function

Description: Delete all known ABoxes. Usually this enables the garbage collector to recycle
the memory used by these ABoxes.

Syntax: (delete-all-aboxes)

Values: List containing the names of the removed ABoxes

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

1.2. ABOX MANAGEMENT 25

create-abox-clone function

Description: Returns a new ABox object which is a clone of the given ABox. The clone
keeps the assertions and the state from its original but new declarations can
be added without modifying the original ABox. This function allows one to
create new ABox versions without the need to reload (and reprocess) the
already known assertions.

Syntax: (create-abox-clone abox &key (new-name nil) (overwrite nil))

Arguments: abox - is an ABox name or an ABox object.

new -name - if bound to a symbol, this specifies the name of the clone. A new
unique name based on the name of abox is generated otherwise.

overwrite - if bound to t an existing ABox with the name given by new -name
is overwritten. If bound to nil an error is signaled if an ABox with
the name given by new -name is found.

Values: ABox object

Remarks: The current ABox is set to the result of this function.

Examples: (create-abox-clone ’my-ABox)
(create-abox-clone ’my-ABox :new-name ’abox-clone :overwrite t)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

26 CHAPTER 1. KNOWLEDGE BASE MANAGEMENT FUNCTIONS

clone-abox macro

Description: Returns a new ABox object which is a clone of the given ABox. The clone
keeps the assertions and the state from its original but new declarations can
be added without modifying the original ABox. This function allows one to
create new ABox versions without the need to reload (and reprocess) the
already known assertions.

Syntax: (clone-abox ABN &key (new-name nil) (overwrite nil))

Arguments: ABN - is an ABox name.

new -name - if bound to a symbol, this specifies the name of the clone. A new
unique name based on the name of abox is generated otherwise.

overwrite - if bound to t an existing ABox with the name given by new -name
is overwritten. If bound to nil an error is signaled if an ABox with
the name given by new -name is found.

Values: ABox object

Remarks: The function create-abox-clone is called.

Examples: (clone-abox my-ABox)
(clone-abox my-ABox :new-name abox-clone :overwrite t)

See also: Function create-abox-clone on page 25.

find-abox function

Description: Finds an ABox object with a given name among all ABoxes.

Syntax: (find-abox ABN &optional (errorp t))

Arguments: ABN - is the name of the ABox to be found.

errorp - if bound to t an error is signaled if the ABox is not found.

Values: ABox object

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

1.2. ABOX MANAGEMENT 27

set-find-abox function

Description: Changes the name of an ABox.

Syntax: (set-find-abox abox − name − 1 abox − name − 2)

Arguments: abox − name − 1 - is the old name of the ABox.

abox − name − 2 - is the new name of the ABox. This argument may be nil

Values: ABox

Remarks: This function can also be used to delete ABoxes or rename ABoxes as shown
in the examples.

Examples: Get rid of an ABox, i.e. make the ABox garbage collectible:
(set-find-abox ’abox1 nil)

Renaming an ABox abox1 to abox2:
(set-find-abox ’abox1 ’abox2)

tbox function

Description: Gets the associated TBox for an ABox.

Syntax: (tbox abox)

Arguments: abox - ABox object

Values: TBox object

Remarks: This function is provided in the Lisp version only.

associated-tbox function

Description: Gets the associated TBox for an ABox.

Syntax: (associated-tbox abox)

Arguments: abox - ABox object

Values: TBox object

Remarks: This function is provided in the server version only.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

28 CHAPTER 1. KNOWLEDGE BASE MANAGEMENT FUNCTIONS

set-associated-tbox function

Description: Sets the associated TBox for an ABox.

Syntax: (set-associated-tbox ABN TBN)

Arguments: ABN - ABox name

TBN - TBox name

Values: TBox object

Remarks: This function is provided in the server version only.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

Chapter 2

Knowledge Base Declarations

Knowledge base declarations include concept axioms and role declarations for the TBox and
the assertions for the ABox. The TBox object and the ABox object must exist before the
functions for knowledge base declarations can be used. The order of axioms and assertions
does not matter because forward references can be handled by RACER.

The macros for knowledge base declarations add the concept axioms and role declarations
to the (current-tbox) and the assertions to the (current-abox).

2.1 Built-in Concepts

top, top concept

Description: The name of most general concept of each TBox, the top concept (>).

Syntax: *top*

Remarks: The concepts *top* and top are synonyms. These concepts are elements of
every TBox.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

30 CHAPTER 2. KNOWLEDGE BASE DECLARATIONS

bottom, bottom concept

Description: The name of the incoherent concept, the bottom concept (⊥).

Syntax: *bottom*

Remarks: The concepts *bottom* and bottom are synonyms. These concepts are ele-
ments of every TBox.

2.2 Concept Axioms

This section documents the macros and functions for specifying concept axioms.

Please note that the concept axioms define-primitive-concept, define-concept and
define-disjoint-primitive-concept have the semantics given in the KRSS specification
only if they are the only concept axiom defining the concept CN in the terminology. This
is not checked by the RACER system.

implies macro

Description: Defines a GCI between C1 and C2.

Syntax: (implies C1 C2)

Arguments: C1, C2 - concept term

Remarks: C1 states necessary conditions for C2. This kind of facility is an addendum
to the KRSS specification.

Examples: (implies Grandmother (and Mother Female))
(implies

(and (some has-sibling Sister) (some has-sibling Twin)
(exactly 1 has-sibling))

(and Twin (all has-sibling Twin-sister)))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.2. CONCEPT AXIOMS 31

equivalent macro

Description: States the equality between two concept terms.

Syntax: (equivalent C1 C2)

Arguments: C1, C2 - concept term

Remarks: This kind of concept axiom is an addendum to the KRSS specification.

Examples: (equivalent Grandmother
(and Mother (some has-child Parent)))

(equivalent
(and polygon (exactly 4 has-angle))
(and polygon (exactly 4 has-edges)))

disjoint macro

Description: This axiom states the disjointness of a set of concepts.

Syntax: (disjoint CN 1 ...CN n)

Arguments: CN 1,. . . , CN n - concept names

Examples: (disjoint Yellow Red Blue)
(disjoint January February ...November December))

define-primitive-concept KRSS macro

Description: Defines a primitive concept.

Syntax: (define-primitive-concept CN C)

Arguments: CN - concept name

C - concept term

Remarks: C states the necessary conditions for CN .

Examples: (define-primitive-concept Grandmother (and Mother Female))
(define-primitive-concept Father Parent)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

32 CHAPTER 2. KNOWLEDGE BASE DECLARATIONS

define-concept KRSS macro

Description: Defines a concept.

Syntax: (define-concept CN C)

Arguments: CN - concept name

C - concept term

Remarks: Please note that in RACER, definitions of a concept do not have to be unique.
Several definitions may be given for the same concept.

Examples: (define-concept Grandmother
(and Mother (some has-child Parent)))

define-disjoint-primitive-concept KRSS macro

Description: This axiom states the disjointness of a group of concepts.

Syntax: (define-disjoint-primitive-concept CN GNL C)

Arguments: CN - concept name

GNL - group name list, which lists all groups to which CN belongs to
(among other concepts). All elements of each group are declared to
be disjoint.

C - concept term, that is implied by CN .

Remarks: This function is just supplied to be compatible with the KRSS.

Examples: (define-disjoint-primitive-concept January
(Month) (exactly 31 has-days))

(define-disjoint-primitive-concept February
(Month) (and (at-least 28 has-days) (at-most 29 has-days)))

...

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.3. ROLE DECLARATIONS 33

add-concept-axiom function

Description: This function adds a concept axiom to a TBox.

Syntax: (add-concept-axiom tbox C1 C2 &key (inclusion-p nil))

Arguments: tbox - TBox object

C1, C2 - concept term

inclusion-p - boolean indicating if the concept axiom is an inclusion axiom
(GCI) or an equality axiom. The default is to state an inclusion.

Values: tbox

Remarks: RACER imposes no constraints on the sequence of concept axiom declara-
tions with add-concept-axiom, i.e. forward references to atomic concepts
for which other concept axioms are added later are supported in RACER.

add-disjointness-axiom function

Description: This function adds a disjointness concept axiom to a TBox.

Syntax: (add-disjointness-axiom tbox CN GN)

Arguments: tbox - TBox object

CN - concept name

GN - group name

Values: tbox

2.3 Role Declarations

Roles can be declared with the following statements.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

34 CHAPTER 2. KNOWLEDGE BASE DECLARATIONS

define-primitive-role KRSS macro (with changes)

Description: Defines a role.

Syntax: (define-primitive-role RN &key (transitive nil) (feature nil)
(symmetric nil) (reflexive nil) (inverse nil) (domain nil)
(range nil) (parents nil))

Arguments: RN - role name

transitive - if bound to t declares that the new role is transitive.

feature - if bound to t declares that the new role is a feature.

symmetric - if bound to t declares that the new role is a symmetric. This is
equivalent to declaring that the new role’s inverse is the role itself.

reflexive - if bound to t declares that the new role is reflexive (currently only
supported for ALCH). If feature is bound to t, the value of reflexive
is ignored.

inverse - provides a name for the inverse role of RN . This is equivalent to
(inv RN). The inverse role of RN has no user-defined name, if
inverse is bound to nil.

domain - provides a concept term defining the domain of role RN . This is
equivalent to adding the axiom (implies (at-least 1 RN) C)
if domain is bound to the concept term C . No domain is declared
if domain is bound to nil.

range - provides a concept term defining the range of role RN . This is
equivalent to adding the axiom (implies *top* (all RN D)) if
range is bound to the concept term D . No range is declared if range
is bound to nil.

parents - provides a list of superroles for the new role. The role RN has no
superroles, if parents is bound to nil.
If only a single superrole is specified, the keyword :parent may
alternatively be used, see the examples.

Remarks: This function combines several KRSS functions for defining properties of a
role. For example the conjunction of roles can be expressed as shown in the
first example below.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.3. ROLE DECLARATIONS 35

A role that is declared to be a feature cannot be transitive. A role with a
feature as a parent has to be a feature itself. A role with transitive subroles
may not be used in number restrictions.

Examples: (define-primitive-role conjunctive-role :parents (R-1 ...R-n))
(define-primitive-role has-descendant :transitive t

:inverse descendant-of :parent has-child)
(define-primitive-role has-children :inverse has-parents

:domain parent :range children))

See also: Macro signature on page 12.

define-primitive-attribute KRSS macro (with changes)

Description: Defines an attribute.

Syntax: (define-primitive-attribute AN &key (symmetric nil)
(inverse nil) (domain nil) (range nil) (parents nil))

Arguments: AN - attribute name

symmetric - if bound to t declares that the new role is a symmetric. This is
equivalent to declaring that the new role’s inverse is the role itself.

inverse - provides a name for the inverse role of AN . This is equivalent to
(inv AN). The inverse role of AN has no user-defined name, if
inverse is bound to nil.

domain - provides a concept term defining the domain of role AN . This is
equivalent to adding the axiom (implies (at-least 1 AN) C)
if domain is bound to the concept term C . No domain is declared
if domain is bound to nil.

range - provides a concept term defining the range of role AN . This is
equivalent to adding the axiom (implies *top* (all AN D)) if
range is bound to the concept term D . No range is declared if range
is bound to nil.

parents - provides a list of superroles for the new role. The role AN has no
superroles, if parents is bound to nil.
If only a single superrole is specified, the keyword :parent may
alternatively be used, see examples.

Remarks: This macro is supplied to be compatible with the KRSS specification. It is re-
dundant since the macro define-primitive-role can be used with :feature
t. This function combines several KRSS functions for defining properties of
an attribute.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

36 CHAPTER 2. KNOWLEDGE BASE DECLARATIONS

An attribute cannot be transitive. A role with a feature as a parent has to
be a feature itself.

Examples: (define-primitive-attribute has-mother
:domain child :range mother :parents (has-parents))

(define-primitive-attribute has-best-friend
:inverse best-friend-of :parent has-friends)

See also: Macro signature on page 12.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.3. ROLE DECLARATIONS 37

add-role-axioms function

Description: Adds a role to a TBox.

Syntax: (add-role-axioms tbox RN &key (cd-attribute nil) (transitive nil)
(feature nil) (symmetric nil) (reflexive nil) (inverse nil)
(domain nil) (range nil) (parents nil))

Arguments: tbox - TBox object to which the role is added.

RN - role name

cd -attribute - may be either integer or real.

transitive - if bound to t declares that RN is transitive.

feature - if bound to t declares that RN is a feature.

symmetric - if bound to t declares that RN is a symmetric. This is equivalent
to declaring that the new role’s inverse is the role itself.

reflexive - if bound to t declares that RN is reflexive (currently only sup-
ported for ALCH). If feature is bound to t, the value of reflexive
is ignored.

inverse - provides a name for the inverse role of RN (is equivalent to (inv
RN)). The inverse role of RN has no user-defined name, if inverse
is bound to nil.

domain - provides a concept term defining the domain of role RN (equivalent
to adding the axiom (implies (at-least 1 RN) C) if domain
is bound to the concept term C . No domain is declared if domain
is bound to nil.

range - provides a concept term defining the range of role RN (equivalent
to adding the axiom (implies *top* (all RN D)) if range is
bound to the concept term D . No range is declared if range is
bound to nil.

parents - providing a single role or a list of superroles for the new role. The
role RN has no superroles, if parents is bound to nil.

Values: tbox

Remarks: For each role RN there may be only one call to add-role-axioms per TBox.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

38 CHAPTER 2. KNOWLEDGE BASE DECLARATIONS

functional macro

Description: States that a role is to be interpreted as functional.

Syntax: (functional RN
&optional (TBN (current-tbox)))

Arguments: RN - role name

TBN - TBox name

Remarks: States that a role is to be interpreted as functional.

role-is-functional function

Description: States that a role is to be interpreted as functional.

Syntax: (role-is-functional RN
&optional (TBN (current-tbox)))

Arguments: RN - role name

TBN - TBox name

transitive macro

Description: States that a role is to be interpreted as transitive.

Syntax: (transitive RN
&optional (TBN (current-tbox)))

Arguments: RN - role name

TBN - TBox name

role-is-transitive function

Description: States that a role is to be interpreted as transitive.

Syntax: (role-is-transitive RN
&optional (TBN (current-tbox)))

Arguments: RN - role name

TBN - TBox name

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.3. ROLE DECLARATIONS 39

role-is-used-as-datatype-property function

Description: States that a role is to be interpreted as a datatype property role.

Syntax: (role-is-used-as-datatype-property RN TBN)

Arguments: RN - role name

TBN - TBox name

role-is-used-as-annotation-property function

Description: States that a role is to be interpreted as an annotation property role.

Syntax: (role-is-used-as-annotation-property RN TBN)

Arguments: RN - role name

TBN - TBox name

inverse macro

Description: Defines a name for the inverse of a role.

Syntax: (inverse RN inverse − role
&optional (TBN (current-tbox)))

Arguments: RN - role name

inverse − role - inverse role of the Form (inv RN)

TBN - TBox name

inverse-of-role function

Description: Defines a name for the inverse of a role.

Syntax: (inverse-of-role RN inverse − role
&optional (TBN (current-tbox)))

Arguments: RN - role name

inverse − role - inverse role of the Form (inv RN)

TBN - TBox name

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

40 CHAPTER 2. KNOWLEDGE BASE DECLARATIONS

roles-equivalent macro

Description: Declares two roles to be equivalent.

Syntax: (roles-equivalent RN1 RN1 TBN)

Arguments: RN1 - role name

RN2 - role name

TBN - TBox name

roles-equivalent-1 function

Description: Declares two roles to be equivalent.

Syntax: (roles-equivalent-1 RN1 RN2 TBN)

Arguments: RN1 - role name

RN2 - role name

TBN - TBox name

domain macro

Description: Declares the domain of a role.

Syntax: (domain RN C
&optional (TBN (current-tbox)))

Arguments: RN - role name

C - concept

TBN - TBox name

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.3. ROLE DECLARATIONS 41

role-has-domain function

Description: Declares the domain of a role.

Syntax: (role-has-domain RN C
&optional (TBN (current-tbox)))

Arguments: RN - role name

C - concept

TBN - TBox name

attribute-has-domain function

Description: Declares the domain of an attribute.

Syntax: (attribute-has-domain AN C
&optional (TBN (current-tbox)))

Arguments: AN - attribute name

C - concept

TBN - TBox name

range macro

Description: Declares the range of a role.

Syntax: (range RN C
&optional (TBN (current-tbox)))

Arguments: RN - role name

C - concept

TBN - TBox name

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

42 CHAPTER 2. KNOWLEDGE BASE DECLARATIONS

role-has-range function

Description: Declares the range of a role.

Syntax: (role-has-range RN C
&optional (TBN (current-tbox)))

Arguments: RN - role name

C - concept

TBN - TBox name

datatype-role-has-range function

Description: Declares the range of a datatype property role.

Syntax: (datatype-role-has-range RN type TBN)

Arguments: RN - role name

type - either cardinal, integer, real, complex, or string

TBN - TBox name

attribute-has-range function

Description: Declares the range of an attribute.

Syntax: (attribute-has-range AN D
&optional (TBN (current-tbox)))

Arguments: AN - attribute name

C - concept

D - either cardinal, integer, real, complex, or string

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.4. CONCRETE DOMAIN ATTRIBUTE DECLARATION 43

implies-role macro

Description: Defines a parent of a role.

Syntax: (implies-role RN1 RN2

&optional (TBN (current-tbox)))

Arguments: RN1 - role name
RN2 - parent role name
TBN - TBox name

role-has-parent function

Description: Defines a parent of a role.

Syntax: (role-has-parent RN1 RN2

&optional (TBN (current-tbox)))

Arguments: RN1 - role name
RN2 - parent role name
TBN - TBox name

2.4 Concrete Domain Attribute Declaration

define-concrete-domain-attribute macro

Description: Defines a concrete domain attribute.

Syntax: (define-concrete-domain-attribute AN &key type domain)

Arguments: AN - attribute name
type - can be either bound to cardinal, integer, real, complex, or

string. The type must be supplied.
domain - a concept describing the domain of the attribute.

Remarks: Calls add-role-axioms

Examples: (define-concrete-domain-attribute has-age :type integer)
(define-concrete-domain-attribute has-weight :type real)

See also: Macro signature on page 12 and Section 2.4.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

44 CHAPTER 2. KNOWLEDGE BASE DECLARATIONS

define-datatype-property macro

Description: Defines a role with range from a specified concrete domain. The name is
reminiscent of the OWL language which calls these roles datatype properties.

Syntax: (define-datatype-property RN &key (feature nil)
(domain nil) (range nil) (parents nil))

Arguments: RN - attribute name

range - can be either bound to cardinal, integer, real, complex, or
string. The type must be supplied.

domain - a concept describing the domain of the attribute.

parents - a list of roles for the parents.

Remarks: Calls add-role-axioms

Examples: (define-datatype-property room-number :range integer)

add-datatype-property Function

Description: Functional equivalent of define-datatype-property, Page 44.

2.5 Assertions

instance KRSS macro

Description: Builds a concept assertion, asserts that an individual is an instance of a
concept.

Syntax: (instance IN C)

Arguments: IN - individual name

C - concept term

Examples: (instance Lucy Person)
(instance Snoopy (and Dog Cartoon-Character))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.5. ASSERTIONS 45

add-concept-assertion function

Description: Builds an assertion and adds it to an ABox.

Syntax: (add-concept-assertion abox IN C)

Arguments: abox - ABox object

IN - individual name

C - concept term

Values: abox

Examples: (add-concept-assertion (find-abox ’peanuts-characters)
’Lucy ’Person)

(add-concept-assertion (find-abox ’peanuts-characters)
’Snoopy ’(and Dog Cartoon-Character))

forget-concept-assertion function

Description: Retracts a concept assertion from an ABox.

Syntax: (forget-concept-assertion abox IN C)

Arguments: abox - ABox object

IN - individual name

C - concept term

Values: abox

Remarks: For answering subsequent queries the index structures for the ABox will be
recomputed, i.e. some queries might take some time (e.g. those queries that
require the realization of the ABox).

Examples: (forget-concept-assertion (find-abox ’peanuts-characters)
’Lucy ’Person)

(forget-concept-assertion (find-abox ’peanuts-characters)
’Snoopy ’(and Dog Cartoon-Character))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

46 CHAPTER 2. KNOWLEDGE BASE DECLARATIONS

related KRSS macro

Description: Builds a role assertion, asserts that two individuals are related via a role (or
feature).

Syntax: (related IN 1 IN 2 R)

Arguments: IN 1 - individual name of the predecessor

IN 2 - individual name of the filler

R - a role term or a feature term.

Examples: (related Charlie-Brown Snoopy has-pet)
(related Linus Lucy (inv has-brother))

add-role-assertion function

Description: Adds a role assertion to an ABox.

Syntax: (add-role-assertion abox IN 1 IN 2 R)

Arguments: abox - ABox object

IN 1 - individual name of the predecessor

IN 2 - individual name of the filler

R - role term

Values: abox

Examples: (add-role-assertion (find-abox ’peanuts-characters)
’Charlie-Brown ’Snoopy ’has-pet)

(add-role-assertion (find-abox ’peanuts-characters)
’Linus ’Lucy ’(inv has-brother))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.5. ASSERTIONS 47

forget-role-assertion function

Description: Retracts a role assertion from an ABox.

Syntax: (forget-role-assertion abox IN 1 IN 2 R)

Arguments: abox - ABox object

IN 1 - individual name of the predecessor

IN 2 - individual name of the filler

R - role term

Values: abox

Remarks: For answering subsequent queries the index structures for the ABox will be
recomputed, i.e. some queries might take some time (e.g. those queries that
require the realization of the ABox).

Examples: (forget-role-assertion (find-abox ’peanuts-characters)
’Charlie-Brown ’Snoopy ’has-pet)

(forget-role-assertion (find-abox ’peanuts-characters)
’Linus ’Lucy ’(inv has-brother))

forget-disjointness-axiom function

Description: This function is used to forget declarations with
define-disjoint-primitive-concept.

Syntax: (forget-disjointness-axiom tbox CN group − name)

Arguments: tbox - TBox object

CN - concept-name

group − name - name of the disjointness group

forget-disjointness-axiom-statement function

Description: This function is used to forget statements of the form (disjoint a b c)

Syntax: (forget-disjointness-axiom-statement tbox &rest concepts)

Arguments: tbox - TBox object

concepts - List of concepts

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

48 CHAPTER 2. KNOWLEDGE BASE DECLARATIONS

forget-constrained-assertion function

Description: Forget assertions with the form constrained.

Syntax: (forget-constrained-assertion abox IN ON attributeterm)

Arguments: abox - ABox

IN - individual name

ON - object name

attributeterm - attribute term

forget-constraint function

Description: Forget assertions with the form constraint

Syntax: (forget-constraint abox constraint)

Arguments: abox - ABox

constraint - constraint term

define-distinct-individual KRSS macro

Description: This statement asserts that an individual is distinct to all other individuals
in the ABox.

Syntax: (define-distinct-individual IN)

Arguments: IN - name of the individual

Values: IN

Remarks: Introduces IN as a name for an individual which as made distinct from all
other individuals automatically.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.5. ASSERTIONS 49

define-individual KRSS macro

Description: This statement asserts that an individual is distinct to all other individuals
in the ABox.

Syntax: (define-individual IN)

Arguments: IN - name of the individual

Values: IN

Remarks: Introduces IN as a name for an individual not necessarily distinct from other
individuals.

same-as Macro

Description: This form declares two individuals to refer to the same domain object.

Syntax: (same-as IN1 IN2)

Arguments: IN1 - an individual name

IN2 - an individual name

same-individual-as Function

Description: Synonym to same-as, Page 49.

add-same-individual-as-assertion Function

Description: This form declares two individuals to refer to the same domain object.

Syntax: (add-same-individual-as-assertion ABox IN1 IN2)

Arguments: ABox - ABox name

IN1 - an individual name

IN2 - an individual name

Remarks: Functional equivalent of same-as.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

50 CHAPTER 2. KNOWLEDGE BASE DECLARATIONS

different-from Macro

Description: This form declares two individuals NOT to refer to the same domain object.

Syntax: (different-from IN1 IN2)

Arguments: IN1 - an individual name

IN2 - an individual name

add-different-from-assertion Function

Description: This form declares two individuals NOT to refer to the same domain object.

Syntax: (add-different-from-assertion ABox IN1 IN2)

Arguments: ABox - ABox name

IN1 - an individual name

IN2 - an individual name

Remarks: Functional equivalent of different-from.

all-different Macro

Description: This form declares the argument individuals NOT to refer to the same do-
main object.

Syntax: (all-different &rest individuals)

Arguments: individuals - individual names

add-all-different-assertion Macro

Description: This form declares the argument individuals NOT to refer to the same do-
main object.

Syntax: (all-different ABox &rest individuals)

Arguments: ABox - ABox name

individuals - individual names

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.5. ASSERTIONS 51

state KRSS macro

Description: This macro asserts a set of ABox statements.

Syntax: (state &body forms)

Arguments: forms - is a sequence of instance or related assertions.

Remarks: This macro is supplied to be compatible with the KRSS specification. It
realizes an implicit progn for assertions.

forget macro

Description: This macro retracts a set of TBox/ABox statements. Note that statement to
be forgotten must be literally identical to the ones previously asserted, i.e.,
only explicitly given information can be forgotten.

Syntax: (forget (&key (tbox (current-tbox)) (abox (current-abox)))
&body forms)

Arguments: forms - is a sequence of assertions.

Remarks: For answering subsequent queries the index structures for the TBox/ABox
will probably be recomputed, i.e. some queries might take some time (e.g.
those queries that require the reclassification of the TBox or realization of
the ABox).

Examples: (forget (:tbox family) (implies c d) (implies a b))
(forget (:abox smith-family) (instance i d))

forget-statement function

Description: Functional interface for the macro forget

Syntax: (forget-statement tbox abox &rest statements)

Arguments: tbox - TBox

tbox - ABox

statements - statement previously asserted

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

52 CHAPTER 2. KNOWLEDGE BASE DECLARATIONS

2.6 Concrete Domain Assertions

add-constraint-assertion function

Description: Builds a concrete domain predicate assertion and adds it to an ABox.

Syntax: (add-constraint-assertion abox constraint)

Arguments: abox - ABox object

constraint - constraint form

Examples: (add-constraint-assertion (find-abox ’family)
’(= temp-eve 102.56))

constraints macro

Description: This macro asserts a set of concrete domain predicates for concrete domain
objects.

Syntax: (constraints &body forms)

Arguments: forms - is a sequence of concrete domain predicate assertions.

Remarks: Calls add-constraint-assertion.

Examples: (constraints
(= temp-eve 102.56)
(= temp-doris 38.5)
(> temp-eve temp-doris))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.6. CONCRETE DOMAIN ASSERTIONS 53

add-attribute-assertion function

Description: Adds a concrete domain attribute assertion to an ABox. Asserts that an
individual is related with a concrete domain object via an attribute.

Syntax: (add-attribute-assertion abox IN ON AN)

Arguments: abox - ABox object

IN - individual name

ON - concrete domain object name as the filler

AN - attribute name

Examples: (add-attribute-assertion (find-abox ’family)
’eve ’temp-eve ’temperature-fahrenheit))

constrained macro

Description: Adds a concrete domain attribute assertion to an ABox. Asserts that an
individual is related with a concrete domain object via an attribute.

Syntax: (constrained IN ON AN)

Arguments: IN - individual name

ON - concrete domain object name as the filler

AN - attribute name

Remarks: Calls add-attribute-assertion

Examples: (constrained eve temp-eve temperature-fahrenheit)

set-attribute-filler Function

Description: Set the filler of an attribute w.r.t. an individual.

Syntax: (set-attribute-filler ABox IN value AN)

Arguments: IN - individual name

ABox - ABox

value - value

AN - Attribute name

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

54 CHAPTER 2. KNOWLEDGE BASE DECLARATIONS

attribute-filler Macro

Description: Set the filler of an attribute w.r.t. an individual.

Syntax: (attribute-filler IN value AN)

Arguments: IN - individual name

value - value

AN - Attribute name

add-datatype-role-filler Function

Description: Adds a filler for a datatype role w.r.t. an individual.

Syntax: (add-datatype-role-filler ABox IN value RN)

Arguments: IN - individual name

ABox - ABox

value - value

RN - datatype property role name

datatype-role-filler Macro

Description: Adds a filler of a datatype role w.r.t. an individual.

Syntax: (attribute-filler IN value RN)

Arguments: IN - individual name

value - value

RN - datatype property role name

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.6. CONCRETE DOMAIN ASSERTIONS 55

add-annotation-role-assertion function

Description: Adds an annotation role assertion to an ABox. Asserts that an individual is
related with a concrete domain object via an annotation role.

Syntax: (add-annotation-role-assertion abox IN value AN)

Arguments: abox - ABox object

IN - individual name

value - concrete domain value

AN - attribute name

add-annotation-concept-assertion function

Description: Adds an annotation concept assertion to an ABox.

Syntax: (add-annotation-concept-assertion abox IN C)

Arguments: abox - ABox object

IN - individual name

C - concept

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

56 CHAPTER 2. KNOWLEDGE BASE DECLARATIONS

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

Chapter 3

Reasoning Modes

get-racer-version Function

Description: Returns a string which describe the version of the Racer system.

Syntax: (get-racer-version)

Arguments:

Values: string

time Macro

Description: This macro prints some timing information

Syntax: (time form)

Arguments: form - is a Racer expression.

Values: The value is the result of processing form.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

58 CHAPTER 3. REASONING MODES

set-unique-name-assumption Function

Description: This form globally instructs Racer to make the unique name assumption if
t is specified as the argument. If nil is specified, Racer will not make the
unique name assumption (the default).

Syntax: (set-unique-name-assumption boolean)

Arguments: boolean - boolean

set-server-timeout Function

Description: Set a timeout for query answering (in seconds). If nil is provided as an argu-
ment, no timeout will be used (the default).

Syntax: (set-server-timeout seconds)

Arguments: seconds - integer or nil

get-server-timeout Function

Description: Returns the timeout for query answering

Syntax: (get-server-timeout)

Arguments:

Values: Integer (seconds) or nil (for no timeout)

parse-expression Function

Description: Parses a Racer expression as returns the TBox or the ABox that the expres-
sion refers plus a characterization

Syntax: (parse-expression expression)

Arguments: expression - a Racer expression

The following function provide a way for you to collect the statements sent to the RACER
server.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

59

logging-on macro

Description: Start logging of expressions to the Racer server.

Syntax: (logging-on filename)

Arguments: filename - filename

Values: None.

Remarks: RACER must have been started in unsafe mode (option -u) to use this
facility. Logging is only available in the RACER server version.

logging-off macro

Description: Start logging of expressions to the Racer server.

Syntax: (logging-off)

Arguments:

Values: None.

Remarks: Logging is only available in the RACER server version.

compute-index-for-instance-retrieval function

Description: Let RACER create an index for subsequent instance retrieval queries wrt.
the specified ABox.

Syntax: (compute-index-for-instance-retrieval &optional (ABN
(current-abox))))

Arguments: ABN - ABox object

Remarks: Computing an index requires the associated TBox be classified and the input
ABox be realized. Thus, it may take some time for this function to complete.
Use the function abox-realized-p to check whether index-based instance
retrieval is enabled.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

60 CHAPTER 3. REASONING MODES

ensure-subsumption-based-query-answering function

Description: Instruct RACER to use caching strategies and to exploit query subsumption
for answering instance retrieval queries.

Syntax: (ensure-subsumption-based-query-answering &optional (ABN
(current-abox))))

Arguments: ABN - ABox object

Remarks: Subsumption-based query answering requires the associated TBox to be clas-
sified. Thus, the function might require computational resources that are not
negligible. Instructing RACER to perform reasoning in this mode pays back
if one and the same instance retrieval query might be posed several times
or if the concepts in subsequent instance retrieval queries subsumes each
other (in other words: if queries are more and more refined). Use the func-
tion tbox-classified-p to check whether index-based instance retrieval is
enabled.

ensure-small-tboxes function

Description: Instructs Racer to try to save space by throwing away internal information.
This might help if for large TBoxes memory requirements cannot be met.

Syntax: (ensure-small-tboxes)

Arguments:

Remarks: Use with caution. Some query functions are no longer defined on TBoxes if
this option is set.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

Chapter 4

Evaluation Functions and Queries

4.1 Queries for Concept Terms

concept-satisfiable? macro

Description: Checks if a concept term is satisfiable.

Syntax: (concept-satisfiable? C &optional (tbox (current-tbox)))

Arguments: C - concept term.

tbox - TBox object

Values: Returns t if C is satisfiable and nil otherwise.

Remarks: For testing whether a concept term is satisfiable with respect to a TBox tbox .
If satisfiability is to be tested without reference to a TBox, nil can be used.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

62 CHAPTER 4. EVALUATION FUNCTIONS AND QUERIES

concept-satisfiable-p function

Description: Checks if a concept term is satisfiable.

Syntax: (concept-satisfiable-p C tbox)

Arguments: C - concept term.
tbox - TBox object

Values: Returns t if C is satisfiable and nil otherwise.

Remarks: For testing whether a concept term is satisfiable with respect to a TBox tbox .
If satisfiability is to be tested without reference to a TBox, nil can be used.

concept-subsumes? KRSS macro

Description: Checks if two concept terms subsume each other.

Syntax: (concept-subsumes? C1 C2 &optional (tbox (current-tbox)))

Arguments: C1 - concept term of the subsumer
C2 - concept term of the subsumee
tbox - TBox object

Values: Returns t if C1 subsumes C 2 and nil otherwise.

concept-subsumes-p function

Description: Checks if two concept terms subsume each other.

Syntax: (concept-subsumes-p C1 C2 tbox)

Arguments: C1 - concept term of the subsumer
C2 - concept term of the subsumee
tbox - TBox object

Values: Returns t if C1 subsumes C 2 and nil otherwise.

Remarks: For testing whether a concept term subsumes the other with respect to a
TBox tbox . If the subsumption relation is to be tested without reference to
a TBox, nil can be used.

See also: Function concept-equivalent-p, on page 63, and function atomic-
concept-synonyms, on page 93.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

4.1. QUERIES FOR CONCEPT TERMS 63

concept-equivalent? macro

Description: Checks if the two concepts are equivalent in the given TBox.

Syntax: (concept-equivalent? C1 C2 &optional (tbox (current-tbox)))

Arguments: C1, C2 - concept term

tbox - TBox object

Values: Returns t if C1 and C2 are equivalent concepts in tbox and nil otherwise.

Remarks: For testing whether two concept terms are equivalent with respect to a TBox
tbox .

See also: Function atomic-concept-synonyms, on page 93, and function
concept-subsumes-p, on page 63.

concept-equivalent-p function

Description: Checks if the two concepts are equivalent in the given TBox.

Syntax: (concept-equivalent-p C1 C2 tbox)

Arguments: C1, C2 - concept terms

tbox - TBox object

Values: Returns t if C1 and C2 are equivalent concepts in tbox and nil otherwise.

Remarks: For testing whether two concept terms are equivalent with respect to a TBox
tbox . If the equality is to be tested without reference to a TBox, nil can be
used.

See also: Function atomic-concept-synonyms, on page 93, and function
concept-subsumes-p, on page 63.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

64 CHAPTER 4. EVALUATION FUNCTIONS AND QUERIES

concept-disjoint? macro

Description: Checks if the two concepts are disjoint, e.g. no individual can be an instance
of both concepts.

Syntax: (concept-disjoint? C1 C2 &optional (tbox (current-tbox)))

Arguments: C1, C2 - concept term

tbox - TBox object

Values: Returns t if C1 and C2 are disjoint with respect to tbox and nil otherwise.

Remarks: For testing whether two concept terms are disjoint with respect to a TBox
tbox . If the disjointness is to be tested without reference to a TBox, nil can
be used.

concept-disjoint-p function

Description: Checks if the two concepts are disjoint, e.g. no individual can be an instance
of both concepts.

Syntax: (concept-disjoint-p C1 C2 tbox)

Arguments: C1, C2 - concept term

tbox - TBox object

Values: Returns t if C1 and C2 are disjoint with respect to tbox and nil otherwise.

Remarks: For testing whether two concept terms are disjoint with respect to a TBox
tbox . If the disjointness is to be tested without reference to a TBox, nil can
be used.

concept-p function

Description: Checks if CN is a concept name for a concept in the specified TBox.

Syntax: (concept-p CN &optional (tbox (current-tbox)))

Arguments: CN - concept name

tbox - TBox object

Values: Returns t if CN is a name of a known concept and nil otherwise.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

4.1. QUERIES FOR CONCEPT TERMS 65

concept? macro

Description: Checks if CN is a concept name for a concept in the specified TBox.

Syntax: (concept? CN &optional (TBN (current-tbox)))

Arguments: CN - concept name

TBN - TBox name

Values: Returns t if CN is a name of a known concept and nil otherwise.

concept-is-primitive-p function

Description: Checks if CN is a concept name of a so-called primitive concept in the
specified TBox.

Syntax: (concept-is-primitive-p CN &optional (tbox (current-tbox)))

Arguments: CN - concept name

tbox - TBox object

Values: Returns t if CN is a name of a known primitive concept and nil otherwise.

concept-is-primitive? macro

Description: Checks if CN is a concept name of a so-called primitive concept in the
specified TBox.

Syntax: (concept-is-primitive-p CN &optional (TBN (current-tbox)))

Arguments: CN - concept name

TBN - TBox name

Values: Returns t if CN is a name of a known primitive concept and nil otherwise.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

66 CHAPTER 4. EVALUATION FUNCTIONS AND QUERIES

alc-concept-coherent function

Description: Tests the satisfiability of a K(m), K4(m) or S4(m) formula encoded as an ALC
concept.

Syntax: (alc-concept-coherent C &key (logic :K))

Arguments: C - concept term

logic - specifies the logic to be used.

:K - modal K(m),

:K4 - modal K4(m) all roles are transitive,

:S4 - modal S4(m) all roles are transitive and reflexive.

If no logic is specified, the logic :K is chosen.

Remarks: This function can only be used forALC concept terms, so number restrictions
are not allowed.

4.2 Role Queries

role-subsumes? KRSS macro

Description: Checks if two roles are subsuming each other.

Syntax: (role-subsumes? R1 R2

&optional (TBN (current-tbox)))

Arguments: R1 - role term of the subsuming role

R2 - role term of the subsumed role

TBN - TBox name

Values: Returns t if R1 is a parent role of R2.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

4.2. ROLE QUERIES 67

role-subsumes-p function

Description: Checks if two roles are subsuming each other.

Syntax: (role-subsumes-p R1 R2 tbox)

Arguments: R1 - role term of the subsuming role

R2 - role term of the subsumed role

tbox - TBox object

Values: Returns t if R1 is a parent role of R2.

role-equivalent? KRSS macro

Description: Checks if two roles are equivalent.

Syntax: (role-equivalent? R1 R2

&optional (TBN (current-tbox)))

Arguments: R1 - role term of the subsuming role

R2 - role term of the subsumed role

TBN - TBox name

Values: Returns t if R1 is an equivalent of R2.

role-equivalent-p function

Description: Checks if two roles are equivalent.

Syntax: (role-equivalent-p R1 R2 tbox)

Arguments: R1 - role term of the subsuming role

R2 - role term of the subsumed role

tbox - TBox object

Values: Returns t if R1 is an equivalent of R2.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

68 CHAPTER 4. EVALUATION FUNCTIONS AND QUERIES

role-p function

Description: Checks if R is a role term for a role in the specified TBox.

Syntax: (role-p R &optional (tbox (current-tbox)))

Arguments: R - role term
tbox - TBox object

Values: Returns t if R is a known role term and nil otherwise.

role? macro

Description: Checks if R is a role term for a role in the specified TBox.

Syntax: (role? R &optional (TBN (current-tbox)))

Arguments: R - role term
TBN - TBox name

Values: Returns t if R is a known role term and nil otherwise.

transitive-p function

Description: Checks if R is a transitive role in the specified TBox.

Syntax: (transitive-p R &optional (tbox (current-tbox)))

Arguments: R - role term
tbox - TBox object

Values: Returns t if the role R is transitive in tbox and nil otherwise.

transitive? macro

Description: Checks if R is a transitive role in the specified TBox.

Syntax: (transitive? R &optional (TBN (current-tbox)))

Arguments: R - role term
TBN - TBox name

Values: Returns t if the role R is transitive in TBN and nil otherwise.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

4.2. ROLE QUERIES 69

feature-p function

Description: Checks if R is a feature in the specified TBox.

Syntax: (feature-p R &optional (tbox (current-tbox)))

Arguments: R - role term

tbox - TBox object

Values: Returns t if the role R is a feature in tbox and nil otherwise.

feature? macro

Description: Checks if R is a feature in the specified TBox.

Syntax: (feature? R &optional (TBN (current-tbox)))

Arguments: R - role term

TBN - TBox name

Values: Returns t if the role R is a feature in TBN and nil otherwise.

cd-attribute-p function

Description: Checks if AN is a concrete domain attribute in the specified TBox.

Syntax: (cd-attribute-p AN &optional (tbox (current-tbox)))

Arguments: AN - attribute name

tbox - TBox object

Values: Returns t if AN is a concrete domain attribute in tbox and nil otherwise.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

70 CHAPTER 4. EVALUATION FUNCTIONS AND QUERIES

cd-attribute? macro

Description: Checks if AN is a concrete domain attribute in the specified TBox.

Syntax: (cd-attribute? AN &optional
(TBN (current-tbox)))

Arguments: AN - attribute name

TBN - TBox name

Values: Returns t if the role AN is a concrete domain attribute in TBN and nil
otherwise.

symmetric-p function

Description: Checks if R is symmetric in the specified TBox.

Syntax: (symmetric-p R &optional (tbox (current-tbox)))

Arguments: R - role term

tbox - TBox object

Values: Returns t if the role R is symmetric in tbox and nil otherwise.

symmetric? macro

Description: Checks if R is symmetric in the specified TBox.

Syntax: (symmetric? R &optional (TBN (current-tbox)))

Arguments: R - role term

TBN - TBox name

Values: Returns t if the role R is symmetric in TBN and nil otherwise.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

4.2. ROLE QUERIES 71

reflexive-p function

Description: Checks if R is reflexive in the specified TBox.

Syntax: (reflexive-p R &optional (tbox (current-tbox)))

Arguments: R - role term

tbox - TBox object

Values: Returns t if the role R is reflexive in tbox and nil otherwise.

reflexive? macro

Description: Checks if R is reflexive in the specified TBox.

Syntax: (reflexive? R &optional (TBN (current-tbox)))

Arguments: R - role term

TBN - TBox name

Values: Returns t if the role R is reflexive in TBN and nil otherwise.

atomic-role-inverse function

Description: Returns the inverse role of role term R.

Syntax: (atomic-role-inverse R tbox)

Arguments: R - role term

tbox - TBox object

Values: Role name or term for the inverse role of R.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

72 CHAPTER 4. EVALUATION FUNCTIONS AND QUERIES

role-inverse macro

Description: Returns the inverse role of role term R.

Syntax: (role-inverse R &optional (TBN (current-tbox)))

Arguments: R - role term
TBN - TBox name

Values: Role name or term for the inverse role of R.

Remarks: This macro uses atomic-role-inverse.

role-domain macro

Description: Returns the domain of role name RN .

Syntax: (role-domain RN &optional (TBN (current-tbox)))

Arguments: RN - role name
TBN - TBox name

Remarks: This macro uses atomic-role-domain.

atomic-role-domain function

Description: Returns the domain of role name RN .

Syntax: (atomic-role-domain RN &optional (TBN (current-tbox)))

Arguments: RN - role name
TBN - TBox name

role-range macro

Description: Returns the range of role name RN .

Syntax: (role-range RN &optional (TBN (current-tbox)))

Arguments: RN - role name
TBN - TBox name

Remarks: This macro uses atomic-role-range.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

4.2. ROLE QUERIES 73

atomic-role-range function

Description: Returns the range of role name RN .

Syntax: (atomic-role-range RN &optional (TBN (current-tbox)))

Arguments: RN - role name

TBN - TBox name

datatype-role-range function

Description: Returns the range of datatype property role name RN .

Syntax: (datatype-role-range RN TBN)

Arguments: RN - role name

TBN - TBox name

role-used-as-datatype-property-p function

Description: Returns t if the role is declared as a datatype property or nil otherwise.

Syntax: (role-used-as-datatype-property-p RN TBN)

Arguments: RN - role name

TBN - TBox name

role-used-as-annotation-property-p function

Description: Returns t if the role is declared as an annotation property or nil otherwise.

Syntax: (role-used-as-annotation-property-p RN TBN)

Arguments: RN - role name

TBN - TBox name

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

74 CHAPTER 4. EVALUATION FUNCTIONS AND QUERIES

attribute-domain macro

Description: Returns the domain of attribute name AN .

Syntax: (attribute-domain AN &optional (TBN (current-tbox)))

Arguments: AN - attribute name

TBN - TBox name

attribute-domain-1 function

Description: Returns the domain of attribute name AN .

Syntax: (attribute-domain-1 AN &optional (TBN (current-tbox)))

Arguments: AN - attribute name

TBN - TBox name

4.3 TBox Evaluation Functions

classify-tbox function

Description: Classifies the whole TBox.

Syntax: (classify-tbox &optional (tbox (current-tbox)))

Arguments: tbox - TBox object

Remarks: This function needs to be executed before queries can be posed.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

4.3. TBOX EVALUATION FUNCTIONS 75

check-tbox-coherence function

Description: This function checks if there are any unsatisfiable atomic concepts in the
given TBox.

Syntax: (check-tbox-coherence &optional (tbox (current-tbox)))

Arguments: tbox - TBox object

Values: Returns a list of all atomic concepts in tbox that are not satisfiable, i.e. an
empty list (NIL) indicates that there is no additional synonym to bottom.

Remarks: This function does not compute the concept hierarchy. It is much faster
than classify-tbox, so whenever it is sufficient for your application use
check-tbox-coherence. This function is supplied in order to check whether
an atomic concept is satisfiable during the development phase of a TBox.
There is no need to call the function check-tbox-coherence if, for instance,
a certain ABox is to be checked for consistency (with abox-consistent-p).

tbox-classified-p function

Description: It is checked if the specified TBox has already been classified.

Syntax: (tbox-classified-p &optional (tbox (current-tbox)))

Arguments: tbox - TBox object

Values: Returns t if the specified TBox has been classified, otherwise it returns nil.

tbox-classified? macro

Description: It is checked if the specified TBox has already been classified.

Syntax: (tbox-classified? &optional (TBN (current-tbox)))

Arguments: TBN - TBox name

Values: Returns t if the specified TBox has been classified, otherwise it returns nil.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

76 CHAPTER 4. EVALUATION FUNCTIONS AND QUERIES

tbox-prepared-p function

Description: It is checked if internal index structures are already computed for the speci-
fied TBox.

Syntax: (tbox-prepared-p &optional (tbox (current-tbox)))

Arguments: tbox - TBox object

Values: Returns t if the specified TBox has been processed (to some extent), other-
wise it returns nil.

Remarks: The function is used to determine whether Racer has spent some effort in
processing the axioms of the TBox.

tbox-prepared? macro

Description: It is checked if internal index structures are already computed for the speci-
fied TBox.

Syntax: (tbox-prepared? &optional (TBN (current-tbox)))

Arguments: TBN - TBox name

Values: Returns t if the specified TBox has been processed (to some extent), other-
wise it returns nil.

Remarks: The form is used to determine whether Racer has spent some effort in pro-
cessing the axioms of the TBox.

tbox-cyclic-p function

Description: It is checked if cyclic GCIs are present in a TBox

Syntax: (tbox-cyclic-p &optional (tbox (current-tbox)))

Arguments: tbox - TBox object

Values: Returns t if the specified TBox contains cyclic GCIs otherwise it returns
nil.

Remarks: Cyclic GCIs can be given either directly as a GCI or can implicitly result
from processing, for instance, disjointness axioms.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

4.3. TBOX EVALUATION FUNCTIONS 77

tbox-cyclic? macro

Description: It is checked if cyclic GCIs are present in a TBox

Syntax: (tbox-cyclic? &optional (tbox (current-tbox)))

Arguments: tbox - TBox object

Values: Returns t if the specified TBox contains cyclic GCIs otherwise it returns
nil.

Remarks: Cyclic GCIs can be given either directly as a GCI or can implicitly result
from processing, for instance, disjointness axioms.

tbox-coherent-p function

Description: This function checks if there are any unsatisfiable atomic concepts in the
given TBox.

Syntax: (tbox-coherent-p &optional (tbox (current-tbox)))

Arguments: tbox - TBox object

Values: Returns nil if there is an inconsistent atomic concept, otherwise it returns
t.

Remarks: This function calls check-tbox-coherence if necessary.

tbox-coherent? macro

Description: Checks if there are any unsatisfiable atomic concepts in the current or spec-
ified TBox.

Syntax: (tbox-coherent? &optional (TBN (current-tbox)))

Arguments: TBN - TBox name

Values: Returns t if there is an inconsistent atomic concept, otherwise it returns nil.

Remarks: This macro uses tbox-coherent-p.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

78 CHAPTER 4. EVALUATION FUNCTIONS AND QUERIES

get-tbox-language function

Description: Returns a specifier indicating the description logic language used in the ax-
ioms of a given TBox.

Syntax: (get-tbox-language &optional (TBN (current-tbox)))

Arguments: TBN - TBox name

Values: The language is indicated with the quasi-standard scheme using letters. Note
that the language is identified for selecting optimization techniques. Since
RACER does not exploit optimization techniques for sublanguages of ALC,
the language indicator starts always with ALC. Then f indicates whether
features are used, Q indicates qualified number restrictions, N indicates simple
number restrictions, H stands for a role hierarchy, I indicates inverse roles, r+
indicates transitive roles, the suffix -D indicates the use of concrete domain
language constructs.

get-meta-constraint function

Description: Optimized DL systems perform a static analysis of given terminological ax-
ioms. The axioms of a TBox are usually transformed in such a way that pro-
cessing promises to be faster. In particular, the idea is to transform GCIs into
(primitive) concept definitions. Since it is not always possible to “absorb”
GCIs completely, a so-called meta constraint might remain. The functions
get-meta-constraint returns the remaining constraint as a concept.

Syntax: (get-meta-constraint &optional (TBN (current-tbox)))

Arguments: TBN - TBox name

Values: A concept term.

Remarks: The absorption process uses heuristics. Changes to a TBox might have dra-
matic effects on the value returned by get-meta-constraint.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

4.3. TBOX EVALUATION FUNCTIONS 79

get-concept-definition macro

Description: Optimized DL systems perform a static analysis of given terminological ax-
ioms. The axioms of a TBox are usually transformed in such a way that
processing promises to be faster. In particular, the idea is to transform GCIs
into (primitive) concept definitions. For a given concept name the function
get-concept-definition returns the definition compiled by RACER dur-
ing the absorption phase.

Syntax: (get-concept-definition CN &optional (TBN (current-tbox)))

Arguments: CN - concept name

TBN - TBox name

Values: A concept term.

Remarks: The absorption process uses heuristics. Changes to a TBox might have dra-
matic effects on the value returned by get-concept-definition. Note that
it might be useful to test whether the definition is primitive. See the function
concept-primitive-p. RACER does not introduce new concept names for
primitive definitions.

get-concept-definition-1 function

Description: Functional interface for get-concept-definition

Syntax: (get-concept-definition-1 CN &optional (TBN (current-tbox)))

Arguments: CN - concept name

TBN - TBox name

Remarks: The absorption process uses heuristics. Changes to a TBox might have dra-
matic effects on the value returned by get-concept-negated-definition.
Note that it might be useful to test whether the definition is primitive. See
the function concept-primitive-p. RACER does not introduce new con-
cept names for primitive definitions.

Examples: Assume the following TBox:

(in-tbox test)
(implies top (or a b c))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

80 CHAPTER 4. EVALUATION FUNCTIONS AND QUERIES

Then, (get-concept-negated-definition c) returns (OR A B). Thus,
RACER has transformed the GCI into the form (implies (not C) (OR
A B)) which can be handled more effectively be lazy unfolding. Note that
the absorption process is heuristic. RACER could also transform the GCI
into (implies (not B) (OR A C)) or something similar depending on the
current version and strategy.

get-concept-negated-definition macro

Description: Optimized DL systems perform a static analysis of given terminological ax-
ioms. The axioms of a TBox are usually transformed in such a way that
processing promises to be faster. In particular, the idea is to transform
GCIs into (primitive) concept definitions. For a given concept name the
function get-concept-negated-definition returns the definition of the
negated concept compiled by RACER during the absorption phase.

Syntax: (get-concept-negated-definition CN &optional (TBN
(current-tbox)))

Arguments: CN - concept name

TBN - TBox name

get-concept-negated-definition-1 function

Description: Functional interface for get-concept-negated-definition.

Syntax: (get-concept-negated-definition-1 CN &optional (TBN
(current-tbox)))

Arguments: CN - concept name

TBN - TBox name

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

4.4. ABOX EVALUATION FUNCTIONS 81

get-concept-pmodel function

Description: Returns a so-called pseudo model for a concept.

Syntax: (get-concept-pmodel concept &optional (TBN (current-tbox)))

Arguments: concept - concept term

TBN - TBox name

Values: Returns a list (name positive-literals negative-literals exists restricts at-
tributes ensured-attributes unique-p).

Examples: (in-knowledge-base test)
(implies a (and e (some r c)))
(implies b (and (not f) (all r d)))
(equivalent c (and a b))
(get-concept-pmodel ’(and a b) ’test)
returns (C (C A B E) (F) (R) (R) NIL NIL T)

4.4 ABox Evaluation Functions

realize-abox function

Description: This function checks the consistency of the ABox and computes the most-
specific concepts for each individual in the ABox.

Syntax: (realize-abox &optional (abox (current-abox)))

Arguments: abox - ABox object

Values: abox

Remarks: This Function needs to be executed before queries can be posed. If the TBox
has changed and is classified again the ABox has to be realized, too.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

82 CHAPTER 4. EVALUATION FUNCTIONS AND QUERIES

abox-realized-p function

Description: Returns t if the specified ABox object has been realized.

Syntax: (abox-realized-p &optional (abox (current-abox)))

Arguments: abox - ABox object

Values: Returns t if abox has been realized and nil otherwise.

abox-realized? macro

Description: Returns t if the specified ABox object has been realized.

Syntax: (abox-realized? &optional (ABN (current-abox)))

Arguments: ABN - ABox name

Values: Returns t if ABN has been realized and nil otherwise.

prepare-abox function

Description: Compute internal data structures for processing abox assertions.

Syntax: (prepare-abox &optional (abox (current-abox)))

Arguments: abox - abox object

Remarks: This function is useful for benchmarks. You can explicitly measure the so-
called preparation time (encoding of concept terms etc. in ABox assertions).

prepare-racer-engine function

Description: Compute internal data structures for instance retrieval.

Syntax: (prepare-racer-engine &key (abox (current-abox))
(classify-tbox-p nil))

Arguments: abox - abox object

classify − tbox − p - t or nil

Remarks: This function is useful for benchmarks. You can explicitly measure the time
for computing index structures for answering nRQL queries.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

4.4. ABOX EVALUATION FUNCTIONS 83

abox-prepared-p function

Description: It is checked if internal index structures are already computed for the speci-
fied abox.

Syntax: (abox-prepared-p &optional (abox (current-abox)))

Arguments: abox - abox object

Values: Returns t if the specified abox has been processed (to some extent), otherwise
it returns nil.

Remarks: The function is used to determine whether Racer has spent some effort in
processing the assertions of the abox.

abox-prepared? macro

Description: It is checked if internal index structures are already computed for the speci-
fied abox.

Syntax: (abox-prepared? &optional (TBN (current-abox)))

Arguments: ABN - abox name

Values: Returns t if the specified abox has been processed (to some extent), otherwise
it returns nil.

Remarks: The form is used to determine whether Racer has spent some effort in pro-
cessing the assertions of the abox.

compute-all-implicit-role-fillers function

Description: Instruct RACER to use compute all implicit role fillers. After computing
these fillers, the function all-role-assertions returns also the implicit role
fillers.

Syntax: (compute-all-implicit-role-fillers &optional (ABN
(current-abox))))

Arguments: ABN - ABox name

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

84 CHAPTER 4. EVALUATION FUNCTIONS AND QUERIES

compute-implicit-role-fillers function

Description: Instruct RACER to use compute all implicit role fillers for the individual
specified. After computing these fillers, the function all-role-assertions re-
turns also the implicit role fillers for the individual specified.

Syntax: (compute-implicit-role-fillers individual &optional (ABN
(current-abox))))

Arguments: individual - individual name
ABN - ABox name

get-abox-language function

Description: Returns a specifier indicating the description logic language used in the ax-
ioms of a given ABox.

Syntax: (get-abox-language &optional (ABN (current-abox)))

Arguments: ABN - ABox name

Values: The language is indicated with the quasi-standard scheme using letters. Note
that the language is identified for selecting optimization techniques. Since
RACER does not exploit optimization techniques for sublanguages of ALC,
the language indicator starts always with ALC. Then f indicates whether
features are used, Q indicates qualified number restrictions, N indicates simple
number restrictions, H stands for a role hierarchy, I indicates inverse roles, r+
indicates transitive roles, the suffix -D indicates the use of concrete domain
language constructs.

4.5 ABox Queries

abox-consistent-p function

Description: Checks if the ABox is consistent, e.g. it does not contain a contradiction.

Syntax: (abox-consistent-p &optional (abox (current-abox)))

Arguments: abox - ABox object

Values: Returns t if abox is consistent and nil otherwise.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

4.5. ABOX QUERIES 85

abox-consistent? macro

Description: Checks if the ABox is consistent.

Syntax: (abox-consistent? &optional (ABN (current-abox)))

Arguments: ABN - ABox name

Values: Returns t if the ABox ABN is consistent and nil otherwise.

Remarks: This macro uses abox-consistent-p.

abox-una-consistent-p function

Description: Checks if the ABox is consistent, e.g. it does not contain a contradiction if
the unique name assumption is imposed.

Syntax: (abox-una-consistent-p &optional (abox (current-abox)))

Arguments: abox - ABox object

Values: Returns t if abox is consistent w.r.t. the unique name assumption and nil
otherwise.

abox-una-consistent? macro

Description: Checks if the ABox is consistent if the unique name assumption is imposed.

Syntax: (abox-una-consistent? &optional (ABN (current-abox))))

Arguments: ABN - ABox name

Values: Returns t if the ABox ABN is consistent w.r.t. the unique name assumption
and nil otherwise.

Remarks: This macro uses abox-una-consistent-p.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

86 CHAPTER 4. EVALUATION FUNCTIONS AND QUERIES

check-abox-coherence function

Description: Checks if the ABox is consistent. If there is a contradiction, this function
prints information about the culprits.

Syntax: (check-abox-coherence &optional (abox (current-abox))
(stream *standard-output*)

Arguments: abox - ABox object

stream - Stream object

Values: Returns t if abox is consistent and nil otherwise.

individual-instance? KRSS macro

Description: Checks if an individual is an instance of a given concept with respect to the
(current-abox) and its TBox.

Syntax: (individual-instance? IN C
&optional (abox (current-abox)))

Arguments: IN - individual name

C - concept term

abox - ABox object

Values: Returns t if IN is an instance of C in abox and nil otherwise.

individual-instance-p function

Description: Checks if an individual is an instance of a given concept with respect to an
ABox and its TBox.

Syntax: (individual-instance-p IN C abox)

Arguments: IN - individual name

C - concept term

abox - ABox object

Values: Returns t if IN is an instance of C in abox and nil otherwise.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

4.5. ABOX QUERIES 87

constraint-entailed? macro

Description: Checks a specified constraint is entailed by an ABox (and its associated
TBox).

Syntax: (constraint-entailed? constraint &optional (abox
(current-abox)))

Arguments: constraint - A constraint

abox - ABox object

Values: Returns t if abox the constraint and nil otherwise.

constraint-entailed-p function

Description: Checks a specified constraint is entailed by an ABox (and its associated
TBox).

Syntax: (constraint-entailed-p constraint &optional (abox
(current-abox)))

Arguments: constraint - A constraint

abox - ABox object

Values: Returns t if abox the constraint and nil otherwise.

individuals-related? macro

Description: Checks if two individuals are directly related via the specified role.

Syntax: (individuals-related? IN 1 IN 2 R
&optional (abox (current-abox)))

Arguments: IN 1 - individual name of the predecessor

IN 2 - individual name of the role filler

R - role term

abox - ABox object

Values: Returns t if IN 1 is related to IN 2 via R in abox and nil otherwise.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

88 CHAPTER 4. EVALUATION FUNCTIONS AND QUERIES

individuals-related-p function

Description: Checks if two individuals are directly related via the specified role.

Syntax: (individuals-related-p IN 1 IN 2 R abox)

Arguments: IN 1 - individual name of the predecessor

IN 2 - individual name of the role filler

R - role term

abox - ABox object

Values: Returns t if IN 1 is related to IN 2 via R in abox and nil otherwise.

See also: Function retrieve-individual-filled-roles, on page 109,
Function retrieve-related-individuals, on page 108.

individuals-equal? KRSS macro

Description: Checks if two individual names refer to the same domain object.

Syntax: (individuals-equal? IN 1 IN 2 &optional (abox (current-abox)))

Arguments: IN 1, IN 2 - individual name

abox - abox object

individuals-equal-p function

Description: Functional equivalent to individuals-equal?, Page 88.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

4.5. ABOX QUERIES 89

individuals-not-equal? KRSS macro

Description: Checks if two individual names do not refer to the same domain object.

Syntax: (individuals-not-equal? IN 1 IN 2

&optional (abox (current-abox)))

Arguments: IN 1, IN 2 - individual name

abox - abox object

Remarks: Because the unique name assumption holds in RACER this macro always
returns t for individuals with different names. This macro is just supplied to
be compatible with the KRSS.

individuals-not-equal-p function

Description: Functional equivalent to individuals-not-equal?, Page 89.

individual-p function

Description: Checks if IN is a name of an individual mentioned in an ABox abox .

Syntax: (individual-p IN &optional (abox (current-abox)))

Arguments: IN - individual name

abox - ABox object

Values: Returns t if IN is a name of an individual and nil otherwise.

individual? macro

Description: Checks if IN is a name of an individual mentioned in an ABox ABN .

Syntax: (individual? IN &optional (ABN (current-abox)))

Arguments: IN - individual name

ABN - ABox name

Values: Returns t if IN is a name of an individual and nil otherwise.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

90 CHAPTER 4. EVALUATION FUNCTIONS AND QUERIES

cd-object-p function

Description: Checks if ON is a name of a concrete domain object mentioned in an ABox
abox .

Syntax: (cd-object-p ON &optional (abox (current-abox)))

Arguments: ON - concrete domain object name
abox - ABox object

Values: Returns t if ON is a name of a concrete domain object and nil otherwise.

cd-object? macro

Description: Checks if ON is a name of a concrete domain object mentioned in an ABox
ABN .

Syntax: (cd-object? ON &optional (ABN (current-abox)))

Arguments: ON - concrete domain object name
ABN - ABox name

Values: Returns t if ON is a name of a concrete domain object and nil otherwise.

get-individual-pmodel function

Description: Returns a so-called pseudo model for an individual.

Syntax: (get-individual-pmodel IN &optional (TBN (current-tbox)))

Arguments: IN - individual name
TBN - TBox name

Values: Returns a list (name positive-literals negative-literals exists restricts at-
tributes ensured-attributes unique-p).

Examples: (in-knowledge-base test)
(implies a (and e (some r c)))
(implies b (and (not f) (all r d)))
(equivalent c (and a b))
(get-individual-pmodel ’(and a b) ’test)
returns ((I) (E B A C) (F) (R S) (R) NIL NIL T)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

Chapter 5

Retrieval

If the retrieval refers to concept names, RACER always returns a set of names for each
concept name. A so called name set contains all synonyms of an atomic concept in the
TBox.

5.1 TBox Retrieval

taxonomy function

Description: Returns the whole taxonomy for the specified TBox.

Syntax: (taxonomy &optional (tbox (current-tbox)))

Arguments: tbox - TBox object

Values: A list of triples, each of it consisting of:

a name set - the atomic concept CN and its synonyms

list of concept-parents name sets - each entry being a list of a concept parent
of CN and its synonyms

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

92 CHAPTER 5. RETRIEVAL

list of concept-children name sets - each entry being a list of a concept child
of CN and its synonyms.

Examples: (taxonomy my-TBox)
may yield:
(((*top*) () ((quadrangle tetragon)))

((quadrangle tetragon) ((*top*)) ((rectangle) (diamond)))
((rectangle) ((quadrangle tetragon)) ((*bottom*)))
((diamond) ((quadrangle tetragon)) ((*bottom*)))
((*bottom*) ((rectangle) (diamond)) ()))

See also: Function atomic-concept-parents,
function atomic-concept-children on page 95.

concept-synonyms macro

Description: Returns equivalent concepts for the specified concept in the given TBox.

Syntax: (concept-synonyms CN
&optional (tbox (current-tbox)))

Arguments: CN - concept name

tbox - TBox object

Values: List of concept names

Remarks: The name CN is not included in the result.

See also: Function concept-equivalent-p, on page 63.

atomic-concept-synonyms function

Description: Returns equivalent concepts for the specified concept in the given TBox.

Syntax: (atomic-concept-synonyms CN tbox)

Arguments: CN - concept name

tbox - TBox object

Values: List of concept names

Remarks: The name CN is included in the result.

See also: Function concept-equivalent-p, on page 63.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

5.1. TBOX RETRIEVAL 93

concept-descendants KRSS macro

Description: Gets all atomic concepts of a TBox, which are subsumed by the specified
concept.

Syntax: (concept-descendants C
&optional (TBN (current-tbox)))

Arguments: C - concept term
TBN - TBox name

Values: List of name sets

Remarks: This macro return the transitive closure of the macro concept-children.

atomic-concept-descendants function

Description: Gets all atomic concepts of a TBox, which are subsumed by the specified
concept.

Syntax: (atomic-concept-descendants C tbox)

Arguments: C - concept term
tbox - TBox object

Values: List of name sets

Remarks: Returns the transitive closure from the call of atomic-concept-children.

concept-ancestors KRSS macro

Description: Gets all atomic concepts of a TBox, which are subsuming the specified con-
cept.

Syntax: (concept-ancestors C
&optional (TBN (current-tbox)))

Arguments: C - concept term
TBN - TBox name

Values: List of name sets

Remarks: This macro return the transitive closure of the macro concept-parents.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

94 CHAPTER 5. RETRIEVAL

atomic-concept-ancestors function

Description: Gets all atomic concepts of a TBox, which are subsuming the specified con-
cept.

Syntax: (atomic-concept-ancestors C tbox)

Arguments: C - concept term

tbox - TBox object

Values: List of name sets

Remarks: Returns the transitive closure from the call of atomic-concept-parents.

concept-children KRSS macro

Description: Gets the direct subsumees of the specified concept in the TBox.

Syntax: (concept-children C
&optional (TBN (current-tbox)))

Arguments: C - concept term

TBN - TBox name

Values: List of name sets

Remarks: Is the equivalent macro for the KRSS macro concept-offspring, which is
also supplied in RACER.

atomic-concept-children function

Description: Gets the direct subsumees of the specified concept in the TBox.

Syntax: (atomic-concept-children C tbox)

Arguments: C - concept term

tbox - TBox object

Values: List of name sets

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

5.1. TBOX RETRIEVAL 95

concept-parents KRSS macro

Description: Gets the direct subsumers of the specified concept in the TBox.

Syntax: (concept-parents C
&optional (TBN (current-tbox)))

Arguments: C - concept term

TBN - TBox name

Values: List of name sets

atomic-concept-parents function

Description: Gets the direct subsumers of the specified concept in the TBox.

Syntax: (atomic-concept-parents C tbox)

Arguments: C - concept term

tbox - TBox object

Values: List of name sets

role-descendants KRSS macro

Description: Gets all roles from the TBox, that the given role subsumes.

Syntax: (role-descendants R
&optional (TBN (current-tbox)))

Arguments: R - role term

TBN - TBox name

Values: List of role terms

Remarks: This macro is the transitive closure of the macro role-children.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

96 CHAPTER 5. RETRIEVAL

atomic-role-descendants function

Description: Gets all roles from the TBox, that the given role subsumes.

Syntax: (atomic-role-descendants R tbox)

Arguments: R - role term

tbox - TBox object

Values: List of role terms

Remarks: This function is the transitive closure of the function
atomic-role-descendants.

role-ancestors KRSS macro

Description: Gets all roles from the TBox, that subsume the given role in the role hierar-
chy.

Syntax: (role-ancestors R
&optional (TBN (current-tbox)))

Arguments: R - role term

TBN - TBox name

Values: List of role terms

atomic-role-ancestors function

Description: Gets all roles from the TBox, that subsume the given role in the role hierar-
chy.

Syntax: (atomic-role-ancestors R tbox)

Arguments: R - role term

tbox - TBox object

Values: List of role terms

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

5.1. TBOX RETRIEVAL 97

role-children macro

Description: Gets all roles from the TBox that are directly subsumed by the given role in
the role hierarchy.

Syntax: (role-children R
&optional (TBN (current-tbox)))

Arguments: R - role term

TBN - TBox name

Values: List of role terms

Remarks: This is the equivalent macro to the KRSS macro role-offspring, which is
also supplied by the RACER system.

atomic-role-children function

Description: Gets all roles from the TBox that are directly subsumed by the given role in
the role hierarchy.

Syntax: (atomic-role-children R tbox)

Arguments: R - role term

tbox - TBox object

Values: List of role terms

role-parents KRSS macro

Description: Gets the roles from the TBox that directly subsume the given role in the role
hierarchy.

Syntax: (role-parents R &optional (TBN (current-tbox)))

Arguments: R - role term

TBN - TBox name

Values: List of role terms

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

98 CHAPTER 5. RETRIEVAL

atomic-role-parents function

Description: Gets the roles from the TBox that directly subsume the given role in the role
hierarchy.

Syntax: (atomic-role-parents R tbox)

Arguments: R - role term

tbox - TBox object

Values: List of role terms

role-synonyms KRSS macro

Description: Gets the synonyms of a role including the role itself.

Syntax: (role-synonyms R &optional (TBN (current-tbox)))

Arguments: R - role term

TBN - TBox name

Values: List of role terms

atomic-role-synonyms function

Description: Gets the synonyms of a role including the role itself.

Syntax: (atomic-role-synonyms R tbox)

Arguments: R - role term

tbox - TBox object

Values: List of role terms

all-tboxes function

Description: Returns the names of all known TBoxes.

Syntax: (all-tboxes)

Values: List of TBox names

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

5.1. TBOX RETRIEVAL 99

all-atomic-concepts function

Description: Returns all atomic concepts from the specified TBox.

Syntax: (all-atomic-concepts &optional (tbox (current-tbox)))

Arguments: tbox - TBox object

Values: List of concept names

all-equivalent-concepts function

Description: xx

Syntax: (all-equivalent-concepts &optional (tbox (current-tbox)))

Arguments: tbox - TBox object

Values: List of name sets

all-roles function

Description: Returns all roles and features from the specified TBox.

Syntax: (all-roles &optional (tbox (current-tbox)))

Arguments: tbox - TBox object

Values: List of role terms

Examples: (all-roles (find-tbox ’my-tbox))

all-features function

Description: Returns all features from the specified TBox.

Syntax: (all-features &optional (tbox (current-tbox)))

Arguments: tbox - TBox

Values: List of feature terms

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

100 CHAPTER 5. RETRIEVAL

all-attributes function

Description: Returns all attributes from the specified TBox.

Syntax: (all-attributes &optional (tbox (current-tbox)))

Arguments: tbox - TBox

Values: List of attributes names

attribute-type function

Description: Returns the attribute type declared for a given attribute name in a specified
TBox.

Syntax: (attribute-type AN &optional (tbox (current-tbox)))

Arguments: AN - attribute name

tbox - TBox

Values: Either cardinal, integer, real, or complex.

all-transitive-roles function

Description: Returns all transitive roles from the specified TBox.

Syntax: (all-transitive-roles &optional (tbox (current-tbox)))

Arguments: tbox - TBox object

Values: List of transitive role terms

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

5.1. TBOX RETRIEVAL 101

describe-tbox function

Description: Generates a description for the specified TBox.

Syntax: (describe-tbox &optional (tbox (current-tbox))
(stream *standard-output*))

Arguments: tbox - TBox object or TBox name
stream - open stream object

Values: tbox
The description is written to stream.

describe-concept function

Description: Generates a description for the specified concept used in the specified TBox
or in the ABox and its TBox.

Syntax: (describe-concept CN &optional (tbox-or-abox (current-tbox))
(stream *standard-output*))

Arguments: tbox -or -abox - TBox object or ABox object
CN - concept name
stream - open stream object

Values: tbox -or -abox
The description is written to stream.

describe-role function

Description: Generates a description for the specified role used in the specified TBox or
ABox.

Syntax: (describe-role R &optional (tbox-or-abox (current-tbox))
(stream *standard-output*))

Arguments: tbox -or -abox - TBox object or ABox object
R - role term (or feature term)
stream - open stream object

Values: tbox -or -abox
The description is written to stream.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

102 CHAPTER 5. RETRIEVAL

5.2 ABox Retrieval

individual-direct-types KRSS macro

Description: Gets the most-specific atomic concepts of which an individual is an instance.

Syntax: (individual-direct-types IN
&optional (ABN (current-abox)))

Arguments: IN - individual name

ABN - ABox name

Values: List of name sets

most-specific-instantiators function

Description: Gets the most-specific atomic concepts of which an individual is an instance.

Syntax: (most-specific-instantiators IN abox)

Arguments: IN - individual name

abox - ABox object

Values: List of name sets

individual-types KRSS macro

Description: Gets all atomic concepts of which the individual is an instance.

Syntax: (individual-types IN
&optional (ABN (current-abox)))

Arguments: IN - individual name

ABN - ABox name

Values: List of name sets

Remarks: This is the transitive closure of the KRSS macro individual-direct-types.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

5.2. ABOX RETRIEVAL 103

instantiators function

Description: Gets all atomic concepts of which the individual is an instance.

Syntax: (instantiators IN abox)

Arguments: IN - individual name

abox - ABox object

Values: List of name sets

Remarks: This is the transitive closure of the function
most-specific-instantiators.

concept-instances KRSS macro

Description: Gets all individuals from an ABox that are instances of the specified concept.

Syntax: (concept-instances C
&optional (ABN (current-abox)) (candidates)

Arguments: C - concept term

ABN - ABox name

candidates - a list of individual names

Values: List of individual names

retrieve-concept-instances function

Description: Gets all individuals from an ABox that are instances of the specified concept.

Syntax: (retrieve-concept-instances C abox candidates)

Arguments: C - concept term

abox - ABox object

candidates - a list of individual names

Values: List of individual names

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

104 CHAPTER 5. RETRIEVAL

individual-synonyms Macro

Description: Gets all individuals which can be proven to refer to the same domain object.

Syntax: (individual-synonyms IN &optional (ABN (current-abox)))

Arguments: IN - individual name

ABN - ABox name

Values: List of individual names

retrieve-individual-synonyms function

Description: Gets all individuals which can be proven to refer to the same domain object.

Syntax: (retrieve-individual-fillers IN abox)

Arguments: IN - individual name

abox - ABox name

Values: List of individual names

individual-fillers KRSS macro

Description: Gets all individuals that are fillers of a role for a specified individual.

Syntax: (individual-fillers IN R
&optional (ABN (current-abox)))

Arguments: IN - individual name of the predecessor

R - role term

ABN - ABox name

Values: List of individual names

Examples: (individual-fillers Charlie-Brown has-pet)
(individual-fillers Snoopy (inv has-pet))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

5.2. ABOX RETRIEVAL 105

retrieve-individual-fillers function

Description: Gets all individuals that are fillers of a role for a specified individual.

Syntax: (retrieve-individual-fillers IN R abox)

Arguments: IN - individual name of the predecessor

R - role term

abox - ABox object

Values: List of individual names

Examples: (retrieve-individual-fillers ’Charlie-Brown ’has-pet
(find-abox ’peanuts-characters))

individual-attribute-fillers macro

Description: Gets all object names that are fillers of an attribute for a specified individual.

Syntax: (individual-attribute-fillers IN AN
&optional (ABN (current-abox)))

Arguments: IN - individual name of the predecessor

AN - attribute-name

ABN - ABox name

Values: List of object names

retrieve-individual-attribute-fillers function

Description: Gets all object names that are fillers of an attribute for a specified individual.

Syntax: (retrieve-individual-attribute-fillers IN AN
&optional (ABN (current-abox)))

Arguments: IN - individual name of the predecessor

AN - attribute-name

ABN - ABox name

Values: List of object names

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

106 CHAPTER 5. RETRIEVAL

told-value function

Description: Returns an explicitly asserted value for an object that is declared as filler for
a certain attribute w.r.t. an individual.

Syntax: (told-value ON
&optional (ABN (current-abox)))

Arguments: ON - object name

ABN - ABox name

Values: Concrete domain value

individual-told-attribute-fillers macro

Description: Gets object names which are fillers for attributes.

Syntax: (individual-told-attribute-fillers IN AN
&optional (ABN (current-abox)))

Arguments: IN - individual name of the predecessor

RN - attribute name

ABN - ABox name

Values: List of object names whose type is determined by the type of the attribute.

retrieve-individual-told-attribute-fillers Function

Description: Functional equivalent of individual-told-attribute-fillers, Page 106.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

5.2. ABOX RETRIEVAL 107

individual-told-attribute-value macro

Description: Gets told values for attributes.

Syntax: (individual-told-attribute-value IN AN
&optional (ABN (current-abox)))

Arguments: IN - individual name of the predecessor

RN - attribute name

ABN - ABox name

Values: List of values whose type is determined by the type of the attribute.

retrieve-individual-told-attribute-value Function

Description: Functional equivalent of individual-told-attribute-value, Page 107.

individual-told-datatype-fillers function

Description: Gets told values for datatype property roles.

Syntax: (individual-told-datatype-fillers IN RN
&optional (ABN (current-abox)))

Arguments: IN - individual name of the predecessor

RN - datatype property role name

ABN - ABox name

Values: List of values whose type is determined by the range of the datatype property
role.

retrieve-individual-told-datatype-fillers Function

Description: Functional equivalent of individual-told-datatype-fillers, Page 107.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

108 CHAPTER 5. RETRIEVAL

retrieve-individual-annotation-property-fillers function

Description: Gets told values for attributes.

Syntax: (individual-annotation-property-fillers IN AN
&optional (ABN (current-abox)))

Arguments: IN - individual name of the predecessor

RN - attribute name

ABN - ABox name

Values: List of values whose type is determined by the type of the attribute.

related-individuals macro

Description: Gets all pairs of individuals that are related via the specified relation.

Syntax: (related-individuals R
&optional (ABN (current-abox)))

Arguments: R - role term

ABN - ABox name

Values: List of pairs of individual names

Examples: (retrieve-related-individuals ’has-pet
(find-abox ’peanuts-characters))

may yield:
((Charlie-Brown Snoopy) (John-Arbuckle Garfield))

See also: Function individuals-related-p, on page 88.

retrieve-related-individuals function

Description: Functional equivalents of related-individuals.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

5.2. ABOX RETRIEVAL 109

retrieve-individual-filled-roles function

Description: This function gets all roles that hold between the specified pair of individu-
als.

Syntax: (retrieve-individual-filled-roles IN 1 IN 2 abox).

Arguments: IN 1 - individual name of the predecessor

IN 2 - individual name of the role filler

abox - ABox object

Values: List of role terms

Examples: (retrieve-individual-filled-roles ’Charlie-Brown ’Snoopy
(find-abox ’peanuts-characters))

See also: Function individuals-related-p, on page 88.

individual-filled-roles macro

Description: Equivalent to retrieve-individual-filled-roles, Page 109.

retrieve-direct-predecessors function

Description: Gets all individuals that are predecessors of a role for a specified individual.

Syntax: (retrieve-direct-predecessors R IN abox)

Arguments: R - role term

IN - individual name of the role filler

abox - ABox object

Values: List of individual names

Examples: (retrieve-direct-predecessors ’has-pet ’Snoopy
(find-abox ’peanuts-characters))

direct-predecessors macro

Description: Equivalent to retrieve-direct-predecessors, Page 109.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

110 CHAPTER 5. RETRIEVAL

all-aboxes function

Description: Returns the names of all known ABoxes.

Syntax: (all-aboxes)

Values: List of ABox names

all-individuals function

Description: Returns all individuals from the specified ABox.

Syntax: (all-individuals &optional (abox (current-abox)))

Arguments: abox - ABox object

Values: List of individual names

all-concept-assertions-for-individual function

Description: Returns all concept assertions for an individual from the specified ABox.

Syntax: (all-concept-assertions-for-individual IN
&optional (abox (current-abox)))

Arguments: IN - individual name

abox - ABox object

Values: List of concept assertions

See also: Function all-concept-assertions on page 112.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

5.2. ABOX RETRIEVAL 111

all-role-assertions-for-individual-in-domain function

Description: Returns all role assertions for an individual from the specified ABox in which
the individual is the role predecessor.

Syntax: (all-role-assertions-for-individual-in-domain IN
&optional (abox (current-abox)))

Arguments: IN - individual name

abox - ABox object

Values: List of role assertions

Remarks: Returns only the role assertions explicitly mentioned in the ABox, not the
inferred ones.

See also: Function all-role-assertions on page 112.

all-role-assertions-for-individual-in-range function

Description: Returns all role assertions for an individual from the specified ABox in which
the individual is a role successor.

Syntax: (all-role-assertions-for-individual-in-range IN
&optional (abox (current-abox)))

Arguments: IN - individual name

abox - ABox object

Values: List of assertions

See also: Function all-role-assertions on page 112.

all-concept-assertions function

Description: Returns all concept assertions from the specified ABox.

Syntax: (all-concept-assertions &optional (abox (current-abox)))

Arguments: abox - ABox object

Values: List of assertions

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

112 CHAPTER 5. RETRIEVAL

all-annotation-concept-assertions function

Description: Returns all annotation concept assertions from the specified ABox.

Syntax: (all-annotation-concept-assertions &optional (abox
(current-abox)))

Arguments: abox - ABox object

Values: List of assertions

all-role-assertions function

Description: Returns all role assertions from the specified ABox.

Syntax: (all-role-assertions &optional (abox (current-abox)))

Arguments: abox - ABox object

Values: List of assertions

See also: Function all-concept-assertions-for-individual on page 110.

all-annotation-role-assertions function

Description: Returns all annotation role assertions from the specified ABox.

Syntax: (all-annotation-role-assertions &optional (abox
(current-abox)))

Arguments: abox - ABox object

Values: List of assertions

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

5.2. ABOX RETRIEVAL 113

all-constraints function

Description: Returns all constraints from the specified ABox which refer to a list of object
names.

Syntax: (all-constraints &optional (abox (current-abox)) ONs)

Arguments: abox - ABox object

ONs - list of object names

Values: List of constraints

Remarks: If ONs is not specified, all constraints of the ABox are returned.

all-attribute-assertions function

Description: Returns all attribute assertions from the specified ABox.

Syntax: (all-attribute-assertions &optional (abox (current-abox)))

Arguments: abox - ABox object

Values: List of assertions

describe-abox function

Description: Generates a description for the specified ABox.

Syntax: (describe-abox &optional (abox (current-abox))
(stream *standard-output*))

Arguments: abox - ABox object

stream - open stream object

Values: abox
The description is written to stream.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

114 CHAPTER 5. RETRIEVAL

describe-individual function

Description: Generates a description for the individual from the specified ABox.

Syntax: (describe-individual IN &optional (abox (current-abox))
(stream *standard-output*))

Arguments: IN - individual name

abox - ABox object

stream - open stream object

Values: IN
The description is written to stream.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

Chapter 6

The API of the nRQL Query
Processing Engine

In the following, each API function provided by nRQL is described. We differentiate between
functions and macros.

Users of Jracer, RacerPorter, RICE or any other graphical front end tool which allows to
post commands to the RacerPro server can completely ignore the difference.

However, if you are accessing the RacerPro server via the LRacer API which is imple-
mented in Lisp, or you are using RacerMaster and RacerPro is running in the same Lisp
environment, then you will need to know which arguments will be evaluated and which not.

In this case, if you want to call a function, then the Lisp environment will always evaluate
all arguments. However, if you use a macro call, then the macro can chose not to evaluate
certain arguments.

You can always prevent the evaluation of an argument provided to a function by quoting the
argument with " ’ ". A quoted argument always evaluates to itself. For example, in the
function call (racer-answer-query ’(?x) ’(?x woman) :abox ’smith-family). Thus,
the expression ’(?x woman) is taken as a (complex) literal - a constant list (tree). Note
that the corresponding macro call looks as follows: (retrieve (?x) (?x woman) :abox
smith-family). In retrieve, Page 155 you will see that all arguments are marked with an
asterix, thus, (?x), (?x woman), and smith-family are taken as literals.

Let us explain the format used for describing the API. Suppose
the function test-function has the following syntax specification:

Syntax: (test a &optional (b 3) &key c (d 4)).

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

116 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

This function is named test-function, and has one required (mandatory) argument a. It
has 3 optional arguments: b, c, d . The arguments c and d are called keyword arguments.
If an optional (&optional or &key) parameter is specified like (b 3), then this means that
there is a default value specified for this optional argument. Thus, if b is not explicitly
specified in a call to test-function, it will take the specified default value, in this case 3.
In case no default value is specified, the value will be NIL. If a function has &optional as
well as &key parameters, and you want to pass it a keyword argument, then you will have
to supply values for all arguments listed between &optional and &key. This is the usual
Lisp way of handling optional and keyword arguments.

Thus, given the specification of test as above, the following calls are possible:

1. (test-function 1), parameters will be bound to: a=1, b=3, c=NIL, d=4

2. (test-function 2 2 :d 5), parameters will be bound to: a=2, b=2, c=NIL, d=5

3. (test-function 2 nil :d 5 :c 6), parameters will be bound to: a=2, b=NIL, c=6,
d=5

4. Note that you CANNOT make this call: (test-function 2 :d 5 :c 6), since a
correct value for b is missing (in fact, b is bound to the keyword symbol :d, but then
a formal parameter is missing for the subsequent value “5”).

Users of the LRacer API will find all functions and macros as described here.

Some API function might raise errors. However, under values we only describe the value
which is returned in case no error has been raised.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. BASIC COMMANDS 117

6.1 Basic Commands

all-queries Function

Description: Returns a list of (the IDs of) all queries

Syntax: (all-queries)

Arguments:

all-rules Function

Description: This is the rule equivalent of all-queries, Page 117.

all-substrates Function

Description: Returns a list of all substrates. A substrate is the internal (ABox) represen-
tation that nRQL needs in order to answer queries. A substrate has a type
and a corresponding Racer ABox. For each ABox and type there is at most
one substrate

Syntax: (all-substrate)

Arguments:

Values: A list of (abox type-of-substrate) entries, denoting the name of the substrate
(which is identical to the name of the associated ABox) as well as the type
of the substrate.

Remarks: .

See also: reset-all-substrates, Page 122, describe-all-substrates, Page 118

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

118 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

delete-all-substrates Function

Description: Deletes all substrates

Syntax: (delete-all-substrates)

Arguments:

Values: :okay-all-substrates-deleted.

See also: reset-all-substrates, Page 122, reset-nrql-engine, Page 123,
all-substrates, Page 117, describe-all-substrates, Page 118

describe-all-queries Function

Description: Applies describe-query, Page 119 to the result of all-queries, Page 117
and returns it

Syntax: (describe-all-queries)

Arguments: rewritten-p - t.

describe-all-rules Function

Description: This is the rule equivalent of describe-all-queries, Page 118.

describe-all-substrates Function

Description: Maps describe-substrate, Page 211 over all-substrates, Page 117

Syntax: (describe-all-substrates)

Arguments:

Values: A list containing the results of describe-substrate, Page 211 applied to
the substrates in all-substrates, Page 117.

Remarks: .

See also: describe-substrate, Page 211

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. BASIC COMMANDS 119

describe-query Function

Description: Returns a description of the query id

Syntax: (describe-query id &optional rewritten-p)

Arguments: id - the ID of the query, or :last or :last-query.

rewritten-p - t.

Values: A list of three items: The query identify, the current status description (see
describe-query-status, Page 119), and either the rewritten or original
syntactic query.

Remarks: This function uses describe-query-status, Page 119, query-head, Page
122 (or original-query-head, Page 121) and query-body, Page 122 (or
original-query-body, Page 120) to create the description.

See also: describe-all-queries, Page 118

describe-query-status Function

Description: Describes the current status of the query id - whether the query is ready (to
run), running, waiting (sleeping), or terminated

Syntax: (describe-query-status id)

Arguments: id - the ID of the query, or :last or :last-query.

Values: A list of status symbols describing the current status of the query.

See also: describe-all-queries, Page 118

describe-rule Function

Description: This is the rule equivalent of describe-all-queries, Page 118.

describe-rule-status Function

Description: This is the rule equivalent of describe-query-status, Page 119.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

120 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

exit-server Function

Description: Exists the current RacerPro server. Command only works if RacerPro is
running in unsafe mode.

full-reset Function

Description: Simply calls (reset-nrql-engine :full-reset-p t), see
reset-nrql-engine, Page 123.

get-nrql-version Function

Description: Returns the nRQL version number.

get-substrate-type Function

Description: Returns the type (class) of the substrates that nRQL creates internally on
request

Syntax: (get-substrate-type)

Arguments:

Values: the type (class), a symbol.

See also: set-substrate-type, Page 124, describe-query-processing-mode, Page
183

in-unsafe-mode? Function

Description: Check whether RacerPro is running in unsafe mode..

original-query-body Function

Description: Like query-body, Page 122, but the original body is returned.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. BASIC COMMANDS 121

original-query-head Function

Description: Like query-head, Page 122, but the original head is returned.

original-rule-antecedence Function

Description: Like rule-antecedence, Page 123, but the original antecedence is returned.
This is the rule equivalent of original-query-body, Page 120.

original-rule-consequence Function

Description: Like rule-consequence, Page 124, but the original consequence is returned.
This is the rule equivalent of original-query-head, Page 121.

prepare-nrql-engine Function

Description: Prepares the internal index structures of the nRQL engine for query an-
swering on the ABox argumentabox. Usually, there is no need to call this
function. The function will be called automatically before the first query to
argumentabox is executed. Thus, answering the first query to argumentabox
might take considerably longer than subsequent queries to that ABox. For
benchmarking purposes, the nRQL engine should thus be prepared using this
function (or with prepare-racer-engine, Page 83) before the first query is
executed

Syntax: (prepare-nrql-engine abox &rest args)

Arguments: abox - (current-abox).

args - see with-nrql-settings, Page 199.

Values: The (name of the) ABox abox is returned.

See also: reset-nrql-engine, Page 123, prepare-racer-engine, Page 83

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

122 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

query-body Function

Description: Returns the (possibly rewritten) body of the query id

Syntax: (query-body id)

Arguments: id - the ID of the query, or :last or :last-query.

Values: The (possibly rewritten) body of the query.

See also: original-query-body, Page 120, query-head, Page 122

query-head Function

Description: Returns the (possibly rewritten) head of the query id

Syntax: (query-head id)

Arguments: id - the ID of the query, or :last or :last-query.

Values: The (possibly rewritten) head of the query.

Remarks: Note that individuals in the original query head are usually yreplaced by
representative variables.

See also: original-query-head, Page 121, query-body, Page 122

reset-all-substrates Function

Description: Resets all substrates

Syntax: (reset-all-substrates)

Arguments:

Values: :okay-all-substrates-reset.

Remarks: Does not delete anything from the server.

See also: delete-all-substrates, Page 118, reset-nrql-engine, Page 123,
all-substrates, Page 117, describe-all-substrates, Page 118

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. BASIC COMMANDS 123

reset-nrql-engine Function

Description: Aborts all (active) queries and rules using abort-all-queries, Page
136, abort-all-rules, Page 136, then resets the internal caches of the
nRQL engine using reset-all-substrates, Page 122), and finally calls
restore-standard-settings, Page 194.

If full-reset-p = t is given, nRQL will delete all TBoxes (as well as the as-
sociated ABoxes) using delete-all-tboxes, Page ??), delete all the queries
and rules using delete-all-queries, Page 125, delete-all-rules, Page
126, deletes all substrates (as well as the associated QBoxes) and associated
defined queries

Syntax: (reset-nrql-engine &key full-reset-p)

Arguments: full-reset-p, default nil - pass t if you really want to reset the nRQL
engine fully - note that this will delete everything from the RacerPro
server.

Values: :okay-full-reset or :okay-engine-reset.

See also: reset-nrql-engine, Page 123, restore-standard-settings, Page 194

rule-antecedence Function

Description: Returns the (possibly rewritten) antecedence of the rule id This is the rule
equivalent of query-body, Page 122.

Syntax: (rule-antecedence id)

Arguments: id - the ID of the rule, or :last or :last-rule.

Values: The (possibly rewritten) antecedence of the rule.

See also: Rule equivalent of query-body, Page 122. original-rule-antecedence,
Page 121, rule-consequence, Page 124

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

124 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

rule-consequence Function

Description: Returns the (possibly rewritten) rule consequence of the rule id This is the
rule equivalent of query-head, Page 122.

Syntax: (rule-consequence id)

Arguments: (first id the ID of the rule, or :last or :last-rule) - nil.

Values: The (possibly rewritten) consequence of the rule.

See also: Rule equivalent of query-head, Page 122. original-rule-consequence,
Page 121, rule-antecedence, Page 123

set-substrate-type Function

Description: Determines the type (class) of the substrates that nRQL creates internally
on request

Syntax: (set-substrate-type type-of-substrate)

Arguments: type-of-substrate - a substrate type (class), one of:
data-substrate, mirror-data-substrate, rcc-substrate,
rcc-mirror-substrate.

Values: :okay or :ignored.

See also: get-substrate-type, Page 120, describe-query-processing-mode, Page
183

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.2. QUERY MANAGEMENT 125

6.2 Query Management

delete-all-queries Function

Description: Aborts and deletes all queries

Syntax: (delete-all-queries)

Arguments:

Values: :okay-all-queries-deleted.

See also: abort-query, Page 136, delete-query, Page 125, abort-all-queries,
Page 136

delete-query Function

Description: Deletes the query id, enabling the garbage collector to recycle some memory

Syntax: (delete-query id)

Arguments: id - the ID of the query to be deleted, or :last or :last-query.

Values: :okay-query-deleted or :not-found.

See also: delete-all-queries, Page 125

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

126 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

6.3 Rule Management

delete-all-rules Function

Description: Aborts and deletes all rules

Syntax: (delete-all-rules)

Arguments:

Values: :okay-all-rules-deleted.

See also: abort-rule, Page 136, delete-rule, Page 126, abort-all-rules, Page 136

delete-rule Function

Description: Deletes the query id, enabling the garbage collector to recycle some memory

Syntax: (delete-rule id)

Arguments: id - the ID of the rule to be deleted, or :last or :last-query.

Values: :okay-rule-deleted or :not-found.

See also: delete-all-rules, Page 126

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.4. QUERY LIFE CYCLE 127

6.4 Query Life Cycle

active-queries Function

Description: Returns a list of (the IDs of) all queries which satisfy query-active-p, Page
128

Syntax: (active-queries)

Arguments:

See also: ready-queries, Page 130, processed-queries, Page 127

prepared-queries Function

Description: Synonym for ready-queries, Page 130.

processed-queries Function

Description: Returns a list of (the IDs of) all queries which satisfy query-processed-p,
Page 128

Syntax: (processed-queries)

Arguments:

See also: prepared-queries, Page 127, active-queries, Page 127

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

128 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

query-active-p Function

Description: Checks whether query id is active. A query is active iff a corresponding query
answering thread exists

Syntax: (query-active-p id)

Arguments: id - the id of the query, or :last or :last-query.

Values: t or nil.

Remarks: An active query can either be waiting (if it has been started in lazy mode,
query-waiting-p, Page 130) or running (query-running-p, Page 129), until
its process terminates or is manually aborted (see abort-query, Page 136),
query-processed-p, Page 128.

See also: active-queries, Page 127, query-waiting-p, Page 130, query-running-p,
Page 129

query-prepared-p Function

Description: Synonym for query-ready-p, Page 129.

query-processed-p Function

Description: Checks whether the query id is processed and terminated, i.e., its query
answering process (thread) has died

Syntax: (query-processed-p id)

Arguments: id - the id of the query, or :last or :last-query.

Values: t or nil.

Remarks: Use reprepare-query, Page 131 to reprepare the query, reexecute-query,
Page 131 to reexecute it.

See also: processed-queries, Page 127, query-active-p, Page 128,
query-prepared-p, Page 128

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.4. QUERY LIFE CYCLE 129

query-ready-p Function

Description: Checks whether query id is ready for execution

Syntax: (query-ready-p id)

Arguments: id - the id of the query, or :last or :last-query.

Values: t or nil.

Remarks: Use execute-query, Page 150 to start the query.

See also: ready-queries, Page 130

query-running-p Function

Description: Checks whether query id is active and running, i.e., its query answering
process (thread) is currently consuming CPU cycles

Syntax: (query-running-p id)

Arguments: id - the id of the query, or :last or :last-query.

Values: t or nil.

Remarks: Use abort-query, Page 136 to abort the query.

See also: running-queries, Page 131, query-active-p, Page 128, query-waiting-p,
Page 130

query-sleeping-p Function

Description: Synonym for query-waiting-p, Page 130.

query-terminated-p Function

Description: Synonym for query-processed-p, Page 128.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

130 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

query-waiting-p Function

Description: Checks whether the query id is active and waiting (sleeping), i.e., its query
answering process (thread) is currently not consuming CPU cycles

Syntax: (query-waiting-p id)

Arguments: id - the id of the query, or :last or :last-query.

Values: t or nil.

Remarks: Use abort-query, Page 136 to abort the query.

See also: waiting-queries, Page 132, query-active-p, Page 128, query-running-p,
Page 129

ready-queries Function

Description: Returns a list of (the IDs of) all queries which satisfy query-ready-p, Page
129

Syntax: (ready-queries)

Arguments:

See also: active-queries, Page 127, processed-queries, Page 127

reexecute-query Function

Description: Reprepares and executes an already processed query (see
query-processed-p, Page 128)

Syntax: (reexecute-query id &rest args)

Arguments: id - the ID of the query, or :last or :last-query.

args - see execute-query, Page 150.

Values: The result of execute-query, Page 150.

Remarks: Note that the query cannot be altered, but can be executed using different
settings, since args are passed to execute-query, Page 150.

See also: reprepare-query, Page 131

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.4. QUERY LIFE CYCLE 131

reprepare-query Function

Description: Reprepares an already processed query (see query-processed-p, Page 128)
and makes it ready for execution (via execute-query, Page 150) again (see
query-ready-p, Page 129)

Syntax: (reprepare-query id)

Arguments: id - the ID of the query, or :last or :last-query.

Values: The result of racer-prepare-query, Page 155.

Remarks: Note that the query cannot be altered.

rule-running-p Function

Description: This is the rule equivalent of query-running-p, Page 129.

rule-waiting-p Function

Description: This is the rule equivalent of query-waiting-p, Page 130.

running-queries Function

Description: Returns a list of (the IDs of) all queries which satisfy query-running-p,
Page 129

Syntax: (running-queries)

Arguments:

See also: active-queries, Page 127, waiting-queries, Page 132

sleeping-queries Function

Description: Synonym for waiting-queries, Page 132.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

132 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

terminated-queries Function

Description: Synonym for processed-queries, Page 127.

waiting-queries Function

Description: Returns a list of (the IDs of) all queries which satisfy query-waiting-p,
Page 130

Syntax: (waiting-queries)

Arguments:

See also: active-queries, Page 127, running-queries, Page 131

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.5. RULE LIFE CYCLE 133

6.5 Rule Life Cycle

active-rules Function

Description: Returns a list of (the IDs of) all rules which satisfy rule-active-p, Page
134

Syntax: (active-rules)

Arguments:

See also: ready-rules, Page 133, processed-rules, Page 133

prepared-rules Function

Description: Synonym for ready-rules, Page 133.

processed-rules Function

Description: Returns a list of (the IDs of) all rules which satisfy rule-processed-p, Page
134

Syntax: (processed-rules)

Arguments:

See also: prepared-rules, Page 133, active-rules, Page 133

ready-rules Function

Description: Returns a list of (the IDs of) all rules which satisfy rule-ready-p, Page
134

Syntax: (ready-rules)

Arguments:

See also: active-rules, Page 133, processed-rules, Page 133

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

134 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

reexecute-rule Function

Description: This is the rule equivalent of reexecute-query, Page 131.

reprepare-rule Function

Description: This is the rule equivalent of reprepare-query, Page 131.

rule-active-p Function

Description: This is the rule equivalent of query-active-p, Page 128.

rule-prepared-p Function

Description: Synonym for rule-ready-p, Page 134.

rule-processed-p Function

Description: This is the rule equivalent of query-processed-p, Page 128.

rule-ready-p Function

Description: This is the rule equivalent of query-ready-p, Page 129.

rule-sleeping-p Function

Description: Synonym for rule-waiting-p, Page 131.

rule-terminated-p Function

Description: Synonym for rule-processed-p, Page 134.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.5. RULE LIFE CYCLE 135

running-rules Function

Description: Returns a list of (the IDs of) all rules which satisfy rule-running-p, Page
131 This is the rule equivalent of running-queries, Page 131.

Syntax: (running-rules)

Arguments:

See also: Rule equivalent of running-queries, Page 131. active-rules, Page 133,
waiting-rules, Page 135

sleeping-rules Function

Description: Synonym for waiting-rules, Page 135.

terminated-rules Function

Description: Synonym for processed-rules, Page 133.

waiting-rules Function

Description: Returns a list of (the IDs of) all rules which satisfy rule-waiting-p, Page
131 This is the rule equivalent of waiting-queries, Page 132.

Syntax: (waiting-rules)

Arguments:

See also: Rule equivalent of waiting-queries, Page 132. active-rules, Page 133,
running-rules, Page 135

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

136 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

6.6 Execution Control

abort-all-queries Function

Description: Applies abort-query, Page 136 to active-queries, Page 127

Syntax: (abort-all-queries)

Arguments: id - the ID of the query, or :last or :last-query.

Values: :okay-all-queries-aborted.

See also: abort-query, Page 136, execute-query, Page 150

abort-all-rules Function

Description: This is the rule equivalent of abort-all-queries, Page 136.

abort-query Function

Description: Aborts the active query (see query-active-p, Page 128) id. The query
becomes processed (see query-processed-p, Page 128)

Syntax: (abort-query id)

Arguments: id - nil.

Values: Either :okay-query-aborted or :not-found.

See also: abort-all-queries, Page 136, query-active-p, Page 128

abort-rule Function

Description: This is the rule equivalent of abort-query, Page 136.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.6. EXECUTION CONTROL 137

accurate-queries Function

Description: Returns a list of (the IDs of) the queries that satisfy query-accurate-p,
Page 142. Note that this is a subset of the set of processed queries (see
processed-queries, Page 127

Syntax: (accurate-queries)

Arguments:

accurate-rules Function

Description: This is the rule equivalent of accurate-queries, Page 137.

applicable-rules Function

Description: Returns (a list of) all rules which satisfy rule-applicable-p, Page 178.

cheap-queries Function

Description: Returns a list of (the IDs of) the queries that satisfy cheap-query-p,
Page 138. Note that this is a subset of the set of active queries (see
active-queries, Page 127

Syntax: (cheap-queries)

Arguments:

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

138 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

cheap-query-p Function

Description: Checks whether query id is still in emphphase one (see User Guide). Only
active queries (see query-active-p, Page 128) can be recognized as cheap

Syntax: (cheap-query-p id)

Arguments: id - the id of the query, or :last or :last-query.

Values: t or nil.

Remarks: A query will only produce cheap tuples if it has been started
in two-phase query processing mode, see execute-query, Page 150,
enable-two-phase-query-processing-mode, Page 190. Note also that
query must be executed in lazy tuple-at-a-time mode.

See also: cheap-queries, Page 137, expensive-query-p, Page 140,
enable-two-phase-query-processing-mode, Page 190, set-nrql-mode,
Page 196, execute-query, Page 150

cheap-rule-p Function

Description: This is the rule equivalent of cheap-query-p, Page 138.

cheap-rules Function

Description: This is the rule equivalent of cheap-queries, Page 137.

execute-all-queries Function

Description: Applies execute-query, Page 150 to ready-queries, Page 130

Syntax: (execute-all-queries &rest args)

Arguments: args - see execute-query, Page 150.

Values: A list containing the results of execute-query, Page 150 applied to
ready-queries, Page 130.

See also: execute-query, Page 150, abort-query, Page 136

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.6. EXECUTION CONTROL 139

execute-all-rules Function

Description: This is the rule equivalent of execute-all-queries, Page 139.

execute-applicable-rules Function

Description: Calls execute-rule, Page 174 on all applicable-rules, Page 137

Syntax: (execute-applicable-rules &rest args)

Arguments: args - see execute-rule, Page 174.

Values: The list of results returned by execute-rule, Page 174 on the
applicable-rules, Page 137.

See also: execute-rule, Page 174, applicable-rules, Page 137,
rule-applicable-p, Page 178

execute-or-reexecute-all-queries Function

Description: Applies execute-or-reexecute-query, Page 140 to processed-queries,
Page 127

Syntax: (execute-or-reexecute-all-queries &rest arsg)

Arguments: args - see execute-query, Page 150 reexecute-query, Page 131.

Values: A list containing the results of execute-or-reexecute-query, Page 140
applied to ready-queries, Page 130 and processed-queries, Page 127.

Remarks: First the ready queries are executed, and then the processed queries reexe-
cuted (however, the ready queries are not executed twice).

See also: reexecute-query, Page 131, execute-query, Page 150,
execute-all-queries, Page 139

execute-or-reexecute-all-rules Function

Description: This is the rule equivalent of execute-or-reexecute-all-queries, Page
139.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

140 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

execute-or-reexecute-query Function

Description: Like execute-query, Page 150 in case the query is already prepared (ready,
see query-ready-p, Page 129), and like reexecute-query, Page 131 in case
the query is already processed (see query-processed-p, Page 128).

execute-or-reexecute-rule Function

Description: This is the rule equivalent of execute-or-reexecute-query, Page 140.

expensive-queries Function

Description: Returns a list of (the IDs of) the queries that satisfy expensive-query-p,
Page 140. Note that this is a subset of the set of active queries (see
active-queries, Page 127

Syntax: (expensive-queries)

Arguments:

expensive-query-p Function

Description: If an active query is not cheap cheap-query-p, Page 138, then it is expensive;
thus, emphphase 2 has started.

expensive-rule-p Function

Description: This is the rule equivalent of expensive-query-p, Page 140.

expensive-rules Function

Description: This is the rule equivalent of expensive-queries, Page 140.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.6. EXECUTION CONTROL 141

get-all-answers Function

Description: Applies get-answer, Page 163 to specified lists of queries and/or rules

Syntax: (execute-or-reexecute-all-queries &rest args &key ready-p
(active-p t) (processed-p t) (queries-p t) (rules-p t)
execute-p)

Arguments: rules-p, default nil - if t, applies get-answer, Page 163 to rules.

rules-p, default nil - if t, applies get-answer, Page 163 to queries.

ready-p, default nil - if t, applies get-answer to ready-queries, Page
130 and/or ready-rules, Page 133; note that args is passed to
get-answer, Page 163 and the queries are executed automatically
(see get-answer, Page 163, execute-p = t.

active-p, default nil - if t, applies get-answer to active-queries, Page
127 and/or active-rules, Page 133. Note that this requires com-
putational ressources, i.e., the answers have to be computed.

processed-p, default nil - if t, applies get-answer to
processed-queries, Page 127 and/or processed-rules, Page
133. Note that this requires no computational ressources, since the
answers are already available and stored within the query objects.

Values: A list containing the results of get-answer, Page 163 applied to the specified
lists of queries and/or rules.

Remarks: First the ready queries are executed, and then the processed queries reexe-
cuted (however, the ready queries are not executed twice).

See also: reexecute-query, Page 131, execute-query, Page 150,
execute-all-queries, Page 139

inaccurate-queries Function

Description: Returns a list of (the IDs of) the queries that do not satisfy
query-accurate-p, Page 142. Note that this is a subset of the set of pro-
cessed queries (see processed-queries, Page 127

Syntax: (inaccurate-queries)

Arguments:

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

142 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

inaccurate-rules Function

Description: This is the rule equivalent of inaccurate-queries, Page 141.

query-accurate-p Function

Description: Determines whether the computed and stored answer of a processed query
query-processed-p, Page 128 is still accurate. The answer resp. processed
query is called emphaccurate iff the queried KB (TBox, ABox) has not
changed since the query was executed. Thus, the answers of an accuarte
query must not be recomputed. Inaccurate query answers can be reecom-
puted see reexecute-query, Page 131

Syntax: (query-accurate-p id)

Arguments: id - the id of the query, or :last or :last-query.

Values: t or nil.

See also: accurate-queries, Page 137

reexecute-all-queries Function

Description: Applies reexecute-query, Page 131 to processed-queries, Page 127

Syntax: (reexecute-all-queries &rest arsg)

Arguments: args - see reexecute-query, Page 131.

Values: A list containing the results of reexecute-query, Page 131 applied to
ready-queries, Page 130.

See also: reexecute-query, Page 131, execute-query, Page 150,
execute-all-queries, Page 139

reexecute-all-rules Function

Description: This is the rule equivalent of reexecute-all-queries, Page 142.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.6. EXECUTION CONTROL 143

rule-accurate-p Function

Description: This is the rule equivalent of query-accurate-p, Page 142.

rule-unapplicable-p Function

Description: Negation of rule-applicable-p, Page 178.

run-all-queries Function

Description: Synonym for execute-all-queries, Page 139.

run-all-rules Function

Description: Synonym for execute-all-rules, Page 139. This is the rule equivalent of
run-all-rules, Page 143.

running-cheap-queries Function

Description: Returns a list of (the IDs of) the queries that satisfy cheap-query-p, Page
138 and query-running-p, Page 129

Syntax: (running-cheap-queries)

Arguments:

running-cheap-rules Function

Description: This is the rule equivalent of running-cheap-rules, Page 143.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

144 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

running-expensive-queries Function

Description: Returns a list of (the IDs of) the queries that satisfy expensive-query-p,
Page 140 and query-running-p, Page 129

Syntax: (running-expensive-queries)

Arguments:

running-expensive-rules Function

Description: This is the rule equivalent of running-expensive-rules, Page 144.

sleeping-cheap-queries Function

Description: Synonym for waiting-cheap-queries, Page 145.

sleeping-cheap-rules Function

Description: Synonym for waiting-cheap-rules, Page 145.

sleeping-expensive-queries Function

Description: Synonym for waiting-expensive-queries, Page 146.

sleeping-expensive-rules Function

Description: Synonym for waiting-expensive-rules, Page 146.

unapplicable-rules Function

Description: Returns (a list of) all rules which satisfy rule-unapplicable-p, Page 143.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.6. EXECUTION CONTROL 145

wait-for-queries-to-terminate Function

Description: Waits (i.e., blocks the API) until all queries have terminated, i.e.,
active-queries, Page 127 returns nil

Syntax: (wait-for-queries-to-terminate)

Arguments:

Values: :okay.

Remarks: queries which are executed in lazy tuple-at-a-time mode do not terminate
automatically. Thus, in order to prevent deadlocks, this function can only be
called if no such queries are active.

See also: active-queries, Page 127, abort-query, Page 136

wait-for-rules-to-terminate Function

Description: This is the rule equivalent of wait-for-queries-to-terminate, Page 145.

waiting-cheap-queries Function

Description: Returns a list of (the IDs of) the queries that satisfy cheap-query-p, Page
138 and query-waiting-p, Page 130

Syntax: (waiting-cheap-queries)

Arguments:

waiting-cheap-rules Function

Description: Returns a list of (the IDs of) the rules that satisfy cheap-rule-p,
Page 138 and rule-waiting-p, Page 131 This is the rule equivalent of
waiting-cheap-queries, Page 145.

Syntax: (waiting-cheap-rules)

Arguments:

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

146 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

waiting-expensive-queries Function

Description: Returns a list of (the IDs of) the queries that satisfy expensive-query-p,
Page 140 and query-waiting-p, Page 130

Syntax: (waiting-expensive-queries)

Arguments:

waiting-expensive-rules Function

Description: Returns a list of (the IDs of) the rules that satisfy expensive-rule-p,
Page 140 and rule-waiting-p, Page 131 This is the rule equivalent of
waiting-expensive-queries, Page 146.

Syntax: (waiting-expensive-rules)

Arguments:

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.7. ABOX QUERIES 147

6.7 ABox Queries

answer-query Function

Description: Synonym for racer-answer-query, Page 152.

answer-query-under-premise Function

Description: Synonym for racer-answer-query-under-premise, Page 152.

answer-query-under-premise1 Function

Description: Synonym for racer-answer-query-under-premise1, Page 152.

answer-query1 Function

Description: Synonym for racer-answer-query1, Page 153.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

148 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

execute-query Function

Description: Sets up and starts a query answering process (thread) for the pre-
pared (ready) query argumentid. The query answering process prepares
the substrate for query answering if it has not been prepared yet (see
prepare-nrql-engine, Page 121) before query answering starts on that sub-
strate. In set-at-a-time mode, automatically calls get-answer, Page 163 and
returns the answer

Syntax: (execute-query id &rest args &key how-many
exclude-permutations-p use-individual-synonyms-p
tuple-at-a-time-p deliver-kb-has-changed-warning-tokens-p
proactive-tuple-computation-p told-information-reasoning-p
check-abox-consistency-p ensure-tbox-classification-p
initial-abox-mirroring-p initial-role-assertion-mirroring-p
two-phase-processing-p deliver-phase-two-warning-tokens-p)

Arguments: id - the id of the query to be executed, or :last or :last-query.
how-many, default by environment - the number of tuples to be computed;

nil means unbounded; see also set-max-no-of-tuples-bound,
Page 195.

exclude-permutations-p, default by environment - if t is specified, then
permutations will be exluded from the query answer; see also
funrefexclude-permutations.

tuple-at-a-time-p, default by environment - if t is specified, then the
tuple-at-a-time mode will be used, otherwise set-at-a-time mode;
see also process-tuple-at-a-time, Page 193.

deliver-kb-has-changed-warning-tokens-p, default by environment -
if t is specified, and the query is execute in tuple-at-
a-time mode, then a warning token will be delivered if
the KB has changed during query execution; see also
enable-kb-has-changed-warning-tokens, Page 186.

proactive-tuple-computation-p, default by environment - if t is speci-
fied, then the eager mode will be used in tuple-at-a-time mode,
otherwise the lazy mode; in set-at-a-time mode, tuple computation
is always eager. See also enable-eager-tuple-computation, Page
185.

deliver-phase-two-warning-tokens-p, default by environment - if t is
specified, then a warning token will be delivered if the query is
executed in two-phase processing mode before phase two starts; see
also enable-phase-two-starts-warning-tokens, Page 188.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.7. ABOX QUERIES 149

execute-query Function

Description: continued

Arguments: told-information-reasoning-p, default by environment - if t is specified,
then only the information in the nRQL caches (resp. the current
substrate) is used for query answering. Calls to RacerPro basic
ABox retrieval functions are avoided, but query answering is in-
complete. Note that the amount of information in the caches de-
pends on the nRQL mode which was active at the time the sub-
strate was prepared (see prepare-nrql-engine, Page 121); see also
enable-told-information-querying, Page 189.

check-abox-consistency-p, default by environment - if t is specified, the
ABox to be queried is checked for consistency before querying
starts; see also check-abox-consistency-before-querying, Page
182.

ensure-tbox-classification-p, default by environment - if the substrate
for the ABox has not been prepared yet (see prepare-nrql-engine,
Page 121), then the new query answering process will do that be-
fore query answering starts. If t is specified for this argument,
then the substrate will be set-up in nRQL mode 1. See also
enable-smart-abox-mirroring, Page 188, set-nrql-mode, Page
196.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

150 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

execute-query Function

Description: continued

Arguments: classify-concepts-in-instance-assertions, default by environment -
if nRQL shall use incomplete mode 2, then t must be speci-
fied. See also enable-very-smart-abox-mirroring, Page 191,
set-nrql-mode, Page 196.

two-phase-processing-p, default by environment - if t is specified, then
two-phase processing is enabled for this query; see also
enable-two-phase-query-processing-mode, Page 190.

use-individual-synonyms-p, default by environment - if t is specified,
then nRQL considers two individuals as being the same if they
are synonyms. Note that this also changes the semantics of same-as
from syntactic name identiy to semantic individual equivalence. See
also use-individual-synonym-equivalence-classes, Page 196.

args, default - in set-at-a-time mode, get-answer, Page 163 is called auto-
matically; thus, the keyword arguments of get-answer, Page 163
are accepted here as well and passed to get-answer, Page 163.

Values: If the query is executed in set-at-a-time mode, then the answer to that query
since get-answer, Page 163 is called automatically, otherwise a list like
(:QUERY-466 :RUNNING), where :QUERY-466 is the query ID and :RUNNING
indicates the current status of the query.

Remarks: The query has to be prepared (ready) before it can be executed, see
query-ready-p, Page 129, prepared-queries, Page 127.

If no values for the listed keyword arguments are specified, then either the lex-
ical settings established by a surrounding with-nrql-settings, Page 199 or
the currently active global settings (see describe-query-processing-mode,
Page 183) will be used; this is documents as “default by environment” in the
argument lists.

Note that also the keyword arguments accepted by get-answer, Page 163 are
accepted and passed through to get-answer, Page 163 with argumentargs.

Examples: (racer-prepare-query ’(?x) ’(?x woman))
(execute-query :last)

See also: racer-prepare-query, Page 155, get-answer, Page 163,
prepare-nrql-engine, Page 121

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.7. ABOX QUERIES 151

prepare-query Function

Description: Synonym for racer-prepare-query, Page 155.

prepare-query1 Function

Description: Synonym for racer-prepare-query1, Page 155.

prepare-rule Function

Description: Synonym for racer-prepare-rule, Page 177.

prepare-rule1 Function

Description: Synonym for racer-prepare-rule1, Page 178.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

152 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

racer-answer-query Function

Description: Prepares an ABox query using racer-prepare-query, Page 155 and then
executes it with execute-query, Page 150 See also corresponding macro
retrieve, Page 155.

Syntax: (racer-answer-query head body &rest args)

Arguments: head body - see racer-prepare-query, Page 155.

args, default nil - the union of the keyword arguments accepted by
racer-prepare-query, Page 155 and execute-query, Page 150. If
the query is executed in set-at-a-time mode, also get-answer, Page
163 is called automatically by execute-query, Page 150; thus, the
keyword arguments of get-answer, Page 163 are accepted as well.

Values: Conceptually, racer-answer-query first calls racer-prepare-query, Page
155 and then execute-query, Page 150. If query is executed in set-at-a-time
mode, then the result of execute-query, Page 150 is returned (the query
answer). If the query is executed in tuple-at-a-time mode, then a query status
description is returned.

Examples: (racer-answer-query ’(?x) ’(and (?x woman) (?x ?y has-child)))
(racer-answer-query ’(?x) ’(and (?x woman) (?x ?y has-child))
:abox smith-family :id test :how-many 2)

See also: Corresponding macro: retrieve, Page 155. racer-prepare-query, Page
155, execute-query, Page 150, get-answer, Page 163

racer-answer-query-under-premise Function

Description: Like racer-answer-query, Page 152, but a query premise is added to the
ABox before the query is answered (this can also be achieved with the
premise keyword argument of racer-answer-query, Page 152). See also
corresponding macro retrieve-under-premise, Page 155.

racer-answer-query-under-premise1 Function

Description: Like racer-answer-query-under-premise, Page 152, but with flipped
argument positions for head and body. See also corresponding macro
retrieve-under-premise1, Page 155.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.7. ABOX QUERIES 153

racer-answer-query1 Function

Description: Like racer-answer-query, Page 152, but with flipped argument positions
for head and body. See also corresponding macro retrieve1, Page 155.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

154 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

racer-prepare-query Function

Description: Prepares (i.e., parses and compiles) a nRQL ABox query but does not execute
(start) it yet See also corresponding macro prepare-abox-query, Page 155.

Syntax: (racer-prepare-query head body &rest args &key id abox
execute-p prepare-now-p premise type-of-substrate
rewrite-defined-concepts-p)

Arguments: head - the head of the query, see <query-head>, Section 6.1.8 in the User
Guide.

body - the body of the query, see <query-body>, Section 6.1.8 in the User
Guide.

id, default query-xxx - the id (name) of the query.

abox, default (current-abox) - the (name of the) ABox to be queried.

execute-p, default nil - if t, then the query is automatically executed; the
args are passed to execute-query, Page 150.

premise, default nil - the query premise, a list of ABox assertions, see
<query-premise>, Section 6.1.8 in the User Guide.

type-of-substrate, default ’racer-dummy-substrate - a symbol nam-
ing a substrate type, one of: racer-dummy-substrate,
data-substrate, mirror-data-substrate, rcc-substrate,
racer-tbox-mirror-substrate.

execute-p, default nil - if t is specfied, the query is automatically started
(executed); execute-query, Page 150 will be called. The args will
be passed through to execute-query, Page 150.

prepare-now-p, default nil - if t, then the substrate will be prepared im-
mediately (see prepare-nrql-engine, Page 121), otherwise later
when the query is about to be executed.

args - see execute-query, Page 150.

Values: A list like (:QUERY-466 :READY-TO-RUN), where :QUERY-466 is the query
ID and :READY-TO-RUN indicates the current status of the query.

Remarks: To start the query, use execute-query, Page 150 (or execute-p = t).

Examples: (racer-prepare-query ’(?x) ’(and (?x woman) (?x ?y
has-child)))

See also: Corresponding macro: prepare-abox-query, Page 155. execute-query,
Page 150, get-answer, Page 163

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.7. ABOX QUERIES 155

racer-prepare-query1 Function

Description: Like racer-prepare-query, Page 155, but with flipped argument positions
for head and body. See also corresponding macro prepare-abox-query1,
Page 155.

prepare-abox-query Macro

Description: See also corresponding function racer-prepare-query, Page 155.

prepare-abox-query1 Macro

Description: See also corresponding function racer-prepare-query1, Page 155.

retrieve Macro

Description: See also corresponding function racer-answer-query, Page 152.

retrieve-under-premise Macro

Description: See also corresponding function racer-answer-query-under-premise, Page
152.

retrieve-under-premise1 Macro

Description: See also corresponding function racer-answer-query-under-premise1,
Page 152.

retrieve1 Macro

Description: See also corresponding function racer-answer-query1, Page 153.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

156 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

with-bindings Macro

Description: If a nRQL query is executed in a with-bindings, Page 156 lexical environ-
ment, then the variables in the query is considered to be bound as established
here

Syntax: (with-bindings binding-list)

Arguments: binding-list - nil.

Examples: (with-bindings ((?x ind-123) (?z ind-456)) (retrieve (?y) (?x
?y r)))
(:see-also with-bindings-evaluated with-future-bindings)

with-bindings-evaluated Macro

See also:Description: Like with-bindings, Page 156, but now the individual forms (entries) in
binding-list are evaluated to produce the individual (variable value) pairs,
e.g., use (with-bindings-evaluated ((list ’?x ’ind-123)) ...).

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.7. ABOX QUERIES 157

with-future-bindings Macro

Description: Sometimes, a query must shall be prepared (i.e., parsed and compiled) with
a promsie that at execution time, binding to certain variables in that query
will be eastablished, this means, if execute-query, Page 150 is called in
a lexical environment where certain variables are bound in advance with
with-bindings, Page 156. During prepartion time, the query optimizer must
thus be informed that these variables are in fact treated as individuals. This
is what with-future-bindings, Page 157 does: It declares the variables
to be individuals, and for query execution promisses that these variables will
be bound with with-bindings, Page 156 priorily

Syntax: (with-future-bindings variables)

Arguments: variables - a list of variables.

Values: Like progn in Common LISP, so the value of the last embedded form is
returned.

Examples: (with-future-bindings (?x) (prepare-abox-query (?x ?y) (?x ?y
r)))

See also: with-future-bindings-evaluated, Page 197

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

158 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

6.8 TBox Queries

answer-tbox-query Function

Description: Synonym for racer-answer-tbox-query, Page 158.

answer-tbox-query1 Function

Description: Synonym for racer-answer-tbox-query, Page 158.

racer-answer-tbox-query Function

Description: TBox query equivalent of racer-answer-query, Page 152. See also corre-
sponding macro tbox-retrieve, Page 160.

racer-answer-tbox-query1 Function

Description: Like racer-answer-tbox-query, Page 158, but with flipped argument po-
sitions for head and body. See also corresponding macro tbox-retrieve1,
Page 160.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.8. TBOX QUERIES 159

racer-prepare-tbox-query Function

Description: Prepares (i.e., parses and compiles) a nRQL TBox query but does not execute
(start) it yet See also corresponding macro prepare-tbox-query, Page 160.

Syntax: (racer-prepare-tbox-query head body &key tbox id prepare-now-p)

Arguments: head - the head of the TBox query. Only variables, individuals and lambda
operators are allowed.

body - the body of the TBox query. Only concept and role query atoms
are allowed. Only concept names can be used in these concept
query atoms, and only the role names has-child, has-parent,
has-descendant, has-ancestor in the role query atoms.

id, default query-xxx - the id (name) of the query.

tbox, default (current-tbox) - the (name of the) TBox to be queried.

execute-p, default nil - if t is specified, then the query is automatically
started with execute-query, Page 150; the args are passed to
execute-query, Page 150.

prepare-now-p, default nil - if t, then the substrate will be prepared im-
mediately, otherwise later when the query is about to be executed.

args - see execute-query, Page 150.

Values: A list like (:QUERY-466 :READY-TO-RUN), where :QUERY-466 is the query
ID and :READY-TO-RUN indicates the current status of the query.

Remarks: To start the query, use execute-query, Page 150 (or execute-p = t).

Examples: (racer-prepare-tbox-query ’(?x) ’(and (?x woman) (?x ?y
has-child)))

See also: Corresponding macro: prepare-tbox-query, Page 160. execute-query,
Page 150, get-answer, Page 163

racer-prepare-tbox-query1 Function

Description: Like racer-prepare-tbox-query, Page 159, but with flipped argu-
ment positions for head and body. See also corresponding macro
prepare-tbox-query1, Page 160.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

160 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

prepare-tbox-query Macro

Description: See also corresponding function racer-prepare-tbox-query, Page 159.

prepare-tbox-query1 Macro

Description: See also corresponding function racer-prepare-tbox-query1, Page 159.

tbox-retrieve Macro

Description: See also corresponding function racer-answer-tbox-query, Page 158.

tbox-retrieve1 Macro

Description: See also corresponding function racer-answer-tbox-query1, Page 158.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.9. GETTING ANSWERS 161

6.9 Getting Answers

get-all-remaining-sets-of-rule-consequences Function

Description: Like get-next-n-remaining-sets-of-rule-consequences, Page 164 with
n = nil.

get-all-remaining-tuples Function

Description: Like get-next-n-remaining-tuples, Page 164 with n = nil.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

162 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

get-answer Function

Description: Gets (resp. forces the computation of) the complete answer set (result)
of a query or the set of conclusions of a rule, independently if the query
resp. rule had been in tuple- or set-at-a-time mode. The query or rule
must be active (see query-active-p, Page 128, rule-active-p, Page
134, active-queries, Page 127, active-rules, Page 133) or already pro-
cessed (see query-processed-p, Page 128, rule-processed-p, Page 134,
processed-queries, Page 127, processed-rules, Page 133)

Syntax: (get-answer id &rest args &key execute-p verbose-p
dont-show-variables dont-show-head-projection-operators-p
dont-show-lambdas-p)

Arguments: id - nil.
execute-p, default nil - if t is specfied, the query is automatically started

(executed); execute-query, Page 150 will be called. The args will
be passed through to execute-query, Page 150.

verbose-p, default t - if t is specfied, also head projection operators are
shown literally in the result tuples.

dont-show-variables, default nil - a list of variables. Usually, a variable
binding is shown as a (variable value) entry in a result tuple. If the
variable is a member in the list dont-show-variables, then only
value will be included in the result tuples.

dont-show-head-projection-operators-p, default nil - the results of
projection operators are usually included in the form (operator
operator-result) in the result tuples. Specify t if only the opera-
tor result shall appear in the result tuples.

dont-show-lambdas-p, default nil - same as
dont-show-head-projection-operators-p, but for solely
for lambda operators.

args - see execute-query, Page 150.

Values: A list of tuples, or t or nil, or a list of lists of ABox assertions (the rule
consequences), or :NOT-FOUND.

Remarks: Can be called an arbitrary number of times on a query or rule. The an-
swer is stored in the query resp. rule object and is thus not recomputed
if get-answer is called. You can check with query-accurate-p, Page 142
(resp. rule-accurate-p, Page 143) whether the stored answer is still valid.
See also the value of describe-query, Page 119. In case of a rule, the rule
consequences can be added with add-chosen-sets-of-rule-consequences,
Page 172.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.9. GETTING ANSWERS 163

Note that the query or rule named id must be on the list of active or pro-
cessed queries (see active-queries, Page 127, processed-queries, Page
127), otherwise :NOT-FOUND is returned.

The tuples are actually computed by repeated calls to get-next-tuple, Page
166. Thus, also special tokens (markers) returned by get-next-tuple, Page
166 might appear in the answer.

See also: get-next-tuple, Page 166, get-next-n-remaining-tuples, Page 164,
add-chosen-sets-of-rule-consequences, Page 172, active-queries,
Page 127, processed-queries, Page 127

get-answer-size Function

Description: Like get-answer, Page 163, but only returns the number of result tuples
(resp. number of sets of rule conclusions).

get-current-set-of-rule-consequences Function

Description: Returns the result of the last call to get-next-set-of-rule-consequences,
Page 165 on the rule id.

get-current-tuple Function

Description: Returns the result of the last call to get-next-tuple, Page 166 on the query
id

Syntax: (get-current-tuple id)

Arguments: id - the ID of the query, or :last, or :last-query.

Values: See get-next-tuple, Page 166. Moreover, nil is returned if there was no
previous call to get-next-tuple.

See also: get-next-tuple, Page 166

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

164 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

get-next-n-remaining-sets-of-rule-consequences Function

Description: Like get-next-set-of-rule-consequences, Page 165, but now the next n
remaining sets are requested. Pass nil if you want all remaining sets; see
also get-all-remaining-sets-of-rule-consequences, Page 161.

get-next-n-remaining-tuples Function

Description: Like get-next-tuple, Page 166, but now the next n remaining tu-
ples are requested. Pass nil if you want all remaining tuples; see also
get-all-remaining-tuples, Page 161.

get-next-set-of-rule-consequences Function

Description: Gets the next set of rule consequences of the rule id. The rule must be on
the list of active-rules, Page 133 or processed-rules, Page 133. A rule
can also be started (executed); use execute-p argument

Syntax: (get-next-tuple id &rest args)

Arguments: id - the ID of the rule, or :last, or :last-rule.

execute-p, default nil - specify t if the rule is ready to also fire it. The
query will be started / executed then. The args are passed to
execute-query, Page 150 (however, the query is always executed
in tuple-at-a-time mode, this cannot be overridden).

args - see execute-query, Page 150.

Values: The tuple, or :exhausted in case there are no more tuples, or special tokens
such as :not-found, :inconsistent, etc.

Remarks: If the query had been started in lazy tuple-at-a-time mode, then computation
of the next tuple might eventually take some time and thus the function
might not return immediately.

However, if the query had been started in eager mode, then there is a chance
that the next tuple (and probably some more tuples not yet requested) have
already been pre-computed, and are thus already available. The function
next-tuple-available-p, Page 166 can be used to check for the availability
of such (immediately available) tuples.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.9. GETTING ANSWERS 165

Note that a query might still have tuples available, even if the query process
(thread) has already terminated and thus the query is no longer active (the
query already appears on the list of processed-queries, Page 127). This
happens in the eager tuple-at-a-time mode.

See also: next-tuple-available-p, Page 166, get-current-tuple, Page 163,
get-next-n-remaining-tuples, Page 164

get-next-tuple Function

Description: Gets the next tuple from query id. The query must be on the list of
active-queries, Page 127 or processed-queries, Page 127. A ready (pre-
pared) query can also be started (executed), see execute-p argument. For
rules, get-next-set-of-rule-consequences, Page 165 must be used

Syntax: (get-next-tuple id &rest args)

Arguments: id - the ID of the query, or :last, or :last-query.

execute-p, default nil - specify t to start (execute) a prepared (ready)
query. The args are passed to execute-query, Page 150 (however,
the query is always executed in tuple-at-a-time mode, this cannot
be overridden).

args - see execute-query, Page 150.

Values: The tuple, or :exhausted in case there are no more tuples, or special tokens
such as :not-found, :inconsistent, etc.

Remarks: If the query had been started in lazy tuple-at-a-time mode, then computation
of the next tuple might eventually take some time and thus the function
might not return immediately.

However, if the query had been started in eager mode, then there is a chance
that the next tuple (and probably some more tuples not yet requested) have
already been pre-computed, and are thus already available. The function
next-tuple-available-p, Page 166 can be used to check for the availability
of such (immediately available) tuples.

Note that a query might still have tuples available, even if the query process
(thread) has already terminated and thus the query is no longer active (the
query already appears on the list of processed-queries, Page 127). This
happens in the eager tuple-at-a-time mode.

See also: next-tuple-available-p, Page 166, get-current-tuple, Page 163,
get-next-n-remaining-tuples, Page 164

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

166 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

next-set-of-rule-consequences-available-p Function

Description: Checks for the availability of the next set of rule consequences This is the
rule equivalent of next-tuple-available-p, Page 166.

Syntax: (next-set-of-rule-consequences-available-p id)

Arguments: id - the ID of the rule, or :last, or :last-rule.

Values: t or nil (or :not-found).

Remarks: If this function returns t, then get-next-set-of-rule-consequences, Page
165 returns that set immediately (without computation delay; the API does
not block).

See also: Rule equivalent of next-tuple-available-p, Page 166.
get-next-set-of-rule-consequences, Page 165

next-tuple-available-p Function

Description: Checks for the availability of the next answer tuple from a query

Syntax: (next-tuple-available-p id)

Arguments: id - the ID of the query, or :last, or :last-query.

Values: t or nil (or :not-found).

Remarks: If this function returns t, then get-next-tuple, Page 166 returns that tuple
immediately (without computation delay; the API does not block).

See also: get-next-tuple, Page 166

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.10. DEFINED QUERIES 167

6.10 Defined Queries

allow-overloaded-definitions Function

Description: Allow multiple defined queries with same name and arity. Inverse of
dont-allow-overloaded-definitions, Page 169.

define-and-execute-query Function

Description: Like define-query, Page 168 with keep-p = t and execute-p = t. See also
corresponding macro def-and-exec-query, Page 170.

define-and-prepare-query Function

Description: Like define-query, Page 168 with keep-p = t and execute-p = nil. See
also corresponding macro def-and-prep-query, Page 171.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

168 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

define-query Function

Description: Associates a query head and body with a name which is the name of the
definition. This defined query can be reused by means of codesubstitute query
atoms. The definitions are local to argumenttbox See also corresponding
macro defquery, Page 171.

Syntax: (defquery name head body &key keep-p tbox)

Arguments: name - the name of the definition, see <query-name>, Section 6.1.8 in the
User Guide.

head - the head of the query, see <def-query-head>, Section 6.1.8 in the
User Guide. Projection operators are not allowed here.

body - the body of the query, see <query-body>, Section 6.1.8 in the User
Guide.

tbox, default (current-tbox) - the TBox to which this definition is local.

keep-p, default nil - The query is prepared (and thus parsed) for syntax
checking purposes, but the compiled query is discarded. The def-
inition is registered and name returned. However, if t is spec-
ified for this argument, then the prepared query is not dis-
carded and returned instead of name. Since racer-prepare-query,
Page 155 is called and the arguments args are passed through,
the query can automatically be executed (see execute-p in
racer-prepare-query, Page 155).

Values: The name of the defined query if keep-p = nil, and the result of
racer-prepare-query, Page 155 otherwise.

Remarks: The argumentbody can reference other defined queries as well, but cyclic
definitions are not possible. Note that defined queries can also be used in a
rule antecedence.

Examples: (define-query ’is-a-mother ’(?x) ’(and (?x woman) (?x ?y
has-child)))
(define-query ’(?a) ’(substitute (is-a-mother ?a)))
(retrieve (?a) (?a is-a-mother))

See also: Corresponding macro: defquery, Page 171.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.10. DEFINED QUERIES 169

delete-all-definitions Function

Description: Deletes all defined queries local to tbox

Syntax: (delete-all-definitions &key tbox)

Arguments: tbox, default (current-tbox) - the TBox to which this definition is local.

Values: :okay-all-definitions-deleted.

See also: undefine-query, Page 170

describe-all-definitions Function

Description: Returns a list containing all definitions (see describe-definition, Page
169) local to tbox

Syntax: (describe-all-definitions &tbox tbox)

Arguments: tbox, default (current-tbox) - the TBox whose definitions are to be de-
scribed.

Values: A list containing all definitions local to that TBox.

describe-definition Function

Description: Describes the definition name local to tbox

Syntax: (describe-definition name &key tbox tbox)

Arguments: name - the name of the definition.

arity, default nil - the arity of the requested definition.

tbox, default (current-tbox) - the TBox to which this definition is local.

Values: A defquery expression.

See also: define-query, Page 168

dont-allow-overloaded-definitions Function

Description: Dont allow multiple defined queries with same name and arity. Inverse of
allow-overloaded-definitions, Page 167.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

170 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

dont-prefer-defined-queries Function

Description: If a unary (binary) query is referenced in a body and there are corresponding
concept (role) with the same name as the defined query, then the ambiguity is
resolved in favor of the concept (role).. Inverse of prefer-defined-queries,
Page 170.

prefer-defined-queries Function

Description: If a unary (binary) query is referenced in a body and there are cor-
responding concept (role) with the same name as the defined query,
then the ambiguity is resolved in favor of the defined query.. Inverse of
dont-prefer-defined-queries, Page 170.

undefine-query Function

Description: Deletes a defined query See also corresponding macro undefquery, Page
171.

Syntax: (undefine-query name &key tbox)

Arguments: name - the name of the definition, see <query-name>, Section 6.1.8 in the
User Guide.

tbox, default (current-tbox) - the TBox to which this definition is local.

arity, default nil - the arity of the defined query to be delete; tt nil deletes
all queries with that name.

Values: The names of the remaining definitions (local to argumenttbox).

Examples: (undefine-query ’is-a-mother)

See also: Corresponding macro: undefquery, Page 171. define-query, Page 168

def-and-exec-query Macro

Description: See also corresponding function define-and-execute-query, Page 167.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.10. DEFINED QUERIES 171

def-and-prep-query Macro

Description: See also corresponding function define-and-prepare-query, Page 167.

defquery Macro

Description: See also corresponding function define-query, Page 168.

undefquery Macro

Description: See also corresponding function undefine-query, Page 170.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

172 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

6.11 Rules

add-chosen-sets-of-rule-consequences Function

Description: Adds the chosen sets of rule consequences (see
get-current-set-of-rule-consequences, Page 163,
add-chosen-sets-of-rule-consequences, Page 172) to the ABox
(this is the ABox on which the rule has fired) produced by the rule id.
See get-chosen-sets-of-rule-consequences, Page 175 to learn which
assertions will be added

Syntax: (add-chosen-sets-of-rule-consequences id)

Arguments: (first id the ID of the rule, or :last or :last-rule) - nil.

The added rule consequences resp. ABox assertions - nil. This func-
tion can only be called if the rule has terminated (see
rule-processed-p, Page 134). Note that an active rule (see
rule-active-p, Page 134) can be aborted (see abort-rule, Page
136)

get-chosen-sets-of-rule-consequences - get-current-set-of-rule-
consequences.

apply-rule Function

Description: Synonym for racer-apply-rule, Page 175.

apply-rule-under-premise Function

Description: Synonym for racer-apply-rule-under-premise, Page 176.

apply-rule-under-premise1 Function

Description: Synonym for racer-apply-rule-under-premise1, Page 176.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.11. RULES 173

choose-current-set-of-rule-consequences Function

Description: Consequences of a rule are not added to the ABox as long as the rule is still
active (see rule-active-p, Page 134). Some of the generated consequences
are added when the rule has terminated.

If a rule is executed (see execute-rule, Page 174) in tuple-at-a time
mode, then rule consequences are requested and computed lazily via
get-next-set-of-rule-consequences, Page 165. The current set of rule
consequences, see funrefget-current-set-of-rule-consequences, can thus be se-
lected and memoized in the rule object for addition to the ABox (after termi-
nation of the rule) with this function. Rule consequences are added using the
function add-chosen-sets-of-rule-consequences, Page 172. Note that in
set-at-time-mode, all produced sets of consequences are chosen automatically
for addition.

Using either add-rule-consequences-automatically, Page 182
(dont-add-rule-consequences-automatically, Page 184) resp. the
add-rule-consequences-p argument of execute-rule, Page 174,
you can determine whether (the selected) rule consequences will be
added automatically with add-chosen-sets-of-rule-consequences,
Page 172 when the rule terminates or not. In the latter case,
add-chosen-sets-of-rule-consequences, Page 172 can be called
manually later (see also get-chosen-sets-of-rule-consequences, Page
175)

Syntax: (choose-current-set-of-rule-consequences id)

Arguments: id - the ID of the rule, or :last or :last-rule.

Values: The current set of rule consequences (a list of ABox assertions).

See also: add-chosen-sets-of-rule-consequences, Page 172,
get-chosen-sets-of-rule-consequences, Page 175

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

174 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

execute-rule Function

Description: See execute-query, Page 150 This is the rule equivalent of execute-query,
Page 150.

Syntax: (execute-rule id &rest args &key add-rule-consequences-p)

Arguments: id - the id of the rule to be executed.

add-rule-consequences-p, default by environment - if t is specified and
the rule is executed, the rule consequences are added to
the ABox and returned, otherwise they are only returned
but not added. Note that in set-at-a-time mode, this ap-
plies to all generated rule consequences, whereas in tuple-
at-a-time mode this applies to the selected set of conse-
quences (see get-next-set-of-rule-consequences, Page 165,
choose-current-set-of-rule-consequences, Page 173).

args - see execute-query, Page 150 answer-query, Page 147.

Values: If the rule is executed in set-at-a-time mode, then the ABox assertions gen-
erated by the rule consequence since get-answer, Page 163 is called auto-
matically, otherwise a list like (:RULE-466 :RUNNING), where :RULE-466 is
the query ID and :RUNNING indicates the current status of the rule.

Remarks: The rule has to be prepared (ready) before it can be executed, see
rule-ready-p, Page 134, prepared-rules, Page 133.

Note that rules cannot be execute in eager tuple-at-a-time mode.

See also: Rule equivalent of execute-query, Page 150. racer-prepare-rule, Page
177, get-answer, Page 163, prepare-nrql-engine, Page 121

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.11. RULES 175

get-chosen-sets-of-rule-consequences Function

Description: Returns the chosen (selected) sets of rule consequences of
the rule id. These assertions will be added to the ABox if
add-chosen-sets-of-rule-consequences, Page 172 is called on that
rule

Syntax: (get-chosen-sets-of-rule-consequences id)

Arguments: id - the ID of the rule, or :last or :last-rule.

Values: the chosen sets of ABox assertions to be added.

See also: choose-current-set-of-rule-consequences, Page 173,
add-chosen-sets-of-rule-consequences, Page 172

racer-apply-rule Function

Description: Prepares a rule using racer-prepare-rule, Page 177 and then
executes it with execute-rule, Page 174 See also corresponding
macro apply-abox-rule, Page 178. This is the rule equivalent of
racer-answer-query, Page 152.

Syntax: (racer-apply-rule antecedence consequence &rest args)

Arguments: head body - see racer-prepare-rule, Page 177.

args, default nil - the union of the keyword arguments accepted by
racer-prepare-rule, Page 177 and execute-rule, Page 174 (see
there).

Values: Conceptually, racer-apply-rule first calls racer-prepare-rule, Page 177
and then execute-rule, Page 174. Thus, the result of execute-rule, Page
174 is returned. However, in case the rule is not executed (for example, if it
has been recognized as inconsistent), then the result of racer-prepare-rule,
Page 177 is returned.

See also: Corresponding macro: apply-abox-rule, Page 178. Rule equivalent
of racer-answer-query, Page 152. racer-prepare-rule, Page 177,
execute-rule, Page 174, get-answer, Page 163

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

176 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

racer-apply-rule-under-premise Function

Description: Like racer-apply-rule, Page 175, but with argument list (premise
antecedence consequence &rest args). See also corresponding macro
apply-abox-rule-under-premise, Page 178. This is the rule equivalent of
racer-answer-query-under-premise, Page 152.

racer-apply-rule-under-premise1 Function

Description: Like racer-apply-rule-under-premise, Page 176, but with argument list
(premise antecedence consequence &rest args). See also correspond-
ing macro apply-abox-rule-under-premise1, Page 179. This is the rule
equivalent of racer-answer-query-under-premise1, Page 152.

racer-apply-rule1 Function

Description: Like racer-apply-rule, Page 175, but with flipped argument po-
sitions for antecedence and consequence. See also corresponding
macro apply-abox-rule1, Page 179. This is the rule equivalent of
racer-answer-query1, Page 153.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.11. RULES 177

racer-prepare-rule Function

Description: Prepares (i.e., parses and compiles) a nRQL ABox query but does not execute
(start) it yet See also corresponding macro prepare-abox-rule, Page 180.
This is the rule equivalent of racer-prepare-query, Page 155.

Syntax: (racer-prepare-rule antecedence consequence &rest args &key id
abox execute-p premise type-of-substrate prepare-now-p)

Arguments: antecedence - the antecedence of the rule, see <rule-antecedence>, Sec-
tion 6.1.8 in the User Guide.

consequence - the consequence of the rule, see <rule-consequence>, Sec-
tion 6.1.8 in the User Guide.

id, default rule-xxx - the id (name) of the query.

abox, default (current-abox) - the (name of the) ABox to which the rule
is applied.

execute-p, default nil - if t, then the rule is automatically executed; the
args are passed to execute-rule, Page 174.

premise, default nil - the premise of the rule, a list of ABox assertions, see
<query-premise>, Section 6.1.8 in the User Guide.

type-of-substrate, default ’racer-dummy-substrate - a symbol nam-
ing a substrate type, one of: racer-dummy-substrate,
data-substrate, mirror-data-substrate, rcc-substrate,
racer-tbox-mirror-substrate.

prepare-now-p, default nil - if t, then the substrate will be prepared im-
mediately, otherwise later when the rule is about to be applied.

args - see execute-rule, Page 174.

Values: A list like (:RULE-XXX :READY-TO-RUN), where :RULE-XXX is the rule ID
and :READY-TO-RUN indicates the current status of the rule.

Remarks: To fire (start, apply) the rule, use execute-rule, Page 174.

See also: Corresponding macro: prepare-abox-rule, Page 180. Rule equivalent
of racer-prepare-query, Page 155. prepare-abox-query, Page 155,
execute-query, Page 150

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

178 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

racer-prepare-rule1 Function

Description: Like racer-prepare-rule, Page 177, but with flipped argument po-
sitions for antecedence and consequence. See also corresponding
macro prepare-abox-rule1, Page 180. This is the rule equivalent of
racer-prepare-query1, Page 155.

rule-applicable-p Function

Description: Checks whether rule id is applicable, i.e. its antecedence is true. Thus, its
consequence might produce new ABox assertions (or delete existing ABox
assertions)

Syntax: (rule-applicable-p id)

Arguments: id - the ID of the rule, or :last or :last-rule.

Values: t or nil (or :not-found).

Remarks: A rule can only be applicable if it is either ready (see rule-ready-p, Page
134) or processed (see rule-processed-p, Page 134). Rules which are al-
ready active (see rule-active-p, Page 134) are not applicable.

If an already processed rule is found to be applicable, then it is also auto-
matically reprepared, see funrefreprepare-rule so it can immediately be fired
again (see execute-rule, Page 174).

See also: rule-unapplicable-p, Page 143, applicable-rules, Page 137,
unapplicable-rules, Page 144, execute-rule, Page 174

apply-abox-rule Macro

Description: See also corresponding function racer-apply-rule, Page 175. This is the
rule equivalent of retrieve, Page 155.

apply-abox-rule-under-premise Macro

Description: See also corresponding function racer-apply-rule-under-premise, Page
176. This is the rule equivalent of retrieve-under-premise, Page 155.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.11. RULES 179

apply-abox-rule-under-premise1 Macro

Description: See also corresponding function racer-apply-rule-under-premise1, Page
176. This is the rule equivalent of retrieve-under-premise1, Page 155.

apply-abox-rule1 Macro

Description: See also corresponding function racer-apply-rule1, Page 176. This is the
rule equivalent of retrieve1, Page 155.

firerule Macro

Description: See also corresponding function racer-apply-rule, Page 175. Synonym for
apply-abox-rule, Page 178.

firerule-under-premise Macro

Description: See also corresponding function racer-apply-rule-under-premise, Page
176. Synonym for apply-abox-rule-under-premise, Page 178.

firerule-under-premise1 Macro

Description: See also corresponding function racer-apply-rule-under-premise1, Page
176. Synonym for apply-abox-rule-under-premise1, Page 179.

firerule1 Macro

Description: See also corresponding function racer-apply-rule1, Page 176. Synonym for
apply-abox-rule1, Page 179.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

180 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

prepare-abox-rule Macro

Description: See also corresponding function racer-prepare-rule, Page 177. This is the
rule equivalent of prepare-abox-query, Page 155.

prepare-abox-rule1 Macro

Description: See also corresponding function racer-prepare-rule1, Page 178.

preprule Macro

Description: See also corresponding function racer-prepare-rule, Page 177. Synonym
for prepare-abox-rule, Page 180.

preprule1 Macro

Description: See also corresponding function racer-prepare-rule1, Page 178. Synonym
for prepare-abox-rule1, Page 180.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.12. QUERYING MODES 181

6.12 Querying Modes

add-role-assertions-for-datatype-properties Function

Description: Constraint query atoms referring OWL datatype properties only work on
OWL KBs if some additional auxiliary ABox assertions are added to
the ABox created from the OWL file. Use this function to ensure that
nRQL adds these additional assertions. Note that this function must be
called before the first nRQL query to that OWL KB is posed Inverse of
dont-add-role-assertions-for-datatype-properties, Page 184.

Syntax: (add-role-assertions-for-datatype-properties)

Arguments:

Values: :okay-adding-role-assertions-for-datatype-properties.

See also: Inverse of dont-add-role-assertions-for-datatype-properties, Page
184.describe-query-processing-mode, Page 183, set-nrql-mode, Page
196, with-nrql-settings, Page 199

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

182 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

add-rule-consequences-automatically Function

Description: Rule consequences / ABox assertions generated by a rule ap-
plication can be added automatically after the rule has termi-
nated. Use this function to put nRQL (globally) into that mode.
Note that in tuple-at-a-time mode this applies to the chosen sets
of rule consequences (see choose-current-set-of-rule-consequences,
Page 173), whereas in set-at-a-time mode this applies to all sets
of rule consequences. In case rule consequences are not auto-
matically, the functino add-chosen-sets-of-rule-consequences, Page
172 can be called manually, but only once. See also argument
add-rule-consequences-p of function execute-rule, Page 174 Inverse of
dont-add-rule-consequences-automatically, Page 184.

Syntax: (add-rule-consequences-automatically)

Arguments:

Values: :okay-adding-rule-consequences-automatically.

See also: Inverse of dont-add-rule-consequences-automatically,
Page 184.describe-query-processing-mode, Page 183,
with-nrql-settings, Page 199, process-tuple-at-a-time,
Page 193, process-set-at-a-time, Page 193, execute-rule,
Page 174, get-current-set-of-rule-consequences, Page
163, choose-current-set-of-rule-consequences, Page 173,
add-chosen-sets-of-rule-consequences, Page 172

check-abox-consistency-before-querying Function

Description: Advises nRQL to check the ABox consistency before a query is executed;
see also argument check-abox-consistency-p of function execute-query,
Page 150. Queries on inconsistent ABoxes are not meaningful

Syntax: (check-abox-consistency-before-querying)

Arguments:

Values: :okay-checking-abox-consistency-before-querying.

See also: describe-query-processing-mode, Page 183, with-nrql-settings, Page
199

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.12. QUERYING MODES 183

describe-query-processing-mode Function

Description: Returns a description of the current (global) nRQL settings resp. query pro-
cessing mode

Syntax: (describe-query-processing-modes)

Arguments:

Values: The description, a structured list.

See also: describe-query, Page 119, describe-current-substrate, Page 210,
set-nrql-mode, Page 196, with-nrql-settings, Page 199, execute-query,
Page 150

disable-abox-mirroring Function

Description: Inverse of enable-abox-mirroring, Page 185.

disable-kb-has-changed-warning-tokens Function

Description: Inverse of enable-kb-has-changed-warning-tokens, Page 186.

disable-nrql-warnings Function

Description: Inverse of enable-nrql-warnings, Page 187.

disable-phase-two-starts-warning-tokens Function

Description: Inverse of enable-phase-two-starts-warning-tokens, Page 188.

disable-query-optimization Function

Description: Inverse of enable-query-optimization, Page 188.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

184 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

disable-told-information-querying Function

Description: Inverse of enable-told-information-querying, Page 189.

disable-two-phase-query-processing-mode Function

Description: Inverse of disable-two-phase-query-processing-mode, Page 184.

dont-add-role-assertions-for-datatype-properties Function

Description: Inverse of add-role-assertions-for-datatype-properties, Page 181.

dont-add-rule-consequences-automatically Function

Description: Inverse of add-rule-consequences-automatically, Page 182.

dont-check-abox-consistency-before-querying Function

Description: Inverse of check-abox-consistency-before-querying, Page 182.

dont-use-individual-synonym-equivalence-classes Function

Description: Inverse of dont-use-individual-synonym-equivalence-classes, Page
184.

dont-use-injective-variables-by-default Function

Description: Inverse of use-injective-variables-by-default, Page 197.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.12. QUERYING MODES 185

enable-abox-mirroring Function

Description: Instructs nRQL (globally) to mirror the asserted content of an ABox
(the ABox assertions) into its internal data caches before querying starts.
Note that the amount of information in the substrate resp. caches deter-
mines the degree of query answering completness in the incomplete modes
(see enable-told-information-querying, Page 189). See also argument
told-information-reasoning-p of function execute-query, Page 150. In-
verse of disable-abox-mirroring, Page 183.

enable-eager-tuple-computation Function

Description: Advises nRQL to precompute answer tuples in tuple-at-a-time mode,
even if these tuples have not yet been requested (see get-next-tuple,
Page 166); see also argument proactive-tuple-computation-p of function
execute-query, Page 150. A query started in eager mode will never appear
on waiting-queries, Page 132. The inverse tuple-at-a-time mode is called
lazy tuple-at-a-time mode. In this mode, the next answer tuple will not be
computed by the query answering process (thread) until it is really requested;
in the meantime, such a query appears on the list of waiting-queries, Page
132 Inverse of enable-lazy-tuple-computation, Page 186.

Syntax: (enable-eager-tuple-computation)

Arguments:

Values: :okay-eager-mode-enabled or :ignored-not-in-tuple-at-a-time-mode.

Remarks: Is only effective if nRQL is in tuple-at-a-time-mode.

See also: Inverse of enable-lazy-tuple-computation, Page
186.describe-query-processing-mode, Page 183, set-nrql-mode,
Page 196, with-nrql-settings, Page 199

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

186 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

enable-kb-has-changed-warning-tokens Function

Description: Enables (global) delivery of :warning-kb-has-changed tokens in
tuple-at-a-time query processing mode. Such a token is deliv-
ered iff the query ABox / TBox changes during query answer-
ing (in the time the query is still active). See also argument
deliver-kb-has-changed-warning-tokens-p of function execute-query,
Page 150 Inverse of disable-kb-has-changed-warning-tokens, Page
183.

Syntax: (enable-kb-has-changed-warning-tokens)

Arguments:

Values: :okay-kb-has-changed-warning-tokens-enabled or
:ignored-not-in-tuple-at-a-time-mode.

Remarks: Can only be called if nRQL is in tuple-at-a-time mode.

See also: Inverse of disable-kb-has-changed-warning-tokens, Page
183.set-nrql-mode, Page 196, with-nrql-settings, Page 199,
describe-query-processing-mode, Page 183

enable-lazy-tuple-computation Function

Description: Inverse of enable-eager-tuple-computation, Page 185.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.12. QUERYING MODES 187

enable-nrql-warnings Function

Description: Advises nRQL to print out warnings on STDOUT in cer-
tain circumstances and enables delivery of warning tokens
(see enable-kb-has-changed-warning-tokens, Page 186,
enable-phase-two-starts-warning-tokens, Page 188) Inverse of
disable-nrql-warnings, Page 183.

Syntax: (enable-nrql-warnings)

Arguments:

Values: :okay-warnings-enabled.

See also: Inverse of disable-nrql-warnings, Page
183.describe-query-processing-mode, Page
183, enable-kb-has-changed-warning-tokens,
Page 186, with-nrql-settings, Page 199,
disable-kb-has-changed-warning-tokens, Page 183

enable-phase-two-starts-warning-tokens Function

Description: Enables (global) delivery of :warning-expensive-phase-two-starts to-
kens in two-phase query processing modes, denoting the transition
between cheap (see cheap-query-p, Page 138) and expensive an-
swer tuples (see expensive-query-p, Page 140). See also argument
deliver-phase-two-warning-tokens-p of function execute-query, Page
150 Inverse of disable-phase-two-starts-warning-tokens, Page 183.

Syntax: (enable-phase-two-starts-warning-tokens)

Arguments:

Values: :okay-phase-two-warning-tokens-enabled or
:ignored-not-in-two-phase-processing-mode.

Remarks: Can only be called if nRQL is in two phase processing mode (see
enable-two-phase-query-processing-mode, Page 190).

See also: Inverse of disable-phase-two-starts-warning-tokens,
Page 183.enable-two-phase-query-processing-mode, Page
190, disable-two-phase-query-processing-mode, Page 184,
set-nrql-mode, Page 196, with-nrql-settings, Page 199,
describe-query-processing-mode, Page 183

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

188 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

enable-query-optimization Function

Description: Enables the cost-based query optimizer Inverse of
disable-query-optimization, Page 183.

Syntax: (enable-query-optimization)

Arguments:

Values: :okay-query-optimization-enabled.

Remarks: Note that queries must be brought into DNF (Disjunctive Normal Form).
Thus, query optimization might be expensive.

See also: Inverse of disable-query-optimization, Page
183.optimizer-use-cardinality-heuristics, Page 193,
describe-query-processing-mode, Page 183

enable-smart-abox-mirroring Function

Description: Enables ABox mirroring, see funrefenable-abox-mirroring, but in a smarter
way. Not only are the ABox assertion mirrored and put into the substrate
caches and index structures, but also the TBox information is exploited. In
case of a concept assertion such as (instance i C) with atomic concept C,
not only C is added as told information for i to the ABox mirror resp. sub-
strate caches and index structures, but also the set of concept synonyms and
concept ancestors from the TBox is computed and added as well. The same
applies for related role membership assertions in the presence of role hierar-
chies, etc. Please consult the User Guide for more details. See also argument
told-information-reasoning-p of function execute-query, Page 150

Syntax: (enable-smart-abox-mirroring)

Arguments:

Values: :okay-smart-abox-mirroring-enabled.

See also: enable-very-smart-abox-mirroring, Page 191,
disable-abox-mirroring, Page 183, enable-abox-mirroring, Page
185, set-nrql-mode, Page 196, with-nrql-settings, Page 199,
describe-query-processing-mode, Page 183

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.12. QUERYING MODES 189

enable-told-information-querying Function

Description: Puts nRQL (globally) into told information querying mode; see also
told-information-reasoning-p of execute-query, Page 150. Told in-
formation querying means means that calls to RacerPro’s ABox re-
trieval functions are avoided and only the information in the sub-
strate caches is used for query answering. It is recommended to use
set-nrql-mode, Page 196 instead of this function. See also argument
told-information-reasoning-p of function execute-query, Page 150 In-
verse of disable-told-information-querying, Page 184.

Syntax: (enable-told-information-querying)

Arguments:

Values: :okay-told-information-querying-enabled.

See also: Inverse of disable-told-information-querying, Page
184.set-nrql-mode, Page 196, describe-query-processing-mode,
Page 183, with-nrql-settings, Page 199

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

190 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

enable-two-phase-query-processing-mode Function

Description: Enables (global) two phase query processing. In this mode, nRQL can
distinguish between cheap (see cheap-query-p, Page 138) and expen-
sive answer tuples (see expensive-query-p, Page 140) of a query.
Please consult the User Guide for more information. See also argument
two-phase-processing-p of function execute-query, Page 150 Inverse of
disable-two-phase-query-processing-mode, Page 184.

Syntax: (enable-two-phase-query-processing-mode)

Arguments:

Values: :okay-two-phase-query-processing-mode-enabled.

Remarks: Before the first expensive tuple is computed, nRQL can be advised to deliver
a so-called warning token, see enable-phase-two-starts-warning-tokens,
Page 188.

See also: Inverse of disable-two-phase-query-processing-mode,
Page 184.disable-two-phase-query-processing-mode, Page
184, enable-phase-two-starts-warning-tokens, Page 188,
set-nrql-mode, Page 196, with-nrql-settings, Page 199,
describe-query-processing-mode, Page 183

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.12. QUERYING MODES 191

enable-very-smart-abox-mirroring Function

Description: Like enable-smart-abox-mirroring, Page 188, but now not only atomic
concept assertions will be used for augmenting the information in the
mirror resp. substrate caches and index structures, but also non-atomic
concepts in ABox assertions. Thus, if (instance i C) is present for a
non-atomic concepts C, then also the set of concept synonyms and con-
cept ancestors is computed and added to the mirror. See also argument
told-information-reasoning-p of function execute-query, Page 150

Syntax: (enable-very-smart-abox-mirroring)

Arguments:

Values: :okay-very-smart-abox-mirroring-enabled.

Remarks: Might be expensive, since concepts in ABox concept assertion must be clas-
sified in order to compute the synonyms and ancestors.

See also: enable-smart-abox-mirroring, Page 188, disable-abox-mirroring,
Page 183, enable-abox-mirroring, Page 185, set-nrql-mode, Page 196,
with-nrql-settings, Page 199, describe-query-processing-mode, Page
183

exclude-permutations Function

Description: Advises nRQL to (globally) exclude permutations of anwers tuples. See also
argument exclude-permutations-p of function execute-query, Page 150
Inverse of include-permutations, Page 192.

Syntax: (exclude-permutations)

Arguments:

Values: :okay-exluding-permuatation.

See also: Inverse of include-permutations, Page 192.describe-query-processing-mode,
Page 183, execute-query, Page 150, with-nrql-settings, Page 199

get-initial-size-of-process-pool Function

Description: Inverse of set-initial-size-of-process-pool, Page 194.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

192 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

get-max-no-of-tuples-bound Function

Description: Inverse of set-max-no-of-tuples-bound, Page 195.

get-maximum-size-of-process-pool Function

Description: Inverse of set-maximum-size-of-process-pool, Page 195.

get-process-pool-size Function

Description: Returns the current number of processes in the process pool (the process
pool size)

Syntax: (set-process-pool-size)

Arguments:

Values: the pool size, a natural number.

See also: set-initial-size-of-process-pool, Page 194,
get-initial-size-of-process-pool, Page 191,
set-maximum-size-of-process-pool, Page 195,
get-maximum-size-of-process-pool, Page 192,
set-initial-size-of-process-pool, Page 194,
get-initial-size-of-process-pool, Page 191,
describe-query-processing-mode, Page 183

include-permutations Function

Description: Inverse of exclude-permutations, Page 191.

optimizer-dont-use-cardinality-heuristics Function

Description: Inverse of optimizer-use-cardinality-heuristics, Page 193.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.12. QUERYING MODES 193

optimizer-use-cardinality-heuristics Function

Description: Advises the cost-based optimizer to use ABox statistics for enhanched query
optimization Inverse of optimizer-dont-use-cardinality-heuristics,
Page 192.

Syntax: (optimizer-use-cardinality-heuristics)

Arguments:

Values: Also turns on the optimizer (calls enable-query-optimization, Page 188).

See also: Inverse of optimizer-dont-use-cardinality-heuristics,
Page 192.enable-query-optimization, Page 188,
describe-query-processing-mode, Page 183

process-set-at-a-time Function

Description: Inverse of process-tuple-at-a-time, Page 193.

process-tuple-at-a-time Function

Description: Puts nRQL (globally) into tuple-at-time-mode. See also argument
tuple-at-a-time-p of function execute-query, Page 150 Inverse of
process-set-at-a-time, Page 193.

Syntax: (process-tuple-at-a-time)

Arguments:

Values: :okay-processing-tuple-at-a-time.

See also: Inverse of process-set-at-a-time, Page
193.describe-query-processing-mode, Page 183

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

194 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

restore-standard-settings Function

Description: Restores the standard nRQL settings

Syntax: (restore-standard-settings)

Arguments:

See also: set-nrql-mode, Page 196, with-nrql-settings, Page 199,
full-reset, Page 120, reset-nrql-engine, Page 123,
describe-query-processing-mode, Page 183

set-initial-size-of-process-pool Function

Description: nRQL uses a process (thread) pool for the query answering processes. The
initial (minimal) size of the pooled processes can be specified with that
function. This specifies the lower bound of concurrent queries Inverse of
get-initial-size-of-process-pool, Page 191.

Syntax: (set-initial-size-of-process-pool n)

Arguments: n - A natural number, the size of the pool (the number

of processes in the pool).

Values: n.

Remarks: note that setting the initial process pool causes the pool to reinitialize; all
active queries (and rules) are aborted.

See also: Inverse of get-initial-size-of-process-pool, Page
191.get-initial-size-of-process-pool, Page 191,
get-process-pool-size, Page 192, set-maximum-size-of-process-pool,
Page 195, get-maximum-size-of-process-pool, Page 192,
describe-query-processing-mode, Page 183

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.12. QUERYING MODES 195

set-max-no-of-tuples-bound Function

Description: Sets a (global) bound on the number of answer tuples that are computed. Use
nil to set to unbounded (infinite). See also argument how-many of function
execute-query, Page 150 Inverse of get-max-no-of-tuples-bound, Page
192.

Syntax: (set-max-no-of-tuples-bound n)

Arguments: n - A natural number (the bound) or nil (means unbounded).

Values: n.

See also: Inverse of get-max-no-of-tuples-bound, Page
192.describe-query-processing-mode, Page 183,
get-max-no-of-tuples-bound, Page 192, with-nrql-settings, Page
199

set-maximum-size-of-process-pool Function

Description: Like set-initial-size-of-process-pool, Page 194, but now the maxi-
mum number of processes in the process pool is specified. In case a new
query answering process is needed from a pool and the pool is currently
empty (all processes are accquired by different queries and/or rules), nRQL
will create an additional process. This new process is added to the pool,
thus, the process pool can grow up to an upper bound which is specified
here Inverse of get-maximum-size-of-process-pool, Page 192.

Syntax: (set-maximum-size-of-process-pool n)

Arguments: n - A natural number (the upper bound) or nil (which means un-
bounded).

Values: n.

See also: Inverse of get-maximum-size-of-process-pool, Page
192.set-initial-size-of-process-pool, Page 194,
get-initial-size-of-process-pool, Page 191, get-process-pool-size,
Page 192, describe-query-processing-mode, Page 183

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

196 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

set-nrql-mode Function

Description: Puts nRQL globally into mode n. See User Guide for a description of the
different querying modes

Syntax: (set-nrql-mode n)

Arguments: n - 3.

Values: the mode.

See also: describe-query-processing-mode, Page 183, with-nrql-settings, Page
199

use-individual-synonym-equivalence-classes Function

Description: Usually, nRQL’s query variables are bound to ABox individuals. However,
sometimes RacerPro can infer that a set of differently named individuals
must represent the same (identical) domain object. In this case, the differ-
ent individuals are called individual synonyms. Sometimes it is meaningful
to bind query variables not to single individuals, but to synonym equiva-
lence classes. This can be achieved by enabling this mode. If this mode is
enabled, then variables will not be bound to single ABox individuals, but to
representative individuals from the synonym equivalence classes Inverse of
dont-use-individual-synonym-equivalence-classes, Page 184.

Syntax: (use-individual-synonym-equivalence-classes)

Arguments:

Values: :okay-using-individual-equivalence-classes .

Remarks: see also use-individual-synonyms-p in execute-query, Page 150.

See also: Inverse of dont-use-individual-synonym-equivalence-classes,
Page 184.dont-use-individual-synonym-equivalence-classes,
Page 184, set-nrql-mode, Page 196, with-nrql-settings, Page 199,
describe-query-processing-mode, Page 183

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.12. QUERYING MODES 197

use-injective-variables-by-default Function

Description: nRQL offers injective variables. Usually, all variables are non-injective. That
means two different variables can be bound to the same ABox individual –
the mapping from variable to ABox individuals must not be injective, unlike
for injective variables, for which the mapping must be injective. By default,
all variables with ?-prefix are non-injective, and injective variables get a
$?-prefix. In the older nRQL, all variables were injective by default; thus,
?-prefix denoted an injective, and $?-prefix a non-injective variable. This
function allows you to switch to the old nRQL mode. Note that you can also
use negated same-as query atoms to enforce injective bindings Inverse of
use-injective-variables-by-default, Page 197.

Syntax: (use-injective-variables-by-default)

Arguments:

Values: :okay-using-?-prefix-for-injective-variables.

See also: Inverse of use-injective-variables-by-default, Page
197.dont-use-injective-variables-by-default, Page 184,
set-nrql-mode, Page 196, with-nrql-settings, Page 199,
describe-query-processing-mode, Page 183

with-future-bindings-evaluated Macro

Description: Like with-future-bindings, Page 157, but now list-of-variables is
evaluated to produce the list of variables.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

198 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

with-nrql-settings Macro

Description: Establishes a lexical local environment shaddowing the global environment
in which the query answering switches resp. the corresponding variables are
rebound to specified values. The argument forms are not evaluated (see also
with-nrql-settings-evaluated, Page 199

Syntax: (with-nrql-settings (&key mode dont-show-variables
dont-show-lambdas dont-show-head-projection-operators
abox-mirroring query-optimization optimizer-use-cardinality-heuristics
how-many-tuples timeout warnings add-rule-consequences-automatically
two-phase-query-processing-mode phase-two-starts-warning-tokens
kb-has-changed-warning-tokens told-information-querying
tuple-computation-mode exclude-permutations query-repository
report-inconsistent-queries report-tautological-queries
query-realization bindings check-abox-consistency
use-individual-equivalence-classes rewrite-to-dnf
type-of-substrate abox tbox))

Arguments: mode, default 3 - a natural number from 0 to 6, see set-nrql-mode, Page
196.

dont-show-variables, default nil - a list of variables, see also get-answer,
Page 163 .

dont-show-lambdas, default nil - t or nil.
dont-show-head-projection-operators, default nil - t or nil.
abox-mirroring, default nil - nil, t, :smart, or :very-smart.
query-optimization, default nil - t or nil.
optimizer-use-cardinality-heuristics, default t - t or nil.
how-many-tuples, default nil - a natural number, or nil (unbounded).
timeout, default current server timeout - a natural number (the timeout in

milliseconds).
warnings, default t - t or nil.
add-rule-consequences-automatically, default t - t or nil.
two-phase-query-processing-mode, default nil - t or nil.
phase-two-starts-warning-tokens, default nil - t or nil.
kb-has-changed-warning-tokens, default t - t or nil.
told-information-querying, default nil - t or nil.
tuple-computation-mode, default set-at-a-time - :set-at-a-time or

:tuple-at-a-time.
exclude-permutations, default nil - t or nil.
query-repository, default nil - t or nil.
report-inconsistent-queries, default nil - t or nil.
report-tautological-queries, default nil - t or nil.
query-realization, default nil - t or nil.
bindings, default nil - a list of (variable value) bindings for variables.

These variables will be prebound and treated as individuals, see
with-bindings, Page 156, with-future-bindings, Page 157.

check-abox-consistency, default nil - t or nil.
use-individual-equivalence-classes, default nil - t or nil.
rewrite-to-dnf, default t - t or nil.
type-of-substrate, default ’racer-dummy-substrate - one

of: racer-dummy-substrate, data-substrate,
mirror-data-substrate, rcc-substrate,
racer-tbox-mirror-substrate.

abox, default (current-abox) - a symbol, the name of the Abox.
tbox, default (current-tbox) - a symbol, the name of the Abox.

Values: Like progn in Common LISP, so the value of the last embedded form is
returned.

Remarks: This is the recommended way to temporarily / lexically change the global
settings, i.e., if you want to execute a query in a mode which is different
from the current global mode (see describe-query-processing-mode, Page
183), but you don’t want to alter the global settings. For altering the global
setting, note that there are corresponding setter and getter functions. For
example, set-nrql-mode, Page 196 corresponds to the mode argument, etc.
Moreover, the global settings can also be changed using the corresponding
keyword arguments of nRQL main functionsracer-prepare-query, Page
155, execute-query, Page 150, get-answer, Page 163. However, using
with-nrql-settings for local settings ensures that the settings will be made
in a consistent way.

Examples: (with-nrql-settings (:mode 0 :abox test)
(describe-query-processing-mode) (retrieve (?x) (?x top)))

See also: describe-query-processing-mode, Page 183,
with-nrql-settings-evaluated, Page 199, set-nrql-mode, Page 196,
execute-query, Page 150, racer-prepare-query, Page 155, get-answer,
Page 163

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.12. QUERYING MODES 199

with-nrql-settings-evaluated Macro

Description: Like with-nrql-settings, Page 199, but now the argument forms are eval-
uated.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

200 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

6.13 Inference

classify-query Function

Description: Classifies the query id, i.e., computed its correct position in the current
QBox

Syntax: (classify-query id)

Arguments: id - the ID of the query, or :last or :last-query.

Values: :classfied or :dont-know.

See also: query-entails-p, Page 202, query-equivalent-p, Page 202,
query-parents, Page 202, query-equivalents, Page 202, query-children,
Page 201, query-ancestors, Page 200, query-descendants, Page 201

disable-query-realization Function

Description: Disables query realization. Inverse of enable-query-realization, Page
200.

dont-report-inconsistent-queries-and-rules Function

Description: Inverse of report-inconsistent-queries-and-rules, Page 203.

enable-query-realization Function

Description: Enables query realization. Inverse of disable-query-realization, Page
200.

query-ancestors Function

Description: Like query-parents, Page 202, but the ancestors (i.e., all subsuming resp.
entailed queries) from the QBOx are returned.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.13. INFERENCE 201

query-children Function

Description: Returns the IDs of the children queries of the query id from the QBox. See
Section 6.2.8 in the User Guide

Syntax: (query-children id)

Arguments: id1 - the ID of a query, or :last or :last-query.

Values: A list of query IDs – the children of the query.

See also: query-parents, Page 202, query-equivalents, Page 202,
query-ancestors, Page 200, query-descendants, Page 201

query-consistent-p Function

Description: Checks the consistency of the query id

Syntax: (query-consistent-p id)

Arguments: id - the ID of the query, or :last or :last-query.

Values: t, �nil or :dont-know.

query-descendants Function

Description: Like query-parents, Page 202, but the ancestors (i.e., all subsuming resp.
entailed queries) from the QBOx are returned.

query-entails-p Function

Description: Checks whether query id1 entails (is more specific than) query id2

Syntax: (query-entails-p id1 id2)

Arguments: id1 - the ID of a query, or :last or :last-query.

id2 - the ID of a query, or :last or :last-query.

Values: t, �nil or :dont-know.

See also: query-consistent-p, Page 201, rule-consistent-p, Page 203

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

202 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

query-equivalent-p Function

Description: Checks whether the two queries id1 and id2 mutually subsumes each other

Syntax: (query-equivalent-p id1 ide2)

Arguments: id1 - the ID of a query, or :last or :last-query.

id2 - the ID of a query, or :last or :last-query.

Values: t, �nil or :dont-know.

See also: query-entails-p, Page 202

query-equivalents Function

Description: Returns the IDs of the synonym / equivalent queries of the query id from
the QBox. See Section 6.2.8 in the User Guide

Syntax: (query-children id)

Arguments: id1 - the ID of a query, or :last or :last-query.

Values: A list of query IDs – the synonym / equivalent queries.

See also: query-parents, Page 202, query-equivalents, Page 202,
query-ancestors, Page 200, query-descendants, Page 201

query-parents Function

Description: Returns the IDs of the parent queries of the query id from the QBox. See
Section 6.2.8 in the User Guide

Syntax: (query-parents id)

Arguments: id1 - the ID of a query, or :last or :last-query.

Values: A list of query IDs – the parents of the query.

See also: query-children, Page 201, query-equivalents, Page 202,
query-ancestors, Page 200, query-descendants, Page 201

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.13. INFERENCE 203

report-inconsistent-queries-and-rules Function

Description: Advises nRQL (globally) to automatically check freshly prepared
queries and/or rules using query-consistent-p, Page 201 and re-
port inconsistent queries and/or rules. Inconsistent queries return
no answers and are thus a waste of CPU cycles Inverse of
dont-report-inconsistent-queries-and-rules, Page 200.

Syntax: (report-inconsistent-queries-and-rules)

Arguments:

Values: :okay-reporting-inconsistent-queries-and-rules.

Remarks: A query / rule is check for consistency when it is prepared, see
racer-prepare-query, Page 155 (resp. racer-prepare-rule, Page 177).

See also: Inverse of dont-report-inconsistent-queries-and-rules, Page
200.enable-query-repository, Page 204, enable-query-realization,
Page 200, describe-query-processing-mode, Page 183

rule-consistent-p Function

Description: This is the rule equivalent of query-consistent-p, Page 201.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

204 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

6.14 Query Repository

disable-query-repository Function

Description: Disables the QBox query repository facility. Inverse of
enable-query-repository, Page 204.

enable-query-repository Function

Description: Enables the QBox query repository facility. Inverse of
disable-query-repository, Page 204.

get-dag-of-qbox-for-abox Function

Description: Returns the DAG of the QBox for the abox as a structured list

Syntax: (get-dag-of-qbox-for-abox abox &optional abox)

Arguments: abox - (current-abox).

Values: the DAG as a structured list.

See also: show-qbox-for-abox, Page 205, get-nodes-in-qbox-for-abox, Page 204

get-nodes-in-qbox-for-abox Function

Description: Returns the DAG nodes (queries) of the QBox for the abox

Syntax: (get-nodes-in-qbox-for-abox &optional abox)

Arguments: abox - (current-abox).

Values: a list of the nodes (queries) from the QBox (:remarks) or (:examples) or
(:see-also get-dag-of-qbox-for-abox show-qbox-for-abox).

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.14. QUERY REPOSITORY 205

show-qbox-for-abox Function

Description: Prints the DAG of the QBox for the abox as a tree on STDOUT

Syntax: (show-qbox-for-abox &optional abox definitions-p)

Arguments: abox - (current-abox).

nil - if t, then the query bodies will be shown.

Values: :see-output-on-stdout.

See also: get-dag-of-qbox-for-abox, Page 204, get-nodes-in-qbox-for-abox,
Page 204

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

206 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

6.15 The Substrate Representation Layer

create-data-edge Function

Description: Creates an edge between nodes from and to in the data substrate of type
type-of-substrate for ABox abox. If the nodes do not exists they are
created. If the edge does not exist it is created. The label descr is added as
a conjunct to the label of the edge. If racer-descr is specified, then also a
role assertion (related from to racer-descr) is added to abox Inverse of
delete-data-edge, Page 209.

Syntax: (create-data-edge from to &key abox type-of-substrate descr
racer-descr)

Arguments: from - the name of the from node.

to - the name of the to node.

abox, default (current-abox) - the (name of the) ABox.

type-of-substrate, default ’racer-dummy-substrate - the type of the sub-
strate.

descr, default nil - the label.

racer-descr, default nil - a RacerPro concept.

Values: The name of the node.

See also: Inverse of delete-data-edge, Page 209.create-data-node, Page 207,
get-data-edge-label, Page 214

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.15. THE SUBSTRATE REPRESENTATION LAYER 207

create-data-node Function

Description: Creates a node named name in the data substrate of type
type-of-substrate for ABox abox if the node does not exists yet.
The label descr is added as a conjunct to the label of name. If racer-descr
is specified, then also a concept assertion (instance name racer-descr)
is added to abox Inverse of delete-data-node, Page 209.

Syntax: (create-data-node name &key abox type-of-substrate descr
racer-descr)

Arguments: name - the name of the node.

abox, default (current-abox) - the (name of the) ABox.

type-of-substrate, default ’racer-dummy-substrate - the type of the sub-
strate.

descr, default nil - the label.

racer-descr, default nil - a RacerPro concept.

Values: The name of the node.

See also: Inverse of delete-data-node, Page 209.create-data-edge, Page 206,
get-data-node-label, Page 214

create-rcc-edge Function

Description: Synonym for create-data-edge, Page 206.

create-rcc-node Function

Description: Synonym for create-data-node, Page 207.

data-edge1 Function

Description: Like create-data-edge, Page 206, but with signature (from to &optional
descr racer-descr abox type-of-substrate). See also corresponding
macro data-edge, Page 218.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

208 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

data-node1 Function

Description: Like create-data-node, Page 207, but with the signature (name &optional
descr racer-descr abox type-of-substrate). See also corresponding
macro data-node, Page 218.

del-data-edge1 Function

Description: Like delete-data-edge, Page 209, but with the signature (from
to &optional abox type-of-substrate). See also corresponding macro
del-data-edge, Page 218.

del-data-node1 Function

Description: Like delete-data-node, Page 209, but with the signature (name &optional
abox type-of-substrate). See also corresponding macro del-data-node,
Page 218.

del-rcc-edge1 Function

Description: See also corresponding macro del-rcc-edge, Page 219. Synonym for
del-data-edge1, Page 208.

del-rcc-node1 Function

Description: See also corresponding macro del-rcc-node, Page 219. Synonym for
del-data-node1, Page 208.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.15. THE SUBSTRATE REPRESENTATION LAYER 209

delete-data-edge Function

Description: Deletes the edge between the nodes from and to from the data substrate of
type type-of-substrate for the ABox abox Inverse of create-data-edge,
Page 206.

Syntax: (delete-data-edge from to &key abox type-of-substrate)

Arguments: from - the name of the from node.

from - the name of the to node.

abox, default (current-abox) - the (name of the) ABox.

type-of-substrate, default ’racer-dummy-substrate - the type of the sub-
strate.

Values: :okay-deleted or :not-found.

See also: Inverse of create-data-edge, Page 206.create-data-edge, Page 206,
get-data-edge-label, Page 214

delete-data-node Function

Description: Deletes the node named name from the data substrate of type
type-of-substrate for the ABox abox Inverse of create-data-node, Page
207.

Syntax: (delete-data-node name &key abox type-of-substrate)

Arguments: name - the name of the node.

abox, default (current-abox) - the (name of the) ABox.

type-of-substrate, default ’racer-dummy-substrate - the type of the sub-
strate.

Values: :okay-deleted or :not-found.

See also: Inverse of create-data-node, Page 207.create-data-node, Page 207,
get-data-edge-label, Page 214

delete-rcc-synonyms Function

Description: Deletes all registered RCC synonyms (see register-rcc-synonym, Page
217.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

210 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

describe-all-edges Function

Description: Like describe-all-nodes, Page 210, but for the edges.

describe-all-nodes Function

Description: Returns a list containing the result of applying
get-data-node-description, Page 214 on get-substrate-nodes,
Page 215

Syntax: (describe-all-nodes &key abox type-of-substrate)

Arguments: abox, default (current-abox) - the (name of the) ABox.

type-of-substrate, default ’racer-dummy-substrate - the type of the sub-
strate.

Values: A list of node descriptions.

See also: describe-all-edges, Page 210

describe-current-substrate Function

Description: Returns a description of the current substrate used for query answering

Syntax: (describe-current-substrate)

Arguments:

Values: The description, a structured list.

See also: describe-query-processing-mode, Page 183, describe-query, Page 119,
describe-rule, Page 119

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.15. THE SUBSTRATE REPRESENTATION LAYER 211

describe-substrate Function

Description: Returns a description of the substrate for ABox abox of type
type-of-substrate

Syntax: (describe-substrate &optional abox type-of-substrate)

Arguments: abox, default (current-abox) - the (name of the) ABox.

type-of-substrate, default ’racer-dummy-substrate - the type of the sub-
strate.

Values: A description of the substrate, a structured list.

Remarks: .

See also: describe-all-substrates, Page 118, describe-substrate, Page 211

description-implies-p Function

Description: Checks whether label a implies label b See also corresponding macro
description-implies?, Page 219.

Syntax: (description-implies-p a b)

Arguments: a - a label.

b - a label.

Values: t or nil.

Examples: (description-implies-p ’a ’((a b)))

See also: Corresponding macro: description-implies?, Page 219.

disable-data-substrate-mirroring Function

Description: Inverse of enable-data-substrate-mirroring, Page 212.

disable-rcc-substrate-mirroring Function

Description: Inverse of enable-rcc-substrate-mirroring, Page 213.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

212 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

edge-description1 Function

Description: Like get-data-edge-description, Page 213, but with the signature (from
to &optional abox type-of-substrate). See also corresponding macro
edge-description, Page 219.

edge-label1 Function

Description: Like get-data-edge-label, Page 214, but with the signature (from
to &optional abox type-of-substrate). See also corresponding macro
edge-label, Page 219.

enable-data-substrate-mirroring Function

Description: Advises nRQL (globally) to create substrates of type
mirror-data-substrate. Additional retrieval facilities (especially for
OWL) are provided on this kind of substrate. Please refer to the User Guide.
See also argument type-of-substrate of function racer-prepare-query,
Page 155 Inverse of disable-data-substrate-mirroring, Page 211.

Syntax: (enable-data-substrate-mirroring)

Arguments:

Remarks: If you want to exploit the additional retrieval facilities offered by the (mirror)
data substrate, then make sure that this function is called before the first
nRQL query is posed.

See also: Inverse of disable-data-substrate-mirroring, Page
211.disable-data-substrate-mirroring, Page 211, set-nrql-mode, Page
196, with-nrql-settings, Page 199, describe-query-processing-mode,
Page 183

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.15. THE SUBSTRATE REPRESENTATION LAYER 213

enable-rcc-substrate-mirroring Function

Description: Like enable-data-substrate-mirroring, Page 212, but substrates of type
rcc-mirror-substrate are created. This is a mirror-data-substrate as
well as a rcc-substrate. Inverse of disable-rcc-substrate-mirroring,
Page 211.

get-data-edge-description Function

Description: Returns the edge label of the edge between the nodes from and to from the
data substrate of type type-of-substrate for the ABox abox

Syntax: (get-data-edge-label from to &key abox type-of-substrate)

Arguments: from - the name of the from node.

to - the name of the to node.

abox, default (current-abox) - the (name of the) ABox.

type-of-substrate, default ’racer-dummy-substrate - the type of the sub-
strate.

Values: the label of the node, a structured list.

See also: get-data-edge-label, Page 214

get-data-edge-label Function

Description: Returns a description of the edge between the nodes from and to from the
data substrate of type type-of-substrate for the ABox abox

Syntax: (get-data-edge-description from to &key abox type-of-substrate)

Arguments: from - the name of the from node.

to - the name of the to node.

abox, default (current-abox) - the (name of the) ABox.

type-of-substrate, default ’racer-dummy-substrate - the type of the sub-
strate.

Values: a description of the edge, a structured list.

See also: get-data-edge-description, Page 213

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

214 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

get-data-node-description Function

Description: Returns a description of the node name from the data substrate of type
type-of-substrate for the ABox abox

Syntax: (get-data-node-description name &key abox type-of-substrate)

Arguments: name - the name of the node.

abox, default (current-abox) - the (name of the) ABox.

type-of-substrate, default ’racer-dummy-substrate - the type of the sub-
strate.

Values: the description of the node, a structured list.

See also: get-data-node-label, Page 214

get-data-node-label Function

Description: Returns the node label of the node name from the data substrate of type
type-of-substrate for the ABox abox

Syntax: (get-data-node-label name &key abox type-of-substrate)

Arguments: name - the name of the node.

abox, default (current-abox) - the (name of the) ABox.

type-of-substrate, default ’racer-dummy-substrate - the type of the sub-
strate.

Values: the label of the node, a structured list.

See also: get-data-node-description, Page 214

get-substrate-edges Function

Description: Like get-substrate-nodes, Page 215, but for the edges.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.15. THE SUBSTRATE REPRESENTATION LAYER 215

get-substrate-nodes Function

Description: Returns all nodes in the substrate of type type-of-substrate for ABox
abox

Syntax: (get-substrate-nodes &key abox type-of-substrate)

Arguments: abox, default (current-abox) - the (name of the) ABox.

type-of-substrate, default ’racer-dummy-substrate - the type of the sub-
strate.

Values: A list of node names.

See also: get-substrate-edges, Page 214

node-description1 Function

Description: Like get-data-node-description, Page 214, but with the signature (name
&optional abox type-of-substrate). See also corresponding macro
node-description, Page 220.

node-label1 Function

Description: Like get-data-node-label, Page 214, but with the signature (name
&optional abox type-of-substrate). See also corresponding macro
node-label, Page 220.

rcc-consistent-p Function

Description: Checks the RCC substrate for relational RCC consistency See also corre-
sponding macro rcc-consistent?, Page 220.

Syntax: (rcc-consistent-p &optional abox type-of-substrate)

Arguments: abox - (current-abox).

type-of-substrate - ’rcc-substrate.

Values: t or nil.

See also: Corresponding macro: rcc-consistent?, Page 220.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

216 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

rcc-edge-description1 Function

Description: See also corresponding macro rcc-edge-description, Page 220. Synonym
for node-description1, Page 215.

rcc-edge-label1 Function

Description: See also corresponding macro rcc-edge-label, Page 220. Synonym for
node-label1, Page 215.

rcc-edge1 Function

Description: See also corresponding macro rcc-edge, Page 220. Synonym for data-edge1,
Page 207.

rcc-instance1 Function

Description: See also corresponding macro rcc-instance, Page 220. Synonym for
data-node1, Page 208.

rcc-node-description1 Function

Description: See also corresponding macro rcc-node-description, Page 221. Synonym
for node-description1, Page 215.

rcc-node-label1 Function

Description: See also corresponding macro rcc-node-label, Page 221. Synonym for
node-label1, Page 215.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.15. THE SUBSTRATE REPRESENTATION LAYER 217

rcc-node1 Function

Description: See also corresponding macro rcc-node, Page 220. Synonym for data-node1,
Page 208.

rcc-related1 Function

Description: See also corresponding macro rcc-related, Page 221. Synonym for
data-edge1, Page 207.

register-rcc-synonym Function

Description: Registers the role name role as a synonym for the RCC relation
rcc-relation See also corresponding macro rcc-synonym, Page 221.

Syntax: (register-rcc-synoym role rcc-relation)

Arguments: role - the role.

rcc-relation - the RCC relation.

Values: the synonym mapping function (a list).

See also: Corresponding macro: rcc-synonym, Page 221.

set-data-box Function

Description: Creates a data substrate for ABox abox See also corresponding macro
in-data-box, Page 219.

Syntax: (set-data-box abox)

Arguments: abox - the (name of the) ABox.

Values: the abox.

See also: Corresponding macro: in-data-box, Page 219. set-mirror-data-box, Page
218, set-rcc-box, Page 218

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

218 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

set-mirror-data-box Function

Description: Like set-data-box, Page 217, but a mirror data box is created. See also
corresponding macro in-mirror-data-box, Page 219.

set-rcc-box Function

Description: Creates an RCC substrate for ABox abox See also corresponding macro
in-rcc-box, Page 219.

Syntax: (set-rcc-box abox &optional rcc-type)

Arguments: abox - the (name of the) ABox.

rcc-type - rcc8.

Values: the abox.

See also: Corresponding macro: in-rcc-box, Page 219. set-data-box, Page
217, enable-data-substrate-mirroring, Page 212, set-substrate-type,
Page 124

data-edge Macro

Description: See also corresponding function data-edge1, Page 207.

data-node Macro

Description: See also corresponding function data-node1, Page 208.

del-data-edge Macro

Description: See also corresponding function del-data-edge1, Page 208.

del-data-node Macro

Description: See also corresponding function del-data-node1, Page 208.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.15. THE SUBSTRATE REPRESENTATION LAYER 219

del-rcc-edge Macro

Description: See also corresponding function del-rcc-edge1, Page 208.

del-rcc-node Macro

Description: See also corresponding function del-rcc-node1, Page 208.

description-implies? Macro

Description: See also corresponding function description-implies-p, Page 211.

edge-description Macro

Description: See also corresponding function edge-description1, Page 212.

edge-label Macro

Description: See also corresponding function edge-label1, Page 212.

in-data-box Macro

Description: See also corresponding function set-data-box, Page 217.

in-mirror-data-box Macro

Description: See also corresponding function set-mirror-data-box, Page 218.

in-rcc-box Macro

Description: See also corresponding function set-rcc-box, Page 218.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

220 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

node-description Macro

Description: See also corresponding function node-description1, Page 215.

node-label Macro

Description: See also corresponding function node-label1, Page 215.

rcc-consistent? Macro

Description: See also corresponding function rcc-consistent-p, Page 216.

rcc-edge Macro

Description: See also corresponding function rcc-edge1, Page 216.

rcc-edge-description Macro

Description: See also corresponding function rcc-edge-description1, Page 216.

rcc-edge-label Macro

Description: See also corresponding function rcc-edge-label1, Page 216.

rcc-instance Macro

Description: See also corresponding function rcc-instance1, Page 216.

rcc-node Macro

Description: See also corresponding function rcc-node1, Page 217.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.15. THE SUBSTRATE REPRESENTATION LAYER 221

rcc-node-description Macro

Description: See also corresponding function rcc-node-description1, Page 216.

rcc-node-label Macro

Description: See also corresponding function rcc-node-label1, Page 216.

rcc-related Macro

Description: See also corresponding function rcc-related1, Page 217.

rcc-synonym Macro

Description: See also corresponding function register-rcc-synonym, Page 217.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

222 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

6.16 The nRQL Persistency Facility

restore-all-substrates Function

Description: Restores the substrates from the files <filename>.SUB.IMG as well
as they KBs they reference from <filename>.KBS.IMG Inverse of
store-all-substrates, Page 223.

Syntax: (restore-substrate filename)

Arguments: filename - the filename.

Values: The names of the restored substrates.

Remarks: Note that the referenced KBs (ABox, TBox) are restored from the file
<filename>.KB.IMG using restore-kbs-image, Page 233.

See also: Inverse of store-all-substrates, Page 223.restore-substrate, Page 223,
restore-server-image, Page 222

restore-server-image Function

Description: Restores a server image from the files <filename>.SUB.IMG and
<filename>.KBS.IMG Inverse of store-server-image, Page 224.

Syntax: (restore-server-image filename)

Arguments: filename - the filename.

Values: :done.

See also: Inverse of store-server-image, Page 224.restore-all-substrates, Page
222, restore-substrates, Page ??

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.16. THE NRQL PERSISTENCY FACILITY 223

restore-substrate Function

Description: Restores the substrate from the files <filename>.SUB.IMG and
<filename>.KBS.IMG Inverse of store-substrate-for-abox, Page
224.

Syntax: (restore-substrate filename)

Arguments: filename - the filename.

Values: The name of the restored substrate.

Remarks: Note that the referenced KB (ABox, TBox) is also restored from the file
<filename>.KB.IMG using restore-kb-image, Page 233.

See also: Inverse of store-substrate-for-abox, Page
224.restore-all-substrates, Page 222, restore-server-image, Page
222

store-all-substrates Function

Description: Stores all substrates in a file filename Inverse of restore-all-substrates,
Page 222.

Syntax: (store-all-substrates filename)

Arguments: filename - the filename.

Values: :done.

Remarks: Note that RacerPro must be running in unsafe mode (i.e., file io must be
allowed). RacerPro also stores all KBs (ABoxes, TBoxes) referenced by the
substrates. Thus, RacerPro creates two files: <filename>.SUB.IMG contains
the substrates, and <filename>.SUB.IMG contains the KBs (this image is
store with store-kbs-image, Page 233).

See also: Inverse of restore-all-substrates, Page
222.store-substrate-for-abox, Page 224, store-server-image, Page
224

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

224 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

store-server-image Function

Description: Stores the server state in the files <filename>.SUB.IMG and
<filename>.KBS.IMG Inverse of restore-server-image, Page 222.

Syntax: (store-server-image filename)

Arguments: filename - the filename.

Values: :done.

Remarks: This is like store-all-substrate, Page ??, but all KBs (not only the KBs
reference by the substrates) are stored in the image.

See also: Inverse of restore-server-image, Page 222.store-all-substrate, Page
??, store-substrate-for-abox, Page 224

store-substrate-for-abox Function

Description: Stores the substrate for ABox abox of type (class) type-of-substrate In-
verse of restore-substrate, Page 223.

Syntax: (store-substrate-for-abox filename &optional for-abox
type-of-substrate)

Arguments: filename - the filename.

for-abox - (current-abox).

type-of-substrate - ’racer-dummy-substrate.

Values: :done.

Remarks: Note that RacerPro must be running in unsafe mode (i.e., file io must
be allowed). Also note that the KB (ABox, TBox) is also stored in the
file; RacerPro creates two files: <filename>.SUB.IMG for the substrate, and
<filename>.SUB.IMG for the KB using store-kb-image, Page 233.

See also: Inverse of restore-substrate, Page 223.store-all-substrates, Page 223,
store-server-image, Page 224

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.16. THE NRQL PERSISTENCY FACILITY 225

WARNING Unclassified: (get-individual-successors set-rewrite-defined-concepts enable-
abduction disable-abduction)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

226 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

Chapter 7

Publish and Subscribe Functions

In the following the functions offered by the publish-subscribe facility are explained in detail.

publish macro

Description: Publish an ABox individual.

Syntax: (publish IN
&optional (ABN (current-abox)))

Arguments: IN - individual name

ABN - ABox name

Values: A list of tuples consisting of subscriber and individuals names.

publish-1 macro

Description: Functional interface for publish.

Syntax: (publish-1 IN
&optional (ABN (current-abox)))

Arguments: IN - individual name

ABN - ABox name

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

228 CHAPTER 7. PUBLISH AND SUBSCRIBE FUNCTIONS

unpublish macro

Description: Withdraw a publish statement.

Syntax: (unpublish IN
&optional (ABN (current-abox)))

Arguments: IN - individual name

ABN - ABox name

unpublish-1 function

Description: Functional interface for unpublish.

Syntax: (unpublish-1 IN
&optional (ABN (abox-name (current-abox))))

Arguments: IN - individual name

ABN - ABox name

subscribe macro

Description: Subscribe to an instance retrieval query.

Syntax: (subscribe subscriber-name C
ABN
(:notification-method tcp host port))

Arguments: IN - individual name

ABN - ABox name

host - host name, a string

port - port, an integer

Values: A list of tuples consisting of subscriber and individuals names.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

229

subscribe-1 function

Description: Functional interface for subscribe.

Syntax: (subscribe-1 subscriber-name C
ABN
(:notification-method tcp host port))

Arguments: IN - individual name

ABN - ABox name

host - host name, a string

port - port, an integer

unsubscribe macro

Description: Retract a subscription.

Syntax: (unsubscribe subscriber-name
&optional C (ABN (current-abox)))

Arguments: subscriber-name - subscriber name

C - concept term

ABN - ABox name

unsubscribe-1 function

Description: Functional interface for unsubscribe.

Syntax: (unsubscribe subscriber-name
&optional C (ABN (current-abox)))

Arguments: subscriber-name - subscriber name

C - concept term

ABN - ABox name

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

230 CHAPTER 7. PUBLISH AND SUBSCRIBE FUNCTIONS

init-subscriptions macro

Description: Initialize the subscription database.

Syntax: (init-subscriptions &optional (ABN (current-abox)))

Arguments: ABN - ABox name

init-subscriptions-1 function

Description: Functional interface for init-subscriptions

Syntax: (init-subscriptions-1 &optional (ABN (current-abox)))

Arguments: ABN - ABox name

init-publications macro

Description: Initialize the set of published individuals.

Syntax: (init-publications &optional (ABN (current-abox)))

Arguments: ABN - ABox name

init-publications-1 function

Description: Functional interface for init-subscription.

Syntax: (init-publications-1 &optional (ABN (current-abox)))

Arguments: ABN - ABox name

check-subscriptions macro

Description: Explicitly check for new instance retrieval results w.r.t. the set of subscrip-
tions.

Syntax: (check-subscriptions ABN)

Arguments: ABN - ABox name

Values: A list of tuples consisting of subscriber and individuals names.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

Chapter 8

The Racer Persistency Services

The following functions define the Racer Persistency Services.

store-tbox-image function

Description: Store an image of a TBox.

Syntax: (store-tbox-image filename &optional (TBN (current-tbox))

Arguments: filename - filename
TBN - tbox name

store-tboxes-image function

Description: Store an image of a list of TBoxes.

Syntax: (store-tboxes-image tboxes filename)

Arguments: tboxes - a list of TBox names
filename - filename

restore-tbox-image function

Description: Restore an image of a TBox.

Syntax: (restore-tbox-image filename)

Arguments: filename - filename

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

232 CHAPTER 8. THE RACER PERSISTENCY SERVICES

restore-tboxes-image function

Description: Restore an image of a set of TBoxes.

Syntax: (restore-tboxes-image filename)

Arguments: filename - filename

store-abox-image function

Description: Store an image of an Abox.

Syntax: (store-abox-image filename &optional (ABN (current-abox)))

Arguments: filename - filename

ABN - abox name

store-aboxes-image function

Description: Store an image of a list of Aboxes.

Syntax: (store-aboxes-image aboxes filename)

Arguments: aboxes - a list of abox names

filename - filename

restore-abox-image function

Description: Restore an image of an Abox.

Syntax: (restore-abox-image filename)

Arguments: filename - filename

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

233

restore-aboxes-image function

Description: Restore an image of a set of aboxes.

Syntax: (restore-aboxes-image filename)

Arguments: filename - filename

store-kb-image function

Description: Store an image of an kb.

Syntax: (store-kb-image filename &optional (KBN (current-tbox)))

Arguments: filename - filename
KBN - kb name

store-kbs-image function

Description: Store an image of a list of kbs.

Syntax: (store-kbs-image kbs filename)

Arguments: kbs - a list of knowledge base names
filename - filename

restore-kb-image function

Description: Restore an image of an kb.

Syntax: (restore-kb-image filename)

Arguments: filename - filename

restore-kbs-image function

Description: Restore an image of a set of kbs.

Syntax: (restore-kbs-image filename)

Arguments: filename - filename

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

234 CHAPTER 8. THE RACER PERSISTENCY SERVICES

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

Index

bottom, 30
top, 29

abort-all-queries, 138
abort-all-rules, 138
abort-query, 138
abort-rule, 138
abox-consistent-p, 84
abox-consistent?, 85
abox-prepared-p, 83
abox-prepared?, 83
abox-realized-p, 82
abox-realized?, 82
abox-una-consistent-p, 85
abox-una-consistent?, 85
accurate-queries, 120
accurate-rules, 121
active-cheap-queries, 131
active-cheap-rules, 131
active-expensive-queries, 131
active-expensive-query-p, 128
active-expensive-rule-p, 128
active-expensive-rules, 132
active-queries, 130
active-rules, 131
add-all-different-assertion, 50
add-annotation-concept-assertion, 55
add-annotation-role-assertion, 55
add-attribute-assertion, 53
add-chosen-sets-of-rule-consequences, 163
add-concept-assertion, 45
add-concept-axiom, 33

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

236 INDEX

add-constraint-assertion, 52
add-datatype-property, 44
add-datatype-role-filler, 54
add-different-from-assertion, 50
add-disjointness-axiom, 33
add-role-assertion, 46
add-role-assertions-for-datatype-properties, 169
add-role-axioms, 37
add-rule-consequences-automatically, 162
add-same-individual-as-assertion, 49
alc-concept-coherent, 66
all-aboxes, 110
all-annotation-concept-assertions, 112
all-annotation-role-assertions, 112
all-atomic-concepts, 99
all-attribute-assertions, 113
all-attributes, 100
all-concept-assertions, 111
all-concept-assertions-for-individual, 110
all-constraints, 113
all-different, 50
all-equivalent-concepts, 99
all-features, 99
all-individuals, 110
all-queries, 120
all-role-assertions, 112
all-role-assertions-for-individual-in-domain, 111
all-role-assertions-for-individual-in-range, 111
all-roles, 99
all-rules, 120
all-tboxes, 98
all-transitive-roles, 100
applicable-rules, 143
apply-abox-rule, 160
associated ABoxes, 18
associated-aboxes, 18
associated-tbox, 27
atomic-concept-ancestors, 94
atomic-concept-children, 94
atomic-concept-descendants, 93
atomic-concept-parents, 95
atomic-concept-synonyms, 92

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

INDEX 237

atomic-role-ancestors, 96
atomic-role-children, 97
atomic-role-descendants, 96
atomic-role-domain, 72
atomic-role-inverse, 71
atomic-role-parents, 98
atomic-role-range, 73
atomic-role-synonyms, 98
attribute, 44
attribute-domain, 74
attribute-domain-1, 74
attribute-filler, 54
attribute-has-domain, 41
attribute-has-range, 42
attribute-type, 100

bottom, 30

cd-attribute-p, 69
cd-attribute?, 70
cd-object-p, 90
cd-object?, 90
cheap-queries, 129
cheap-query-p, 128
cheap-rule-p, 128
cheap-rules, 129
check-abox-coherence, 86
check-abox-consistency-before-querying, 169
check-subscriptions, 200
check-tbox-coherence, 75
choose-current-set-of-rule-consequences, 162
classify-tbox, 74
clear-default-tbox, 18
clear-mirror-table, 6
clone ABox, 25, 26
clone TBox, 16, 17
clone-abox, 26
clone-tbox, 17
compute-all-implicit-role-fillers, 83
compute-implicit-role-fillers, 84
compute-index-for-instance-retrieval, 59
concept-ancestors, 93

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

238 INDEX

concept-children, 94
concept-descendants, 93
concept-disjoint-p, 64
concept-disjoint?, 64
concept-equivalent-p, 63
concept-equivalent?, 63
concept-instances, 103
concept-is-primitive-p, 65
concept-is-primitive?, 65
concept-offspring, 94
concept-p, 64
concept-parents, 95
concept-satisfiable-p, 62
concept-satisfiable?, 61
concept-subsumes-p, 62
concept-subsumes?, 62
concept-synonyms, 92
concept?, 65
concrete domain attribute, 44
constrained, 53
constraint-entailed-p, 87
constraint-entailed?, 87
constraints, 52
copy ABox, 25, 26
copy TBox, 16, 17
create-abox-clone, 25
create-data-edge, 188
create-data-node, 187
create-rcc-edge, 194
create-rcc-node, 193
create-tbox-clone, 16
current-abox, 21
current-tbox, 13

daml-read-document, 4
daml-read-file, 4
data-edge, 189
data-node, 187
datatype property, 44
datatype-role-filler, 54
datatype-role-has-range, 42
datatype-role-range, 73

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

INDEX 239

def-and-exec-query, 158
def-and-prep-query, 157
define-and-execute-query, 158
define-and-prepare-query, 158
define-concept, 32
define-concrete-domain-attribute, 43
define-datatype-property, 44
define-disjoint-primitive-concept, 32
define-distinct-individual, 48
define-individual, 49
define-primitive-attribute, 35
define-primitive-concept, 31
define-primitive-role, 34
define-query, 158
defquery, 156
del-data-edge, 190
del-data-node, 188
del-rcc-edge, 194
del-rcc-node, 194
delete ABox, 24, 27
delete ABoxes, 24
delete TBox, 15, 18
delete TBoxes, 16
delete-abox, 24
delete-all-aboxes, 24
delete-all-definitions, 159
delete-all-queries, 121
delete-all-rules, 122
delete-all-tboxes, 15
delete-data-edge, 189
delete-data-node, 188
delete-query, 121
delete-rule, 121
delete-tbox, 15
describe-abox, 113
describe-all-definitions, 159
describe-all-queries, 124
describe-all-rules, 124
describe-concept, 101
describe-current-substrate, 164
describe-definition, 159
describe-individual, 114

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

240 INDEX

describe-query, 124
describe-query-processing-mode, 164
describe-query-status, 122
describe-role, 101
describe-rule, 124
describe-rule-status, 122
describe-tbox, 101
different-from, 50
dig-read-document, 7
dig-read-file, 6
direct-predecessors, 109
disable-abox-mirroring, 174
disable-data-substrate-mirroring, 192
disable-kb-has-changed-warning-tokens, 167
disable-nrql-warnings, 117
disable-phase-two-starts-warning-tokens, 167
disable-query-optimization, 166
disable-query-realization, 182
disable-query-repository, 183
disjoint, 31
disjoint concepts, 31, 32
domain, 40
dont-add-role-assertions-for-datatype-properties, 169
dont-add-rule-consequences-automatically, 162
dont-check-abox-consistency-before-querying, 169
dont-report-inconsistent-queries, 179
dont-report-tautological-queries, 180

edge-label, 191
enable-abox-mirroring, 174
enable-data-substrate-mirroring, 192
enable-eager-tuple-computation, 168
enable-kb-has-changed-warning-tokens, 167
enable-lazy-tuple-computation, 168
enable-nrql-warnings, 117
enable-phase-two-starts-warning-tokens, 167
enable-query-optimization, 166
enable-query-realization, 181
enable-query-repository, 183
enable-smart-abox-mirroring, 175
enable-very-smart-abox-mirroring, 175
ensure-abox-signature, 21

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

INDEX 241

ensure-small-tboxes, 60
ensure-subsumption-based-query-answering, 60
ensure-tbox-signature, 13
equivalent, 31
exclude-permutations, 174
execute-all-queries, 140
execute-all-rules, 140
execute-applicable-rules, 143
execute-query, 139
execute-rule, 139
expensive-queries, 129
expensive-rules, 129

feature, 35, 36
feature-p, 69
feature?, 69
find-abox, 26
find-tbox, 17
firerule, 160
forget, 51
forget-abox, 24
forget-concept-assertion, 45
forget-constrained-assertion, 48
forget-constraint, 48
forget-disjointness-axiom, 47
forget-disjointness-axiom-statement, 47
forget-role-assertion, 47
forget-statement, 51
forget-tbox, 15
full-reset, 119
functional, 38

GCI, 30
get-abox-language, 84
get-abox-of-current-qbox, 184
get-abox-signature, 21
get-abox-version, 22
get-all-answers, 154
get-all-remaining-sets-of-rule-consequences, 153
get-all-remaining-tuples, 153
get-answer, 153
get-answer-size, 154

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

242 INDEX

get-concept-definition, 79
get-concept-definition-1, 79
get-concept-negated-definition, 80
get-concept-negated-definition-1, 80
get-concept-pmodel, 81
get-current-set-of-rule-consequences, 151
get-current-tuple, 150
get-dag-of-current-qbox, 184
get-dag-of-qbox-for-abox, 184
get-data-edge-label, 191
get-data-node-label, 190
get-individual-pmodel, 90
get-initial-size-of-process-pool, 172
get-kb-signature, 21
get-max-no-of-tuples-bound, 170
get-maximum-size-of-process-pool, 171
get-meta-constraint, 78
get-namespace-prefix, 7
get-next-n-remaining-sets-of-rule-consequences, 152
get-next-n-remaining-tuples, 152
get-next-set-of-rule-consequences, 150
get-next-tuple, 149
get-nodes-in-current-qbox, 185
get-nodes-in-qbox-for-abox, 185
get-nrql-version, 117
get-process-pool-size, 170
get-racer-version, 57
get-server-timeout, 58
get-tbox-language, 78
get-tbox-signature, 13
get-tbox-version, 14

implies, 30
implies-role, 43
import-kb, 3
in-abox, 20
in-data-box, 191
in-knowledge-base, 2
in-mirror-data-box, 192
in-rcc-box, 193
in-tbox, 10
inaccurate-queries, 120

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

INDEX 243

inaccurate-rules, 121
inactive-queries, 135
inactive-rules, 135
include file, 3
include-kb, 3
include-permutations, 174
individual-attribute-fillers, 105
individual-direct-types, 102
individual-filled-roles, 109
individual-fillers, 104
individual-instance-p, 86
individual-instance?, 86
individual-p, 89
individual-synonyms, 104
individual-told-attribute-fillers, 106
individual-told-attribute-value, 107
individual-told-datatype-fillers, 107
individual-types, 102
individual?, 89
individuals-equal-p, 88
individuals-equal?, 88
individuals-not-equal-p, 89
individuals-not-equal?, 89
individuals-related-p, 88
individuals-related?, 87
init-abox, 20
init-publications, 200
init-publications-1, 200
init-subscriptions, 200
init-subscriptions-1, 200
init-tbox, 11
instance, 44
instantiators, 103
inverse, 39
inverse-of-role, 39

kb-ontologies, 7
knowledge base ontologies, 7

load ABox, 23
logging-off, 59
logging-on, 59

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

244 INDEX

mirror, 6
most-specific-instantiators, 102

name set, 91
namespace prefix, 8
next-set-of-rule-consequences-available-p, 149
next-tuple-available-p, 149
node-label, 190

offline access to ontologies, 6
optimizer-dont-use-cardinality-heuristics, 166
optimizer-use-cardinality-heuristics, 166
original-query-body, 123
original-query-head, 123
original-rule-body, 123
original-rule-head, 123
owl-read-document, 5
owl-read-file, 5

parse-expression, 58
prepare-abox, 82
prepare-abox-query, 146
prepare-abox-rule, 161
prepare-nrql-engine, 119
prepare-racer-engine, 82
prepare-tbox-query, 148
prepared-queries, 130
prepared-rules, 130
preprule, 161
process-set-at-a-time, 173
process-tuple-at-a-time, 173
processed-queries, 135
processed-rules, 135
publish, 197
publish-1, 197

query-accurate-p, 154
query-active-p, 125
query-ancestors, 186
query-body, 123
query-children, 186
query-consistent-p, 180
query-descendants, 186

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

INDEX 245

query-entails-p, 181
query-equivalent-p, 181
query-equivalents, 186
query-head, 122
query-inactive-p, 127
query-inconsistent-p, 180
query-parents, 185
query-prepared-p, 125
query-processed-p, 127
query-ready-p, 125
query-tautological-p, 180
query-waiting-p, 126

racer-answer-query, 145
racer-answer-query-under-premise, 145
racer-answer-tbox-query, 147
racer-apply-rule, 161
racer-prepare-query, 146
racer-prepare-rule, 161
racer-prepare-tbox-query, 148
racer-read-document, 3
racer-read-file, 2
range, 41
rcc-consistent-p, 194
rcc-consistent?, 194
rcc-edge, 193
rcc-edge-label, 194
rcc-instance, 193
rcc-node, 193
rcc-node-label, 194
rcc-related, 193
RDFS, 19
rdfs-read-tbox-file, 19
read DAML document, 5
read DAML file, 4
read dig document, 7
read dig file, 7
read OWL document, 6
read OWL file, 5
read RACER document, 3
read RACER file, 2
read RDFS TBox file, 19

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

246 INDEX

read XML TBox file, 19
ready-queries, 130
ready-rules, 130
realize-abox, 81
reexecute-all-queries, 141
reexecute-all-rules, 141
reexecute-query, 142
reexecute-rule, 142
reflexive-p, 71
reflexive?, 71
related, 46
related-individuals, 108
rename ABox, 27
rename TBox, 18
report-inconsistent-queries, 179
report-tautological-queries, 179
reprepare-query, 141
reprepare-rule, 142
reset-nrql-engine, 118
restore-abox-image, 202
restore-aboxes-image, 203
restore-all-substrates, 196
restore-kb-image, 203
restore-kbs-image, 203
restore-standard-settings, 118
restore-substrate, 195
restore-tbox-image, 201
restore-tboxes-image, 202
retrieve, 144
retrieve-concept-instances, 103
retrieve-direct-predecessors, 109
retrieve-individual-annotation-property-fillers, 108
retrieve-individual-attribute-fillers, 105
retrieve-individual-filled-roles, 109
retrieve-individual-fillers, 105
retrieve-individual-synonyms, 104
retrieve-individual-told-attribute-fillers, 106
retrieve-individual-told-attribute-value, 107
retrieve-individual-told-datatype-fillers, 107
retrieve-related-individuals, 108
retrieve-under-premise, 145
role-ancestors, 96

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

INDEX 247

role-children, 97
role-descendants, 95
role-domain, 72
role-equivalent-p, 67
role-equivalent?, 67
role-has-domain, 41
role-has-parent, 43
role-has-range, 42
role-inverse, 72
role-is-functional, 38
role-is-transitive, 38
role-is-used-as-annotation-property, 39
role-is-used-as-datatype-property, 39
role-offspring, 97
role-p, 68
role-parents, 97
role-range, 72
role-subsumes-p, 67
role-subsumes?, 66
role-synonyms, 98
role-used-as-annotation-property-p, 73
role-used-as-datatype-property-p, 73
role?, 68
roles-equivalent, 40
roles-equivalent-1, 40
rule-accurate-p, 155
rule-active-p, 126
rule-applicable-p, 142
rule-body, 123
rule-head, 123
rule-inactive-p, 127
rule-prepared-p, 125
rule-processed-p, 127
rule-ready-p, 125
rule-waiting-p, 126
run-all-queries, 140
run-all-rules, 140
running-cheap-queries, 132
running-cheap-rules, 133
running-expensive-queries, 133
running-expensive-rules, 133
running-queries, 132

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

248 INDEX

running-rules, 132

same-as, 49
same-individual-as, 49
save knowledge base, 10
save TBox, 15
save-abox, 23
save-kb, 9
save-tbox, 14
set-associated-tbox, 28
set-attribute-filler, 53
set-current-abox, 22
set-current-tbox, 13
set-data-box, 192
set-find-abox, 27
set-find-tbox, 18
set-initial-size-of-process-pool, 172
set-max-no-of-tuples-bound, 170
set-maximum-size-of-process-pool, 172
set-mirror-data-box, 192
set-nrql-mode, 165
set-rcc-box, 193
set-server-timeout, 58
set-unique-name-assumption, 58
show-current-qbox, 184
show-qbox-for-abox, 183
signature, 11
state, 51
store-abox-image, 202
store-aboxes-image, 202
store-all-substrates, 196
store-kb-image, 203
store-kbs-image, 203
store-substrate-for-abox, 195
store-substrate-for-current-abox, 196
store-tbox-image, 201
store-tboxes-image, 201
subrole, 35, 36
subscribe, 198
subscribe-1, 199
superrole, 35, 36
symmetric-p, 70

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

INDEX 249

symmetric?, 70

taxonomy, 91
tbox, 27
tbox-classified-p, 75
tbox-classified?, 75
tbox-coherent-p, 77
tbox-coherent?, 77
tbox-cyclic-p, 76
tbox-cyclic?, 77
tbox-prepared-p, 76
tbox-prepared?, 76
tbox-retrieve, 147
terminated-queries, 135
terminated-rules, 136
time, 57
told-value, 106
top, 29
transitive, 38
transitive role, 35
transitive-p, 68
transitive?, 68

unapplicable-rules, 143
undefine-query, 158
undefquery, 157
unpublish, 198
unpublish-1, 198
unsubscribe, 199
unsubscribe-1, 199

wait-for-queries-to-terminate, 137
wait-for-rules-to-terminate, 137
waiting-cheap-queries, 134
waiting-cheap-rules, 134
waiting-expensive-queries, 134
waiting-expensive-rules, 135
waiting-queries, 133
waiting-rules, 134
with-nrql-settings, 176

XML, 19
xml-read-tbox-file, 19

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

	Knowledge Base Management Functions
	TBox Management
	ABox Management

	Knowledge Base Declarations
	Built-in Concepts
	Concept Axioms
	Role Declarations
	Concrete Domain Attribute Declaration
	Assertions
	Concrete Domain Assertions

	Reasoning Modes
	Evaluation Functions and Queries
	Queries for Concept Terms
	Role Queries
	TBox Evaluation Functions
	ABox Evaluation Functions
	ABox Queries

	Retrieval
	TBox Retrieval
	ABox Retrieval

	The API of the nRQL Query Processing Engine
	Basic Commands
	Query Management
	Rule Management
	Query Life Cycle
	Rule Life Cycle
	Execution Control
	ABox Queries
	TBox Queries
	Getting Answers
	Defined Queries
	Rules
	Querying Modes
	Inference
	Query Repository
	The Substrate Representation Layer
	The nRQL Persistency Facility

	Publish and Subscribe Functions
	The Racer Persistency Services
	Index

