
RacerPro User’s Guide

Version 1.9.2

Racer Systems GmbH & Co. KG
http://www.racer-systems.com

October 18, 2007

http://www.racer-systems.com

Contents

1 Introduction 1

1.1 Views on RacerPro . 1

1.1.1 RacerPro as a Semantic Web Reasoning System and Information
Repository . 1

1.1.2 RacerPro as a Description Logic System 2

1.1.3 RacerPro as a Combination of Description Logic and Specific Rela-
tional Algebras . 4

1.2 Application Areas and Usage Scenarios . 4

1.3 Racer Editions, Installation, Licenses, and System Requirements 5

1.3.1 Editions . 5

1.3.2 Installation . 6

1.3.3 Licenses . 6

1.3.4 System Requirements . 6

1.4 Acknowledgments . 6

2 Using RacerPro 9

2.1 Sample Session with RacerPorter . 9

2.2 The RacerPro Server . 18

2.2.1 The File Interface . 18

2.2.2 TCP APIs . 20

2.2.3 Web Service Interface . 22

2.2.4 HTTP Interface: DIG Interface . 22

2.2.5 Options for the RacerPro Server . 23

2.3 How to Send Bug Reports . 24

2.4 RacerPorter . 25

2.4.1 Preferences . 26

2.4.2 RacerEditor . 27

2.4.3 Tabs in RacerPorter . 28

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

ii CONTENTS

2.4.4 Known Problems . 29

2.5 Other Graphical Client Interfaces for RacerPro 29

2.5.1 RICE . 29

2.5.2 Protégé . 31

2.5.3 Using Protégé and RacerPorter in Combination 38

2.5.4 TopBraidComposer . 43

2.6 SWRL: Semantic Web Rule Language . 44

3 RacerPro Knowledge Bases 55

3.1 Naming Conventions . 55

3.2 Concept Language . 56

3.3 Concept Axioms and T-boxes . 59

3.4 Role Declarations . 60

3.5 Concrete Domains . 61

3.6 Concrete Domain Attributes . 65

3.7 Individual Assertions and A-boxes . 65

3.8 Inference Modes . 66

3.9 Retraction and Incremental Additions . 67

4 Description Logic Modeling with RacerPro 69

4.1 Representing Data with Description Logics (?) 69

4.2 Nominals or Concrete Domains? . 70

4.3 Open-World Assumption . 72

4.4 Closed-World Assumption . 73

4.5 Unique Name Assumption . 73

4.6 Differences in Expressivity of Query and Concept Language 73

4.7 OWL Interface . 74

5 Knowledge Base Management 77

5.1 Configuring Optimization Strategies . 77

5.2 The RacerPro Persistency Services . 78

5.3 The Publish-Subscribe Mechanism . 79

5.3.1 An Application Example . 79

5.3.2 Using JRacer for Publish and Subscribe 84

5.3.3 Realizing Local Closed-World Assumptions 85

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

CONTENTS iii

6 The New RacerPro Query Language - nRQL 87

6.1 The nRQL Language . 93

6.1.1 Query Atoms, Objects, Individuals, and Variables 93

6.1.2 Query Head Projection Operators 110

6.1.3 Lambda Head Operators to Evaluate Expressions 118

6.1.4 Complex Queries . 127

6.1.5 Defined Queries . 147

6.1.6 ABox Augmentation with Simple Rules 153

6.1.7 Complex TBox Queries . 160

6.1.8 Hybrid Representations with the Substrate Representation Layer . . 167

6.1.9 Formal Syntax of nRQL . 193

6.2 The nRQL Query Processing Engine . 203

6.2.1 The Query Processing Modi of nRQL 203

6.2.2 The Life Cycle of a Query . 205

6.2.3 The Life Cycle of a Rule . 207

6.2.4 How to Implement Your Own Rule Application Strategy 208

6.2.5 Configuring the Degree of nRQL Completeness 212

6.2.6 Automatic Deadlock Prevention . 217

6.2.7 Reasoning with Queries . 220

6.2.8 The Query Repository - The QBox 227

6.2.9 The Query Realizer . 232

6.2.10 The nRQL Persistency Facility . 234

7 Outlook 237

A Another Family Knowledge Base 239

B A Knowledge Base with Concrete Domains 241

C SWRL Example Ontology 247

D LUBM benchmark 251

Index 261

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

Chapter 1

Introduction

RacerPro stands for Renamed ABox and Concept Expression Reasoner Professional. As
the name suggests, the origins of RacerPro are within the area of description logics. Since
description logics provide the foundation of international approaches to standardize ontology
languages in the context of the so-called semantic web, RacerPro can also be used as a system
for managing semantic web ontologies based on OWL (e.g., it can be used as a reasoning
engine for ontology editors such as Protégé). However, RacerPro can also be seen as a
semantic web information repository with optimized retrieval engine because it can handle
large sets of data descriptions (e.g., defined using RDF). Last but not least, the system can
also be used for modal logics such as Km.

1.1 Views on RacerPro

1.1.1 RacerPro as a Semantic Web Reasoning System and Information
Repository

The semantic web is aimed at providing “machine-understandable” web resources or by
augmenting existing resources with “machine-understandable” meta data. An important
aspect of future systems exploiting these resources is the ability to process OWL (Web
Ontology Language) documents (OWL KBs), which is the official semantic web ontology
language. Ontologies may be taken off the shelf or may be extended for domain-specific
purposes (domain-specific ontologies extend core ontologies). For doing this, a reasoning
system is required as part of the ontology editing system. RacerPro can process OWL Lite
as well as OWL DL documents (knowledge bases). Some restrictions apply, however. OWL
DL documents are processed with approximations for nominals in class expressions and
user-defined XML datatypes are not yet supported.

A first implementation of the semantic web rule language (SWRL) is provided with RacerPro
1.9 (see below for a description of the semantics of rules in this initial version).

The following services are provided for OWL ontologies and RDF data descriptions:

• Check the consistency of an OWL ontology and a set of data descriptions.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2 CHAPTER 1. INTRODUCTION

• Find implicit subclass relationships induced by the declaration in the ontology.

• Find synonyms for resources (either classes or instance names).

• Since extensional information from OWL documents (OWL instances and their inter-
relationships) needs to be queried for client applications, an OWL-QL query processing
system is available as an open-source project for RacerPro.

• HTTP client for retrieving imported resources from the web. Multiple resources can
be imported into one ontology.

• Incremental query answering for information retrieval tasks (retrieve the next n re-
sults of a query). In addition, RacerPro supports the adaptive use of computational
resource: Answers which require few computational resources are delivered first, and
user applications can decide whether computing all answers is worth the effort.

Future extensions for OWL (e.g., OWL-E) are already supported by RacerPro if the sys-
tem is seen as a description logic system. RacerPro already supports qualified cardinality
restrictions as an extension to OWL DL.

1.1.2 RacerPro as a Description Logic System

RacerPro is a knowledge representation system that implements a highly optimized tableau
calculus for a very expressive description logic. It offers reasoning services for multiple
T-boxes and for multiple A-boxes as well. The system implements the description logic
ALCQHIR+ also known as SHIQ (see [9]). This is the basic logic ALC augmented with
qualifying number restrictions, role hierarchies, inverse roles, and transitive roles. In addition
to these basic features, RacerPro also provides facilities for algebraic reasoning including
concrete domains for dealing with:

• min/max restrictions over the integers,

• linear polynomial (in-)equations over the reals or cardinals with order relations,

• equalities and inequalities of strings.

For these domains, no feature chains can be supported due to decidability issues.

RacerPro supports the specification of general terminological axioms. A T-box may con-
tain general concept inclusions (GCIs), which state the subsumption relation between two
concept terms. Multiple definitions or even cyclic definitions of concepts can be handled by
RacerPro.

RacerPro implements the HTTP-based quasi-standard DIG for interconnecting DL systems
with interfaces and applications using an XML-based protocol [4]. RacerPro also implements
most of the functions specified in the older Knowledge Representation System Specification
(KRSS), for details see [17].

Given a T-box, various kinds of queries can be answered. Based on the logical semantics
of the representation language, different kinds of queries are defined as inference problems

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

1.1. VIEWS ON RACERPRO 3

(hence, answering a query is called providing inference service). As a summary, we list only
the most important ones here:

• Concept consistency w.r.t. a T-box: Is the set of objects described by a concept empty?

• Concept subsumption w.r.t. a T-box: Is there a subset relationship between the set of
objects described by two concepts?

• Find all inconsistent concept names mentioned in a T-box. Inconsistent concept names
result from T-box axioms, and it is very likely that they are the result of modeling
errors.

• Determine the parents and children of a concept w.r.t. a T-box: The parents of a
concept are the most specific concept names mentioned in a T-box which subsume
the concept. The children of a concept are the most general concept names mentioned
in a T-box that the concept subsumes. Considering all concept names in a T-box the
parent (or children) relation defines a graph structure which is often referred to as
taxonomy. Note that some authors use the name taxonomy as a synonym for ontology.

Note that whenever a concept is needed as an argument for a query, not only predefined
names are possible, instead concept expressions allow for adaptive formulation of queries
that have not been anticipated at system construction time.

If also an A-box is given, among others, the following types of queries are possible:

• Check the consistency of an A-box w.r.t. a T-box: Are the restrictions given in an
A-box w.r.t. a T-box too strong, i.e., do they contradict each other? Other queries are
only possible w.r.t. consistent A-boxes.

• Instance testing w.r.t. an A-box and a T-box: Is the object for which an individual
stands a member of the set of objects described by a specified concept? The individual
is then called an instance of the concept.

• Instance retrieval w.r.t. an A-box and a T-box: Find all individuals from an A-box
such that the objects they stand for can be proven to be a member of a set of objects
described by a certain query concept.

• Retrieval of tuples of individuals (instances) that satisfy certain conditions w.r.t. an
A-box and a T-box.

• Computation of the direct types of an individual w.r.t. an A-box and a T-box: Find the
most specific concept names from a T-box of which a given individual is an instance.

• Computation of the fillers of a role with reference to an individual w.r.t. an A-box
and a T-box.

• Check if certain concrete domain constraints are entailed by an A-box and a T-box.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

4 CHAPTER 1. INTRODUCTION

RacerPro provides another semantically well-defined query language (nRQL, new Racer
Query Language), which also supports negation as failure, numeric constraints w.r.t. at-
tribute values of different individuals, substring properties between string attributes, etc.
In order to support special OWL features such as annotation and datatype properties,
special OWL querying facilities have been incorporated into nRQL. The query language
OWL-QL [4] is the W3C recommendation for querying OWL documents. nRQL has been
used as a basic engine for implementing a very large subset of the OWL-QL query language
(see above).

1.1.3 RacerPro as a Combination of Description Logic and Specific Re-
lational Algebras

For some representation purposes, e.g., reasoning about spatial relations such as contains,
touching, etc., relational algebras and constraint propagation have proven to be useful in
practice. RacerPro combines description logics reasoning with, for instance, reasoning about
spatial (or temporal) relations within the A-box query language nRQL. Bindings for query
variables that are determined by A-box reasoning can be further tested with respect to an
associated constraint network of spatial (or temporal) relationships.

Although RacerPro is one of the first systems supporting this kind of reasoning in com-
bination with description logics (or OWL), we expect that international standardization
efforts will also cover these important representation constructs in the near future. Note
also that the semantically well-founded treatment can hardly be efficiently achieved using
rule systems.

1.2 Application Areas and Usage Scenarios

Description logic systems are no databases. Although one can use RacerPro for storing
data using A-boxes, probably, databases provide better support with respect to persistency
and transactions. However, databases can hardly be used if indefinite information is to be
handled in an application (e.g., “John was seen playing with a ball, but I cannot remember,
it was soccer or basket ball, so he must be a soccer player or a basket-ball player”). Being
able to deal with indefinite information of this kind is important when information about
data comes in from various sources, and in situations where sources are, for instance, used
to exclude certain cases that are possible given the information at hand. Description logics
are also important if data descriptions are to be queries with respect to varying T-boxes
(or ontologies). Note that this is a common scenario in modern information technology
infrastructure. Due to the rapid pace in technology evolution, also the vocabulary used to
access data descriptions changes quite frequently. New concepts are introduced, and can be
set into relation to older terminology using description logics (or semantic web ontologies).

There are numerous papers describing how description logic in general (and RacerPro in
particular) can be used to solve application problems (see the International Workshops on
Description Logics and the workshops on Applications of Description Logics ADL-01, ADL-
02, or ADL-03). Without completeness one can summarize that applications come from the
following areas:

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

http://dl.kr.org/workshops/index.html
http://dl.kr.org/workshops/index.html
http://dl.kr.org/adl2001/
http://dl.kr.org/adl2002
http://dl.kr.org/adl2002
http://dl.kr.org/adl2003

1.3. RACER EDITIONS, INSTALLATION, LICENSES, AND SYSTEM
REQUIREMENTS 5

• Semantic Web, Semantic Grid (ontology representation and logic-based information
retrieval)

• Electronic Business (e.g, reason about services descriptions)

• Medicine/Bioinformatics (e.g., represent and manage biomedical ontologies)

• Natural Language Processing and Knowledge-Based Vision (e.g., exploit and combine
multiple clues coming from low-level vision processes in a semantically meaningful
way).

• Process Engineering (e.g., represent service descriptions)

• Knowledge Engineering (e.g., represent ontologies)

• Software Engineering (e.g., represent the semantics of UML class diagrams)

1.3 Racer Editions, Installation, Licenses, and System Re-
quirements

1.3.1 Editions

Racer Systems provides several different editions of the Racer technology.

RacerPro RacerPro is a server for description logic or OWL inference services. With Rac-
erPro you can implement industrial strength projects as well as doing research on knowledge
basis and develop complex applications. If you do not have a valid license, you are allowed
to use RacerPro but some restrictions apply.

RacerPorter The “Porter to RacerPro” (aka RacerPorter) is the graphical user client
for RacerPro. RacerPorter uses the TCP/IP network interface to connect to one or more
RacerPro servers and helps you manage them: You can load knowledge bases, switch between
different taxonomies, inspect your instances, visualize T-Boxes and A-Boxes, manipulate the
server and much more. RacerPorter is already included in the installer versions of RacerPro
for Windows and Mac OS X and separately available for Linux systems with a graphic
display.

RacerPlus To minimize the performance overhead due to network-based communica-
tion between RacerPorter and RacerPro as well as to utilize the computing power offered
by a single workstation we introduce RacerPlus, an integrated workbench which includes
RacerPro and the RacerPorter graphical user interface in a single application.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6 CHAPTER 1. INTRODUCTION

RacerMaster Do you develop complex applications for the Semantic Web? Are you re-
searching in the area of description logic, knowledge basis, and implement your own systems
and algorithms for inference problems using the Common Lisp programming language? Then
you might be interested in RacerMaster which actually is RacerPro as an object code library
(“fasl file”). You can develop your own application and use Racer technology without an
external server application.

1.3.2 Installation

The RacerPro system can be obtained from the following web site:

http://www.racer-systems.com

A documentation for the RacerPro installation process is included in the installer file that
you can download from your personal download page. The URL for your personal download
page is sent to you via email.

1.3.3 Licenses

RacerPro is available as a desktop version in which the server and clients run on localhost. In
addition, there are licenses available to run RacerPro on a powerful server machine whereas
graphical interfaces or client applications can be executed on you personal computer (or
via wireless connections on your portable computer). Your license file is available from
your personal download page (the file is called license.racerlicense). Put this license
file in your home directory. Do not edit or delete this file. If the installation process is
executed successfully, the RacerPro application comes with an additional license file named
racerpro.lic in the same directory as the RacerPro executable. Do not remove or edit
this file, either.

1.3.4 System Requirements

RacerPro is available for all major operating systems in 32bit and 64bit modes (Linux, Mac
OS X, Solaris 2, Windows). For larger knowledge bases in industrial projects we recommend
at least 1 GB of main memory and a 1GHz processor. For large ontologies (> 100000 concept
and role names) we recommend 64bit computer architectures.

1.4 Acknowledgments

RacerPro is based on scientific results presented in publications about theoretical and prac-
tical work on KRIS, FaCT, and other description logic systems. See, for instance, [3], [5],
[7], [8], [14]. [15], [10], [11], [12].

We would like to thank the team at Franz Inc. (http://www.franz.com/). for their col-
laboration and for the support in making RacerPro one of the fastest and most expres-
sive commercial OWL/RDF and description logic reasoning systems. The graphical user
interface RacerPorter is built with the development environment from Lispworks Ltd.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

http://www.racer-systems.com/
http://www.franz.com/
http://www.franz.com/
http://www.lispworks.com/

1.4. ACKNOWLEDGMENTS 7

(http://www.lispworks.com/). RacerPro is also developed with Macintosh Common Lisp
(http://www.digitool.com/).

The XML/RDF-based part of the input interface for RacerPro is implemented using the
XML/RDF parser Wilbur written by Ora Lassila. For more information on Wilbur and the
Wilbur source code see http://wilbur-rdf.sourceforge.net/.

For most versions of RacerPro, the DIG server interface is implemented with Al-
legroServe. For some special versions of RacerPro, however, the HTTP server for
the DIG interface of RacerPro is implemented with CL-HTTP, which is devel-
oped and owned by John C. Mallery. For more information on CL-HTTP see
http://www.ai.mit.edu/projects/iiip/doc/cl-http/home-page.html.

Many users have directly contributed to the functionality and stability of the RacerPro
system by giving comments, providing ideas and test knowledge bases, implementing inter-
faces, or sending bug reports. There are too many of them to mention the name them all.
Many thanks for any hint, comment, and bug report.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

http://www.lispworks.com/
http://www.digitool.com/
http://www.digitool.com/
http://wilbur-rdf.sourceforge.net/
http://www.ai.mit.edu/projects/iiip/doc/cl-http/home-page.html

8 CHAPTER 1. INTRODUCTION

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

Chapter 2

Using RacerPro

In this section we present a first example for the use of RacerPro. We use the so-called
KRSS-based interface rather than the XML (or OWL/RDF) interface here in order to
directly present the declaration and results of queries in a brief and human-readable form.
Note, however, that all examples can be processed in a similar way with the XML-based
interfaces.

2.1 Sample Session with RacerPorter

The file "family.racer" in the examples folder of the RacerPro distribution con-
tains the T-box and A-box introduced in this section. The queries are in the file
"family-queries.racer". In order to run the example, just start RacerPro by double
clicking the program icon or, alternatively, type RacerPro as a command in a shell win-
dow.1

We use the interactive graphical interface to demonstrate the result of queries in this sam-
ple session. However, you can also use the RacerPro executable in batch mode. If you
use the RacerPro executable in batch mode just type RacerPro -f family.racer -q
family-queries.lisp into a shell window in order to see the results (under Windows
type RacerPro -- -f family.racer -q family-queries.lisp). See also Section 2.2 for
details on how to use RacerPro from a shell).

You should see something similar to the following:

;;; Welcome to RacerPro Version 1.9.0 2005-11-21!

;;; Racer: Renamed Abox and Concept Expression Reasoner
;;; Supported description logic: ALCQHIr+(D)-
;;; Supported ontology web language: subset of OWL DL (no so-called nominals)

;;; Copyright (C) 2004, 2005 by Racer Systems GmbH & Co. KG
;;; All rights reserved. See license terms for permitted usage.

1We assume that RacerPro is on the search path of your operating system.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

10 CHAPTER 2. USING RACERPRO

;;; Racer and RacerPro are trademarks of Racer Systems GmbH & Co. KG
;;; For more information see: http://www.racer-systems.com
;;; RacerPro comes with ABSOLUTELY NO WARRANTY; use at your own risk.

;;; RacerPro is based on:
;;; International Allegro CL Enterprise Edition 7.0 (Oct 19, 2004 13:28)
;;; Copyright (C) 1985-2004, Franz Inc., Oakland, CA, USA. All Rights Reserved.
;;; The XML/RDF/RDFS/OWL parser is implemented with Wilbur developed
;;; by Ora Lassila. For more information on Wilbur see
;;; http://wilbur-rdf.sourceforge.net/.

;;; ===
;;; Found license file
;;; /Users/rm/ralf-mac-os-x.lic
;;; This copy of RacerPro is licensed to:
;;;
;;; Ralf Moeller
;;; Hamburg University of Technology (TUHH)
;;; Harburger Schlossstr. 20
;;; STS Group
;;; 21079 Hamburg
;;; Deutschland
;;;
;;; Initial license generated on 06-29-2005, 12:35 for 1.8.1.
;;; Site, Commercial, on Mac OS X.
;;; This license is valid up to version 9.9.99.
;;; This license is valid forever.
;;;
;;; This is RacerPro for Ralf Moeller
;;;
;;; ===

HTTP service enabled for: http://localhost:8080/
TCP service enabled for: http//localhost:8088/

If you do not have a valid license, you are allowed to use RacerPro but some restrictions
apply (see the RacerPro web site for details). If you have a valid license, your own name
will be mentioned in the output, of course.

The following forms are found in the file family.racer in the examples folder.

;;; initialize the T-box "family"
(in-tbox family)

;;; Supply the signature for this T-box

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.1. SAMPLE SESSION WITH RACERPORTER 11

(signature
:atomic-concepts (person human female male woman man parent mother

father grandmother aunt uncle sister brother)
:roles ((has-child :parent has-descendant)

(has-descendant :transitive t)
(has-sibling)
(has-sister :parent has-sibling)
(has-brother :parent has-sibling)
(has-gender :feature t))

:individuals (alice betty charles doris eve))

;;; Domain & range restrictions for roles
(implies *top* (all has-child person))
(implies (some has-child *top*) parent)
(implies (some has-sibling *top*) (or sister brother))
(implies *top* (all has-sibling (or sister brother)))
(implies *top* (all has-sister (some has-gender female)))
(implies *top* (all has-brother (some has-gender male)))

;;; Axioms for relating concept names
(implies person (and human (some has-gender (or female male))))
(disjoint female male)
(implies woman (and person (some has-gender female)))
(implies man (and person (some has-gender male)))
(equivalent parent (and person (some has-child person)))
(equivalent mother (and woman parent))
(equivalent father (and man parent))
(equivalent grandmother (and mother (some has-child (some has-child person))))
(equivalent aunt (and woman (some has-sibling parent)))
(equivalent uncle (and man (some has-sibling parent)))
(equivalent brother (and man (some has-sibling person)))
(equivalent sister (and woman (some has-sibling person)))

(instance alice mother)
(related alice betty has-child)
(related alice charles has-child)

(instance betty mother)
(related betty doris has-child)
(related betty eve has-child)

(instance charles brother)
(related charles betty has-sibling)
(instance charles (at-most 1 has-sibling))

(related doris eve has-sister)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

12 CHAPTER 2. USING RACERPRO

(related eve doris has-sister)

Start RacerPorter by double-clicking the program icon or type RacerPorter as a command
in your shell.2 Press the button Connect to connect the graphical interface to the RacerPro
reasoning engine. Make sure RacerPro is already started. Then, load a file into RacerPro
by pressing the button Load. . . (or by selecting Load. . . in the menu File on Mac OS X).

Figure 2.1: The RacerPorter interface for RacerPro.

2We assume that RacerPorter is on the search path of your operating system.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.1. SAMPLE SESSION WITH RACERPORTER 13

RacerPorter also allows you to edit knowledge bases (or ontologies and data descriptions)
with the built-in editor. Just press the button Open. . . or select Open. . . in the File menu
(Mac OS X). Under Mac OS X and Windows you can also double-click the file family.racer
(make sure RacerPro is already running). If you have the file family.racer displayed in
the editor (see Figure 2.2), you can send the statements to RacerPro by selecting Evaluate
Racer Buffer in the Buffer menu (make sure the window RacerEditor is the active window).

Figure 2.2: The RacerEditor interface for RacerPro.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

14 CHAPTER 2. USING RACERPRO

Figure 2.3: RacerEditor displaying the list of buffers.

RacerPro supports the standard Emacs commands such as, for instance, change buffer, etc.
In addition, the standard key bindings are provided. E.g., change buffer is bound to c-x b.
Press tab to see a list of possible completions (see Figure 2.3).

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.1. SAMPLE SESSION WITH RACERPORTER 15

After having loaded the file family.racer into RacerPro, you can use RacerPorter to
inspect the knowledge base. For instance, you might be interested in the hierarchy of concept
names or roles using the tabs Taxonomy and Role Hierarchy, respectively (see Figures 2.4
and 2.5).

Figure 2.4: RacerPorter showing the taxonomy of the T-box family. You should select the
button graph in order to see the full hierarchy.

You can switch between the shell, the taxonomy, and the role hierarchy by selecting the
corresponding tabs in the RacerPorter window.

Next we will use RacerPorter to specify some queries and inspect the answers. You can use
the Shell tab or, alternatively, you can use the Console tab to execute queries as we have
done in Figure 2.6. Information about commands and key abbreviations is printed into the
Shell window. With meta-p (or alt-p) and meta-n (or alt-n) you can get the previous
and next command of the command history, respectively. You might want to use the tab
key to complete a partially typed command. A command is executed once it is syntactically
complete.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

16 CHAPTER 2. USING RACERPRO

Figure 2.5: RacerPorter showing the role hierarchy of the T-box family.

Figure 2.6: The Console tab of RacerPorter used for executing queries.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.1. SAMPLE SESSION WITH RACERPORTER 17

Figure 2.7: The Network tab shows the explicit relations for A-box individuals.

RacerPorter allows you to inspect data descriptions in an A-box. Just select the Network
tab (see Figure 2.7). Adjust the display options to Tree and select Tree Depth 3 as shown
in Figure 2.7.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

18 CHAPTER 2. USING RACERPRO

2.2 The RacerPro Server

The RacerPro server is an executable file available for Linux, Mac OS X, Solaris 2, and
Windows XP. It can be started from a shell or by double-clicking the corresponding pro-
gram icon in a graphics-based environment. For instance, the Windows version is shown in
Figure 2.8.

Figure 2.8: A screenshot of the RacerPro server started under Windows.

Depending on the arguments provided at startup, the RacerPro executable supports differ-
ent modes of operation. It offers a file-based interface, a socket-based TCP stream interface,
and a HTTP-based stream interface. With the OWL-QL server comes a web service inter-
face.

2.2.1 The File Interface

If your knowledge bases and queries are available as files use the file interface of RacerPro,
i.e. start RacerPro with the option -f. In the following, we assume that you have RacerPro

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.2. THE RACERPRO SERVER 19

on your search path. In your favorite shell on Unix-based systems just type:

$ RacerPro -f family.racer -q family-queries

Under Windows, you want to suppress the display of the RacerPro window. The command
is slightly different:

$ RacerPro +c -- -f family.racer -q family-queries.lisp

The option -- separates window management options from RacerPro options. A window
option we use here is +c which suppress the display of the RacerPro window, which is not
useful in batch mode. For debugging under Windows, the window option +p is useful.

$ RacerPro +p -- -f family.racer -q family-queries.lisp

If an error occurs you can read the error message in the console window. The option -h
prints some information about the usage of the program RacerPro.

$ RacerPro +p -- -h

The -f RacerPro option has the following meaning. The input file is family.racer and
the queries file is family-queries.lisp. The output of RacerPro is printed into the shell.
If output is to be printed into a file, specify the file with the option -o as in the following
example:

$ RacerPro -f family.racer -q family-queries.lisp -o ouput.text

Or use the following under Windows as explained above:

$ RacerPro +c -- -f family.racer -q family-queries.lisp -o ouput.text

The syntax for processing input files is determined by RacerPro using the file type (file
extension). If .lisp, .krss, or .racer is specified, a KRSS-based syntax is used. Other
possibilities are .rdfs, .owl, and .dig. If the input file has one of these extensions, the
respective syntax for the input is assumed. The syntax can be enforced with corresponding
options instead of -f: -rdfs, -owl, and -dig.

The option -xml <filename> is provided for historical reasons. The input syntax is the older
XML syntax for description logic systems. This syntax was developed for the FaCT system
[7]. In the RacerPro server, output for query results based on this syntax is also printed
using an XML-based syntax. However, the old XML syntax of FaCT is now superseded by
the DIG standard. Therefore, the RacerPro option -xml may no longer be supported once
the file interface fully supports the DIG standard for queries (see above).

Currently, the file interface of RacerPro supports only queries given in KRSS syntax. How-
ever, DIG-based queries [4] can be specified indirectly with the file interface as well. Let us
assume a DIG knowledge base is given in the file kb.xml and corresponding DIG queries
are specified in the file queries.xml. In order to submit this file to RacerPro just create a
file q.racer, say, with contents (dig-read-file "queries.xml") and start RacerPro as
follows:

$ RacerPro -dig kb.xml -q q.racer

Under windows, you might want to suppress the console window:

$ RacerPro +c -- -dig kb.xml -q q.racer

Note the use of the option -dig for specifying that the input knowledge base is in DIG syn-
tax. Since the file extension for the knowledge base is .xml, the option -f would assume the

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

20 CHAPTER 2. USING RACERPRO

older XML syntax for knowledge bases (see above). If the query file has the extension .xml,
RacerPro assumes DIG syntax. For older programs this kind of backward compatibility is
needed.

RacerPro opens one TCP port for the DIG protocol and one for RacerPro’s native protocol.
The DIG protocol is an HTTP based XML protocol and thus is based on plain text. The
native protocol is proprietary to Racer but in “KRSS” syntax and is documented in the
Reference Manual. Since both protocols are based on plain text format in a public available
command language, anybody with knowledge about the existence of a RacerPro server can
manipulate the server status, the data stored and the processing, since it is also possible to
connect to one RacerPro server instance from multiple clients which may not be all under
your control.

2.2.2 TCP APIs

There are two APIs based on TCP sockets, namely for the programming languages Common
Lisp and Java. The socket interface of the RacerPro server can be used from application
programs or graphical interfaces. Bindings for C++ and Prolog dialects have been developed
as well.

If the option -f is not provided, the socket interface is automatically enabled. Just execute
the following.

$ RacerPro

The default TCP communication port used by RacerPro is 8088. In order to change the
port number, the RacerPro server should be started with the option -p. For instance:

$ RacerPro -p 8000 (or $ RacerPro -- -p 8000 under Windows).

In this document the TCP socket is also called the raw TCP interface. The functionality
offered by the TCP socket interface is documented in the next sections.

RacerPro’s server engine listens on the specified TCP port for incoming connections from
client processes running on the local machine, the network or even the internet. Please note
that RacerPro itself offers no fraud and privacy protection. You have to utilize network
based security services such as firewalls, IP tunnels, VLAN switches and similar techniques
if you are concerned about data privacy and security.

JRacer

JRacer is the client library to access the services of a RacerPro server from Java client
programs. The package jracer is provided with source code in your RacerPro distribution
directory. See http://www.racer-systems.com/products/download for the latest version. An
example client is provided with source code as well. The main idea of the socket interface
is to open a socket stream, submit declarations and queries using strings and to parse the
answer strings provided by RacerPro.

The following code fragment explains how to send message to a RacerPro server running
on localhost 127.0.0.1 under port 8088.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

http://www.racer-systems.com/products/download

2.2. THE RACERPRO SERVER 21

import jracer.*;
import java.io.*;

public class Test {

public static void main(String[] argv) {
String ip = "127.0.0.1";
int port = 8088;
String filename="\"/Users/rm/Desktop/Examples/family.owl\"";

RacerServer racer1 = new RacerServer(ip,port);
try {

FileInputStream fstream = new FileInputStream(filename);
int n = 0;
while (fstream.available() != 0) {

int c = fstream.read();
n += 1;

}
fstream.close();
racer1.openConnection();
System.out.println(racer1.send("(owl-read-file " + filename + ")"));
System.out.println(racer1.send("(all-atomic-concepts)"));
racer1.closeConnection();

}
catch (Exception e) {

e.printStackTrace();
}

}

}

We assume that you compile this file Test.java with the package jracer (see the JRacer
directory in your RacerPro distribution) in the same directory (or on the Java CLASS-
PATH).

LRacer

LRacer is the API for Common Lisp to access all services of RacerPro in a convenient
way. LRacer is provided with source code. You can download the latest version from
http://www.racer-systems.com/products/download. LRacer provides all functions (and
macros) described in the RacerPro user’s guide and reference manual directly from Common
Lisp. Thus, from Common Lisp, you do not send strings to the server directly, but use stub
functions (or macros) which internally communicate with the RacerPro server, interpret the
results and provide them as Common Lisp data structures. In this sense, LRacer is not more
powerful than JRacer but a little bit more convenient. Note the difference between LRacer
and RacerMaster. Although LRacer provides the same functionality, all functions calls are
sent to a RacerPro server via the TCP socket interface, whereas for RacerMaster there is
no such overhead. The advantage of LRacer is that you can run RacerPro on a powerful

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

http://www.racer-systems.com/products/download

22 CHAPTER 2. USING RACERPRO

server machine and develop your application on a less expensive portable computer.

Let us assume the LRacer directory is stored under ~/Lracer/. Start your favorite Com-
mon Lisp system, and evaluate (load "~/Lracer/lracer-sysdcl.lisp"). Then, evaluate
(compile-load-lracer "~/Lracer/") to compile and load LRacer. You have to use the
pathname that corresponds to your LRacer distribution directory, of course. Afterwards,
you can import the package RACER into your own package or access RacerPro directly from
the Common Lisp User package and the Lisp listener.

The variable *default-racer-host* can be set to a string denoting the host on which the
RacerPro server run (the default is "localhost"). You can set the tcp port for the RacerPro
server by setting the variable *default-racer-tcp-port* (default value is 8080).

You can explicitly open a server connection with the function open-server-connection. In
order to close the server connection, use the function close-server-connection. See also
the macro with-server-connection. However, explicitly opening a server is not necessary,
it just reduces the network overhead for multiple server calls.

2.2.3 Web Service Interface

A web service interface is provided with the OWL-QL server. The documentation for this
software can be found at http://www.racer-systems.com.

2.2.4 HTTP Interface: DIG Interface

The DIG Interface is a standardized XML interface to description logics systems developed
by the DL Implementation Group (DIG), see http://dig.sourceforge.net/ for details.

In a similar way as the socket interface the HTTP interface can be used from application
programs (and graphical interfaces). If the option -f is not provided, the HTTP interface is
automatically enabled. If you do not use the HTTP interface at all but the TCP interface
only, start RacerPro with the option -http 0.

Clients can connect to the HTTP based RacerPro server using the POST method. For
details see the DIG standard [4]. The default HTTP communication port used by RacerPro
is 8080. In order to change the port number, the RacerPro server should be started with
the option -http. For instance:

$ RacerPro -http 8000 under Unix and

$ RacerPro -- -http 8000 under Windows

Console logging of incoming POST requests in provided by default but can be switched off
using the option -nohttpconsolelog. With the option -httplogdir <directory> logging
into a file in the specified directory can be switched on.

The DIG standard as it is defined now is just a first step towards a communication standard
for connecting applications to DL systems. RacerPro provides many more features that
are not yet standardized. These features are offered only over the TCP socket interface.
However, applications using RacerPro can be developed with DIG as a starting point. If
other facilities of RacerPro are to be used, the raw TCP interface of RacerPro can be used
in a seemingless way to access a knowledge base declared with the DIG interface. If, later

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

http://www.racer-systems.com
http://dig.sourceforge.net/

2.2. THE RACERPRO SERVER 23

on, the standardization process make progress, users should be able to easily adapt their
code to use the HTTP-based DIG interface.

2.2.5 Options for the RacerPro Server

Various options allow you to control the behavior of RacerPro. Under Windows we have
to distinguish between RacerPro options and window manager options (see below). Under
Windows, you have to use the separator -- even if there are no window manager options
used.

• Use the option -h to get the list of possible options and a short explanation. Use this
option in combination with the window manager option +p (see below).

• As indicated above, the options -f <filename> can be used for reading knowledge
bases from a file. The extension of ¡filename¿ is used to discriminate the syntax to be
used (possible extensions for corresponding syntaxes are: .racer, .owl, .rdfs, .rdfs.
In all other cases, Racer syntax is expected. If the extension of your input file does
not have an appropriate extension, you can specify the syntax with the options -owl,
-dig, -rdfs instead of -f.

• Use the option -q <filename> to specify a file with queries (extension .racer only).

• -p <port-number> specifies the port for TCP connections (e.g., for LRacer and
JRacer, see above).

• -http <port-number> specifies the port for HTTP connections (e.g., for the DIG
interface, see above).

• -httplogdir <directory> specifies the logging directory (see above).

• -nohttpconsolelog disables console logging for HTTP connections (see above).

• Processing knowledge bases in a distributed system can cause security problems. The
RacerPro server executes statements as described in the sections below. Statements
that might cause security problems are save-tbox, save-abox, and save-kb. Files
may be generated at the server computer. By default these functions are not provided
by the RacerPro server. If you would like your RacerPro server to support these
features, startup RacerPro with the option -u (for unsafe). You also have to start
RacerPro with the option -u if you would like to display (or edit) OWL files with
RacerEditor and use the facility Evaluate OWL File.

• If RacerPro is used in the server mode, the option -init <filename> defines an initial
file to be processed before the server starts up. For instance, an initial knowledge base
can be loaded into RacerPro before clients can connect.

• The option -n allows for removing the prefix of the default namespace as defined for
OWL files. See Chapter 4.7 for details.

• The option -t <seconds> allows for the specification of a timeout. This is particularly
useful if benchmark problems are to be solved using the file interface.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

24 CHAPTER 2. USING RACERPRO

• The option -debug is useful for providing bug reports. If an internal error occurs when
RacerPro is started with -debug a stack backtrace is printed. See Section 2.3 about
how to send a bug report.

• With -una you can force RacerPro to apply the unique name assumption.

• Sometimes, for debugging purposes it is useful to inspect the commands your appli-
cation sends to RacerPro. Specify -log <filename> to print logging information into
a file (see also the command (logging-on) to switch logging on dynamically).

• Specify -temp <directory> if you would like to change the default directory for
temporary files (the default is /temp under Unix-based systems and the value of the
environment variable TEMP or TMP under Windows.

• Sometimes using the option -silent is useful if you want to suppress any diagnostic
output.

• RacerPro supports the DIG protocol with some extensions. For instance, RacerPro in-
terprets the DIG specification generated by Protégé in such a way that DIG attributes
are treated as datatype properties in order to match the semantics of OWL. Thus,
by default DIG attributes do not imply at most one filler. If you have an application
that relies on DIG-1.1 specify the option -dig-1-1 to instruct RacerPro to obey the
original semantics of DIG attributes.

• In case you have problems with the license file license.racerlicense you can
start RacerPro with the option -license <license-file>. This prints informa-
tion about the file <license-file>. More detailed information is printed with
-dump-license-info [<filename>].

Note again that under Windows, RacerPro options have to be separated with -- from
window manager options. The following options are important to control the behavior or
the console window:

• The option +p make the console windows persistent, i.e., you have to explicitly close
the window. This is useful to read error messages.

• The option +c instructs RacerPro not to open the console window. This option is
useful for file-based operation of RacerPro (batch mode).

2.3 How to Send Bug Reports

Although RacerPro has been used in some application projects and version 1.9 has been
extensively tested, it might be the case that you detect a bug with respect to a particular
knowledge base. In this case, please send us the knowledge base together with the query as
well as a description of the RacerPro version and operating system. It would be helpful if
the knowledge base were stripped down to the essential parts to reproduce that bug. Before
submitting a bug report please make sure to download the latest version of RacerPro.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.4. RACERPORTER 25

Sometimes it might happen that answering times for queries do not correspond adequately
to the problem that is to be solved by RacerPro. If you expect faster behavior, please do not
hesitate to send us the application knowledge base and the query (or queries) that cause
problems. In any case, get the latest version of RacerPro first.

As a registered RacerPro user you may send your questions and bug reports to the following
e-mail address:

support@racer-systems.com

If you want to submit a bug report or a question about a certain behavior of RacerPro
please attach the logfile to your e-mail. Of course the logfile should cover the session in
which the error occurred.

Logging (including a stack backtrace in case of an error) is enabled by starting the executable
as follows under Windows:

$ RacerPro.exe -- -log <filename> -debug

or under Unix:

$ RacerPro -log <filename> -debug

Please include at least this information in your correspondence:

• Your personal name and the name of your organization

• Your operating system

• Your contact data including telephone number

• The logfile (see above)

• The RacerPro build number

• Your transaction ID or the short license string

• A description of your problem and the environment where it occurred.

We may need additional information about your setup or some of the data files you process
to simulate the reported error condition. You will greatly decrease our response time if
you help us by providing such information on request. Of course we will try to work on
your issue as soon as possible. However, due to the probably existing time lag between your
location and ours or due to the existing work load our response may take up to two business
days. We will acknowledge the receipt of your inquiry and in most cases give you further
instructions or an estimate of the processing time.

2.4 RacerPorter

With RacerPorter you can interactively use RacerPro, load knowledge bases, visualize on-
tologies (T-Boxes) and instances (A-Boxes), send queries and native commands to RacerPro.
Start RacerPro and start RacerPorter. Then, in RacerPorter, press the button Connect.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

26 CHAPTER 2. USING RACERPRO

Enter your commands in RacerPro native syntax in the Command pane. The replies of
RacerPro are put into the RacerLog pane. Just hit Return in case you need more than one
line for your command. The shell will not send the input to Racer until the last parenthesis
has been closed. If you press enter on an incomplete expression, RacerPorter just gives you
a fresh line, starting with appropriate indentation.

Figure 2.9: The RacerPorter inferface to RacerPro.

2.4.1 Preferences

In order to specify preferences simply press the Profiles. . . button (Mac: choose Prefer-
ences. . . item from the menu), specify the RacerPro host and port to connect to, and then
Connect to that RacerPro server. See also Figure 2.9. Note that you can manage different
server settings with profiles. The file porter.pot in your home directory is used to store your

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.4. RACERPORTER 27

profiles. The default profile will be automatically used on startup. You will be connected
automatically if “auto connect” is specified in the default profile.

If you are successfully connected you can use the shown tabs to access the functionality of
RacerPro.

The six text fields at the top of the application are called the state display of RacerPorter.
They indicate the current “state” of RacerPorter, NOT of RacerPro. Selecting, for example,
a TBox from the TBoxes list panel updates the TBox field in the state display. The same
applies to the other fields of the state display. The state is used to indicate the current
object which is to be inspected or queried with RacerPorter - for example, the Individuals
tab will always show the individuals of the ABox in the state display, the Taxonomy tab
will always show the taxonomy of TBox in the state display etc.

Note that selecting an ABox (TBox) from the ABoxes (TBoxes) pane does NOT change the
(current-abox) (resp. (current-tbox)) of RacerPro. Use the buttons Set Racer TBox and
Set Racer ABox for this purpose if you “really” want to change the state of the RacerPro
server. The (current-abox) and (current-tbox) of the RacerPro server is indicated in
the TBoxes resp. ABoxes tab by marking the TBoxes resp. ABoxes name like this: >>>
DEFAULT <<<.

2.4.2 RacerEditor

RacerPorter also includes an Emacs-style text editor (called RacerEditor) which you can
use to view, edit and process your knowledge bases. To open the Editor just click on the
New button or push the Open... button in the Shell tab and select a text file that should
be read into the Editor.

You can open virtually any file with the Editor, from plain text to RDF/OWL files and
those in RacerPro syntax. The editor offers a simple syntax sensitive support by displaying
text in different colors and by indicating closing parenthesis.

At the bottom of the window, status lines are displayed that are typical to Emacs. They
indicate a keystroke combination and give other feedback to user interaction in its first line.
The bottom line shows more general information: the connected RacerPro server (if actively
connected) is shown first. As usual for Emacs-like editors, a modification indicator is shown
next (---- means buffer unmodified, -**- means buffer modified). Then, buffer-related
information follows to the right: name of the edited file, recognized syntax of the content
(“XML” for RDF/OWL files, “Lisp”” for RacerPro files and “Fundamental” for all others)
as well as the path of the imported file.

Please notice that the Editor is similar to Emacs and therefore not behaving like typical
Windows-based text processor. For instance, browsing through the text with the help of
the window scroll bar may move the cursor too. Also you can not select the text by holding
down the shift key and move the cursor with the arrow keys. Rather, highlight the text
by clicking and shift-dragging the mouse over the interesting passages: then right-click the
mouse to select if you want to copy or cut the text from the window. Remember that
the control key, especially the control-C keystroke combination has a different meaning in
Emacs and analogously in RacerEditor.

In the following we list the most important key bindings.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

28 CHAPTER 2. USING RACERPRO

• Return or Enter: fresh line or send command

• Tab: Completion key

• Ctrl-a: Beginning of line

• Ctrl-e: End of line

• Ctrl-k: Kill line

• Ctrl-left: Matching starting ”(”

• Ctrl-right: Matching ending ”)”

• Ctrl-d / Del: Delete

• Backspace: Backspace

• Ctrl-Space: Set Mark

• Meta-w: Copy

• Ctrl-y: Paste

• Ctrl-w: Cut

• Meta-p / Alt-p: Previous Command

• Meta-n / Alt-n: Next Command

2.4.3 Tabs in RacerPorter

In the Taxonomy tab, select a concept from the taxonomy, then use Concept Query to
retrieve the instances of the selected concept. Note that the Concept field of the state
display always shows the current Concept. Adapt the Tree Depth accordingly. Note that
Tree Depth is ignored if Graph display mode is selected. If you push Focus while in Tree
display mode, then only the subconcepts of the current Concept will be shown.

In the Individuals tab, select an individual, press Direct Types or All Types, then go to the
Taxonomy tab. It will highlight the types of the selected individual (note the Individual
field in the state display).

Select the Network tab afterwards in order to show the ABox structure focusing on the
selected individual. Adapt the Tree Depth accordingly. Then push Focus. You can always
change the focus individual by simply selecting it. The focus individual is shown in the
Individual field at the top. To display the complete ABox structure, simply push the Reset
button. Note that Tree Depth is ignored if Graph display mode is selected. You can also
focus on a subset of the ABox edges - simply select the roles you are interested in from the
Roles tab, then check out Selected Roles (Roles Tab) in the Network tab. Then, only the
edges labeled with “selected roles” are shown.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.5. OTHER GRAPHICAL CLIENT INTERFACES FOR RACERPRO 29

Note that the Roles tab is the only tab which allows multiple selection of items. The last
selected role is always the Current Role, as shown in the Role text field in the state display.
The other list panes only allow a single selection.

In the Queries or Rules tab, select a nRQL query from the list, then use the buttons to
apply a command on the selected query. Note that the current query or rule is shown in
the Query or Rule field in the state display at the top.

2.4.4 Known Problems

Note that the JPEG image shown in the About tab will only work on Linux if you have
/user/lib/libImlib.so installed (SuSE: ln -s /opt/gnome/lib/libImlib.so.1.9.14
/user/lib/libImlib.so).

2.5 Other Graphical Client Interfaces for RacerPro

In this section we present open-source Java-based graphical client interfaces for the RacerPro
Server. The examples require that RacerPro be started with the option -u. The first interface
is the RICE system. Afterwards, a short presentation of the Protégé system with RacerPro as
a backend reasoner is given. Then, the coordinated use of Protégé and RICE or RacerPorter
is sketched.

2.5.1 RICE

RICE is an acronym for RACER Interactive Client Environment and has been developed by
Ronald Cornet from the Academic Medical Center in Amsterdam. RICE is provided with
source code. The executable version is provided as a jar file. Newer versions of RICE can
be found at http://www.b1g-systems.com/ronald/rice.

In order to briefly explain the use of RICE let us consider the family example again. First,
start the RacerPro server. As an example, the family knowledge base might be loaded into
the server at startup.

RacerPro -u -init family.racer

Or, under windows, type:

RacerPro -- -u -init family.racer

Then, either double-click the jar file icon or type java -jar rice.jar into a shell. Connect
RICE to RacerPro by selecting Connect from the Tools menu. In addition to the default T-
box (named default) always provided by RacerPro, the T-box “FAMILY” is displayed in the
left upper window which displays the parent-children relationship between concept names
of different T-boxes. An example screenshot is shown in Figure 2.10. Users can interactively
unfold and fold the tree display.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

http://www.b1g-systems.com/ronald/rice

30 CHAPTER 2. USING RACERPRO

Figure 2.10: Screenshot of RICE.

Using the middle subwindow, statements, declarations, and queries can be typed and sub-
mitted to RacerPro. The answers are printed into the lower window. A query concerning
the family knowledge base is presented in Figure 2.10. The query searches for instances of
the concept (or man woman). Other queries (e.g., as those shown in the previous section)
can be submitted to RacerPro in a similar way.

An example for submitting a statement is displayed in Figure 2.11. The family knowledge
base is exported as an OWL file.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.5. OTHER GRAPHICAL CLIENT INTERFACES FOR RACERPRO 31

Figure 2.11: Screenshot of RICE.

2.5.2 Protégé

Protégé may be used as another graphical interface for RacerPro. Protégé is available from
http://protege.stanford.edu. While RICE can be used to pose queries, in particular for
A-boxes, Protégé can be used to graphically construct T-boxes (or ontologies) and A-boxes.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

http://protege.stanford.edu

32 CHAPTER 2. USING RACERPRO

Figure 2.12: First step for declaring RacerPro as the reasoner used by Protégé.

In order to declare RacerPro as the standard reasoner used by Protégé, select the Preferences
menu in Protégé (see Figure 2.12).

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.5. OTHER GRAPHICAL CLIENT INTERFACES FOR RACERPRO 33

Figure 2.13: Second step for declaring RacerPro as the reasoner used by Protégé.

In the preferences dialog window specify host and port number (see Figure 2.13). Usually,
the defaults (localhost:8080) are ok. Another example would be 135.28.70.104:8081. After
making required changes press the close button.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

34 CHAPTER 2. USING RACERPRO

Figure 2.14: Protégé displaying the Family knowledge base. The class UNCLE is selected,
and in the subwindow for asserted conditions, necessary and sufficient conditions are shown
graphically.

The example presented in Figure 2.14 shows a screenshot of Protégé with the Family knowl-
edge base. The knowledge base was exported from RacerPro using the OWL syntax (see
the function save-kb). OWL files can be manipulated with Protégé.

In Figure 2.14 the concept uncle is selected (concepts are called classes in Protégé). See
the restrictions displayed in the asserted conditions window and compare the specification
with the KRSS syntax used above (see the axiom for uncle). Note that the class window
displays only obvious subclass relationships. As we will see later, RacerPro can be used to
also compute all implicit class subsumption relationships. Reasoning services are provided
when Protégé is connected to RacerPro. This can be easily accomplished.

The role hierarchy of the Family example is shown Figure 2.15.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.5. OTHER GRAPHICAL CLIENT INTERFACES FOR RACERPRO 35

Figure 2.15: Display of the role hierarchy with Protégé.

Figure 2.16: Protégé icon panel.

The Protégé icon panel provides for buttons labeled with ?, C, I. They are used to check
the “consistency” (coherence) of the ontology, classify the ontology, and to compute the
inferred types of individuals, respectively.

Press the C? button in the tools bar to let RacerPro check for unsatisfiable concept names
in the current knowledge base and find implicit subsumption relationships between concept
names.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

36 CHAPTER 2. USING RACERPRO

Figure 2.17: Protégé visualizes implicit subsumption relationships computed by RacerPro.

In Figure 2.17 it is indicated that RacerPro reveals implicit subsumption relationships. Im-
plicit subsumption relationships are indicated in the Protégé window “Inferred Hierarchy”
(see Figure 2.17). For instance, an uncle is also a brother. Protégé nicely summarizes
classification results in the list of changed superclasses.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.5. OTHER GRAPHICAL CLIENT INTERFACES FOR RACERPRO 37

Figure 2.18: The individuals of the family example. Properties of the selected individual
alice are displayed.

After the tab Individuals is selected, Protégé displays the individuals of the family knowledge
base together with their properties (or relationships). This is shown here in Figure 2.18.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

38 CHAPTER 2. USING RACERPRO

Figure 2.19: Screenshot of Protégé displaying inferred information about UNCLE.

If you press the I button in Protégé, the inferred types are computed for the individuals
(aka instances or nominals) in the ontology (see also Figure 2.19).

Although Protégé can be used to display (and edit) A-boxes, let us return to RICE for a
moment to examine the result of querying an A-box. In our example we assume that the
RICE window is still open. Select the concept PERSON in the concept window. The instances
of PERSON are displayed in the upper-right instance window.

2.5.3 Using Protégé and RacerPorter in Combination

Let us assume, RacerPro is started, Protégé is connected to RacerPro, and some knowledge
base verifications on pizza.owl (a Protégé example knowledge base) are to be performed.
In Figure 2.20 you can seen the pizza ontology loaded into Protégé. Ontology verification is
started by pressing the icon labeled with “C” (classify). The results are shown in Figure 2.21

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.5. OTHER GRAPHICAL CLIENT INTERFACES FOR RACERPRO 39

Figure 2.20: The pizza ontology loaded in Protégé.

Figure 2.21: Some classes are inconsistent in pizza.owl.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

40 CHAPTER 2. USING RACERPRO

Figure 2.22: Inferred information about pizza classes is shown in the lower pane.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.5. OTHER GRAPHICAL CLIENT INTERFACES FOR RACERPRO 41

Figure 2.23: RacerPorter used to inspect an ontology edited and verified with Protégé.

Protégé uses the DIG interface to connect to RacerPro. Therefore, one can use RacerPorter
to inspect details about the pizza knowledge base. in Figure 2.23 a graph of the taxonomy
of the pizza ontology is presented. With RacerPorter, for instance, queries can be answered.
Figure 2.24 shows the result of a queries for countries used in pizza.owl. Queries can be
inspected also using the tab Queries in RacerPorter (see Figure 2.23).

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

42 CHAPTER 2. USING RACERPRO

Figure 2.24: RacerPorter used to query an ontology edited and verified with Protégé.

Figure 2.25: Using RacerPorter, queries can be inspected as objects.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.5. OTHER GRAPHICAL CLIENT INTERFACES FOR RACERPRO 43

2.5.4 TopBraidComposer

TopBraidComposer (www.topbraid.com) is a well-supported commercial ontology editor
(see Figure 2.26. Currently, TopBraid Composer can be used via the DIG interface. In the
near future, a more efficient dynamic link library will support a more seamless integration
of RacerPro and TopBraid Composer.

Figure 2.26: The TopBraid Composer interface for displaying and editing ontologies.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

44 CHAPTER 2. USING RACERPRO

2.6 SWRL: Semantic Web Rule Language

The application of rules provides for optimized manipulation of structures, in particular in
server-based environments such as RacerPro. Standards such as SWRL ensure the necessary
consolidation such that industrial work becomes possible. Therefore, RacerPro has been
extended with support for applying SWRL rules to instances mentioned in an OWL ontology
or corresponding RDF data descriptions. The RacerPro SWRL rule engine is currently being
extended to cope with OWL datatypes. A first experimental SWRL implementation is part
of RacerPro 1.9.

Figure 2.27: Snapshot of the famous “uncle rule” in Protégé.

Rules can be edited, for instance, with the graphical tool Protégé (see Figure 2.27). Use the
menu Project in Protégé and select Configure. . . . Then, tick the check box SWRLTab in
order to activate the SWRL editor in Protégé. After the ontology is saved, the OWL/SWRL
specification can be interpreted by applications. For this purpose, a reasoner such as Racer-
Pro is required. In Figure 2.28 the source code of the “uncle rule” is shown in the RacerPro
Editor. The editor also shows some instances, MARY has a mother SUE who, in turn, has a
brother JOHN. The rule is responsible for asserting that MARY has an uncle who is JOHN.
With RacerEditor the OWL/SWRL file can be sent to RacerPro by selecting a menu item
(or pressing a key combination).

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.6. SWRL: SEMANTIC WEB RULE LANGUAGE 45

Figure 2.28: RacerEditor showing the OWL/SWRL code of the example.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

46 CHAPTER 2. USING RACERPRO

Figure 2.29: Graphical display of the instances and their relations.

In Figure 2.29 we use the network inspector of RacerPorter to have a look at the instances
and their relations (properties).

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.6. SWRL: SEMANTIC WEB RULE LANGUAGE 47

Figure 2.30: Shell window used for starting the rule engine.

For demonstration purposes we start the rule engine by typing a command into the Rac-
erPorter shell window (Figure 2.30). RacerPro offers a forward chainer that applies SWRL
rules until no new information is added.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

48 CHAPTER 2. USING RACERPRO

Figure 2.31: The uncle relation is established.

In Figure 2.31 we see that RacerPro fired the rule accordingly. The network tab of Racer-
Porter allows us to analyze the effect graphically (see Figure 2.32). With RacerPorter, rules
can be inspected, rerun, etc. (see Figure 2.33).

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.6. SWRL: SEMANTIC WEB RULE LANGUAGE 49

Figure 2.32: Network view indicating the asserted uncle relation between MARY and JOHN.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

50 CHAPTER 2. USING RACERPRO

Figure 2.33: Rules tab in RacerPorter.

Various semantics have been proposed for rule languages. Rules have a body and a head. If
there exists a binding for the variables in the body such that the predicates (either unary
or binary predicates are possible in SWRL) are satisfied, then the predicate comprising the
head also holds. The predicates in the body are also called the precondition and the head is
the consequence. Variables are bound to a finite set of individuals, namely those, explicitly
mentioned in the ontology (or A-box). The question is whether, given a specific binding for
variables, the precondition has to be satisfied in one “world” or in all worlds. We call the
former semantics the first-order semantics, whereas the latter is called the rule semantics.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.6. SWRL: SEMANTIC WEB RULE LANGUAGE 51

Figure 2.34: Necessary and sufficient conditions for French-or-italian.

Figure 2.35: Necessary and sufficient conditions for Not-wine-drinker.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

52 CHAPTER 2. USING RACERPRO

Figure 2.36: For john we have indefinite information. John is an instance of French or
Italian.

In RacerPro 1.9, for a fixed variable binding to individual in an A-box the predicates
in the body must be satisfied in all models. This has important consequences. Let us
assume, we have class names French, Italian, Wine-drinker, Not-wine-drinker, and
French-or-italian. For the latter two classes, necessary and sufficient conditions are spec-
ified (see Figures 2.34 and 2.35. The individuals john is an instance of Not-wine-drinker
and French-or-Italian.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.6. SWRL: SEMANTIC WEB RULE LANGUAGE 53

Figure 2.37: Rules for French and Italian.

If the rules in Figure 2.37 are specified, the ontology would be inconsistent with first-order
semantics. There are two worlds to consider: Assume john is a French citizen, then he must
be an instance of Wine-drinker due to Rule-1 (see Figure 2.37). But he is declared to be an
instance of Not-wine-drinker. In the other possible world, john is an instance of Italian.
Again, due to the rules, he must be a Wine-drinker, which results in a contradiction. In
the rule semantics, one can neither prove that john is an instance of Italian nor can one
prove that john is an instance of French. Thus, the rules are not applied and the ontology
remains consistent.

RacerPro applies the rule semantics in version 1.9. This can be seen as an advantage or as
a disadvantage. In order to achieve the same effect as in the first-order semantics, in this
case a rule with precondition Not-wine-drinker could be added. Note also that “simple”
rules such as those shown in Figure 2.37 can be represented as concept axioms in Protégé
itself.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

54 CHAPTER 2. USING RACERPRO

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

Chapter 3

RacerPro Knowledge Bases

In description logic systems a knowledge base is consisting of a T-box and an A-box. The
conceptual knowledge is represented in the T-box and the knowledge about the instances
of a domain is represented in the A-box. For more information about the description logic
SHIQ supported by RacerPro see [9]. The extension of expressive description logics with
concrete domains is discussed in [6].

3.1 Naming Conventions

Throughout this document we use the following abbreviations, possibly subscripted.

C Concept term
CN Concept name
IN Individual name

ON Object name
R Role term

RN Role name
AN Attribute name

ABN A-box name
TBN T-box name
KBN knowledge base name

name Name of any sort
S List of Assertions

GNL List of group names
LCN List of concept names
abox A-box object
tbox T-box object

n A natural number
real A real number

integer An integer number
string A string

The API is designed to the following conventions. 1 For most of the services offered by
RacerPro, macro interfaces and function interfaces are provided. For macro forms, the
T-box or A-box arguments are optional. If no T-box or A-box is specified, the value of
(current-tbox) or (current-abox) is taken, respectively. However, for the functional
counterpart of a macro the T-box or A-box argument is not optional. For functions which
do not have macro counterparts the T-box or A-box argument may or may not be optional.

1For RacerMaster or LRacer users: All names are Lisp symbols, the concepts are symbols or lists. Please
note that for macros in contrast to functions the arguments should not be quoted.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

56 CHAPTER 3. RACERPRO KNOWLEDGE BASES

C −→ CN |
top |
bottom |
(not C) |
(and C1 ...Cn) |
(or C1 ...Cn) |
(some R C) |
(all R C) |
(at-least n R) |
(at-most n R) |
(exactly n R) |
(at-least n R C) |
(at-most n R C) |
(exactly n R C) |
(a AN) |
(an AN) |
(no AN) |
CDC

R −→ RN |
(inv RN)

Figure 3.1: RacerPro concept and role terms.

Furthermore, if an argument tbox or abox is specified in this documentation, a name (a
symbol) can be used as well.

Functions and macros are only distinguished in the Lisp version. Macros do not evaluate
their arguments. If you use the RacerPro server, you can use functions just like macros.
Arguments are never evaluated.

3.2 Concept Language

The content of RacerPro T-boxes includes the conceptual modeling of concepts and roles as
well. The modeling is based on the signature, which consists of two disjoint sets: the set of
concept names C, also called the atomic concepts, and the set R containing the role names2.

Starting from the set C complex concept terms can be build using several operators. An
overview over all concept- and role-building operators is given in Figure 3.1.

2The signature does not have to be specified explicitly in RacerPro knowledge bases - the system can
compute it from the all the used names in the knowledge base - but specifying a signature may help avoiding
errors caused by typos!

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

3.2. CONCEPT LANGUAGE 57

CDC −→ (min AN integer) |
(max AN integer) |
(equal AN integer) |
(equal AN AN) |
(divisible AN cardinal) |
(not-divisible AN cardinal) |
(> aexpr aexpr) |
(>= aexpr aexpr) |
(< aexpr aexpr) |
(<= aexpr aexpr) |
(<> aexpr aexpr) |
(= aexpr aexpr) |
(string= AN string) |
(string<> AN string) |
(string= AN AN) |
(string<> AN AN)

string −→ " letter∗ "
aexpr −→ AN | AN must be of type real

real |
(+ aexpr1 aexpr1 ∗) |
aexpr1

Figure 3.2: RacerPro concrete domain concepts and attribute expressions.

Boolean terms build concepts by using the boolean operators.

DL notation RacerPro syntax
Negation ¬ C (not C)
Conjunction C1 u . . .u Cn (and C1 ...Cn)
Disjunction C1 t . . .t Cn (or C1 ...Cn)

Qualified restrictions state that role fillers have to be of a certain concept. Value restric-
tions assure that the type of all role fillers is of the specified concept, while exist restrictions
require that there be a filler of that role which is an instance of the specified concept.

DL notation RacerPro syntax
Exists restriction ∃ R.C (some R C)
Value restriction ∀ R.C (all R C)

Number restrictions can specify a lower bound, an upper bound or an exact number for
the amount of role fillers each instance of this concept has for a certain role. Only roles that
are not transitive and do not have any transitive subroles are allowed in number restrictions
[9].

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

58 CHAPTER 3. RACERPRO KNOWLEDGE BASES

aexpr1 −→ aexpr2
| aexpr3

aexpr2 −→ real
| AN (AN of type real or complex)
| (* real AN) (AN of type real)

aexpr3 −→ integer
| AN (AN of type cardinal)
| (* integer AN) (AN of type cardinal)

Figure 3.3: Specific expressions for predicates.

DL notation RacerPro syntax
At-most restriction ≤ n R (at-most n R)
At-least restriction ≥ n R (at-least n R)
Exactly restriction = n R (exactly n R)
Qualified at-most restriction ≤ n R.C (at-most n R C)
Qualified at-least restriction ≥ n R.C (at-least n R C)
Qualified exactly restriction = n R.C (exactly n R C)

Actually, the exactly restriction (exactly n R) is an abbreviation for the concept term
(and (at-least n R) (at-most n R)) and (exactly n R C) is an abbreviation for
the concept term (and (at-least n R C) (at-most n R C))

There are two concepts implicitly declared in every T-box: the concept “top” (>) denotes the
top-most concept in the hierarchy and the concept “bottom” (⊥) denotes the inconsistent
concept, which is a subconcept to all other concepts. Note that > (⊥) can also be expressed
as C t ¬C (C u ¬C). In RacerPro > is denoted as *top* and ⊥ is denoted as *bottom*3.

3For KRSS compatibility reasons RacerPro also supports the synonym concepts top and bottom.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

3.3. CONCEPT AXIOMS AND T-BOXES 59

Concrete domain concepts state concrete predicate restrictions for attribute fillers (see
Figure 3.2). RacerPro currently supports three unary predicates for integer attributes (min,
max, equal), six nary predicates for real attributes (>, >=, <, <=, =, <>), a unary existen-
tial predicate with two syntactical variants (a or an), and a special predicate restriction
disallowing a concrete domain filler (no). The restrictions for attributes of type real have
to be in the form of linear inequations (with order relations) where the attribute names
play the role of variables. If an expression is built with the rule for aexpr4 (see Figure 3.2),
a so-called nonlinear constraint is specified. In this case, only equations and inequations
(=, <>), but no order constraints (>, >=, <, <=) are allowed, and the attributes must be of
type complex. If an expression is built with the rule for aexpr5 (see Figure 3.2) a so-called
cardinal linear constraint is specified, i.e., attributes are constrained to be a natural num-
ber (including zero). RacerPro also supports a concrete domain for representing equations
about strings with predicates string= and string<>. The use of concepts with concrete
domain expressions is illustrated with examples in Section 3.5. For the declaration of types
for attributes, see see Section 3.6.

DL notation RacerPro syntax
Concrete filler exists restriction ∃A.>D (a A) or (an A)
No concrete filler restriction ∀A.⊥D (no A)
Integer predicate exists restriction ∃A.minz (min A z)

with z ∈ Z ∃A.max z (max A z)
∃A.=z (equal A z)

Real predicate exists restriction ∃A1, . . . , An.P (P aexpr aexpr)
with P ∈ {>,>=, <,<=,=}

An all restriction of the form ∀A1, . . . , An.P is currently not directly supported. However,
it can be expressed as a disjunction: ∀A1.⊥D t · · · t ∀An.⊥D t ∃A1, . . . , An.P .

3.3 Concept Axioms and T-boxes

RacerPro supports several kinds of concept axioms.

General concept inclusions (GCIs) state the subsumption relation between two concept
terms.
DL notation: C1 v C2

RacerPro syntax: (implies C1 C2)

Concept equations state the equivalence between two concept terms.
DL notation: C1

.= C2

RacerPro syntax: (equivalent C1 C2)

Concept disjointness axioms state pairwise disjointness between several concepts. Dis-
joint concepts do not have instances in common.
DL notation: C1 v ¬(C2 t C3 t · · · u Cn)

C2 v ¬(C3 t · · · u Cn)
. . .

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

60 CHAPTER 3. RACERPRO KNOWLEDGE BASES

Cn−1 v ¬Cn

RacerPro syntax: (disjoint C1 ...Cn)

Actually, a concept equation C1
.= C2 can be expressed by the two GCIs: C1 v C2 and

C2 v C1. The disjointness of the concepts C1 . . . Cn can also be expressed by GCIs.

There are also separate forms for concept axioms with just concept names on their left-hand
sides. These concept axioms implement special kinds of GCIs and concept equations. But
concept names are only a special kind of concept terms, so these forms are just syntactic
sugar. They are added to the RacerPro system for historical reasons and for compatibility
with KRSS. These concept axioms are:

Primitive concept axioms state the subsumption relation between a concept name and
a concept term.
DL notation: (CN v C)
RacerPro syntax: (define-primitive-concept CN C)

Concept definitions state the equality between a concept name and a concept term.
DL notation: (CN .= C)
RacerPro syntax: (define-concept CN C)

Concept axioms may be cyclic in RacerPro. There may also be forward references to con-
cepts which will be “introduced” with define-concept or define-primitive-concept in
subsequent axioms. The terminology of a RacerPro T-box may also contain several axioms
for a single concept. So if a second axiom about the same concept is given, it is added and
does not overwrite the first axiom.

3.4 Role Declarations

In contrast to concept axioms, role declarations are unique in RacerPro. There exists just
one declaration per role name in a knowledge base. If a second declaration for a role is
given, an error is signaled. If no signature is specified, undeclared roles are assumed to be
neither a feature nor a transitive role and they do not have any superroles.

The set of all roles (R) includes the set of features (F) and the set of transitive roles (R+).
The sets F andR+ are disjoint. All roles in a T-box may also be arranged in a role hierarchy.
The inverse of a role name RN can be either explicitly declared via the keyword :inverse
(e.g. see the description of define-primitive-role) or referred to as (inv RN).

Features (also called attributes) restrict a role to be a functional role, e.g. each individual
can only have up to one filler for this role.

Transitive Roles are transitively closed roles. If two pairs of individuals IN 1 and IN 2 and
IN 2 and IN 3 are related via a transitive role R, then IN 1 and IN 3 are also related
via R.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

3.5. CONCRETE DOMAINS 61

Role Hierarchies define super- and subrole-relationships between roles. If R1 is a super-
role of R2, then for all pairs of individuals between which R2 holds, R1 must hold too.

In the current implementation the specified superrole relations may not be cyclic. If a role
has a superrole, its properties are not in every case inherited by the subrole. The properties
of a declared role induced by its superrole are shown in Figure 3.4. The table should be
read as follows: For example if a role RN 1 is declared as a simple role and it has a feature
RN 2 as a superrole, then RN 1 will be a feature itself.

Superrole RN 2 ∈
R R+ F

Subrole RN 1 R R R F
declared as R+ R+ R+ -
element of: F F F F

Figure 3.4: Conflicting declared and inherited role properties.

The combination of a feature having a transitive superrole is not allowed and features cannot
be transitive. Note that transitive roles and roles with transitive subroles may not be used
in number restrictions.

RacerPro does not support role terms as specified in the KRSS. How-
ever, a role being the conjunction of other roles can as well be expressed
by using the role hierarchy (cf. [5]). The KRSS-like declaration of the role
(define-primitive-role RN (and RN 1 RN 2)) can be approximated in RacerPro by:
(define-primitive-role RN :parents (RN 1 RN 2)).

KRSS DL notation
(define-primitive-role RN (domain C)) (∃ RN.>) v C
(define-primitive-role RN (range D)) > v (∀ RN.D)

RacerPro Syntax DL notation
(define-primitive-role RN :domain C) (∃ RN.>) v C
(define-primitive-role RN :range D) > v (∀ RN.D)

Figure 3.5: Domain and range restrictions expressed via GCIs.

RacerPro offers the declaration of domain and range restrictions for roles. These restrictions
for primitive roles can be either expressed with GCIs, see the examples in Figure 3.5 (cf.
[5]) or declared via the keywords :domain and :range.

3.5 Concrete Domains

RacerPro supports reasoning over natural numbers (N), integers (Z), reals (R), complex
numbers (C), and strings. For different sets, different kinds of predicates are supported.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

62 CHAPTER 3. RACERPRO KNOWLEDGE BASES

N linear inequations with order constraints and integer coefficients
Z interval constraints
R linear inequations with order constraints and rational coefficients

Strings equality and inequality

For the users convenience, rational coefficients can be specified in floating point notation.
They are automatically transformed into their rational equivalents (e.g., 0.75 is transformed
into 3/4). In the following we will use the names on the left-hand side of the table to refer
to the corresponding concrete domains.

Names for values from concrete domains are called objects. The set of all objects is referred to
as O. Individuals can be associated with objects via so-called attributes names (or attributes
for short). Note that the set A of all attributes must be disjoint to the set of roles (and the
set of features). Attributes can be declared in the signature of a T-box (see below).

The following example is an extension of the family T-box introduced above. In the example,
the concrete domains Z and R are used.

...
(signature

:atomic-concepts (... teenager)
:roles (...)
:attributes ((integer age)))

...
(equivalent teenager (and human (min age 16)))
(equivalent old-teenager (and human (min age 18)))
...

Asking for the children of teenager reveals that old-teenager is a teenager. A further
extensions demonstrates the usage of reals as concrete domain.

...
(signature

:atomic-concepts (... teenager)
:roles (...)
:attributes ((integer age)

(real temperature-celsius)
(real temperature-fahrenheit)))

...
(equivalent teenager (and human (min age 16)))
(equivalent old-teenager (and human (min age 18)))
(equivalent human-with-fever (and human (>= temperature-celsius 38.5))
(equivalent seriously-ill-human (and human (>= temperature-celsius 42.0)))
...

Obviously, RacerPro determines that the concept seriously-ill-human is subsumed by
human-with-fever. For the reals, RacerPro supports linear equations and inequations.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

3.5. CONCRETE DOMAINS 63

Thus, we could add the following statement to the knowledge base in order to make sure the
relations between the two attributes temperature-fahrenheit and temperature-celsius
is properly represented.

(implies top (= temperature-fahrenheit
(+ (* 1.8 temperature-celsius) 32)))

If a concept seriously-ill-human-1 is defined as

(equivalent seriously-ill-human-1
(and human (>= temperature-fahrenheit 107.6)))

RacerPro recognizes the subsumption relationship with human-with-fever and the syn-
onym relationship with seriously-ill-human.

In an A-box, it is possible to set up constraints between individuals. This is illustrated with
the following extended A-box.

...
(signature

:atomic-concepts (... teenager)
:roles (...)
:attributes (...)
:individuals (eve doris)
:objects (temp-eve temp-doris))

...
(constrained eve temp-eve temperature-fahrenheit)
(constrained doris temp-doris temperature-celsius)
(constraints

(= temp-eve 102.56)
(= temp-doris 39.5))

For instance, this states that eve is related via the attribute temperature-fahrenheit to
the object temp-eve. The initial constraint (= temp-eve 102.56) specifies that the object
temp-eve is equal to 102.56.

Now, asking for the direct types of eve and doris reveals that both individuals are instances of
human-with-fever. In the following A-box there is an inconsistency since the temperature
of 102.56 Fahrenheit is identical with 39.5 Celsius.

(constrained eve temp-eve temperature-fahrenheit)
(constrained doris temp-doris temperature-celsius)
(constraints

(= temp-eve 102.56)
(= temp-doris 39.5)
(> temp-eve temp-doris))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

64 CHAPTER 3. RACERPRO KNOWLEDGE BASES

We present another example that might be important for many applications: dealing with
dates. The following declarations can be processed with Racer. The predicates divisible
and not-divisible are defined for natural numbers and are reduced to linear inequations
internally.

(define-concrete-domain-attribute year :type cardinal)
(define-concrete-domain-attribute days-in-month :type cardinal)

(implies Month (and (>= days-in-month 28) (<= days-in-month 31)))

(equivalent month-inleapyear
(and Month

(divisible year 4)
(or (not-divisible year 100)

(divisible year 400))))

(equivalent February
(and Month

(<= days-in-month 29)
(or (not month-inleapyear)

(= days-in-month 29))
(or month-inleapyear

(= days-in-month 28))))

Next, we assume some instances of February are declared.

(instance feb-2003 February)
(constrained feb-2003 year-1 year)
(constrained feb-2003 days-in-feb-2003 days-in-month)
(constraints (= year-1 2003))

(instance feb-2000 February)
(constrained feb-2000 year-2 year)
(constrained feb-2000 days-in-feb-2000 days-in-month)
(constraints (= year-2 2000))

Note that the number of days for both months is not given explicitly. Nevertheless,
asking (concept-instances month-inleapyear) yields (feb-2000) whereas asking for
(concept-instances (not month-inleapyear)) returns (feb-2003). In addition, one
could check the number of days:

(constraint-entailed? (<> days-in-feb-2003 29))
(constraint-entailed? (= days-in-feb-2000 29))

In both cases, the answer is true.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

3.6. CONCRETE DOMAIN ATTRIBUTES 65

3.6 Concrete Domain Attributes

Attributes are considered as “typed” since they can either have fillers of type cardinal,
integer, real, complex, or string. The same attribute cannot be used in the same T-box
such that both types are applicable, e.g., (min has-age 18) and (>= has-age 18) are not
allowed. If the type of an attribute is not explicitly declared, its type is implicitly derived
from its use in a T-box/A-box. An attribute and its type can be declared with the signature
form (see above) or by using the KRSS-like form define-concrete-domain-attribute. If
an attribute is declared to be of type complex is can be used in linear (in-)equations.
However, if an attribute is declare to be of type real or integer it is an error to use
this attribute in terms for nonlinear polynoms. In a similar way, currently, an attribute of
type integer may not be used in a term for a linear polynoms, either. If the coefficients
are integers, then cardinal (natural number, including 0) for the type of attributes may
be used in a linear polynom. Furthermore, attributes of type string may not be used on
polynoms, and non-strings may not be used in constraints for strings.

3.7 Individual Assertions and A-boxes

An A-box contains assertions about individuals. The set of individual names (or individuals
for brevity) I is the signature of the A-box. The set of individuals must be disjoint to the
set of concept names and the set of role names. There are four kinds of assertions:

Concept assertions with instance state that an individual IN is an instance of a spec-
ified concept C .

Role assertions with related state that an individual IN 1 is a role filler for a role R with
respect to an individual IN 2.

Attribute assertions with constrained state that an object ON is a filler for a role R
with respect to an individual IN .

Constraints within constraints state relationships between objects of the concrete do-
main. The syntax for constraints is explained in Figure 3.2. Instead of attribute names,
object names must be used.

In RacerPro the unique name assumption holds, this means that all individual names used
in an A-box refer to distinct domain objects, therefore two names cannot refer to the same
domain object. Note that the unique name assumption does not hold for object names.

In the RacerPro system each A-box refers to a T-box. The concept assertions in the A-box
are interpreted with respect to the concept axioms given in the referenced T-box. The role
assertions are also interpreted according to the role declarations stated in that T-box. When
a new A-box is built, the T-box to be referenced must already exist. The same T-box may
be referred to by several A-boxes. If no signature is used for the T-box, the assertions in the

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

66 CHAPTER 3. RACERPRO KNOWLEDGE BASES

A-box may use new names for roles4 or concepts5 which are not mentioned in the T-box.

3.8 Inference Modes

After the declaration of a T-box or an A-box, RacerPro can be instructed to answer queries.
Processing the knowledge base in order to answer a query may take some time. The stan-
dard inference mode of RacerPro ensures the following behavior: Depending on the kind
of query, RacerPro tries to be as smart as possible to locally minimize computation time
(lazy inference mode). For instance, in order to answer a subsumption query w.r.t. a T-box
it is not necessary to classify the T-box. However, once a T-box is classified, answering
subsumption queries for atomic concepts is just a lookup. Furthermore, asking whether
there exists an atomic concept in a T-box that is inconsistent (tbox-coherent-p) does
not require the T-box to be classified, either. In the lazy mode of inference (the default),
RacerPro avoids computations that are not required concerning the current query. In some
situations, however, in order to globally minimize processing time it might be better to just
classify a T-box before answering a query (eager inference mode).

A similar strategy is applied if the computation of the direct types of individuals is requested.
RacerPro requires as precondition that the corresponding T-box has to be classified. If the
lazy inference mode is enabled, only the individuals involved in a “direct types” query are
realized.

We recommend that T-boxes and A-boxes should be kept in separate files. If an A-box is
revised (by reloading or reevaluating a file), there is no need to recompute anything for
the T-box. However, if the T-box is placed in the same file, reevaluating a file presumably
causes the T-box to be reinitialized and the axioms to be declared again. Thus, in order
to answer an A-box query, recomputations concerning the T-box might be necessary. So,
if different A-boxes are to be tested, they should probably be located separately from the
associated T-boxes in order to save processing time.

During the development phase of a T-box it might be advantageous to call inference services
directly. For instance, during the development phase of a T-box it might be useful to check
which atomic concepts in the T-box are inconsistent by calling check-tbox-coherence.
This service is usually much faster than calling classify-tbox. However, if an applica-
tion problem can be solved, for example, by checking whether a certain A-box is con-
sistent or not (see the function abox-consistent-p), it is not necessary to call either
check-tbox-coherence or classify-tbox. For all queries, RacerPro ensures that the
knowledge bases are in the appropriate states. This behavior usually guarantees minimum
runtimes for answering queries.

4These roles are treated as roles that are neither a feature, nor transitive and do not have any superroles.
New items are added to the T-box. Note that this might lead to surprising query results, e.g. the set
of subconcepts for > contains concepts not mentioned in the T-box in any concept axiom. Therefore we
recommend to use a signature declaration (see below).

5These concepts are assumed to be atomic concepts.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

3.9. RETRACTION AND INCREMENTAL ADDITIONS 67

3.9 Retraction and Incremental Additions

RacerPro offer constructs for retracting T-box axioms (see the function forget-statement).
However, complete reclassification may be necessary in order to answer queries. Retracting
axioms is mainly useful if the RacerPro server is used. With retracting there is no need to
delete and retransfer a knowledge base (T-box).

RacerPro also offers constructs for retracting A-box assertions (see forget,
forget-concept-assertion, forget-role-assertion, and friends). If a query has
been answered and some assertions are retracted, then RacerPro might be forced to
compute the index structures for the A-box again (realization), i.e. after retractions, some
queries might take some time to answer. Note that may queries are answered without index
structures at all (see also Section 5.1).

RacerPro also supports incremental additions to A-boxes, i.e. assertions can be added even
after queries have been answered. However, the internal data structures used for answering
queries are recomputed from scratch. This might take some time. If an A-box is used for
hypothesis generation, e.g. for testing whether the assertion i : C can be added without
causing an inconsistency, we recommend using the instance checking inference service. If
(individual-instance? i (not C)) returns t, i : C cannot be added to the A-box. Now,
let us assume, we can add i : C and afterwards want to test whether i : D can be added
without causing an inconsistency. In this case it might be faster not to add i : C directly but
to check whether (individual-instance? i (and C (not D))) returns t. The reason is
that, in this case, the index structures for the A-box are not recomputed.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

68 CHAPTER 3. RACERPRO KNOWLEDGE BASES

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

Chapter 4

Description Logic Modeling with
RacerPro

There are several excellent books and introductory papers on description logics (e.g., [1, 2]).
In this Chapter we discuss additional issues that are important when RacerPro is used in
practical applications.

4.1 Representing Data with Description Logics (?)

Almost nothing is required to use a description logic inference system to store data. In
particular, there is no need to specify any kind of memory management information as in
databases or even in object-oriented programming systems. In order to make this clear, a
very simple example is given as follows:

(in-knowledge-base test)
(instance i a)
(instance i b)
(related i j r)

Given these declarations for “data”, query functions can be used for data retrieval.

(concept-instances (and a (some r b)))

returns i. You could also use the nRQL query language (see Chapter 6).

(retrieve (?x) (?x (and a (some a b))))

If you would like to know which fillers actually got names in the A-box, use the following
query:

(retrieve (?x ?y) (and (?x a) (?x ?y r) (?y b)))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

70 CHAPTER 4. DESCRIPTION LOGIC MODELING WITH RACERPRO

Note, however, that the latter query would not return results for the following A-box whereas
the former query would return i (the query language uses the active domain semantics for
variable bindings).

(in-knowledge-base test)
(instance i (and a (some r b))

For a detailed explanation see Chapter 6. In any case, description logics (and ontology lan-
guages such as OWL) are important if concept names have definitions in the T-box or if the
A-box contains indefinite descriptions (such as (instance john (or french italian))).
Although it is possible to represent (an object-based view of) a database as an A-box, cur-
rently, description logic systems do not provide for transactions and persistency of data,
and in order to ensure decidability in the general case, the query language is in some sense
less expressive than, for instance, relational database query languages such as SQL. So,
mass data (representing definite information) is better stored in databases right now. De-
scription logic (and semantic web) technology comes into play when indefinite information
(disjunctive information) is to be treated as well. See also the comment about the open-
world and closed-world assumptions below. Databases employ the closed-world assumption.
What is not explicitly stated in the database is assumed to be false. This is not the case for
description logics.

4.2 Nominals or Concrete Domains?

The language OWL provides for means to address individuals in concepts. As a example,
one could represent the concept human with the following axioms:

(define-primitive-role ancestor-of :transitive t :inverse has-descendant)
(define-primitive-role has-descendant)
(equivalent human (some ancestor-of (one-of adam)))
(instance john human)
(related kain john has-descendant)

The concept-forming operator one-of takes an individual and construct a concept whose
extension contains just the semantic object to which the individual adam is mapped. Thus
the extension of (one-of adam) is a singleton set. Individuals in concepts are also known
a nominals.

Asking for the ancestors of john yields kain and adam although the latter is not explicitly
stated in the A-box.

Currently, RacerPro does not support nominals in full generality. Only axioms of the form

(equivalent (one-of i) c)
(equivalent (one-of i) (some r (one-of j)))

are supported. These axioms are very important for practical purposes, and they directly
correspond to the following A-box assertions

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

4.2. NOMINALS OR CONCRETE DOMAINS? 71

(instance i c)
(related i j r)

In many practically important cases, nominals are not required in concepts terms. The same
effect can be achieve using concrete domain values. For instance, one might think of using
nominals for representing colors of (simple) traffic lights: (one-of red green). The following
example demonstrates the use of A-boxes and the string concrete domain to provide for a
formal model of a crossing with (simple) traffic lights.

(in-knowledge-base traffic-lights)

(define-concrete-domain-attribute color :type string)

(define-concept colorful-object
(or (string= color "red")

(string= color "green")))

(define-concept traffic-light
(and (a color) colorful-object))

(instance traffic-light-1 traffic-light)
(instance traffic-light-2 traffic-light)
(instance traffic-light-3 traffic-light)
(instance traffic-light-4 traffic-light)

(constrained traffic-light-1 ?color-traffic-light-1 color)
(constrained traffic-light-2 ?color-traffic-light-2 color)
(constrained traffic-light-3 ?color-traffic-light-3 color)
(constrained traffic-light-4 ?color-traffic-light-4 color)

(constraints (string= ?color-traffic-light-1 ?color-traffic-light-3))
(constraints (string= ?color-traffic-light-2 ?color-traffic-light-4))
(constraints (string<> ?color-traffic-light-1 ?color-traffic-light-2))

(constraints (string<> ?color-traffic-light-2 "red"))

(constraint-entailed? (string= ?color-traffic-light-2 "green"))
(constraint-entailed? (string= ?color-traffic-light-4 "green"))
(constraint-entailed? (string= ?color-traffic-light-1 "red"))
(constraint-entailed? (string= ?color-traffic-light-3 "red"))

The four queries at the end all return t (for true) although only indefinite information is
explicitly stated (the color of traffic-light-2 is not "red"). Thus, only "green" remains,
and due to the other constraints, the colors of the other traffic lights are determined. It is
obvious that instead of string values one could have used nominals. However, optimized
reasoning algorithms for nominals will only be part of a future version of RacerPro.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

72 CHAPTER 4. DESCRIPTION LOGIC MODELING WITH RACERPRO

Using nominals might be even tricky. Consider the following knowledge base:

(equivalent shabby-car (all has-color shabby-color))
(equivalent reddish-object (some has-color (one-of orange, red)))
(instance car-1 (and reddish-object (not (some has-color (one-of orange)))))
(instance car-2 (and reddish-object (not (some has-color (one-of orange)))))

Now assume, some information of the color of car-1 is available, car-1 is an old car.

(instance car-1 (all has-color shabby-color))

It is obvious that due to the use of nominals, car-2 is a shabby car as well. This is probably
unintended and is most likely a modeling error.

4.3 Open-World Assumption

As other description logic systems, RacerPro employs the Open World Assumption (OWA)
for reasoning. This means that what cannot be proven to be true is not believed to be false.
Given the T-box and A-box of the family example (see the previous chapters), a standard
pitfall would be to think that RacerPro is wrong considering its answer to the following
query:

(individual-instance? alice (at-most 2 has-child))

RacerPro answers NIL. However, NIL does not mean NO but just “cannot be proven w.r.t.
the information given to RacerPro”. Absence of information w.r.t. a third child is not
interpreted as “there is none” (this would be the Closed-World Assumption, CWA). It
might be the case that there will be an assertion (related alice william has-child)
added to the A-box later on. Thus, the answer NIL is correct but has to be interpreted in
the sense of “cannot be proven”. Note that it is possible to add the assertion

(instance alice (at-most 2 has-child))

to the A-box. Given this, the A-box will become inconsistent if another individual (e.g.,
william) is declared to be a child of alice. Many users asked for a switch such that
RacerPro automatically closes roles. However, this problem is ill-defined. A small example
should suffice to illustrate why closing a role (or even a KB) is a tricky problem. Assume
the following axioms:

(disjoint a b c)
(instance i (and (some r a) (some r b) (some r c) (some r d)))
(related i j r)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

4.4. CLOSED-WORLD ASSUMPTION 73

Now assume the task is to closed the role r for the individual i. Just determining the number
of fillers of r w.r.t. i and adding a corresponding assertion (at-most 1 r) to the A-box is
a bad idea because the A-box gets inconsistent. Due to the T-box, the minimum number
of fillers is 3. But, should we add (at-most 1 r) or (at-most 1 r (and a b c))? The
first one might be too strong (because of i being an instance of (some r d). What about
d? Would it be a good idea to also add (at-most 1 r d)? If yes, then the question arises
how to determine the qualifier concepts used in qualified number restrictions.

4.4 Closed-World Assumption

Due to the non-monotonic nature of the closed-world assumption and the ambiguities about
what closing should actually mean, in description logic inference systems usually there is no
support for the closed-world assumption. However, with the publish and subscribe interface
of RacerPro, users can achieve a local closed-world (LCW) assumption (see Section 5.3).
The nRQL query language allows you to query A-boxes using negation as failure semantics
(see Chapter 6).

4.5 Unique Name Assumption

In addition to the Open World Assumption, it is possible to instruct RacerPro to employ
the Unique Name Assumption (UNA). This means that all individuals used in an A-box are
assumed to be mapped to different elements of the universe, i.e. two individuals cannot refer
to the same domain element. Hence, adding (instance alice (at-most 1 has-child))
does not identify betty and charles but makes the A-box inconsistent. Due to our experi-
ence with users, we would like to emphasize that most users take UNA for granted but are
astonished to learn that OWA is assumed (rather than CWA). However, in order to be com-
pliant with the semantics of OWL RacerPro does not apply the unique name assumption
by default. If you want this, use the following statement before asking any queries.

(set-unique-name-assumption t)

You might want to put this directive into a file init.racer and start RacerPro with the
following option.

$ RacerPro -- -init init.racer

4.6 Differences in Expressivity of Query and Concept Lan-
guage

It should be emphasized that the query language of RacerPro (nRQL, see Chapter 6) is
different from the concept language. Feature chains and (pseudo) nominals are supported
in queries but not in the concept language. In addition, specific concrete domain predicates
may be used in query expressions (e.g., substring) that cannot be supported in the concept
language.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

74 CHAPTER 4. DESCRIPTION LOGIC MODELING WITH RACERPRO

4.7 OWL Interface

RacerPro can read RDF, RDFS, and OWL files, see the function owl-read-file and friends
described below). Information in an RDF file is represented using an A-box in such a way
that usually triples are represented as related statements, i.e., the subject of a triple is
represented as an individual, the property as a role, and the object is also represented as
an individual. The property rdf:type is treated in a special way. Triples with property
rdf:type are represented as concept assertions. RacerPro does not represent meta-level
knowledge in the theory because this might result in paradoxes (which are reported else-
where).

The triples in RDFS files are processed in a special way. They are represented as T-box
axioms. If the property is rdf:type, the object must be rdfs:Class or rdfs:Property.
These statements are interpreted as declarations for concept and role names, respectively.
Three types of axioms are supported with the following properties: rdfs:subClassOf,
rdfs:range, and rdfs:domain. Other triples are ignored.

OWL files are processed in a similar way. The semantics of OWL is described elsewhere (see
http://www.w3.org/TR/owl-ref/). There are a few restrictions in the RacerPro implemen-
tation. The UNA cannot be switched off and number restrictions for attributes (datatype
properties) are not supported. Only basic datatypes of XML-Schema are supported (i.e.,
RacerPro cannot read files with datatype declarations right now).

Usually, the default namespace for concept and role name is defined by the pathname of
the OWL file. If the OWL file contains a specification for the default namespace (i.e., a
specification xmlns="...") this URL is taken as a prefix for concept and role names.

<?xml version="1.0" encoding="ISO-8859-1"?>
<rdf:RDF

xmlns="http://www.mycompany.com/project#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:xsd="http://www.w3.org/2000/10/XMLSchema#">
...

</rdf:RDF>

By default, RacerPro prepends the URL of the default namespace to all OWL names starting
with the # sign. If you would like to instruct RacerPro to return abbreviated names (i.e., to
remove the prefix again in output it produces), start the RacerPro server with the option
-n.

Individual names (nominals) in class declarations introduced with owl:oneOf are treated
as disjoint (atomic) concepts. This is similar to the behavior of other OWL inference en-
gines. Currently, RacerPro can provide only an approximation for true nominals. Note that
reasoning is sound but still incomplete if owl:oneOf is used. In RacerPro, individuals used
in class declarations are also represented in the A-box part of the knowledge base. They
are instances of a concept with the same name. An example is appropriate to illustrate the

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

4.7. OWL INTERFACE 75

idea. Although the KRSS syntax implemented by RacerPro does not include one-of as a
concept-building operator we use it here for demonstration purposes.

(in-knowledge-base test)
(implies c (some r (one-of j)))
(instance i c)

Dealing with individuals is done by an approximation such that reasoning is sound but must
remain incomplete. The following examples demonstrate the effects of the approximation.

Given this knowledge base, asking for the role fillers of r w.r.t. i returns nil. Note that
OWL, names must be enclosed with bars (|).

? (individual-fillers |file:C:\\Ralf\\Ind-Examples\\ex1.owl#i|
|file:C:\\Ralf\\Ind-Examples\\ex1.owl#R|)

NIL

Asking for the instances of j returns j.

? (concept-instances |file:C:\\Ralf\\Ind-Examples\\ex1.owl#j|)
(|file:C:\\Ralf\\Ind-Examples\\ex1.owl#j|)

The following knowledge base (for the OWL version see file ex2.owl in the examples folder)
is inconsistent:

(in-knowledge-base test)
(implies c (all r (one-of j)))
(instance i c)
(related i k r)

Note again that, in general, reasoning is incomplete if individuals are used in concept terms.
The following query is given w.r.t. the above-mentioned knowledge base given in the OWL
file ex2.owl in the examples folder.

? (concept-subsumes? (at-most 1 |file:C:\\Ralf\Ind-Examples\\ex1.owl#R|)
|file:C:\Ralf\Ind-Examples\ex1.owl#c|)

NIL

If dealing with nominals were no approximation, i.e., if reasoning were complete, then
RacerPro would be able to prove a subsumption relationship because (all r (one-of j))
implies (at-most 1 r).

RacerPro can download imported ontology documents. Use the command (owl-read-file
<filename>) to read an OWL file or use (owl-read-document <url>) to read an OWL
resource given a URL.

You can manage multiple knowledge bases with RacerPro, and you can load multiple on-
tologies into a single knowledge base. For instance, try

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

76 CHAPTER 4. DESCRIPTION LOGIC MODELING WITH RACERPRO

(owl-read-document "http://www.w3.org/TR/2004/REC-owl-guide-20040210/wine.rdf"
:kb-name dinner)

(owl-read-document "http://www.co-ode.org/ontologies/pizza/2005/05/16/pizza.owl"
:kb-name dinner :init nil)

for a delicious dinner.1 Imported ontologies are automatically loaded from the corresponding
web server. Make sure you are connected to the Internet or use the mirror functionality if
you are offline.

(mirror <url-spec1> <another-url-or-local-filename>)

Examples:

(mirror "http://www.w3.org/TR/2004/REC-owl-guide-20040210/wine.rdf"
"/home/users/rm/wine.rdf")

(mirror "http://www.w3.org/TR/2004/REC-owl-guide-20040210/wine.rdf"
"http://localhost:8081/examples/wine.rdf")

Mirror statements might be placed in a RacerPro init file (see the previous subsection). In
RacerPorter you can abbreviate the display of OWL names with the check box ”Simplify
Names”.

There is a known limitation: The current version of the RDF reader of RacerPro ignores
nodes with parseType="Resource" or parseType="Literal". This will be fixed in the next
version.

1In LRacer or RacerMaster you have to quote the symbol dinner.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

Chapter 5

Knowledge Base Management

5.1 Configuring Optimization Strategies

The standard configuration of RacerPro ensures that only those computations are per-
formed that are required for answering queries. For instance, in order to answer a query for
the parents of a concept, the T-box must be classified. However, for answering an instance
retrieval query this is not necessary and, therefore, RacerPro does not classify the T-box
in the standard inference mode. Nevertheless, if multiple instance retrieval queries are to
be answered by RacerPro, it might be useful to have the T-box classified in order to be
able to compute an index for query answering. Considering a single query RacerPro can-
not determine whether computing an index is worth the required computational resources.
Therefore, RacerPro can be instructed about answering strategies for subsequent queries.

• In order to ensure a T-box is classified, you can use the statement (classify-tbox
&optional tbox-name).

• To compute an index for fast instance retrieval for an A-box you can
call (compute-index-for-instance-retrieval &optional abox-name). Comput-
ing an index is usually a costly process, so this should be done offline. After having
computed an index for an A-box one might use the persistency services of Racer-
Pro to dump the internal A-box data structures for later reuse. The index compu-
tation process is also known as A-box realization, and you can also call the function
(realize-abox &optional abox-name) to achieve the same effect.

• The function (prepare-abox) can be used to compute index structures for an A-box.
You can call this function offline to save computational resources at query answering
time. In addition, you can call (prepare-racer-engine) to compute index structures
for query answering. Again, this function is to be used offline to save computational
resource for answering the first query.

• If multiple queries are to be answered and each query will prob-
ably be more specific than previous ones, use the directive
(enable-subsumption-based-query-processing). The T-box is then classified
once the first query is answered.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

78 CHAPTER 5. KNOWLEDGE BASE MANAGEMENT

• If you use nRQL it is possible to instruct RacerPro to use less costly algorithms for
query answering (see also Chapter 6). This can be done by calling (set-nrql-mode
1). In this case, query answering is complete only for hierarchies (T-boxes with very
simple axioms). If for every exists restrictions declared in the T-box there exists an
explicit filler declared in the A-box, you can instruct RacerPro to speedup query
answering even more by calling (enable-optimized-query-answering). Note that
it is necessary that you call (enable-optimized-query-answering) before you read
the OWL files comprising the knowledge base.

• The function (abox-consistent?) can be explicitly called. Before the first instance
retrieval query is answered, the A-box in question is checked for consistency. You might
want to call this function offline to save computational resource when the first query
is answered. The function (abox-consistent?) is not to be called if (set-nrql-mode
1) is called (see above).

The following sequence of statements provides for fastest execution times. Reasoning is only
complete for ALE with simple GCIs and A-boxes for which there exists a filler for every
exists restriction.

;; offline phase
(full-reset)
(set-nrql-mode 1)
(enable-optimized-query-processing)
(set-unique-name-assumption t)
(time (load-data))
(time (prepare-abox))
(time (prepare-racer-engine))
;; online phase
(retrieve ...)

Nevertheless, it might be useful to use this mode for information retrieval problems (see
also Chapter 6).

5.2 The RacerPro Persistency Services

If you load some knowledge bases into RacerPro and ask some queries, RacerPro builds
internal data structure that enables the system to provide for faster response times. However,
generating these internal data structures takes some time. So, if the RacerPro server is shut
down, all this work is usually lost, and data structures have to be rebuilt when the server
is restarted again. In order to save time at server startup, RacerPro provides a facility to
“dump” the server state into a file and restore the state from the file at restart time. The
corresponding functions form the persistency services of a RacerPro server. The persistency
services can also be used to “prepare” a knowledge base at a specific server and use it
repeatedly at multiple clients (see also the documentation about the RacerPro Proxy).
For instance, you can classify a T-box or realize an A-box and dump the resulting data

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

5.3. THE PUBLISH-SUBSCRIBE MECHANISM 79

structures into a file. The file(s) can be reloaded and multiple servers can restart with much
less computational resources (time and space). Starting from a dump file is usually about
ten times faster than load the corresponding text files and classifying the T-box (or realizing
the A-box) again.

Since future versions of RacerPro might be supported by different internal data structures,
it might be the case that old dump files cannot be loaded with future RacerPro versions.
In this case an appropriate error message will be shown. However, you will have to create
a new dump file again.

If you have a license for RacerMaster, dumping an image is possible with the underlying
Common Lisp technology and is much, much faster.

5.3 The Publish-Subscribe Mechanism

Instance retrieval (see the function concept-instances) is one of the main inference services
for A-boxes. However, using the standard mechanism there is no “efficient” way to declare
so-called hidden or auxiliary individuals which are not returned as elements of the result
set of instance retrieval queries.1 Furthermore, if some assertions are added to an A-box,
a previous instance retrieval query might have an extended result set. In this case some
applications require that this might be indicated by a certain “event”. For instance, in
a document retrieval scenario an application submitting an instance retrieval query for
searching documents might also state that “future matches” should be indicated.

In order to support these features, RacerPro provides the publish-subscribe facility. The
idea of the publish-subscribe system is to let users “subscribe” an instance retrieval query
under a certain name (the subscription name). A subscribed query is answered as usual, i.e.
it is treated as an instance retrieval query. The elements in the result set are by definition are
only those individuals (of the A-box in question) that have been “published” previously.
If information about a new individuals is added to an A-box and these individuals are
published, the set of subscription queries is examined. If there are new elements in the result
set of previous queries, the publish function returns pairs of corresponding subscription and
individual names.

5.3.1 An Application Example

The idea is illustrated in the following example taken from a document retrieval scenario.
In some of the examples presented below, the result returned by RacerPro is indicated and
discussed. If the result of a statement is not discussed, then it is irrelevant for understanding
the main ideas of the publish-subscribe mechanism. First, a T-box document-ontology is
declared.

(in-tbox document-ontology)

1Certainly, hidden individuals can be marked as such with special concept names, and in queries they
might explicitly be excluded by conjoining the negation of the marker concept automatically to the query
concept. However, from an implementation point of view, this can be provided much more efficiently if the
mechanism is built into the retrieval machinery of RacerPro.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

80 CHAPTER 5. KNOWLEDGE BASE MANAGEMENT

(define-concrete-domain-attribute isbn)
(define-concrete-domain-attribute number-of-copies-sold)
(implies book document)
(implies article document)
(implies computer-science-document document)
(implies computer-science-book (and book computer-science-document))
(implies compiler-construction-book computer-science-book)
(implies (and (min number-of-copies-sold 3000) computer-science-document)

computer-science-best-seller)

In order to manage assertions about specific documents, an A-box current-documents is
defined with the following statements. The A-box current-documents is the “current A-
box” to which subsequent statements and queries refer. The set of subscriptions (w.r.t. the
current A-box) is initialized, i.e., wIth init-subscription you can instruct the server to
delete all previous subscriptions.

(in-abox current-documents document-ontology)
(init-subscriptions)

With the following set of statements five document individuals are declared and published,
i.e. the documents are potential results of subscription-based instance retrieval queries.

(state
(instance document-1 article)
(publish document-1)

(instance document-2 book)
(constrained document-2 isbn-2 isbn)
(constraints (equal isbn-2 2234567))
(publish document-2)

(instance document-3 book)
(constrained document-3 isbn-3 isbn)
(constraints (equal isbn-3 3234567))
(publish document-3)

(instance document-4 book)
(constrained document-4 isbn-4 isbn)
(constraints (equal isbn-4 4234567))
(publish document-4)

(instance document-5 computer-science-book)
(constrained document-5 isbn-5 isbn)
(constraints (equal isbn-5 5234567))
(publish document-5))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

5.3. THE PUBLISH-SUBSCRIBE MECHANISM 81

Now, we assume that a “client” subscribes to a certain instance retrieval query.

(state
(subscribe client-1 book))

The answer returned by RacerPro is the following

((CLIENT-1 DOCUMENT-2)
(CLIENT-1 DOCUMENT-3)
(CLIENT-1 DOCUMENT-4)
(CLIENT-1 DOCUMENT-5))

RacerPro returns a list of pairs each of which consists of a subscriber name and an individual
name. In this case four documents are found to be instances of the query concept subscribed
und the name client-1.

An application receiving this message from RacerPro as a return result can then decide
how to inform the client appropriately. In future releases of RacerPro, subscriptions can be
extended with information about how the retrieval events are to be signaled to the client.
This will be done with a proxy which is currently under development.

The example is continued with the following statements and two new subscriptions.

(state
(instance document-6 computer-science-document)
(constrained document-6 isbn-6 isbn)
(constraints (equal isbn-6 6234567))
(publish document-6))

(state
(subscribe client-2 computer-science-document)
(subscribe client-3 computer-science-best-seller))

The last statement returns two additional pairs indicating the retrieval results for the in-
stance retrieval query subscription of client-2.

((CLIENT-2 DOCUMENT-5)
(CLIENT-2 DOCUMENT-6))

Next, information about another document is declared. The new document is published.

(state
(instance document-7 computer-science-document)
(constrained document-7 isbn-7 isbn)
(constraints (equal isbn-7 7234567))
(constrained document-7 number-of-copies-sold-7 number-of-copies-sold)
(constraints (equal number-of-copies-sold-7 4000))
(publish document-7))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

82 CHAPTER 5. KNOWLEDGE BASE MANAGEMENT

The result of the last statement is:

((CLIENT-2 DOCUMENT-7)
(CLIENT-3 DOCUMENT-7))

The new document document-7 is in the result set of the query subscribed by client-2 and
client-3. Note that document can be considered as structured objects, not just names.
This is demonstrated with the following statement whose result is displayed just below.

(describe-individual ’document-7)

(DOCUMENT-7
:ASSERTIONS ((DOCUMENT-7 COMPUTER-SCIENCE-DOCUMENT))
:ROLE-FILLERS NIL
:TOLD-ATTRIBUTE-FILLERS ((ISBN 7234567)

(NUMBER-OF-COPIES-SOLD 4000))
:DIRECT-TYPES ((COMPUTER-SCIENCE-BEST-SELLER)

(COMPUTER-SCIENCE-DOCUMENT)))

Thus, RacerPro has determined that the individual document-7 is also an instance
of the concept computer-science-best-seller. This is due to the value of the at-
tribute number-of-copies-sold and the given sufficient conditions for the concept
computer-science-best-seller in the T-box document-ontology.

Now, we have information about seven documents declared in the A-box current-document.

(all-individuals)

(DOCUMENT-1 DOCUMENT-2 DOCUMENT-3 DOCUMENT-4 DOCUMENT-5 DOCUMENT-6 DOCUMENT-7)

In order to delete a document from the A-box, it is possible to use RacerPro’s forget facility.
The instance assertion can be removed from the A-box with the following statement.

(forget () (instance document-3 book))

Now, asking for all individuals reveal that there are only six individuals left.

(all-individuals)

(DOCUMENT-1 DOCUMENT-2 DOCUMENT-4 DOCUMENT-5 DOCUMENT-6 DOCUMENT-7)

With the next subscription a fourth client is introduced. The query is to retrieve the in-
stances of book. RacerPro’s answer is given below.

(subscribe client-4 book)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

5.3. THE PUBLISH-SUBSCRIBE MECHANISM 83

((CLIENT-4 DOCUMENT-2) (CLIENT-4 DOCUMENT-4) (CLIENT-4 DOCUMENT-5))

The query of client-4 is answered with three documents. Next, we discuss an example
demonstrating that sometimes subscriptions do not lead to an immediate answer w.r.t. the
current A-box.

(subscribe client-2 computer-science-best-seller)

The result is (). Although document-7 is an instance of computer-science-best-seller,
this individual has already been indicated as a result of a previously subscribed query. In
order to continue our example we introduce two additional documents one of which is a
computer-science-best-seller.

(state
(instance document-8 computer-science-best-seller)
(constrained document-8 isbn-8 isbn)
(constraints (equal isbn-8 8234567))

(instance document-9 book)
(constrained document-9 isbn-9 isbn)
(constraints (equal isbn-9 9234567)))

The publish-subscribe mechanism requires that these documents are published.

(state
(publish document-8)
(publish document-9))

The RacerPro system handles all publish statements within a state as a single publish
statement and answers the following as a single list of subscription-individual pairs.

((CLIENT-1 DOCUMENT-9)
(CLIENT-2 DOCUMENT-8)
(CLIENT-3 DOCUMENT-8)
(CLIENT-4 DOCUMENT-9))

Now client-2 also get information about instances of computer-science-best-seller.
Note that document-8 is an instance of computer-science-best-seller by definition
although the actual number of sold copies is not known to RacerPro.

(describe-individual ’document-8)

(DOCUMENT-8
:ASSERTIONS ((DOCUMENT-8 COMPUTER-SCIENCE-BEST-SELLER))
:ROLE-FILLERS NIL
:TOLD-ATTRIBUTE-FILLERS ((ISBN 8234567))
:DIRECT-TYPES ((COMPUTER-SCIENCE-BEST-SELLER)))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

84 CHAPTER 5. KNOWLEDGE BASE MANAGEMENT

The following subscription queries indicate that the query concept must not necessarily be
a concept name but can be a concept term.

(state
(subscribe client-4 (equal isbn 7234567)))

RacerPro returns the following information:

((CLIENT-4 DOCUMENT-7))

Notice again that subscriptions might be considered when new information is added to the
A-box.

(state
(subscribe client-5 (equal isbn 10234567)))

The latter statement returns NIL. However, the subscription is considered if, at some time-
point later on, a document with the corresponding ISBN number is introduced (and pub-
lished).

(state
(instance document-10 document)
(constrained document-10 isbn-10 isbn)
(constraints (equal isbn-10 10234567))
(publish document-10))

((CLIENT-5 DOCUMENT-10))

This concludes the examples for the publish-subscribe facility offered by the RacerPro sys-
tem. The publish-subscribe mechanism provided with the current implementation is just a
first step. This facility will be extended significantly. Future versions will include optimiza-
tion techniques in order to speedup answering subscription based instance retrieval queries
such that reasonably large set of documents can be handled. Furthermore, it will be possible
to define how applications are to be informed about “matches” to previous subscriptions
(i.e. event handlers can be introduced).

5.3.2 Using JRacer for Publish and Subscribe

The following code fragment demonstrates how to interact with a RacerPro server from
a Java application. The aim of the example is to demonstrate the relative ease of use
that such an API provides. In our scenario, we assume that the agent instructs the Rac-
erPro system to direct the channel to computer "rm.sts.tu-harburg.de" at port 8080.
Before the subscription is sent to a RacerPro server, the agent should make sure that at
"rm.sts.tu-harburg.de", the assumed agent base station, a so-called listener process is
started at port 8080. This can be easily accomplished by starting the following program on
rm.sts.tu-harburg.de.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

5.3. THE PUBLISH-SUBSCRIBE MECHANISM 85

public class Listener {
public static void main(String[] argv) {

try {
ServerSocket server = new ServerSocket(8080);
while (true) {

Socket client = server.accept();
BufferedReader in =

new BufferedReader(
new InputStreamReader(client.getInputStream()));

String result = in.readLine();
in.close();

}
} catch (IOException e) {

...
}

}
}

If a message comes in over the input stream, the variable result is bound accordingly.
Then, the message can be processed as suitable to the application. We do not discuss
details here. The subscription to the channel, i.e., the registration of the query, can also be
easily done using the JRacer interface as indicated with the following code fragment (we
assume RacerPro runs at node "racer.racer-systems.com" on port 8088).

public class Subscription {
public static void main(String[] argv) {
RacerServer racer1 = new RacerServer("www.racer-systems.com",8088);
String res;
try {

racer1.openConnection();
res = racer1.send("(subscribe q_1 Book (:notification-method tcp \"rm.sts.tu-harburg.de\" 8080))");
racer1.closeConnection();
System.out.println(res);

}
catch (Exception e) {

e.printStackTrace();
}

}
}

The connection to the RacerPro server is represented with a client object (of class
RacerSocketClient). The client object is used to send messages to the associated Rac-
erPro server (using the message send). Control flow stops until RacerPro acknowledges the
subscription.

5.3.3 Realizing Local Closed-World Assumptions

Feedback from many users of the RacerPro system indicates that, for instance, instance
retrieval queries could profit from possibilities to “close” a knowledge base in one way or

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

86 CHAPTER 5. KNOWLEDGE BASE MANAGEMENT

another. Due to the non-monotonic nature of the closed-world assumption and the am-
biguities about what closing should actually mean, in description logic inference systems
usually there is no support for the closed-world assumption. However, with the publish and
subscribe interface of RacerPro, users can achieve a similar effect. Consider, for instance,
a query for a book which does not have an author. Because of the open-world assump-
tion, subscribing to a channel for (and Book (at-most 0 has-author)) does not make
much sense. Nevertheless the agent can subscribe to a channel for Book and a channel for
(at-least 1 has-author). It can accumulate the results returned by RacerPro into two
variables A and B, respectively, and, in order to compute the set of books for which there
does not exist an author, it can consider the complement of B wrt. A. We see this strategy
as an implementation of a local closed-world (LCW) assumption.

However, as time evolves, authors for documents determined by the above-mentioned query
indeed might become known. In others words, the set B will probably be extended. In
this case, the agent is responsible for implementing appropriate backtracking strategies, of
course.

The LCW example demonstrates that the RacerPro publish and subscribe interface is a
very general mechanism, which can also be used to solve other problems in knowledge
representation.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

Chapter 6

The New RacerPro Query
Language - nRQL

In this chapter of the user guide we describe an expressive ABox query language for Racer-
Pro, called nRQL. nRQL is an acronym for new Racer Query Language, pronounce: Nercle.
Previous versions have been called RQL; in order to avoid confusion with an RDF query
language we have changed the name.

nRQL can be used to

• query RacerPro ABoxes,

• query RacerPro TBoxes,

• query RDF(S) documents,

• query OWL documents.

Thus, nRQL is

• an expressive ABox query language for the very expressive DL ALCQHIR+(D−),

• an RDF(S) query language,

• an OWL query language.

nRQL allows for the formulation of so-called (grounded) conjunctive queries. A query con-
tains variables which are bound to ABox (OWL / RDF(S)) individuals, concepts, or so-
called substrate nodes. Thus, we distinguish between ABox variables, TBox variables, and
substrate variables. In case of an ABox variable, the variable is bound to those ABox indi-
viduals that satisfy the query body. Within a query body, concept and role terms are used
to specify retrieval conditions on the bindings of a query variable (e.g., retrieve only those
?x which are instances of class woman which have a child).

The features of the nRQL language can be summarized as follows:

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

88 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

• nRQL has a well-defined syntax and semantics. Please refer to the list of research
publications at http://www.racer-systems.com for the formal specification of the
semantics of nRQL. The semantics is based on the notion of logical entailment.

From a theoreticians point of view, nRQL offers at least so-called grounded conjunctive
queries, but goes beyond these by offering additional constructs. Moreover, the oper-
ational aspects of the query answering engine (see below) make it somehow unique.

nRQL only offers so-called must-bind (or: distinguished) variables which range over
the individuals of an ABox (or individuals of an RDF(S) / OWL document). Thus,
a concept query atom (see below) such as (?x mother) has the same semantics as
(concept-instances mother). A variable is bound to an ABox individual if (and
only if) this individual satisfies the query. Satisfies means that the query resulting
from substituting all variables with their current bindings (resulting in the so-called
grounded query) is logically entailed by the knowledge base (KB). So, ?x is bound to
the individual betty if (and only if) the ground conjunctive query (betty mother)
is entailed.

nRQL does not offer so-called do not bind (or: non-distinguished) variables.. A variable
is always distinguished, even if the bindings of that variables bindings are not included
in the query answer (the query answer contains only the bindings of those variables
which appear in the head of the query, see below).

However, purely existentially quantified retrieval conditions such as “there exists a
filler of the has-child role of ?x such that . . . ” can be formulated anyway by ex-
ploiting the expressive power of the concept expressions used in concept query atoms:
Simply use concept query atoms such as (?x (some has-child ...)).

• nRQL offers a variety of query atoms; the most important ones are: concept query
atoms, role query atoms, constraint query atoms, and SAME-AS query atoms. Complex
queries / query bodies are built from query atoms using the operators and, union,
neg, project-to.

• Negation as failure (NAF) as well as true classical negation is available.

NAF is especially useful for measuring the degree of completeness of a modeling of
the domain of discourse in the KB.

• Special support for querying the concrete domain part of an ABox. nRQL allows for
the formulation of complex retrieval conditions on concrete domain attribute fillers of
ABox individuals by means of complex concrete domain predicates. Concrete domain
predicates can appear in concept query atoms as well as in constraint query atoms.
For example, we can retrieve those individuals whose fillers of the concrete domain
attribute has-age satisfy the complex concrete domain predicate≥ 18 using a concept
query atom (?x (min age 18)).

Moreover, in case satisfying concrete domain values are known in the ABox (they have
been “told” to the system), these known told values (if existing) can be returned as
part of the query answer. Thus, in case the concrete age (being a filler of the has-age
attribute) is given as a told value in the KB, it can be returned by the query together
with the individual.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

89

nRQL also supports binary concrete domain predicates (not that ≥ 18 is a unary
concrete domain predicate). For example, we can retrieve all pairs of persons having
the same age with the constraint query atom (?x ?y (constraint age age =)).

Please note that the available retrieval predicates are from the concrete domains
offered by RacerPro. Thus, for the sake of decidability in the RacerPro concept lan-
guage their number is rather limited, e.g., there is no concrete domain predicate which
checks whether a string contains a certain (fixed) substring. However, such additional
predicates are often needed for query formulation.

A pragmatic solution to this “missing predicates problem” is to enable the so-called
(mirror) data substrate and use the additional retrieval facilities offered by the data
substrate query atoms (see below). Here you will find many useful predicates. But,
unlike the concrete domain predicates, these data substrate predicates only work on
told (data) values.

Moreover, a third pragmatic solution to the “missing predicates problem” is to use the
MiniLisp expression language (see below) to specify arbitrary custom retrieval (filter)
predicates.

• nRQL offers a projection operator project-to for query bodies. In combination with
negation as failure this operator can be used to express closed world universal quan-
tification which is important for many retrieval tasks.

• nRQL is also a powerful OWL and RDF(S) query language.

In contrast to many other RDF(S) query languages (such as Sparql), nRQL uses
description logic reasoning to retrieve also “inferred triples” and thus does not work
on the syntactic level of triples, but on the level of semantic models.

Like RDF(s) query languages, nRQL allows for the specification of retrieval predicates
for data values (which are instances of XML Schema datatypes). In Sparql, these
retrieval conditions are specified using the filter construct.

There are two main options to specify such retrieval conditions:

1. The concrete domain constraint checking facilities also apply to datatype prop-
erties. Thus, a datatype property can be used as if it were a concrete domain
attribute. This applies to concept as well as to constraint query atoms. For con-
cept query atoms, we have extended the concept expression syntax to support
this. However, the language which can be used for formulating such predicates is
limited to the predicates of the different concrete domains offered by RacerPro.
Moreover, certain predicates cannot be supported at all in order to guarantee
decidability in the RacerPro concept language.

2. However, additional and more complex retrieval predicates can be specified with
queries posed to the so-called data substrate. nRQL is a hybrid query language.
If the data substrate is enabled, then the so-called data substrate query atoms
can be used to query the data substrate associated with an ABox. The data
substrate of an ABox is a representation layered on top of an ABox. A full set of
retrieval predicates can be evaluated on that representation (substring searching
etc.).

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

90 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

• So-called complex TBox queries are available. These can be used to search for certain
patterns of sub/superclass relationships in a taxonomy.

• Optionally, nRQL is a hybrid query language which can query a hybrid representation
consisting of an ABox associated / layered with a so-called substrate. To query such
a hybrid ABox/substrate representation, a hybrid nRQL query may be used which
contains query atoms which are evaluated on the ABox, as well as query atoms which
are evaluated on the substrate.

• The language offers extensibility and flexibility by means of a simple expression lan-
guage called MiniLisp. With MiniLisp a user can write a simple (termination safe!)
“program” which is executed on the RacerPro server. MiniLisp programs give the flex-
ibility to specify the format of the query answers, write query answers to a file, start
subqueries, etc. Moreover, and most importantly, MiniLisp enables the formulation of
aggregation operators (count, sum, average, ...). See below for examples.

The nRQL language must be distinguished from the nRQL query processing engine, which
is an internal part of the RacerPro server. The main features of this query processing /
answering engine are:

• A cost-based heuristic optimizer. The optimizer reorders the query atoms in a con-
junction in order to find a performant query evaluation plan. In order to estimate the
costs caused by a query atom, ABox statistics (cardinality information) are exploited.

• The engine is also a rule engine. A rule has an antecedence (precondition, left hand
side) which is a nRQL query. The consequence (postcondition, right hand side) con-
tains so-called generalized ABox assertions (ABox assertions referencing variables
and/or individuals)

• Queries (and rules) are maintained as objects within the engine. Query objects under-
stand a complex protocol (i.e., they can be asked to return their stored answers, be
deleted, reexecuted, etc.). A query (rule) is identified with an Id. The engine offers a
full life-cycle management for queries and rules.

• The engine supports defined queries. A defined query is a query which has been given
a name (not to be confused with the Id of a query / rule, although Id and name can be
identically). The named query can be used to refer to that query within other queries,
similar to a macro mechanism. Definitions must be acyclic.

• The engine supports multi-processing of queries which means that more than one query
can be answered “simultaneously” (concurrently). For each query, a query answering
thread is created.

• Support for different querying modi:

– “Set at a time” mode: In this mode, the answer to a query is delivered in one big
bunch as a set. The nRQL API works in a synchronous fashion. This means that
the API is blocked (not available) until the query answer has been computed and
delivered.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

91

– “Tuple at a time mode”: In this mode, the answer to a query is computed and re-
trieved incrementally, tuple by tuple. The nRQL API behaves in an asynchronous
fashion. A client can incrementally request tuples from a query one by one; more-
over, while the query is still running, another query can be started in parallel.
This mode comes in two disguises: lazy or eager. In lazy mode, the next tuple is
only computed if requested (on demand). In eager mode, additional (even if not
yet requested) tuples are computed in advance in the background. The lazy mode
maximizes the availability of nRQL, whereas the eager mode has the advantage
that a request for a next tuple can eventually be satisfied immediately if that
tuple has already been computed.

• The degree of completeness is configurable. nRQL offers a complete mode as well as
various incomplete modi which differ w.r.t. the degree of completeness they achieve.
Eventually, an incomplete mode will only deliver a subset of the complete answer to a
query (compared to the answer which would be computed using the complete mode).
However, the incomplete modi can be much more performant and thus achieve better
scalability for large ABoxes. Also note that the incomplete modi will be complete for
“simple” KBs (KBs which do not required the full expressivity of ALCQHIR+(D−)
or OWL).

The advantages of the incomplete and complete modi can be combined in nRQL: The
so-called two-phase processing modi are complete and take care that query process-
ing works in two phases. In phase one, the so-called cheap tuples are computed and
delivered to the client. After there are no more cheap tuples, the client / user can be
notified about the upcoming phase transition to phase two. nRQL can be advised to
deliver a so-called warning token before phase two starts. The client / user can then
decide to retrieve these additional expensive tuples or not. The remaining tuples from
phase two are also called expensive tuples; unlike for the tuples from phase one, full
ABox reasoning is required for their computation.

• The runtime resources are configurable. The API allows to set an upper bound on the
number of answer tuples computed, a timeout can be specified, and the incomplete
modi are available. Moreover, permutations of answer tuples can be excluded. Inter-
nally, the engine uses a thread pool. The minimum / maximum number of threads in
this pool can be specified; note that a query has to wait if it is about to be executed
and there is no thread available in the pool. It must thus wait until a thread is released
by another (currently running) query and put back into the pool.

• We already mentioned the substrate representation layer. The engine offers an exten-
sive API for maintaining this layer. There are different kinds / classes of representation
substrates available, tailored for the representation of different aspects. According to
the substrate kind, different substrate query atoms apply.

• Reasoning on queries. This functionality is currently still experimental (and incom-
plete). nRQL offers (incomplete) query satisfiability and query containment (“sub-
sumption”) checks.

nRQL can be advised to maintain and exploit a so-called query repository (QBox),
which is a DAG-structured query cache. nRQL uses the query containment check to

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

92 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

maintain and compute this DAG. This can be called an semantic optimization (unlike
the heuristic optimizer, which uses only syntactic information).

A further semantic (but still experimental) optimization technique which relies on
query reasoning called query realization is also implemented.

This Chapter is structured as follows:

• The first section introduces the nRQL query language in a tutorial-like style.

• The second section describes the nRQL engine and its features.

• The complete API of the nRQL engine is specified in the RacerPro Reference Manual.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 93

6.1 The nRQL Language

In the following we introduce the nRQL language bottom up in a tutorial-like style. “Bottom
up” means that we introduce the language by first considering the various available query
atom, and then introduce complex (compound) queries build from these atoms.

Please note that the example files we are using in this section are con-
tained in the subfolder called “nrql-user-guide-examples” in the “examples”
archive which can be downloaded from your personal download page under
http://www.racer-systems.com.

Moreover, it is assumed that you use RacerPorter for the tutorial interaction with RacerPro.
In case you get different results as listed here, please push the button Full Server Reset
(use the Server or Shell Tab) and retry the interaction.

6.1.1 Query Atoms, Objects, Individuals, and Variables

The basic expressions of the nRQL language are so called query atoms, or simply atoms.In
this Subsection we are only considering ABox query atoms (nRQL offers TBox and Substrate
atoms as well, see below).

Atoms are either unary or binary. A unary atom references one object, and a binary atom
references two objects.

An object is either an individual, or a variable. In case of an ABox atom, this object is
thus either an ABox individual or a ABox variable. For example, ?x and $?x are variables,
and betty is an individual. Variables are bound to those ABox individuals that satisfy the
query expression.

nRQL offers (ordinary) variables as well as so-called injective variables:

• Variables are prefixed with “?”, e.g. ?x, ?y.

• Injective variables are prefixed with “$?”, e.g. $?x, $?y. An injective variable can
only be bound to an ABox individual which is not already bound to another injective
variable - the mapping from variables to ABox individuals is thus injective. For exam-
ple, if $?x is bound to betty, then $?y cannot be bound to betty as well. Note that
this can also achieved by means of (neg (same-as ?x ?y)), if ordinary variables are
used.

There are only four types of atoms available:

• Unary atoms:

– concept query atoms.

• Binary atoms:

– role query atoms,

– constraint query atoms,

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

94 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

– SAME-AS query atoms.

In principle, there is a fifth kind of atom, the query reference atom which is n-ary and used
to refer to a defined query. However, this atom should be understood on a syntactic (macro)
level and is thus not discussed here. So, this atom is in fact “syntactic sugar”, as some other
additional auxiliary atoms as well, e.g. the bind-individual atoms.

We will now discuss each type of atom.

6.1.1.1 Concept Query Atoms

Concept query atoms are unary atoms. A concept query atom is used to retrieve the in-
stances of a concept or an OWL (or RDF(S)) class, for example, the instances of the concept
woman in family.racer. We use RacerPorter to read in that file into RacerPro; note that ?
denotes the input (prompt), and > the RacerPro result. Please use the Shell Tab of Racer-
Porter and enter the following commands, or use the button Load KB... (which will send
the same command) to read in the family.racer KB:

? (full-reset)
> :okay-full-reset

? (racer-read-file
"nrql-user-guide-examples/family.racer")

> :OKAY

Now, we retrieve the instances of class woman using a query whose body consists of a single
concept query atom, (?x woman):

? (retrieve (?x) (?x woman))
> (((?x betty)) ((?x eve)) ((?x doris)) ((?x alice)))

The format of the query answer is specified by the query head (see below). In this case, the
head is given as (?x).

Note that this query has the same semantics as (concept-instances woman), but the result
set is not returned as a single set, but as a set of so-called binding-lists or (componentwise
named) tuples.

Note that a set of tuples is returned. We emphasize set here because this implies that there
is no guarantee on the order of the tuples in this set. However, the result tuples itself are
ordered, of course.

Moreover, complex concept terms / expressions can be used in concept query atoms:

? (retrieve (?x) (?x (and woman (some has-child top))))
> (((?x betty)) ((?x alice)))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 95

6.1.1.1.1 Terminology - Query Head and Query Body As already mentioned, the
query (retrieve (?x) (?x woman)) has the head (?x) and the body (?x woman).

The body of a query specifies the retrieval conditions, and the head specifies the format of
the query result / answer tuples.

Each binding-list lists a number of variable-value pairs. A binding-list can also be seen as a
(component-wise) named tuple.

The head may also contain individuals. However, the set of objects mentioned in the query
head must be a subset of the set of objects used in the query body.

An empty query head is permitted as well (see below); this will result in a boolean query
(which only returns TRUE or FALSE).

6.1.1.1.2 Boolean Queries A boolean query only returns TRUE or FALSE. Simply use
an empty head to check whether there are any woman and aunts at all:

? (retrieve nil (?x woman))
> t

? (retrieve nil (?x aunt))
> NIL

Note that t means TRUE and NIL means FALSE.

6.1.1.1.3 Queries with individuals Individuals can be used in queries as well:

? (retrieve nil (betty woman))
> t

? (retrieve nil (janice woman))
> (:ERROR Undefined individual name janice in ABox smith-family)

? (retrieve nil (betty aunt))
> NIL

Please note that certain names are reserved for nRQL and thus cannot be used for individ-
uals (see Section 6.1.9). For example, in the query (retrieve nil (and c)), and is not
recognized as an individual name and thus the query is not recognized as a concept query
atom. A syntax error is raised instead.

Moreover, nRQL establishes a special semantics for individuals which are used in the head
of a query. Consider the query (retrieve (betty) (betty woman)). One possible way to
answer this query would be to simply return TRUE, as if the head was empty. However,
nRQL returns:

? (retrieve (betty) (betty woman))
> (((?betty betty)))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

96 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

The variable ?betty is called the representative variable for betty. Internally, nRQL
rewrites queries by replacing individuals with representative variables:

? (describe-query :last)
> (:query-XX

(:accurate :processed)
(retrieve
(?betty)
(and (same-as ?betty betty) (?betty woman))
:abox
smith-family))

6.1.1.1.4 Querying OWL and RDF(S) Documents with Concept Query Atoms
OWL and RDF(S) KBs (documents) can be queried with concept query atoms as well.
RacerPro represents OWL / RDF(S) individuals and their interrelationships in the ABox,
OWL / RDF(S) classes as concepts, and properties as roles in the TBox.

Consider the following OWL document nrql-user-guide-examples/owl-ex1.owl, defin-
ing one instance michael of class person and one instance book123 of class book:

<?xml version="1.0"?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns="http://www.owl-ontologies.com/unnamed.owl#"

xml:base="http://www.owl-ontologies.com/unnamed.owl">
<owl:Ontology rdf:about=""/>

<owl:Class rdf:ID="person"/>
<owl:Class rdf:ID="book"/>

<person rdf:ID="michael"/>
<book rdf:ID="book123"/>

</rdf:RDF>

With nRQL we can easily retrieve the instances of the OWL classes
http://www.owl-ontologies.com/unnamed.owl#person and http://www.owl-
ontologies.com/unnamed.owl#book:

? (full-reset)
> :okay-full-reset

? (owl-read-file

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 97

"nrql-user-guide-examples/owl-ex1.owl")
> /home/mi.wessel/nrql-user-guide-examples/owl-ex1.owl

? (get-namespace-prefix)
> http://www.owl-ontologies.com/unnamed.owl#

? (retrieve
(?x)
(?x http://www.owl-ontologies.com/unnamed.owl#person))

> (((?x http://www.owl-ontologies.com/unnamed.owl#michael)))

? (retrieve (?x) (?x http://www.owl-ontologies.com/unnamed.owl#book))
> (((?x http://www.owl-ontologies.com/unnamed.owl#book123)))

? (retrieve (?x) (?x #!book))
> (((?x http://www.owl-ontologies.com/unnamed.owl#book123)))

Please note that it is important to use the correct concept names; the name
http://www.owl-ontologies.com/unnamed.owl#person is a so called qualified name, and
http://www.owl-ontologies.com/unnamed.owl# is the so-called XML namespace perfix.
The namespace prefix can be retrieved with the function get-namespace-prefix. In order
to avoid typing of these long names, the #! prefix may be used to abreviate the current
namespace prefix (see the last query). Note that this does not only apply to concept / class
names, but also to individuals and roles (properties):

? (retrieve () (#!book123 #!book))
> t

If you are using an older version (≤ 1.9.0) of RacerPro / RacerPorter you must use full
qualified names for the classes, properties and individuals (#! doesn’t work), and also put
bars “|” around names like in this example:

? (retrieve (?x) (?x |http://www.owl-ontologies.com/unnamed.owl#person|))
> (((?x |http://www.owl-ontologies.com/unnamed.owl#michael|)))

In case you are unsure about the correct names, use the following functions to find out:

? (all-atomic-concepts)
> (top

bottom
http://www.owl-ontologies.com/unnamed.owl#person
http://www.owl-ontologies.com/unnamed.owl#book)

? (all-roles)
> ((inv http://www.w3.org/2000/01/rdf-schema#comment)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

98 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

(inv http://www.w3.org/2002/07/owl#comment)
(inv http://www.w3.org/2000/01/rdf-schema#seeAlso)
(inv http://www.w3.org/2002/07/owl#seeAlso)
(inv http://www.w3.org/2000/01/rdf-schema#isDefinedBy)
(inv http://www.w3.org/2002/07/owl#isDefinedBy)
(inv http://www.w3.org/2000/01/rdf-schema#label)
(inv http://www.w3.org/2002/07/owl#label)
(inv http://www.w3.org/2002/07/owl#versionInfo)
http://www.w3.org/2000/01/rdf-schema#comment
http://www.w3.org/2002/07/owl#comment
http://www.w3.org/2000/01/rdf-schema#seeAlso
http://www.w3.org/2002/07/owl#seeAlso
http://www.w3.org/2000/01/rdf-schema#isDefinedBy
http://www.w3.org/2002/07/owl#isDefinedBy
http://www.w3.org/2000/01/rdf-schema#label
http://www.w3.org/2002/07/owl#label
http://www.w3.org/2002/07/owl#versionInfo)

? (all-individuals)
> (http://www.owl-ontologies.com/unnamed.owl#book123

http://www.owl-ontologies.com/unnamed.owl#michael)

Alternatively you can also use the RacerPorter Concepts, Roles, and Individuals Tabs in
RacerPorter and turn off the Simplify Names checkbox.

nRQL is more powerful than other RDF(S) query languages; for example, true (classical)
disjunction is available:

? (retrieve (?x) (?x (or #!book #!person)))
> (((?x http://www.owl-ontologies.com/unnamed.owl#book123))

((?x http://www.owl-ontologies.com/unnamed.owl#michael)))

6.1.1.2 Role Query Atoms

The second type of query atoms are the role query atoms. Role query atoms are binary
atoms. Role query atoms are used to retrieve role fillers from an ABox, or OWL / RDF(S)
individuals which are realated via a certain OWL object property.

For example, we can retrieve all individuals in the ABox of family.racer using the following
query whose body consists of a single role query atom (?x ?y has-child):

? (full-reset)
> :okay-full-reset

? (racer-read-file "nrql-user-guide-examples/family.racer")
> :OKAY

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 99

? (retrieve (?x ?y) (?x ?y has-child))
> (((?x betty) (?y doris))

((?x betty) (?y eve))
((?x alice) (?y betty))
((?x alice) (?y charles)))

The expression (?mother ?child has-child) is a role query atom.

Again, individuals can be used at any position where a variable is accepted – to retrieve
the children of betty:

? (retrieve (?child-of-betty) (betty ?child-of-betty has-child))
> (((?child-of-betty eve)) ((?child-of-betty doris)))

Please note that concrete domain attributes cannot be used in role query atoms. Fillers
of concrete domain attributes can be retrieved by means of the so-called head-projection
operators, see below. family.racer contains the age attribute of type cardinal:

? (retrieve (?x ?y) (?x ?y age))
> (:ERROR Parser Error: Unrecognized expression (?x ?y age))

However, features (functional roles) are a special kind of roles and thus can be used; for
example, has-gender is a feature in family.racer:

? (retrieve (?person ?gender) (?person ?gender has-gender))
> NIL

So, the answer set is empty! Why is this? The reason is that there are no explicit “gender”
fillers of the has-gender feature in that ABox. Thus, ?gender cannot be bound to an ABox
individual. There are two solutions: Either new “gender” individuals could be added with
a rule (see below), or a concept query atom can be used to retrieve, for example, those
instances with female gender:

? (retrieve (?x) (?x (some has-gender female)))
> (((?x betty)) ((?x eve)) ((?x doris)) ((?x alice)))

6.1.1.2.1 Role Terms in Role Query Atoms Whereas arbitrary concept terms /
expressions (not only atomic concepts, also called concept names) are admissible in concept
query atoms, role terms are admissible in role query atoms (not only atomic roles, also
called role names). nRQL admits inverse and negated roles:

? (retrieve (?child-of-betty) (?child-of-betty betty (inv has-child)))
> (((?child-of-betty eve)) ((?child-of-betty doris)))

Please note that (inv has-child) is a role term. The second kind of role term constructor
is given by the not operator, which is used to construct a negated role. Let us discuss
negated roles.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

100 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

6.1.1.2.2 Classical Negated Roles in nRQL Availability of classical negated roles
is another unique feature of nRQL. The semantics is analog to (classical) negated concepts.

For example, RacerPro can prover that male persons can never be instances of the concept
mother in family.racer, since mother implies female, and male and female are declared
as disjoint in family.racer:

? (retrieve (?x) (?x (not woman)))
> (((?x charles)))

A negated role works analogously to a negated concept. Note that negated roles are only
available in the nRQL query language, but not in the RacerPro concept language (to grant
decidability). A negated role (not has-sister) allows us to “verify” that male persons
can never be fillers of the has-sister role, since family.racer contains the axiom

(implies *top* (all has-sister (some has-gender female)))

This means that fillers of the has-siser role have a female gender, and thus they cannot
be male.1 This matches our intuition, and indeed, using a negated role (not has-sister),
we see that charles cannot be a sister of anyone:

? (retrieve (?x ?y) (?x ?y (not has-sister)))
> (((?x eve) (?y charles))

((?x doris) (?y charles))
((?x charles) (?y charles))
((?x betty) (?y charles))
((?x alice) (?y charles)))

Please note that queries involving negated roles are rather expensive.

6.1.1.2.3 Querying OWL KBs with Role Query Atoms In the OWL realm, so-
called object properties are the equivalent of roles. Consider the following OWL document
owl-ex2.owl in the nrql-user-guide-examples folder:

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns="http://www.owl-ontologies.com/unnamed.owl#"

xml:base="http://www.owl-ontologies.com/unnamed.owl">

<owl:Ontology rdf:about=""/>

1Note that has-gender has been declared as a so-called feature, a functional role. So, any person can
have at most one gender, and male and female are disjoint.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 101

<owl:Class rdf:ID="person"/>

<owl:ObjectProperty rdf:ID="hasChild">
<rdfs:domain rdf:resource="#person"/>
<rdfs:range rdf:resource="#person"/>

</owl:ObjectProperty>

<person rdf:ID="alice">
<hasChild>
<person rdf:ID="betty"/>

</hasChild>
</person>

</rdf:RDF>

Thus, there are two instances of class person. The individual michael is the filler of the
hasChild object property of the individual margrit. Since object properties are mapped
to roles in RacerPro, role query atoms can be used:

? (full-reset)
> :okay-full-reset

? (owl-read-file "2 ? (owl-read-file "nrql-user-guide-examples/owl-ex2.owl")
> nrql-user-guide-examples/owl-ex2.owl

? (retrieve (?x ?y) (?x ?y #!hasChild))
> (((?x http://www.owl-ontologies.com/unnamed.owl#alice)

(?y http://www.owl-ontologies.com/unnamed.owl#betty)))

Again, #! is bound to the current namespace prefix:

? (get-namespace-prefix)
> http://www.owl-ontologies.com/unnamed.owl#

? (retrieve (?x ?y) (?x ?y http://www.owl-ontologies.com/unnamed.owl#hasChild))
> (((?x http://www.owl-ontologies.com/unnamed.owl#alice)

(?y http://www.owl-ontologies.com/unnamed.owl#betty)))

Moreover, #! also works for individual names:

? (retrieve (?x) (?x #!betty #!hasChild))
> (((?x http://www.owl-ontologies.com/unnamed.owl#alice)))

Please note that for older version of RacerPro (≤ 1.9.0) the #! abbreviation will not work,
and moreover, bars must be used as follows:

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

102 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

? (retrieve (?x ?y) (?x ?y |http://www.owl-ontologies.com/unnamed.owl#hasChild|))
> (((?x http://www.owl-ontologies.com/unnamed.owl#alice)

(?y http://www.owl-ontologies.com/unnamed.owl#betty)))

Note that nRQL also provides facilities to query for the fillers of OWL annotation and OWL
datatype properties, see below.

6.1.1.2.4 Explicit and Implicit Role Fillers It is important to understand that only
explicitly modeled role fillers can be retrieved with nRQL’s role query atoms. However, some
KBs may have implicit / logically implied role fillers whose presence is enforced in the logical
models of the KB. Let us consider family.racer again to illustrate this effect:

? (racer-read-file "nrql-user-guide-examples/family.racer")
> :OKAY

? (instance doris mother)
> :OKAY

? (retrieve (?x) (?x (some has-child top)))
> (((?x betty)) ((?x doris)) ((?x alice)))

? (retrieve (?x) (?x ?y has-child))
> (((?x betty)) ((?x alice)))

Now we have the situation for doris: Since we have added the assertion (instance doris
mother) it is the case that doris must have some child; thus, in every model of the KB, there
will be some successor of the has-child role. However, this child is not explicitly present
in the ABox. Thus, no binding can be found for ?y if ?x=doris in (?x ?y has-child).

It is possible to identifiy such individuals which have a certain logicall implied / implicit
role filler which is not explicitly modelled using the NAF negation neg and project-to
(see below):

? (retrieve
(?x)
(and (?x mother) (neg (project-to (?x) (?x ?y has-child)))))

> (((?x doris)))

Using a rule (see below) it even becomes possible to “create” some name for the logically
implied child and add appropriate assertions for doris to the ABox as follows:

? (firerule
(and (?x mother) (neg (project-to (?x) (?x ?y has-child))))
((related ?x (new-ind child-of ?x) has-child)))

> (((related doris child-of-doris has-child)))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 103

? (retrieve (?x ?y) (?x ?y has-child))
> (((?x doris) (?y child-of-doris))

((?x betty) (?y doris))
((?x betty) (?y eve))
((?x alice) (?y betty))
((?x alice) (?y charles)))

6.1.1.3 Constraint Query Atoms

Constraint query atoms are binary atoms and address the concrete domain part of an
ABox. Like role query atoms they are used to retrieve pairs of individuals which are in a
certain relationship to one another. However, this relationship is not a role, but specified
with a (possibly complex) binary concrete domain predicate, like =. For example, we can
retrieve those pairs of individuals that have the same age. age is a so-called concrete domain
attribute of type cardinal. The family.racer KB already contains such an age attribute,
as well as assertions specifying the individual ages of the family members:

(instance alice (= age 80))
(instance betty (= age 50))
(instance charles (= age 55))
(instance eve (= age 18))
(instance doris (= age 24))

Using a concept query atom on can easily identify the adult family members:

? (retrieve (?x) (?x (>= age 18)))
> (((?x alice)) ((?x doris)) ((?x eve)) ((?x betty)) ((?x charles)))

However, in order to find out who is older than whom, a binary retrieval predicate must be
used:

? (retrieve (?x ?y) (?x ?y (constraint age age <)))
> (((?x doris) (?y alice))

((?x doris) (?y betty))
((?x doris) (?y charles))
((?x eve) (?y alice))
((?x eve) (?y doris))
((?x eve) (?y betty))
((?x eve) (?y charles))
((?x betty) (?y alice))
((?x betty) (?y charles))
((?x charles) (?y alice)))

Using the neg and project-to operators (see below) it is even possible to retrieve the oldest
person, the oldest female, or oldest male person as follows:

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

104 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

? (retrieve (?x) (neg (project-to (?x) (?x ?y (constraint age age <)))))
> (((?x alice)))

? (retrieve (?x)
(and
(?x woman)
(neg
(project-to
(?x)
(and (?y woman) (?x ?y (constraint age age <)))))))

> (((?x alice)))

? (retrieve
(?x)
(and
(?x man)
(neg
(project-to
(?x)
(and (?y man) (?x ?y (constraint age age <)))))))

> (((?x charles)))

6.1.1.3.1 Role Chains in Constraint Query Atoms Not only attributes can be
used in constraint query atoms, but role chains ended by an attribute. This means that a
constraint query atoms such as

(?x ?y (constraint (has-child age) (has-child age) <))

can be used to retrieve those (not necessarily distinct) parents ?x, ?y such that ?x has at
least one child that is younger than one of ?y’s children. Moreover, role terms can be used
in these role chains – thus, negated and inverse roles are admissible.

6.1.1.3.2 Complex Predicates So far we have only used simple concrete domaine
predicate, e.g. <, =. Complex predicates are admissible as well – suppose you want to find
out who is at least 40 years older than whom:

? (retrieve
(?x ?y)
(?x ?y (constraint (age) (age) (> age-1 (+ age-2 40)))))

> (((?x alice) (?y doris)) ((?x alice) (?y eve)))

The complex predicate (> age-1 (+ age-2 40)) is best understood as a lambda expression
with two formal parameters age-1 and age-2 which are bound to the actual arguments
supplied by the (age) of ?x and the (age) of of ?y:

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 105

((λ(age1, age2) • age1 > age2 + 40) age(?x), age(?y))

Thus, λ(age1, age2) • age1 > age2 + 40 is applied to the actual arguments age(?x) and
age(?y) and either returns TRUE or FALSE.

Note that the formal parameters (here: age1, age2) are computed from the attribute names.
The suffixes -1 and -2 are added just in case the same attribute is used, in order to be able
to differentiate the two in the body of the predicate.

6.1.1.3.3 Querying OWL KBs with Constraint Query Atoms In the OWL realm,
the equivalent of concrete domain attributes are called OWL datatype properties.

Suppose we add to owl-ex2.owl two datatype property declarations for the properties
age and name, and specify appropriate fillers for betty and alice as follows (see file
owl-ex3.owl):

<owl:DatatypeProperty rdf:ID="age">
<rdfs:domain rdf:resource="#person"/>
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>

</owl:DatatypeProperty>

<owl:FunctionalProperty rdf:ID="name">
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
<rdfs:domain rdf:resource="#person"/>
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>

</owl:FunctionalProperty>

<person rdf:ID="alice">
<age rdf:datatype="http://www.w3.org/2001/XMLSchema#int">80</age>

<name rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Alice</name>
<hasChild>
<person rdf:ID="betty">
<age rdf:datatype="http://www.w3.org/2001/XMLSchema#int">50</age>
<name rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Betty</name>

</person>
</hasChild>

</person>
</rdf:RDF>

First we like to mention that it is possible to query datatype properties as if they were
concrete domain attributes; we have extended the RacerPro concept expression syntax ap-
propriately:

? (retrieve (?x) (?x (> #!age 75)))
> (((?x http://www.owl-ontologies.com/unnamed.owl#alice)))

? (retrieve (?x) (?x (string= #!name "Betty")))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

106 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

> (((?x http://www.owl-ontologies.com/unnamed.owl#betty)))

? (retrieve (?x) (?x (a #!name)))
35 > (((?x http://www.owl-ontologies.com/unnamed.owl#alice))

((?x http://www.owl-ontologies.com/unnamed.owl#betty)))

Constraint query atoms work as well for datatype properties, but some auxiliary role as-
sertions must be added. nRQL must be put into a special mode as the following example
demonstrates:

? (full-reset)
> :okay-full-reset

? (add-role-assertions-for-datatype-properties)
> :okay-adding-role-assertions-for-datatype-properties

? (owl-read-file "nrql-user-guide-examples/owl-ex3.owl")
> /home/mi.wessel/nrql-user-guide-examples/owl-ex3.owl

? (retrieve
(?x ?y)
(?x ?y (constraint (#!age) (#!age) <)))

> (((?x http://www.owl-ontologies.com/unnamed.owl#betty)
(?y http://www.owl-ontologies.com/unnamed.owl#alice)))

Again, complex predicates can be used

? (retrieve (?x ?y)
(?x ?y
(constraint
(#!age) (#!age)
(< (+ #!age-1 30) #!age-2))))

> NIL

? (retrieve (?x ?y)
(?x ?y
(constraint
(#!age) (#!age)
(< (+ #!age-1 29) #!age-2))))

> (((?x http://www.owl-ontologies.com/unnamed.owl#betty)
(?y http://www.owl-ontologies.com/unnamed.owl#alice)))

6.1.1.4 SAME-AS Query Atoms and Synonym Individuals

nRQL supports different notions of equality or sameness. The first notion is the syntactic
notion of name equality. Using the binary same-as query atom (in a complex query) it is

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 107

possible to specify that two variables must be bound to the same individual, or must be
bound to individuals with different names. Please note that we have not yet introduced the
neg and and operators that appear in the following example, but an intuitive understanding
is sufficient for the moment:

? (full-reset)
> :okay-full-reset

? (instance santa-claus good-man)
> :OKAY

? (instance weihnachtsmann good-man)
> :OKAY

? (retrieve (?x ?y) (and (?x good-man) (?y good-man)))
> (((?x santa-claus) (?y santa-claus))

((?x santa-claus) (?y weihnachtsmann))
((?x weihnachtsmann) (?y santa-claus))
((?x weihnachtsmann) (?y weihnachtsmann)))

? (retrieve
(?x ?y)
(and (?x good-man) (?y good-man) (same-as ?x ?y)))

> (((?x santa-claus) (?y santa-claus))
((?x weihnachtsmann) (?y weihnachtsmann)))

? (retrieve
(?x ?y)
(and (?x good-man) (?y good-man) (neg (same-as ?x ?y))))

> (((?x santa-claus) (?y weihnachtsmann))
((?x weihnachtsmann) (?y santa-claus)))

The second notion of sameness if semantic equality. Suppose you learn that weihnachtsmann
is just the german name for santa-claus; thus, weihnachtsmann and santa-claus denote
the same thing in the universe of discourse – they are individual synonyms. Let us add one
more assertion that enforces that weihachtsmann and santa-claus are synonyms:

? (same-as weihnachtsmann santa-claus)
> :OKAY

? (individual-synonyms santa-claus)
> (weihnachtsmann santa-claus)

In general, for each individual there is a set of cardinality at least one of synonym individuals,
including the individual itself, forming the synonym equivalence class for that individual.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

108 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

nRQL always removes redundant bindings from a query answer; i.e., you will never get
a query answer which contains ((?x santa-claus)) twice. In order to detect redundant
bindings, nRQL uses by default name equality. Thus, nRQL considers two variable bindings
as different if the individuals to which the variables are bound have different names:

? (retrieve (?x) (?x good-man))
> (((?x santa-claus)) ((?x weihnachtsmann)))

However, sometimes one wants to ensure that only “semantically different” bindings are
delivered; thus, either (?x santa-claus) or (?x weihnachtsmann) would be considered
redundant. This is possible as well (see below).

In addition to the (negated) same-as query atom, nRQL offers a special role, the so-called
nrql-equal-role which holds between two individuals if they are in the same synonym
equivalence class. So it becomes possible to query for pairs of individuals which have a
different name but are in fact synonyms:

? (retrieve
(?x ?y)
(and (neg (same-as ?x ?y)) (?x ?y nrql-equal-role)))

> (((?x weihnachtsmann) (?y santa-claus))
((?x santa-claus) (?y weihnachtsmann)))

Moreover, nRQL can be switched into a mode in which variables are not bound to differ-
ent ABox individuals, but to representative individuals from different synonym equivalence
classes:

? (use-individual-synonym-equivalence-classes)
> :okay-using-individual-equivalence-classes

? (retrieve (?x) (?x good-man))
> (((?x santa-claus)))

Using a so-called head-projection operator (see below) the synonyms can be delivered as
well:

? (retrieve (?x (individual-synonyms ?x))
(?x good-man)
:dont-show-lambdas-p
t)

> (((?x santa-claus) (santa-claus weihnachtsmann)))

In this mode, the same-as atom no longer denotes name equality, but semantic equal-
ity. Thus, (same-as ?x ?y) becomes equivalent to (?x ?y nrql-equal-role), and the
nrql-equal-role shouldn’t be used:

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 109

? (retrieve (?x) (same-as ?x weihnachtsmann))
> (((?x santa-claus)))

Finally we want to mention that the same-as assertion is not the only way how to two
individuals can be forced to become synonyms. Also features (functional roles) or so-called
number restrictions can cause individuals to become synonyms, for example:

? (full-reset)
> :okay-full-reset

? (define-primitive-role f :feature t)
> :OKAY

? (related i j f)
> :OKAY

? (related i k f)
> :OKAY

? (related l m r)
> :OKAY

? (related l n r)
> :OKAY

? (instance l (at-most 1 r))
> :OKAY

? (retrieve
(?x ?y)
(and (?x ?y nrql-equal-role) (neg (same-as ?x ?y))))

> (((?x n) (?y m)) ((?x m) (?y n)) ((?x k) (?y j)) ((?x j) (?y k)))

Please note that the same-as assertion is also available in OWL.

6.1.1.5 Auxiliary Query Atoms

Some auxiliary query atoms are offered by nRQL. However, these atoms are not as important
as the atoms we have already discussed.

6.1.1.5.1 HAS-KNOWN-SUCCESSOR Query Atoms Sometimes one just wants to retrieve
individuals which have a certain role successor, but the actual successor itself is of no
interest:

? (full-reset)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

110 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

> :okay-full-reset

? (racer-read-file "nrql-user-guide-examples/family.racer")
> :OKAY

? (retrieve (?x) (?x (has-known-successor has-child)))
> (((?x betty)) ((?x alice)))

This is in fact equivalent to:

? (retrieve (?x) (?x ?y has-child))
> (((?x betty)) ((?x alice)))

However, the situation changes if the NAF negated variants of these atoms are considered:

? (retrieve (?x) (neg (?x ?y has-child)))
> (((?x eve)) ((?x doris)) ((?x charles)) ((?x betty)) ((?x alice)))

? (retrieve (?x) (neg (?x (has-known-successor has-child))))
> (((?x eve)) ((?x doris)) ((?x charles)))

The explanation for the difference is that for the first query the two-dimensional comple-
ment of (?x ?y has-child) is constructed with (neg (?x ?y has-child)) and this set
of pairs is projected to their first components / tuple positions. In the second query, a
one-dimensional complement is constructed. The second query is in fact equivalent to

? (retrieve (?x) (neg (project-to (?x) (?x ?y has-child))))
> (((?x eve)) ((?x doris)) ((?x charles)))

The atom (?x (has-known-successor has-child)) is therefore just syntactic sugar for
the body (neg (project-to (?x) (?x ?y has-child))).

6.1.1.5.2 BIND-INDIVIDUAL Query Atoms A (bind-individual <name>) query
atom for some individual <name> is just syntactic sugar for (same-as ?<name> <name>),
where ?<name> is the representative variable for <name>. These atoms are provided for
backward compatibility with older versions of nRQL only.

6.1.2 Query Head Projection Operators

So far we have only used simple objects (variables and individuals) in the head of a query.
Additionally, so-called head projection operators are admitted as head entries as well. A head
projection operator is simply a function (operator) which is applied to the current binding of
the variable (the current individual), and the operator result is included in the answer tuple.
There are various predefined operators available. nRQL also offers a simple (termination-
safe) expression language called MiniLisp. Users can define their own projection operators
as lambda head operators.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 111

6.1.2.1 Retrieving Told Values from the Concrete Domain

We already mentioned that variables can only be bound to ABox individuals. However, an
ABox may also contain so-called concrete domain objects (CD objects) as well as told values
(data values / literals from the concrete domain). We already showed that a concept query
atom such as (?x (>= age 18)) can be used to specify retrieval conditions on concrete
domain attributes (here age). However, no variable can be bound to the age attribute
value, even if there is a told value given in the ABox.

Thus, head projection operators are provided in order to retrieve concrete domain values
and/or concrete domain objects.

? (full-reset)
> :okay-full-reset

? (racer-read-file "nrql-user-guide-examples/family.racer")
> :OKAY

? (retrieve (?x) (?x (>= age 18)))
> (((?x alice)) ((?x doris)) ((?x eve)) ((?x betty)) ((?x charles)))

? (retrieve (?x (told-value-if-exists (age ?x))) (?x (>= age 18)))
> (((?x alice) ((:existing-told-values (age ?x)) (80)))

((?x doris) ((:existing-told-values (age ?x)) (24)))
((?x eve) ((:existing-told-values (age ?x)) (18)))
((?x betty) ((:existing-told-values (age ?x)) (50)))
((?x charles) ((:existing-told-values (age ?x)) (55))))

Please note that the concrete age cannot always be determined. In this example, the told
values have been gather from the concept assertions in family.racer of the form (instance
(instance alice (= age 80))) etc.

nRQL also considers constrained and constraints assertion in the ABox to identify told
values; for example:

? (constrained peter age-of-peter age)
> :OKAY

? (constraints (= age-of-peter 36))
> :OKAY

? (retrieve
(?x (told-value-if-exists (age ?x)))
(?x (and (> age 30) (< age 40))))

> (((?x peter) ((:existing-told-values (age ?x)) (36))))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

112 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

Note that age-of-peter is called a concrete domain object (CD object), and 36 is a concrete
domain value. Please note that concrete domain are in fact variables in a concrete domain
constraint network; nRQL tries to identify and maximize as many told values as possible:

? (constrained mary age-of-mary age)
> :OKAY

? (constraints (= age-of-peter age-of-mary))
> :OKAY

? (retrieve
(?x (told-value-if-exists (age ?x)))
(?x (and (> age 30) (< age 40))))

> (((?x mary) ((:existing-told-values (age ?x)) (36)))
((?x peter) ((:existing-told-values (age ?x)) (36))))

However, in some case this is not possible; in this case, told-value-if-exists returns the
CD object instead of the told value:

? (constrained paul age-of-paul age)
> :OKAY

? (constraints (< age-of-paul age-of-mary))
> :OKAY

9 ? (retrieve (?x (told-value-if-exists (age ?x))) (?x (< age 40)))
9 > (((?x peter) ((:existing-told-values (age ?x)) (36)))

((?x paul) ((:existing-told-values (age ?x)) (age-of-paul)))
((?x mary) ((:existing-told-values (age ?x)) (36)))
((?x doris) ((:existing-told-values (age ?x)) (24)))
((?x eve) ((:existing-told-values (age ?x)) (18))))

Please note that age-of-paul is returned, since the told value could not be identified. This
is not surprising, since Paul’s age is underspecified (we only know that he is younger than
Mary).

There are two more operators which address concrete domain objects. Operators of the
form (<attribute> <object>), e.g., (age ?x) return the concrete domain object which is
the filler of <attribute> of the current binding of <object>:

? (retrieve (?x (age ?x)) (?x (an age)))
> (((?x peter) ((age ?x) (age-of-peter)))

((?x paul) ((age ?x) (age-of-paul)))
((?x mary) ((age ?x) (age-of-mary)))
((?x alice) ((age ?x) :no-cd-objects))
((?x doris) ((age ?x) :no-cd-objects))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 113

((?x eve) ((age ?x) :no-cd-objects))
((?x betty) ((age ?x) :no-cd-objects))
((?x charles) ((age ?x) :no-cd-objects)))

The told-value operator can be applied to CD objects (if existing) to retrieve told values
for that CD object:

? (retrieve (?x (told-value (age ?x))) (?x (an age)))
> (((?x peter) ((:told-values (age ?x)) (36)))

((?x paul) ((:told-values (age ?x)) (:no-told-value)))
((?x mary) ((:told-values (age ?x)) (36)))
((?x alice) ((:told-values (age ?x)) :no-cd-objects))
((?x doris) ((:told-values (age ?x)) :no-cd-objects))
((?x eve) ((:told-values (age ?x)) :no-cd-objects))
((?x betty) ((:told-values (age ?x)) :no-cd-objects))
((?x charles) ((:told-values (age ?x)) :no-cd-objects)))

Please note that told-value-if-exists is more general.

6.1.2.2 Retrieving Told Fillers of OWL Datatype Properties

OWL KBs may contain datatype fillers of datatype properties. In OWL, these fillers are val-
ues / literals of XSD (XML Schema) datatypes. In RacerPro, these fillers are represented as
told values in the concrete domain part of the ABox. With the help of the datatype-fillers
head projection operator it is possible to retrieve these data fillers.

Let us consider owl-ex3.owl again, which contains two datatype properties name and age:

? (full-reset)
> :okay-full-reset

? (owl-read-file "nrql-user-guide-examples/owl-ex3.owl")
> nrql-user-guide-examples/owl-ex3.owl

? (retrieve
(?x
(datatype-fillers (#!name ?x))
(datatype-fillers (#!age ?x)))
(?x (and #!person (> #!age 30))))

> (((?x http://www.owl-ontologies.com/unnamed.owl#alice)
((:datatype-fillers

(http://www.owl-ontologies.com/unnamed.owl#name ?x))
(Alice))
((:datatype-fillers

(http://www.owl-ontologies.com/unnamed.owl#age ?x))
(80)))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

114 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

((?x http://www.owl-ontologies.com/unnamed.owl#betty)
((:datatype-fillers
(http://www.owl-ontologies.com/unnamed.owl#name ?x))
(Betty))
((:datatype-fillers
(http://www.owl-ontologies.com/unnamed.owl#age ?x))
(50))))

Please note that it is possible to specify complex retrieval conditions on
the fillers of such datatype properties, as the concept query atom (?x (>
http://www.owl-ontologies.com/unnamed.owl#age 30)) demonstrates. The retrieval
predicates can be rather complex, as the concept query atom (?x (some #!age (or (and
(> 40) (< 60)) (= 80)))) demonstrates. Note that this concept is only permitted as a
query concept in a concept query atom, but not elsewhere in a RacerPro KB.

In order to specify retrieval conditions on boolean datatype properties it is important to
know how to specify TRUE and FALSE. In owl-ex4.owl we have added a datatype property
married of type boolean to owl-ex3.owl:

? (full-reset)
> :okay-full-reset

? (owl-read-file "nrql-user-guide-examples/owl-ex4.owl")
> /home/mi.wessel/nrql-user-guide-examples/owl-ex4.owl

? (retrieve
(?x
(datatype-fillers (#!married ?x)))
(?x (boolean= #!married #T)))

> (((?x http://www.owl-ontologies.com/unnamed.owl#alice)
((:datatype-fillers
(http://www.owl-ontologies.com/unnamed.owl#married ?x))
(#T))))

? (retrieve
(?x
(datatype-fillers (#!married ?x)))
(?x (boolean= #!married #F)))

> (((?x http://www.owl-ontologies.com/unnamed.owl#betty)
((:datatype-fillers
(http://www.owl-ontologies.com/unnamed.owl#married ?x))
(#F))))

6.1.2.3 Retrieving Told Fillers of OWL Annotation Properties

In OWL, the so-called annotation properties are used to annotate resources with meta data,
e.g., comments on authorship of an ontology, etc. Annotation properties are not used for

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 115

reasoning – they are simply ignored. Nevertheless, meta data is important and one should
be able to retrieve this information from an OWL document.

OWL distinguishes two kinds of annotation properties:

1. annotation object properties, and

2. annotation datatype properties.

Fillers (told values) of annotation datatype properties are XML Schema datatype (XSD)
values / literals, whereas fillers of annotation object properties are ordinary ABox
(OWL / RDF) individuals. To retrieve a filler of an annotation datatype property, spe-
cial head projection operators must be used (similar to the datatype property case):
annotation-datatype-fillers. To retrieve fillers of annotation object properties, ordi-
nary role query atoms can be used. Please note that no reasoning is performed on anno-
tation properties. Thus, no complex retrieval conditions can be specified with the help of
concept query atoms. However, with the help of the so-called mirror data substrate this
becomes possible (see below).

Let us consider an example OWL (file owl-ex5.owl) document which contains all four kinds
of properties:

<?xml version="1.0"?>
<rdf:RDF

xmlns="http://www.owl-ontologies.com/Ontology1159352693.owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"

xml:base="http://www.owl-ontologies.com/Ontology1159352693.owl">

<owl:Ontology rdf:about="">
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
>Demo Ontology</rdfs:comment>

</owl:Ontology>

<owl:Class rdf:ID="class">
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
>This is a test class</rdfs:comment>

</owl:Class>

<owl:ObjectProperty rdf:ID="object-property">
<rdfs:domain rdf:resource="#class"/>

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:ID="datatype-property">
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

116 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

<rdfs:domain rdf:resource="#class"/>
</owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID="annotation-object-property">
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#AnnotationProperty"/>
<rdfs:domain rdf:resource="#class"/>

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:ID="annotation-datatype-property">
<rdfs:domain rdf:resource="#class"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#AnnotationProperty"/>

</owl:DatatypeProperty>

<class rdf:ID="test">
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
>Comment for individual test</rdfs:comment>
<object-property rdf:resource="#test"/>
<datatype-property rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
>123</datatype-property>
<annotation-object-property rdf:resource="#test"/>
<annotation-datatype-property rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
>456</annotation-datatype-property>

</class>

</rdf:RDF>

Thus, here we have

• an ontology which is annotated with the string "Demo Ontology" which is the filler
of the (RDF(S) predefined) rdfs:comment annotation datatype property of type
XSD:string,

• a class #!class, which is rdfs:comment annotated with "This is a test class",

• an ordinary object property #!object-property,

• an ordinary datatype property #!datatype-property of type XSD:int,

• an annotation object property #!annotation-object-property,

• an annotation datatype property #!annotation-datatype-property of type int,

• and an individual named #!test being an instance of #!class, which has

– itself as a filler of #!object-property,

– the integer 123 as a filler of #!datatype-property,

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 117

– the string "Comment for individual test" as a filler of the annotation
datatype property rdf:comment,

– itself as a filler of #!annotation-object-property, and

– the integer 456 as as filler of the #!annotation-datatype-property.

The following queries demonstrate how the fillers of these different properties can be re-
trieved with nRQL; the queries should speak for themselves:

? (retrieve (?x) (?x #!class))
> (((?x http://www.owl-ontologies.com/Ontology1159352693.owl#test)))

? (retrieve (?x ?y) (?x ?y #!object-property))
> (((?x http://www.owl-ontologies.com/Ontology1159352693.owl#test)

(?y http://www.owl-ontologies.com/Ontology1159352693.owl#test)))

? (retrieve (?x ?y) (?x ?y #!annotation-object-property))
> (((?x http://www.owl-ontologies.com/Ontology1159352693.owl#test)

(?y http://www.owl-ontologies.com/Ontology1159352693.owl#test)))

? (retrieve (?x) (?x (some #!object-property #!class)))
> (((?x http://www.owl-ontologies.com/Ontology1159352693.owl#test)))

? (retrieve (?x) (?x (some #!annotation-object-property #!class)))
> NIL

;;; Note: no reasoning for annotation object properties!

? (retrieve (?x (datatype-fillers (#!datatype-property ?x)))
(?x (a #!datatype-property)))

> (((?x http://www.owl-ontologies.com/Ontology1159352693.owl#test)
((:datatype-fillers

(http://www.owl-ontologies.com/Ontology1159352693.owl#datatype-property ?x))
(123))))

? (retrieve (?x (datatype-fillers (#!datatype-property ?x)))
(?x (some #!datatype-property integer)))

> (((?x http://www.owl-ontologies.com/Ontology1159352693.owl#test)
((:datatype-fillers

(http://www.owl-ontologies.com/Ontology1159352693.owl#datatype-property ?x))
(123))))

? (retrieve (?x (datatype-fillers (#!datatype-property ?x)))
(?x (some #!datatype-property (and (min 100) (max 200)))))

> (((?x http://www.owl-ontologies.com/Ontology1159352693.owl#test)
((:datatype-fillers
(http://www.owl-ontologies.com/Ontology1159352693.owl#datatype-property ?x))

(123))))

? (retrieve (?x (annotation-datatype-fillers (#!annotation-datatype-property ?x)))
(?x (an #!annotation-datatype-property)))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

118 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

> (((?x http://www.owl-ontologies.com/Ontology1159352693.owl#test)
((:annotation-datatype-fillers
(http://www.owl-ontologies.com/Ontology1159352693.owl#annotation-datatype-property
?x))

(456))))

? (retrieve (?x (annotation-datatype-fillers (#!annotation-datatype-property ?x)))
(?x (some #!annotation-datatype-property integer)))

> (((?x http://www.owl-ontologies.com/Ontology1159352693.owl#test)
((:annotation-datatype-fillers
(http://www.owl-ontologies.com/Ontology1159352693.owl#annotation-datatype-property
?x))

(456))))

? (retrieve (?x (annotation-datatype-fillers (#!annotation-datatype-property ?x)))
(?x (some #!annotation-datatype-property (and (min 300) (max 500)))))

> NIL

;;; Note: no reasoning for annotation datatype properties!

Note that we can neither retrieve the RDF(S):comment annotation "Demo Ontology" of
the whole ontology nor the class annotation "This is a test class" in that way, since
nRQL is an ABox query language and there are simply no corresponding ABox individuals
representing the whole ontology and/or the classes.

However, the so-called mirror data substrate will (among other things) contain “nodes”
representing the used XSD literals as well as nodes representing the individual OWL classes
and thus, using a mirror data substrate instead of an ABox, the annotation fillers of classes
can be retrieved, see below.

6.1.3 Lambda Head Operators to Evaluate Expressions

The application of a head projection operator can be understood as a function applica-
tion. So-called lambda expressions can denote (anonymous) functions. nRQL allows for the
specification of lambda expressions in the head of a query; nRQL uses a Lisp dialect which
we call MiniLisp. MiniLisp is a termination-safe expression language (not a programming
language).

For example, consider an ABox representing material objects in the physical world, having
width and length, and we want to computed and return the area of these objects with a
query (see file lambda-ex1.owl):

? (define-concrete-domain-attribute width :type integer)
> :OKAY

? (define-concrete-domain-attribute length :type integer)
> :OKAY

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 119

? (instance i (and (equal width 10) (equal length 20)))
> :OKAY

? (retrieve
(?x
((lambda (x y) (* (first x) (first y)))
(told-value-if-exists (width ?x))
(told-value-if-exists (length ?x))))

(?x (and (a width) (a length))))
> (((?x i)

(((:lambda (x y) (* (first x) (first y)))
(:existing-told-values (width ?x))
(:existing-told-values (length ?x)))

200)))

The function / lambda application is performed by substituting the formal parameters x, y
to the actual arguments supplied by the two told-value-if-exists projection operators.
These operators return lists of (told) values; thus, the first function is applied before * is
applied to yield the total size.

6.1.3.1 MiniLisp

MiniLisp is easy to understand and use for readers which have some Common Lisp (CL)
experience. MiniLisp only supports symbols, strings, numbers, and lists. Many of the built-
in operators are inherited from CL. All RacerPro API functions can be called from within
a lambda body; RacerPro macros are treated as functions.
MiniLisp supports / quote, ‘ / backquote, , / comma, and @ / bq-comma-atsign. This is
very useful if nRQL (sub)queries with variable parts shall be executed from within a lambda
body.
The lambda body is evaluated in an environment where *current-abox* is bound to the
query ABox, and *current-tbox* to the query TBox. Moreover, *output-stream* is
bound to the file output stream within the scope of with-open-output-file; this is an
ordinary CL output stream, and can thus be used as argument to standard CL functions
such as format. See below for examples for file output.
The following special forms are provided: reduce, and, or, not, if, when, unless,
cond, maptree, maplist, every, some, progn, prog1, let, let*, lambda,
with-nrql-settings. Note that functions like maptree take lambda bodies as argu-
ments; however, lambda expressions are not first-order in MiniLisp in order to grant
termination.
These head projection operators are available as functions: describe-ind instantiators

most-specific-instantiators retrieve-individual-synonyms.
Some type conversion functions: to-number to-string to-symbol.

There are some predefined sorting functions: sort-string-greaterp sort-string-lessp

sort-string< sort-string> sort-symbol-name-greaterp sort-symbol-name-lessp sort<

sort>.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

120 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

The following functions are borrowed from Common Lisp and work as expected:

* + - / 1+ 1- < <= = > >= append asin asinh atan atanh ceiling concat cons consp

cos cosh eighth ensure-list eq eql equal equalp evenp expt fifth find first

flatten float floor format fourth intersection length list listp log max member

min minusp ninth nth nth null numberp oddp plusp position princ rationalize

remove rest reverse round search second set-difference set-equal set-subset

seventh signum sin sinh sixth sqrt string-capitalize string-downcase string-equal

string-greaterp string-lessp string-upcase string< string<= string= string>

string>= stringp symbol-name symbolp tan tanh tenth terpri third tree-equal

type-of union with-open-output-file write zerop

6.1.3.2 MiniLisp Head-Projection Operators

We have already discussed the told value and attribute retrieval head-projection
operators. nRQL offers some more head projection operators which are im-
plemented in MiniLisp. The following head projections operators are imple-
mented in MiniLisp and can be called MiniLisp macro head-projection operators:
:all-types (also: :types :instantiators :all-instantiators), :all-types-flat
(also: :all-instantiators-flat :types-flat :instantiators-flat), and
:direct-types (also: :most-specific-types :most-specific-instantiators
:direct-instantiators), :direct-types-flat (also: :most-specific-types-flat
:most-specific-instantiators-flat :direct-instantiators-flat), and :describe
as well as :individual-synonyms.

Here are some examples illustrating these macro operators:

? (full-reset)
> :okay-full-reset

? (instance i c)
> :OKAY

? (implies c d)
> :OKAY

? (retrieve (?x (describe ?x)) (?x top))
> (((?x i)

(((:lambda (?x) (describe-ind ?x *current-abox*)) ?x)
(i
:assertions
((i c))
:role-fillers
NIL
:told-attribute-fillers
NIL
:told-datatype-fillers
NIL
:annotation-datatype-property-fillers
NIL

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 121

:annotation-property-fillers
NIL
:direct-types
:to-be-computed))))

? (describe-query :last)
> (:query-1

(:accurate :processed)
(retrieve
(?x ((:lambda (?x) (describe-ind ?x *current-abox*)) ?x))
(?x top)
:abox
default))

? (retrieve (?x (types ?x)) (?x top))
> (((?x i)

(((:lambda (?x) (instantiators ?x *current-abox*)) ?x)
((c) (d) (*top* top)))))

? (retrieve (?x (all-types ?x)) (?x top))
> (((?x i)

(((:lambda (?x) (instantiators ?x *current-abox*)) ?x)
((c) (d) (*top* top)))))

? (retrieve (?x (all-types-flat ?x)) (?x top))
> (((?x i)

(((:lambda
(?x)
(sort-symbol-name-lessp
(flatten (instantiators ?x *current-abox*))))

?x)
((c d *top* top)))))

Please note that the retrieve macro can be advised to no include the lambda expression
in the query answer:

? (retrieve (?x (all-types-flat ?x)) (?x top) :dont-show-lambdas-p t)
> (((?x i) ((c d *top* top))))

It should be noted that the lambda expression can also be used in rule antecedences, see
below.

6.1.3.3 MiniLisp Examples

We present four examples which make MiniLisp more concrete and demonstrate its useful-
ness.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

122 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

6.1.3.3.1 Aggregation Operators First we show how queries with aggregation op-
erators can be implemented. Consider the following KB which models the compositional
structure of a car. A car has certain parts, and each part has a certain weight (see file
lambda-ex2.racer):

(full-reset)
(define-primitive-role has-part :transitive t)
(define-concrete-domain-attribute weight :type real)

(instance car1 car)
(related car1 engine1 has-part)
(related engine1 cylinder-1-4 has-part)
(related car1 wheel-1-4 has-part)
(related car1 chassis1 has-part)
(instance engine1 (= weight 200.0))
(instance chassis1 (= weight 400.0))
(instance wheel-1-4 (= weight 30.0))

Using MiniLisp, we can compute the overall weight as well as identify its number of com-
ponents (see file nrql-user-guide-examples/lambda-ex2-query1.racer):

? (retrieve1 (?car car)
(((lambda (car)

(let ((w
(reduce ’+

(flatten
(retrieve1 ‘(and (,car car)

(,car ?part has-part)
(?part (a weight)))

‘(((lambda (weight) weight)
(told-value-if-exists

(weight ?part))))))))
(parts (length (retrieve ‘(?part) ‘(,car ?part has-part)))))

‘((?car ,car) (?no-of-parts ,parts) (?total-weight ,w))))
?car)))

> ((((?car car1) (?no-of-parts 4) (?total-weight 630.0))))

Please note that retrieve1 is like retrieve, but with head and body argument positions
flipped. The body of the query consists of the concept query atom (?x car). The lambda ex-
pression is then applied to the current binding of ?x. So, within the lambda, car is bound to
the bindings / value of ?x. First, the total weight is computed: for this purpose, a subquery is
constructed. If ?x = car1, then the query (retrieve1 ‘(and (car1 car) (car1 ?part
has-part) (?part (a weight))) ...) is constructed and posed, asking for the parts of
car1. The head of the subquery consists of yet another lambda, which simply applies the
told-value-if-exists head projection operator to retrieve the told values of the weight
attribute of ?part. The subquery result is returned as a nested list; the list if then flattened,
and its items are summed using (reduce ’+ ...). The result is bound to the local variable

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 123

w. Similarly, the number of parts is computed (by posing yet another subquery). Finally, the
result of the lambda expression is constructed and returned. The constructed and returned
value will become the result tuple. So, if car is car1, and no-of-parts is 4, and w is 630.0,
then the template ‘((?car ,car) (?no-of-parts ,parts) (?total-weight ,w)) con-
structs the result tuple (((?car car1) (?no-of-parts 4) (?total-weight 630.0))).

6.1.3.3.2 Efficient Aggregation Operators using Promises Although the previous
query demonstrated the power and utility of MiniLisp, the aggregation is not computed
efficiently. The reason is that for each binding of ?car, two new subqueries are constructed.
Each query has to be parsed, compiled, and is then maintained as a query object. Since
the structure of the subqueries does not change during query execution it would be better
to construct these subqueries in advance. This can be achieved using so-called promises.
During the time of query preparation, a promise for a variable declares that this variable
is treated as an individual. Moreover, it is promised that at the time when the query is
executed, that variable is indeed bound to an individual.

Thus, a more efficient version looks as follows (see file
nrql-user-guide-examples/lambda-ex2-query2.racer):

? (with-future-bindings (?car)
(delete-all-queries)
(prepare-abox-query (?part) (and (?car car) (?car ?part has-part))

:dont-show-lambdas t
:id :parts-of-car)

(prepare-abox-query (((lambda (weight) weight)
(told-value-if-exists (weight ?part))))

(and (?car car) (?car ?part has-part) (?part (a weight)))
:dont-show-lambdas t
:id :weights-of-parts-of-car))

> ...

This has defined two queries named :parts-of-car and :weights-of-parts-of-car.
The query optimizer has treated the ?car variable as an individual due to
with-future-bindings. Thus, we have promised nRQL that we will only execute these
queries if we supply a binding for agg. We can establish such a binding during query exe-
cution using with-nrql-settings as follows:

? (retrieve1 (?car car)
(((lambda (car)

(with-nrql-settings (:dont-show-lambdas t
:bindings ‘((?car ,car)))

(let ((w
(reduce ’+

(flatten
(execute-or-reexecute-query :weights-of-parts-of-car))))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

124 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

(parts (length
(execute-or-reexecute-query :parts-of-car))))

‘((?car ,car) (?total-weight ,w)))))
?car)))

> ((((?car car1) (?no-of-parts 4) (?total-weight 630.0))))

6.1.3.3.3 User Defined Query Result Format As already demonstrated, the value
returned by a lambda body is included in the binding list. In the previous query, the lambda
body returns a structured list using the template ‘((?car ,car) (?total-weight ,w));
this is equivalent to (list (list ’?car car) (list ’?total-weight w)). It is also easy
to specify natural language output; simply replace

‘((?car ,car) (?total-weight ,w))
with

(format nil "Car with name A weights A kg and has A parts." car w parts)
in the previous query, and you will get

((Car with name car1 weights 630.0d0 kg and has 4 parts.))

as the query result.

6.1.3.3.4 File Output MiniLisp also offers the with-open-output-file which allows
to open an output file. Simply print to the stream *output-stream* (which is established
by with-open-output-file) to add arbitrary content to the output file.

? (retrieve1 (?car car)
(((lambda (car)

(with-open-output-file ("minilisp-output.txt")
(let ((w

(reduce ’+
(flatten
(retrieve1 ‘(and (,car car)

(,car ?part has-part)
(?part (a weight)))

‘(((lambda (weight) weight)
(told-value-if-exists
(weight ?part))))))))

(parts
(length

(retrieve ‘(?part) ‘(,car ?part has-part)))))
(format *output-stream*

"Car with name ~A weights ~A kg and has ~A parts.~%"
car w parts)))))

?car)))
> ((NIL))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 125

The output can be found in the file minilisp-output.txt; moreover, the result
((NIL)) is delivered because the lambda body returns (NIL). Please note that
with-open-output-file only works if RacerPro in running in unsafe mode.

6.1.3.3.5 Filtering Result Tuples lambda bodies can also work as filters as follows:
if the special token :reject is returned from the lambda body, then the result is rejected,
i.e., will not appear in the query answer. For example, using :reject we can easily reject
all parts which have no subparts:

? (retrieve1 (?part top)
(((lambda (part)

(let ((parts
(length
(retrieve ‘(?part) ‘(,part ?part has-part)))))

(if (zerop parts) :reject ‘(,part has ,parts parts))))
?part)))

> (((engine1 has 1 parts)) ((car1 has 4 parts)))

6.1.3.3.6 Combined TBox / ABox Queries Finally, let us present an example with
demonstrates how to combine TBox queries and ABox queries. Sometimes, one wants to
retrieve all and only the direct instances of a concept / OWL class. An individual is called
a direct instance of a concept / OWL class if there is no subconcept / subclass of which the
individual is also an instance.

Let us create two concepts c and d such that d is a sub concept (child concept) of c:

? (full-reset)
> :okay-full-reset

? (define-concept c (some r top))
> :OKAY

? (define-concept d (and c e))
> :OKAY

We can verify that d is indeed a child concept of c, using a so-called TBox query, see below:

? (tbox-retrieve (?x) (c ?x has-child))
> (((?x d)))

Let us create two individuals so that i and j are instances of c; moreover, j is also an
instances of d:

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

126 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

? (related i j r)
> :OKAY

? (related j k r)
> :OKAY

? (instance j e)
> :OKAY

? (retrieve (?x) (?x c))
> (((?x j)) ((?x i)))

? (retrieve (?x) (?x d))
> (((?x j)))

The previous queries demonstrated that both i as well as j are c instances. However, only
i is a direct c instance. We can retrieve these direct instances of c as follows:

? (retrieve1 (?x c)
(((:lambda (x)

(if (some (lambda (subclass)
(retrieve () ‘(,x ,subclass)))

(flatten
(tbox-retrieve1 ‘(c ?subclass has-child)
‘(((:lambda (subclass) subclass) ?subclass)))))

:reject
‘(?x ,x)))

?x)))
> (((?x i)))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 127

6.1.4 Complex Queries

After having discussed the available query atoms and the structure of the query head (which
may contain head projection operators and/or lambda expressions), let us discuss the struc-
ture of the (complex) query bodies. Please note that some of the so far presented example
queries already used complex query bodies.

A nRQL query body is inductively defined as being either a single query atom, or a complex
query body which is constructed from query bodies with the help of the following query
body constructors. As usual, a prefix syntax is used:

• and is an n-ary constructor which is used for the formulation of conjunctive queries.
The arguments of the and are called conjuncts. The conjuncts are query bodies.

• union is an n-ary constructor. The arguments of the union are called disjuncts. The
constructor computes the union of the query answers of its disjuncts. The disjuncts
are query bodies.

• neg is a unary constructor, the negation as failure (NAF) negation. The argument is
a query body.

• project-to is a unary constructor. This is the projection operator for query bodies
(not to be confused with with head projection operators). The argument is a query
body; moreover, the constructor also needs a so-called projection list as argument.
So, the first argument to this constructor is the projection list. This list is a list of
objects (variables and/or individuals). Head projection operators are not permitted
here. The second argument is a query body. Moreover, the set of objects mentioned
in the projection list must be a subset of the set of objects mentioned in the query
body.

Please look up the EBNF specification to learn more about the compositional syntax of
nRQL (see Section 6.1.9).

We will now present and discuss each body constructor.

6.1.4.1 The AND Constructor – Conjunctive Queries

Suppose we want to retrieve all woman having a male child from family.racer. This is a
classic (grounded) conjunctive query:

? (retrieve (?x ?y) (and (?x woman) (?x ?y has-child) (?y man)))
> (((?x alice) (?y charles)))

Here is another example query which searches for children having a common mother:

? (retrieve
(?mother ?child1 ?child2)
(and

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

128 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

(?child1 human)
(?child2 human)
(neg (same-as ?child1 ?child2))
(?mother ?child1 has-child)
(?mother ?child2 has-child)))

> (((?mother betty) (?child1 doris) (?child2 eve))
((?mother betty) (?child1 eve) (?child2 doris))
((?mother alice) (?child1 betty) (?child2 charles))
((?mother alice) (?child1 charles) (?child2 betty)))

Note that the atom (neg (same-as ?child1 ?child2)) prevents that ?child1 and
?child2 are bound to the same individual.

6.1.4.2 The UNION Constructor

nRQL also offers a union constructor (also or can be used):

? (retrieve (?x) (union (?x woman) (?x man)))
> (((?x alice)) ((?x betty)) ((?x eve)) ((?x doris)) ((?x charles)))

As the name suggests, union simply returns the union of the query answers returned by
its argument bodies (disjuncts). A disjunct which references n objects (variables and/or
individuals) denotes a set of n-ary tuples. Since the union operator is only meaningful if all
disjuncts have the same arity, nRQL nRQL ensures that the disjuncts will always have the
same arity. This is achieved by adding additional (<variable> top) conjuncts to disjuncts:

? (retrieve (?x ?y) (union (?x ?y has-child) (?x mother)))
> (((?x alice) (?y eve))

((?x alice) (?y doris))
((?x alice) (?y charles))
((?x alice) (?y betty))
((?x alice) (?y alice))
((?x betty) (?y eve))
((?x betty) (?y doris))
((?x betty) (?y charles))
((?x betty) (?y betty))
((?x betty) (?y alice)))

? (describe-query :last)
> (:query-10

(:accurate :processed)
(retrieve
(?x ?y)
(or (and (?x mother) (top ?y)) (?x ?y has-child))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 129

:abox
smith-family))

Note that nRQL has rewritten the original query body into (or (and (?x mother) (top
?y)) (?x ?y has-child)).

It is important to note that the variable names matter. Consider the following query:

? (retrieve (?x) (union (?x man) (?y woman)))
> (((?x charles)) ((?x eve)) ((?x doris)) ((?x betty)) ((?x alice)))

A common pitfall is to think that this query is equivalent to the query

(retrieve (?y) (?y man)).

However, it is not, since ?x and ?y are different individuals. The disjuncts of the union
have thus arity 2:

? (describe-query :last)
> (:query-11

(:accurate :processed)
(retrieve
(?x)
(or (and (?x man) (top ?y-ano1)) (and (top ?x) (?y-ano1 woman)))
:abox
smith-family))

nRQL has rewritten this body into (union (and (?x man) (top ?y-ano1)) (and (top
?x) (?y-ano1 woman))); the variable ?y has been replaced with ?y-ano1 since ?y is not
mentioned in the query head. Since we are thus only interested in the bindings of ?x it
becomes clear that this query body is in fact equivalent to (union (?x body) (?x top)),
or (?x top).

Another pitfall is to think that the query

(retrieve (?x) (union (?x C) (?x (not C))))

is equivalent to

(retrieve (?x) (?x (or C (not C)))).

However, it is not, since the concept (or C (not C)) is equivalent to top, and thus, all
individuals will be returned. However, the union query returns only those individuals for
which either C or (not C) can be proven. Due to the Open World Semantics (OWA) there
can be individuals which are neither instances of C nor of its complement (not C), but
every individual is of course an instance of top:

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

130 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

? (full-reset)
> :okay-full-reset

? (instance i c)
> :OKAY

? (instance j (not c))
> :OKAY

? (instance k top)
> :OKAY

? (retrieve (?x) (union (?x c) (?x (not c))))
> (((?x i)) ((?x j)))

? (retrieve (?x) (?x (or c (not c))))
> (((?x k)) ((?x j)) ((?x i)))

6.1.4.3 NEG – The Negation As Failure Constructor

A NEG constructor is provided which provides Negation as Failure, short: NAF negation.

NAF is especially useful for measuring the completeness of the modeling in a KB. Many
users are probably familiar with logic programming language the PROLOG, which also
offers NAF.

NAF is quite different from classical ”true” negation. The neg operator can be applied to
an arbitrary query body.

6.1.4.3.1 Negation as Failure for Concept Query Atoms NAF is quite different
from true negation. Consider the following example:

? (full-reset)
> :okay-full-reset

? (racer-read-file "nrql-user-guide-examples/family.racer")
> :OKAY

? (retrieve (?x) (?x grandmother))
> (((?x alice)))

? (retrieve (?x) (neg (?x grandmother)))
> (((?x eve)) ((?x doris)) ((?x charles)) ((?x betty)))

RacerPro can prove that alice is an instance of grandmother. Thus, for the other present
individual, it cannot prove membership in grandmother. In order to retrieve the individu-
als for which RacerPro cannot prove membership, the neg operator is provided: We can

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 131

simply retrieve these individuals with the NAF-negated concept query atom (neg (?x
grandmother)). This atom simply returns the complement set of (?x grandmother). For
any concept C, the body (union (?x C) (neg (?x C))) is equivalent to (?x top):

? (retrieve (?x) (union (?x grandmother) (neg (?x grandmother))))
> (((?x alice)) ((?x eve)) ((?x doris)) ((?x charles)) ((?x betty)))

? (retrieve (?x) (?x top))
> (((?x alice)) ((?x betty)) ((?x charles)) ((?x doris)) ((?x eve)))

Note that classical negation is of course also available, since RacerPro offers concept negation
in its concept language:

? (retrieve (?x) (?x (not grandmother)))
> (((?x charles)))

RacerPro is able to prove that charles is an instance of (not grandmother), since carles
is a man, and grandmothers are woman. Moreover, man and woman are disjoint. Note that,
for any concept C, the atom (?x (not C)) always returns a subset of (neg (?x C)).

Thus, as already mentioned, the following query is not equivalent to (?x top):

(retrieve (?x) (union (?x grandmother) (?x (not grandmother))))
> (((?x alice)) ((?x charles)))

It even possible to combine classical with NAF negation in a query:

? (retrieve (?x) (neg (?x (not grandmother))))
> (((?x eve)) ((?x doris)) ((?x betty)) ((?x alice)))

So, we have asked for those individuals for which RacerPro cannot prove that they are
instances of (not grandmother). Note that this is again the complement of

? (retrieve (?x) (?x (not grandmother)))
> (((?x charles)))

6.1.4.3.2 Negation as Failure for Unary Atoms with Individuals A unary atom
and its NAF-negated variant are always complementary. This also holds if the atom refer-
ences an individual and not a variable:

? (retrieve (?x) (?x grandmother))
> (((?x alice)))

? (retrieve (?x) (neg (?x grandmother)))
> (((?x eve)) ((?x doris)) ((?x charles)) ((?x betty)))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

132 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

We have already discussed that individuals in queries are in fact replaced by representative
variables; e.g., alice is replaced with ?alice, and a (same-as ?alice alice) conjunct
is added. We call this the standard transformation in the following. This allows convenient
NAF negation, but note that in the NAF-negated variant, alice behaves like a variable:

? (retrieve (alice) (alice grandmother))
> (((?alice alice)))

? (describe-query :last)
> (:query-7

(:accurate :processed)
(retrieve
(?alice)
(and (same-as ?alice alice) (?alice grandmother))
:abox
smith-family))

? (retrieve (alice) (neg (alice grandmother)))
> (((?alice eve))

((?alice doris))
((?alice charles))
((?alice betty)))

? (describe-query :last)
> (:query-8

(:accurate :processed)
(retrieve
(?alice)
(or
(not (same-as ?alice alice))
(and (not (?alice grandmother)) (top alice)))
:abox
smith-family))

However, if this behavior is unwanted for (neg (alice grandmother)), then simply en-
sure that no individuals appear in NAF-negated atoms. Use only variables in NAF-negated
atoms. Additional same-as and NAF-negated same-as atoms may be added to further con-
strain the bindings of variables to certain individuals, or to rule out undesired bindings, for
example:

? (retrieve (?x) (and (?x grandmother) (same-as ?x alice)))
> (((?x alice)))

? (describe-query :last)
> (:query-24

(:accurate :processed)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 133

(retrieve
(?x)
(and (same-as ?x alice) (?x grandmother))
:abox
smith-family))

? (retrieve (?x) (and (neg (?x grandmother)) (same-as ?x alice)))
> NIL

? (describe-query :last)
> (:query-25

(:accurate :processed)
(retrieve
(?x)
(and (same-as ?x alice) (not (?x grandmother)))
:abox
smith-family))

Also the bind-individual atom can be used, which is syntactic sugar:

? (retrieve
(alice)
(and (neg (alice grandmother)) (bind-individual alice)))

> NIL

? (describe-query :last)
> (:query-10

(:accurate :processed)
(retrieve
(?alice)
(or
(and (same-as ?alice alice) (not (same-as ?alice alice)))
(and
(same-as ?alice alice)
(not (?alice grandmother))
(top alice)))

:abox
smith-family))

Please note that NAF negation can also be tricky in the presence of individual synonyms,
since the standard individual transformation uses same-as atoms, and same-as works on a
syntactic level (unless you turn on the (use-individual-synonym-equivalence-classes)
mode). This means that synonym individuals will not be recognized as such:

? (same-as alice grandmother)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

134 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

> :OKAY

? (retrieve (alice) (alice grandmother))
> (((?alice alice)))

? (retrieve (alice) (neg (alice grandmother)))
> (((?alice grandmother))

((?alice eve))
((?alice doris))
((?alice charles))
((?alice betty)))

? (describe-query :last)
> (:query-69

(:accurate :processed)
(retrieve
(?alice)
(or
(not (same-as ?alice alice))
(and (not (?alice grandmother)) (top alice)))
:abox
smith-family))

So, grandmother is returned here, even though alice and grandmother are synonyms.
Due to the standard individual transformation, the query (alice grandmother) is rewrit-
ten into (and (?alice grandmother) (same-as ?alice alice)). Thus, (neg (alice
grandmother)) was consequently rewritten into (union (?alice grandmother) (neg
(same-as ?alice alice))), as shown by the result of (describe-query :last) (as men-
tioned, not can be used for neg, and or for union). Since (neg (same-as ?alice alice))
holds for the binding ?alice=grandmother, this binding is included in the answer.

What can be done to exclude this binding? We can simply replace the automatically
added same-as atom with a role query atom referencing the nrql-equal-role (al-
ternatively, we could also turn on the semantic same-as interpretation using the
(nrql-symbols:use-individual-synonym-equivalence-classes) directive):

? (retrieve
(?alice)
(or
(not (?alice alice nrql-equal-role))
(not (?alice grandmother))))

> (((?alice eve))
((?alice doris))
((?alice charles))
((?alice betty)))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 135

Please note that individuals in role query atoms which use the nrql-equal-role will never
be replaced with their representative variables.

Moreover, we can also turn on the semantic same-as interpretation as follows:

? (use-individual-synonym-equivalence-classes)
> :okay-using-individual-equivalence-classes

? (retrieve (alice (individual-synonyms alice))
(alice grandmother)
:dont-show-lambdas-p t)

> (((?alice alice) (alice grandmother)))

? (retrieve
(alice (individual-synonyms alice))
(neg (alice grandmother))
:dont-show-lambdas-p t)

> (((?alice eve) (eve))
((?alice doris) (doris))
((?alice charles) (charles))
((?alice betty) (betty)))

Note that this rule does not hold for binary atoms, see below.

6.1.4.3.3 Negation as Failure for Role Query Atoms The neg operator can be
applied to role query atoms as well. Like for concept query atoms, a role query atom and
its NAF-negated variant are complementary:

? (retrieve (?x ?y) (?x ?y has-child))
> (((?x betty) (?y doris))

((?x betty) (?y eve))
((?x alice) (?y betty))
((?x alice) (?y charles)))

? (retrieve (?x ?y) (neg (?x ?y has-child)))
> (((?x eve) (?y eve))

((?x eve) (?y doris))
((?x eve) (?y charles))
((?x eve) (?y betty))
((?x eve) (?y alice))
((?x doris) (?y eve))
((?x doris) (?y doris))
((?x doris) (?y charles))
((?x doris) (?y betty))
((?x doris) (?y alice))
((?x charles) (?y eve))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

136 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

((?x charles) (?y doris))
((?x charles) (?y charles))
((?x charles) (?y betty))
((?x charles) (?y alice))
((?x betty) (?y charles))
((?x betty) (?y betty))
((?x betty) (?y alice))
((?x alice) (?y eve))
((?x alice) (?y doris))
((?x alice) (?y alice)))

Note that 4+21=25=5*5 (and we have 5 individuals in that KB).

Suppose we are now looking for people without known children. So we try:

? (retrieve (?x) (neg (?x ?y has-child)))
> (((?x eve)) ((?x doris)) ((?x charles)) ((?x betty)) ((?x alice)))

However, we already know that only betty and alice have children in the ABox:

? (retrieve (?x) (?x ?y has-child))
> (((?x betty)) ((?x alice)))

In fact we were looking for the answer (((?x charles)) ((?x eve)) ((?x doris))).
Didn’t we just say that (neg <atom>) always returns the complement set of <atom>? So
what went wrong? In fact, internally the correct complement set is constructed. However,
these two-dimensional sets are no longer complementary to one another after the projec-
tion to ?x has been performed. So, (neg (?x ?y has-child)) returns the set of 21 pairs
shown in the query (retrieve (?x ?y) (neg (?x ?y has-child))) above. The reader
can verify that we get eve, doris, charles, betty, alice if this set is projected to its
first components.

If we want to ensure that also the query results sets constructed by the final projection
(the projection to ?x as specified by the query head) of these queries are complementary,
we must make sure that the complement operator is applied to a set of instances, and not
to a set of pairs. The project-to operator is provided for this purpose (see below):

? (retrieve (?x) (neg (project-to (?x) (?x ?y has-child))))
> (((?x eve)) ((?x doris)) ((?x charles)))

This query now solves the specified retrieval task (retrieve all people without known chil-
dren).

Analog as for concept query atoms, it is the case that (?x ?y (not R)) always returns a
subset of (neg (?x ?y R)), for an arbitrary role R. Moreover, classical negation and NAF
negation can be mixed, like for concept query atoms:

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 137

? (retrieve (?x ?y) (neg (?x ?y (not has-sister))))
> (((?x eve) (?y eve))

((?x eve) (?y doris))
((?x eve) (?y betty))
((?x eve) (?y alice))
((?x doris) (?y eve))
((?x doris) (?y doris))
((?x doris) (?y betty))
((?x doris) (?y alice))
((?x charles) (?y eve))
((?x charles) (?y doris))
((?x charles) (?y betty))
((?x charles) (?y alice))
((?x betty) (?y eve))
((?x betty) (?y doris))
((?x betty) (?y betty))
((?x betty) (?y alice))
((?x alice) (?y eve))
((?x alice) (?y doris))
((?x alice) (?y betty))
((?x alice) (?y alice)))

Note that the atom without NAF returns 5 tuples (recall that charles cannot be a sister,
since he is male):

? (retrieve (?x ?y) (?x ?y (not has-sister)))
> (((?x eve) (?y charles))

((?x doris) (?y charles))
((?x charles) (?y charles))
((?x betty) (?y charles))
((?x alice) (?y charles)))

Thus, we get our 20+5=25=5*5 pairs again.

6.1.4.3.4 Negation as Failure for Constraint Query Atoms Also constraint query
atoms can be NAF negated. However, for simple CD predicates, NAF negation and classical
negation coincide, since the CDs in RacerPro are complete theories; thus, for two concrete
domain objects i, j, either |= P (i, j) or |= ¬P (i, j) holds. This is demonstrated using the =
CD predicate; please note that for each CD predicate, a negated predicate is available, in
this case, the negated predicate for = is <>:

? (retrieve (?x ?y) (neg (?x ?y (constraint age age =))))
> (((?x eve) (?y doris))

((?x eve) (?y charles))
((?x eve) (?y betty))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

138 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

((?x eve) (?y alice))
((?x doris) (?y eve))
((?x doris) (?y charles))
((?x doris) (?y betty))
((?x doris) (?y alice))
((?x charles) (?y eve))
((?x charles) (?y doris))
((?x charles) (?y betty))
((?x charles) (?y alice))
((?x betty) (?y eve))
((?x betty) (?y doris))
((?x betty) (?y charles))
((?x betty) (?y alice))
((?x alice) (?y eve))
((?x alice) (?y doris))
((?x alice) (?y charles))
((?x alice) (?y betty)))

? (retrieve (?x ?y) (?x ?y (constraint age age <>)))
> (((?x alice) (?y doris))

((?x alice) (?y eve))
((?x alice) (?y betty))
((?x alice) (?y charles))
((?x doris) (?y alice))
((?x doris) (?y eve))
((?x doris) (?y betty))
((?x doris) (?y charles))
((?x eve) (?y alice))
((?x eve) (?y doris))
((?x eve) (?y betty))
((?x eve) (?y charles))
((?x betty) (?y alice))
((?x betty) (?y doris))
((?x betty) (?y eve))
((?x betty) (?y charles))
((?x charles) (?y alice))
((?x charles) (?y doris))
((?x charles) (?y eve))
((?x charles) (?y betty)))

Thus, both queries return the same answer.

However, the situation changes is also role chains are used within constraint query atoms; in
this case, the complement can no longer be retrieved by simply negating the CD predicate,
since additional (implicit) constraints resp. retrieval conditions on the bindings are imposed
by the role chains. Again, the semantics of neg is defined in such a way that a constraint
query atom and its negated variant are always complementary:

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 139

? (retrieve
(?x ?y)
(?x ?y (constraint (has-child age) (has-child age) =)))

> (((?x betty) (?y betty)) ((?x alice) (?y alice)))

? (retrieve
(?x ?y)
(neg (?x ?y (constraint (has-child age) (has-child age) =))))

> (((?x eve) (?y eve))
((?x eve) (?y doris))
((?x eve) (?y charles))
((?x eve) (?y betty))
((?x eve) (?y alice))
((?x doris) (?y eve))
((?x doris) (?y doris))
((?x doris) (?y charles))
((?x doris) (?y betty))
((?x doris) (?y alice))
((?x charles) (?y eve))
((?x charles) (?y doris))
((?x charles) (?y charles))
((?x charles) (?y betty))
((?x charles) (?y alice))
((?x betty) (?y eve))
((?x betty) (?y doris))
((?x betty) (?y charles))
((?x betty) (?y alice))
((?x alice) (?y eve))
((?x alice) (?y doris))
((?x alice) (?y charles))
((?x alice) (?y betty)))

Thus, together we have our 2+23=25=5*5 pairs again. But note that, as just explained,
the following query doesn’t return 23 pairs:

? (retrieve
(?x ?y)
(?x ?y (constraint (has-child age) (has-child age) <>)))

> (((?x betty) (?y betty))
((?x betty) (?y alice))
((?x alice) (?y betty))
((?x alice) (?y alice)))

6.1.4.3.5 Negated SAME-AS Query Atoms (NAF) A negated SAME-AS query atom
simply enumerates the complement of its positive variant:

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

140 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

? (retrieve (?x) (same-as ?x alice))
> (((?x alice)))

? (retrieve (?x) (neg (same-as ?x alice)))
> (((?x doris)) ((?x charles)) ((?x betty)) ((?x eve)))

Note that same-as works on a syntactic level unless you turn on
(use-individual-synonym-equivalence-classes) (see also the output of
(describe-query-processing-mode)).

A semantic equality predicate is given by role query atoms using the nrql-equal-role.

6.1.4.3.6 Negation as Failure for Binary Atoms with Individuals Both role
query atoms, same-as query atoms, and constraint query atoms are binary atoms. In
principle, a binary atom and its NAF-negated variant are complementary. However, since
these atoms reference two objects, the effect of the final projection must be taken into
account. Moreover,

? (full-reset)
> :okay-full-reset

? (racer-read-file ‘‘nrql-user-guide-examples/family.racer")
> :OKAY

? (retrieve (alice ?x) (alice ?x has-child))
> (((?alice alice) (?x betty)) ((?alice alice) (?x charles)))

? (retrieve (alice ?x) (neg (alice ?x has-child)))
> (((?alice eve) (?x eve))

((?alice eve) (?x doris))
((?alice eve) (?x charles))
((?alice eve) (?x betty))
((?alice eve) (?x alice))
((?alice doris) (?x eve))
((?alice doris) (?x doris))
((?alice doris) (?x charles))
((?alice doris) (?x betty))
((?alice doris) (?x alice))
((?alice charles) (?x eve))
((?alice charles) (?x doris))
((?alice charles) (?x charles))
((?alice charles) (?x betty))
((?alice charles) (?x alice))
((?alice betty) (?x eve))
((?alice betty) (?x doris))
((?alice betty) (?x charles))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 141

((?alice betty) (?x betty))
((?alice betty) (?x alice))
((?alice alice) (?x eve))
((?alice alice) (?x doris))
((?alice alice) (?x alice)))

These are 2+23=25=5*5 pairs. Please note that the sets returned by the atom and its
negated variant are complementary; however, if a projection is performed on a set, then
the sets resulting from the projection are not necessarily complementary to one another. A
projection is either specified explicitly by means of the project-to operator, or implicitly,
as specified by the query head:

? (retrieve (?x) (alice ?x has-child))
> (((?x charles)) ((?x betty)))

? (retrieve (?x) (neg (alice ?x has-child)))
> (((?x eve)) ((?x doris)) ((?x charles)) ((?x betty)) ((?x alice)))

This seems odd, since also the children of alice are returned. However, the result is cor-
rect, since this is just the answer returned by (retrieve (alice ?x) (neg (alice ?x
has-child))) projected to ?x.

So, to retrieve the individuals which are not children of alice, the following query must be
used:

? (retrieve (?x) (neg (project-to (?x) (alice ?x has-child))))
> (((?x eve)) ((?x doris)) ((?x alice)))

Note that here the neg operator is applied after the projection to ?x has been carried
out, so neg is applied to (and returned) a one-dimensional set, whereas in the pervious
query, neg was applied to (and returned) a two-dimensional set. This is easy to verify using
describe-query again:

? (retrieve (?x) (alice ?x has-child))
> (((?x charles)) ((?x betty)))

? (describe-query :last)
> (:query-7

(:accurate :processed)
(retrieve
(?x)
(and (same-as ?alice-ano1 alice) (?alice-ano1 ?x has-child))
:abox
smith-family))

? (retrieve (?x) (neg (alice ?x has-child)))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

142 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

> (((?x eve)) ((?x doris)) ((?x charles)) ((?x betty)) ((?x alice)))

? (describe-query :last)
> (:query-8

(:accurate :processed)
(retrieve
(?x)
(or
(and (not (same-as ?alice-ano1 alice)) (top ?x))
(and (top alice) (not (?alice-ano1 ?x has-child))))
:abox
smith-family))

Moreover, regarding individuals in query heads, we have the same situation as already dis-
cussed for the unary atoms: they are replaced with representative variables and same-as
conjuncts. This is the standard transformation. Negated individuals thus behave like vari-
ables:

? (retrieve (alice) (alice ?x has-child))
> (((?alice alice)))

? (retrieve (alice) (neg (alice ?x has-child)))
> (((?alice eve))

((?alice doris))
((?alice charles))
((?alice betty))
((?alice alice)))

Again, if this behavior is not desired, simply avoid using individuals in NAF-negated atoms,
and add same-as and/or nrql-equal-role role query atoms manually, e.g. we can ask if
there is anyone who is not a child of alice:

? (retrieve
(alice)
(and (neg (?alice ?x has-child)) (same-as ?alice alice)))

> (((?alice alice)))

However, everyone is a descendant of alice:

? (retrieve
(alice ?x)
(and
(neg (?alice ?x has-descendant))
(same-as ?alice alice)
(neg (?x alice nrql-equal-role))))

> NIL

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 143

6.1.4.4 A Note on Boolean Complex Queries

So far we have introduced the and, union and neg query constructors. nRQL allows for
the orthogonal composition of boolean query bodies.

For processing purposes, nRQL transforms queries into Negation Normal form (NNF). In a
NNF query, the neg operator appears only in front of query atoms.

Moreover, for optimization purposes, the queries are then brought into Disjunctive Normal
Form (DNF). This transformation might result in an exponential blowup in query size. We
would like to inform the user of this potential performance pitfall.

The semantics of the original query is of courses preserved by the transformations.

6.1.4.5 PROJECT-TO – The Projection Operator for Query Bodies

The projection operator is needed in combination with neg. We have already discussed some
example in the previous sections which made use of the projection operator. Why is the
operator needed? The NAF-negation operator neg is designed to compute the n-dimensional
complement set of its n-dimensional input argument set. Thus, neg preserves the arity of
its argument. However, in some cases, the dimensionality of the argument shall be reduced
before neg is applied. This is what project-to achieves.

For example, suppose we are looking for the woman which have a male child; this is easy:

? (full-reset)
> :okay-full-reset

? (racer-read-file "nrql-user-guide-examples/family.racer")
> :OKAY

? (retrieve (?x) (and (?x woman) (?x ?y has-child) (?y man)))
> (((?x alice)))

But how can we retrieve the complement set, i.e., the woman which do not have a male
child? In a first attempt we try:

? (retrieve (?x) (neg (and (?x woman) (?x ?y has-child) (?y man))))
> (((?x charles)) ((?x eve)) ((?x doris)) ((?x betty)) ((?x alice)))

So, why is alice included in this set= If we also put ?y in the query head, it becomes clear
what happened:

? (retrieve
(?x ?y)
(neg (and (?x woman) (?x ?y has-child) (?y man))))

> (((?x charles) (?y eve))
((?x charles) (?y doris))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

144 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

((?x charles) (?y charles))
((?x charles) (?y betty))
((?x charles) (?y alice))
((?x eve) (?y eve))
((?x eve) (?y doris))
((?x eve) (?y charles))
((?x eve) (?y betty))
((?x eve) (?y alice))
((?x doris) (?y eve))
((?x doris) (?y doris))
((?x doris) (?y charles))
((?x doris) (?y betty))
((?x doris) (?y alice))
((?x betty) (?y charles))
((?x betty) (?y betty))
((?x betty) (?y alice))
((?x alice) (?y eve))
((?x alice) (?y doris))
((?x alice) (?y alice))
((?x betty) (?y eve))
((?x betty) (?y doris))
((?x alice) (?y betty)))

These are 24 tuples; only (((?x alice) (?y charles))) is missing. Indeed, this tuple is
returned by the non-negated variant of this query, if we also add ?y to the head:

? (retrieve (?x ?y) (and (?x woman) (?x ?y has-child) (?y man)))
> (((?x alice) (?y charles)))

This shows that the two queries are indeed complementary to one another, but due to the
final projection to ?x, this no longer holds for the returned sets. The solution is to first
apply the projection to ?x, and then build build a one-dimensional complement set with
neg as follows:

? (retrieve
(?x)
(neg
(project-to (?x) (and (?x woman) (?x ?y has-child) (?y man)))))

> (((?x eve)) ((?x doris)) ((?x charles)) ((?x betty)))

Please note that a project-to body can also be understood as a kind of “subquery”.
In fact, (project-to (?x) (and (?x woman) (?x ?y has-child) (?y man))) can be
understood as a subquery (retrieve (?x) (and (?x woman) (?x ?y has-child) (?y
man))). Only after the complete result set of that subquery has been computed, the com-
plement can be computed with neg.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 145

Please note that neg and project-to really add some expressive power to nRQL. For
example, it is possible to retrieve the oldest person from family.racer as follows. How
shall we formulate such a query? Obviously, a person is the oldest person if there is no
other person that is older. This intuition gives us the following query:

? (retrieve
(?x)
(and
(?x person)
(?x (an age))
(neg
(project-to
(?x)
(and
(?y person)
(?y (an age))
(?x ?y (constraint age age <)))))))

> (((?x alice)))

Please note that the following query does not work, since only the variables mentioned in
the projection list of project-to are “shared” between queries:

? (retrieve
(?x)
(and
(?x person)
(?x (an age))
(neg
(project-to
(?y)
(and
(?y person)
(?y (an age))
(?x ?y (constraint age age <)))))))

> (((?x alice)) ((?x doris)) ((?x eve)) ((?x betty)) ((?x charles)))

The reason is that ?y is not used in the surrounding query, and ?x is not shared either,
since it is not mentioned in the projection list after project-to. Using describe-query it
is to verify that the query body within project-to shares no variables with its surrounding
query:

? (describe-query :last)
> (:query-3

(:accurate :processed)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

146 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

(retrieve
(?x)
(and
(?x person)
(?x (an age))
(not
(:project-to
(?y-ano2)
(and
(?y-ano2 person)
(?y-ano2 (an age))
(?x-ano1-ano3 ?y-ano2 (:constraint age age <))))))

:abox
smith-family))

Instead of project-to, also project and pi can be used as keywords.

Please note that neg in combination with project-to allows to formulate some kind of
closed world / closed domain universal quantification, as just demonstrated: Since there ex-
ists no (know) person that is older than ?x, we know that all (known) persons are younger
than ?x. On the other hand, this universal quantification only considers the known individ-
uals. Not that this query would be impossible to formulate without the NAF-negation in
nRQL, since DLs (and RacerPro) use the OWA in general.

We already mentioned that the atom (has-known-successor R) is in syntactic sugar for
(project-to (?x) (?x ?y R)), and thus, (neg (has-known-successor R)) is equiva-
lent to (neg (project-to (?x) (?x ?y R))).

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 147

6.1.5 Defined Queries

nRQL offers a simple macro mechanism for the specification of defined queries. A defined
query is just a named query; its name can then subsequently be used in other queries, so
its definition is inserted at the place it is used (macro expansion):

? (full-reset)
> :okay-full-reset

? (racer-read-file ‘‘nrql-user-guide-examples/family.racer")
> :OKAY

? (defquery mother-of (?x ?y) (and (?x woman) (?x ?y has-child)))
> mother-of

? (describe-definition mother-of)
> (defquery mother-of (?x ?y) (and (?x woman) (?x ?y has-child)))

? (all-queries)
> NIL

Note that a defined query is not created as a query object at definition time; thus,
(all-queries) returns NIL.

The list (?x ?y) in the mother-of definition is called the list of formal arguments of the
definition; it is a comparable to a query head; however, it differs from a query head because
only objects (variables and individuals) are permitted (no head projection operators). The
same restriction applies to the object list of the project-to constructor.

The defined query named mother-of can subsequently be used as follows:

? (retrieve (?x ?y) (?x ?y mother-of))
> (((?x alice) (?y betty))

((?x alice) (?y charles))
((?x betty) (?y doris))
((?x betty) (?y eve)))

? (describe-query :last)
> (:query-2

(:accurate :processed)
(retrieve
(?x ?y)
(and (?x woman) (?x ?y has-child))
:abox
smith-family))

Another way to reuse a defined query is by means of the substitute keyword:

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

148 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

A defined query can be reused resp. referenced and its body inserted with the substitute
keyword:

? (retrieve (?a ?b) (substitute (mother-of ?a ?b)))
> (((?a alice) (?b charles))

((?a alice) (?b betty))
((?a betty) (?b eve))
((?a betty) (?b doris)))

? (describe-query :last)
> (:query-4

(:accurate :processed)
(retrieve
(?a ?b)
(and (?a woman) (?a ?b has-child))
:abox
smith-family))

Please note that the formal objects/arguments used in the query definition, here ?x, ?y,
are renamed to match the actual objects/arguments, here ?a, ?b. Obviously, the number
of actual parameters supplied must always match the number of formal parameters in the
definition. However, if one is not interested in the bindings for a certain formal parameter,
then one can simple use NIL as an actual parameter:

? (retrieve (?a) (substitute (mother-of ?a nil)))
> (((?a alice)) ((?a betty)))

? (retrieve (?a) (?a nil mother-of))
> (((?a alice)) ((?a betty)))

? (describe-query :last)
> (:query-5

(:accurate :processed)
(retrieve
(?a)
(and (?a woman) (?a ?y-ano1-ano2 has-child))
:abox
smith-family))

A defined query may be referred to at any position in a query body; for example:

? (retrieve (?a) (neg (?a nil mother-of)))
> (((?a charles)) ((?a eve)) ((?a doris)) ((?a betty)) ((?a alice)))

? (describe-query :last)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 149

> (:query-8
(:accurate :processed)
(retrieve
(?a)
(or
(and (not (?a woman)) (top ?y-ano1-ano2))
(not (?a ?y-ano1-ano2 has-child)))

:abox
smith-family))

However, in most cases you probably want

? (retrieve (?a) (neg (project-to (?a) (?a nil mother-of))))
> (((?a eve)) ((?a doris)) ((?a charles)))

instead (see discussion above).

Please note that defined queries can also be used within TBox queries (see below for more
information on TBox queries resp. tbox-retrieve):

? (defquery subconcepts-of-mother (?x) (mother ?x has-descendant))
> subconcepts-of-mother

? (tbox-retrieve
(?descendant-concept)
(?descendant-concept subconcepts-of-mother))

> (((?descendant-concept grandmother))
((?descendant-concept *bottom*)))

Please note that defined queries can also be used in rules as well (see below for more
information on rules).

6.1.5.1 Ambiguous Queries

Please note that the query

(retrieve (?a ?b) (?a ?b mother-of))

is syntactically ambiguous, since mother-of might be a role name as well. The same problem
occurs for concept query atoms.

In case the query is ambiguous, nRQL will output a warning:

? (define-primitive-role mother-of)
> :OKAY

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

150 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

? (retrieve (?x ?y) (?x ?y mother-of))
*** NRQL WARNING: ROLE mother-of EXISTS IN TBOX family.

ASSUMING YOU ARE REFERRING TO THE ROLE mother-of!
> NIL

? (defquery mother (?x) (and (?x woman) (?x ?y has-child)))
> mother

? (retrieve (?x) (?x mother))
*** NRQL WARNING: CONCEPT mother EXISTS IN TBOX family.

ASSUMING YOU ARE REFERRING TO THE CONCEPT mother!
> (((?x alice)) ((?x betty)))

So, nRQL assumes you are referring to the role resp. concept then. If you really want to
refer to the defined query, please use the substitute keyword as illustrated above.

6.1.5.2 Using Defined Queries in Query Definitions

Of course it is possible to use defined queries in query definitions. However, cyclic definitions
are prohibited:

? (defquery
mother-of-male-child
(?m)
(and (substitute (mother-of ?m ?c)) (?c man)))

> mother-of-male-child

? (retrieve (?x) (substitute (mother-of-male-child ?x)))
> (((?x alice)))

The alternative (but ambiguous) syntax can be used as well.

6.1.5.3 The API for Defined Queries

There are various nRQL API functions for accessing and manipulating the defined queries.
Please refer to the Reference Manual.

6.1.5.4 Defined Queries Belong to the TBox

Please note that the definitions are local to the (current-tbox).

Thus, if the current TBox changes, the definitions are changing, too. If you want to put
a definition into a TBox other than the current one, you can supply an optional keyword
argument :tbox to defquery and related API functions and macros:

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 151

? (full-reset)
> :okay-full-reset

? (in-tbox a)
> a

? (in-abox a)
> a

? (defquery test (?x) (?x a))
> test

? (instance a a)
> :OKAY

? (retrieve (?x) (?x test))
> (((?x a)))

? (describe-all-definitions)
> ((defquery test (?x) (?x a)))

? (in-tbox b)
> b

? (in-abox b)
> b

? (associated-tbox b)
> b

? (instance b b)
> :OKAY

? (defquery test (?x) (?x b))
> test

? (retrieve (?x) (?x test))
> (((?x b)))

? (describe-all-definitions)
> ((defquery test (?x) (?x b)))

? (defquery test2 (?x) (?x top) :tbox a)
> test2

? (describe-all-definitions)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

152 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

> ((defquery test (?x) (?x b)))

? (describe-all-definitions :tbox a)
> ((defquery test2 (?x) (?x top)) (defquery test (?x) (?x a)))

? (retrieve (?x) (substitute (test2 ?x)))
> (:ERROR

*** NRQL ERROR: Can’t find definition test2 in DBox for TBox b!)

? (in-tbox a)
> a

? (in-abox a)
> a

? (describe-all-definitions)
> ((defquery test2 (?x) (?x top)) (defquery test (?x) (?x a)))

? (retrieve (?x) (substitute (test2 ?x)))
> (((?x a)))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 153

6.1.6 ABox Augmentation with Simple Rules

nRQL offers a simple ABox augmentation mechanism: rules. nRQL rules are termination-
safe, since there is no automatic rule application strategy. the application strategy is com-
pletely under control of the client application / user. However, nRQL supports rule API
functionality which will be needed for the client-side implementation of a rule application
strategy (see below).

6.1.6.1 Terminology - Rule Antecedent and Consequence

nRQL rules have an antecedent (or precondition) and a consequence (or postcondition).
An antecedent is just an ordinary nRQL query body. The consequence is a set of so-called
generalized ABox assertions. A generalized ABox assertion can also reference variables which
are bound in the rule antecedent (query body).

A rule consequence can contain generalized concept assertions, generalized role assertions,
generalized constrained, generalized constraint assertions, generalized same-as asser-
tions. Moreover, assertions can also be removed.

6.1.6.2 A Simple nRQL Rule

The following simple nRQL rule “promotes” woman which are not yet mothers to mothers:

? (full-reset)
> :okay-full-reset

? (racer-read-file "nrql-user-guide-examples/family.racer")
> :OKAY

? (firerule
(and (?x woman) (neg (?x mother)))
((instance ?x mother)))

> (((instance doris mother)) ((instance eve mother)))

The antecedence is the query body (and (?x woman) (neg (?x mother))), and the con-
sequence is a single generalize instance assertion (instance ?x mother). As shown, the
variables in the generalized assertions in a rule consequence are instantiated with the bind-
ings satisfying the rule antecedence, i.e., the bindings which have been computed by the
query body in the antecedence. The constructed assertions are returned as the result of
the rule application. We can easily verify with a query that eve and doris have become
mothers as well:

? (retrieve (?x) (?x mother))
> (((?x alice)) ((?x betty)) ((?x doris)) ((?x eve)))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

154 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

Note that rules using NAF-negated atoms (like (neg (?x mother)) behave non-
monotonically. Because now there are no more woman which are not also mothers, the
rule can’t be applied a second time:

? (firerule
(and (?x woman) (neg (?x mother)))
((instance ?x mother)))

> NIL

6.1.6.3 Controlling what to add to an ABox

RacerPro can be advised to automatically add created rule consequences to an ABox if
(add-rule-consequences-automatically) is enabled; you must add rule consequences
manually (see below) if (dont-add-rule-consequences-automatically) has been evalu-
ated; use (describe-query-processing-mode) to learn which mode is currently enabled.

Moreover, the rule API allows a fine-grained control over what and when something is
added.

6.1.6.4 Creating New ABox Individuals with Rules

A rule can also create new individuals in an ABox. For example, there are individuals in
the ABox which are mothers, but there are no known children modeled:

? (retrieve
(?x)
(and (?x mother) (neg (?x (has-known-successor has-child)))))

> (((?x doris)) ((?x eve)))

Thus, doris and eve are known to be mothers, but they have no known children. If
you are getting NIL, please ensure that the rule (firerule (and (?x woman) (neg (?x
mother))) ((instance ?x mother))) was fired in advance).

So let’s add these children with a rule:

? (firerule
(and (?x mother) (neg (?x (has-known-successor has-child))))
((instance (new-ind first-child-of ?x) human)
(related ?x (new-ind first-child-of ?x) has-child)))

> (((instance first-child-of-eve human)
(related eve first-child-of-eve has-child))

((instance first-child-of-doris human)
(related doris first-child-of-doris has-child)))

Note that the operator (new-ind <name> <ind-or-var>*) creates a new ABox individ-
ual prefixed with <name> for each different binding possibility of the argument objects in
<ind-or-var>*, and (new-ind <name>) will simply create a new ABox individual <name>.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 155

Note that a rule with an empty antecedence nil or () is conceptually a conjunction without
arguments and thus interpreted as TRUE(thus, also true-query could be used). A rule with
tautological (always true) precondition can be used to add assertions. But please note that
the objects mentioned in the consequence must also appear in the precondition; thus, for

(firerule () ((instance new-ind person)))

you get:

*** NRQL ERROR: Parser Error: Object ?new-ind not mentioned in query body nil

Please use

(firerule () ((instance (new-ind new-ind) person)))

instead.

6.1.6.5 Rules and the Concrete Domain

Rules can also be used to address the concrete domain part of a RacerPro ABox. This means
you can add constrained as well as constraints assertions with a rule. The syntax for the
constraints which is inherited from the RacerPro API function constrained-entailed-p
has been extended so that also head projection operators are valid as parameters in the
constraints. The following RacerPorter log demonstrates these possibilities:

? (full-reset)
> :okay-full-reset

? (define-concrete-domain-attribute age :type cardinal)
> :OKAY

? (firerule nil ((instance (new-ind a) (an age))))
> (((instance a (an age))))

? (firerule nil ((instance (new-ind b) (an age))))
> (((instance b (an age))))

? (firerule
(and (?x (an age)) (?y (an age)) (neg (same-as ?x ?y)))
((constrained ?x (new-ind age-of ?x) age)
(constrained ?y (new-ind age-of ?y) age))
:how-many 1)

> (((constrained a age-of-a age) (constrained b age-of-b age)))

? (firerule

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

156 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

(and (a (an age)) (b (an age)))
((constraints (= (age b) (+ 30 (age a))))))

> (((constraints (= age-of-b (+ 30 age-of-a)))))

? (retrieve (?x) (?x (= age 30)))
> NIL

? (constraints (= age-of-a 30))
> :OKAY

? (retrieve (?x) (?x (= age 30)))
> (((?x a)))

? (retrieve (?x (told-value (age ?x))) (?x (= age 60)))
> (((?x b) ((:told-values (age ?x)) (60))))

? (firerule (a top) ((constraints (= (told-value (age a)) (age a)))))
> (((constraints (= 30 age-of-a))))

? (firerule (b top) ((constraints (= (told-value (age b)) (age b)))))
> (((constraints (= 60 age-of-b))))

? (firerule
(and (a (an age)) (b (an age)))
((constraints
(= (told-value (age b)) (+ 30 (told-value (age a)))))))

> (((constraints (= 60 (+ 30 30)))))

? (abox-consistent?)
> t

6.1.6.6 Using Lambda Expressions in Rule Consequences

Another unique feature of the nRQL rules is their support for lambda head projection
operators in rule consequences.

In 6.1.3.3 we showed how MiniLisp lambda expressions can be used in a query head; we
used the lambda-ex1.racer to compute the size of a the object i. The lambda-ex1.racer
file contains:

(full-reset)

(define-concrete-domain-attribute width :type integer)

(define-concrete-domain-attribute length :type integer)

(instance i (and (equal width 10) (equal length 20)))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 157

Implicitly, we already know that i has a size of 10*20=200; however, we would like to add
this computed value with a rule to the ABox as well to make the value explicit:

? (racer-read-file "nrql-user-guide-examples/lambda-ex1.racer")
> :OKAY

? (all-attributes)
> (width length)

? (firerule
(?x (and (a width) (a length)))
((instance
?x
(= size

((lambda (w l) (* (first w) (first l)))
(told-value-if-exists (width ?x))
(told-value-if-exists (length ?x)))))))

> (((instance i (= size 200))))

? (retrieve (?x (told-value-if-exists (size ?x))) (?x (a size)))
> (((?x i) ((:existing-told-values (size ?x)) (200))))

Note that RacerPro does not even require a (define-primitive-attribute size ...)
declaration here.

Note that we have modeled the size filler implicitly, with the concept assertion (instance
i (= size 200)) which has been added by the rule. Sometimes, one also wants to have
CD objects, e.g. size-of-i, in order to be able to formulate further constraints with other
CD objects. A rule can also add constrained and constrained assertions. Please consider
the following rule which creates a new CD object called size-of-i representing i’s size;
moreover, we (unnecessarily) also add a constraints assertion on size-of-i:

? (firerule
(?x (and (a width) (a length)))
((constrained ?x (new-ind size-of ?x) size)
(constraints
(= (new-ind size-of ?x)

((lambda (w l) (* (first w) (first l)))
(told-value-if-exists (width ?x))
(told-value-if-exists (length ?x)))))))

> (((constrained i size-of-i size) (constraints (= size-of-i 200))))

? (retrieve (?x (size ?x) (told-value (size ?x))) (?x (a size)))
> (((?x i) ((size ?x) (size-of-i)) ((:told-values (size ?x)) (200))))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

158 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

6.1.6.7 Adding Pseudo-Nominals with Rules

Suppose you need one new unique concept name for each ABox individual, e.g.,
you want to add (instance betty concept-for-betty) for betty, (instance doris
concept-for-doris) for doris, and so on. Sometimes, these instance assertion resp. con-
cepts are called “pseudo-nominals”.

Pseudo-nominals can be added with a rule as follows; please note that we must use
nrql-user-guide-examples/family-no-signature.racer since the signature mech-
anism would prevent the creation of new concept names with the rule. So,
family-no-signature.racer is the same KB as family.racer, but without the signature
declaration:

? (full-reset)
> :okay-full-reset

? (racer-read-file "nrql-user-guide-examples/family-no-signature.racer")
> :OKAY

? (firerule (?x top) ((instance ?x (new-concept concept-for ?x))))
> (((instance eve concept-for-eve))

((instance doris concept-for-doris))
((instance charles concept-for-charles))
((instance betty concept-for-betty))
((instance alice concept-for-alice)))

? (abox-consistent?)
> t

Conceptually, new-concept is just another syntax for new-ind.

Due to the added instance assertions, queries referencing the pseudo-nominals can be an-
swered:

? (retrieve (?x) (?x (some has-child concept-for-doris)))
> (((?x betty)))

6.1.6.8 OWL Rules

Let us demonstrate how to fire rules on OWL KBs. We are using the people-pets.owl
KB:

? (full-reset)
> :okay-full-reset

? (owl-read-file "~/nrql-user-guide-examples/people-pets.owl")
> ~/nrql-user-guide-examples/people-pets.owl

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 159

So let us ask which persons have no pet:

? (retrieve
(?x)
(and
(?x #!person)
(neg (project-to (?x) (?x ?y #!has_pet)))))

> (((?x http://cohse.semanticweb.org/ontologies/people#Kevin)))

Let us create #!cat pets for those people with a rule:

? (firerule
(and
(?x #!person)
(neg
(project-to
(?x)
(?x ?y #!has_pet))))

((related ?x (new-ind cat-of ?x) #!has_pet)
(instance (new-ind cat-of ?x) #!cat)))

> (((related
http://cohse.semanticweb.org/ontologies/people#Kevin
http://cohse.semanticweb.org/ontologies/people#cat-of-Kevin
http://cohse.semanticweb.org/ontologies/people#has_pet)

(instance
http://cohse.semanticweb.org/ontologies/people#cat-of-Kevin
http://cohse.semanticweb.org/ontologies/people#cat)))

Let us verify that #!kevin has a #!cat now:

? (retrieve
(?pet-of-kevin (direct-types ?pet-of-kevin))
(#!Kevin ?pet-of-kevin #!has_pet)
:dont-show-lambdas-p t)

> (((?pet-of-kevin
http://cohse.semanticweb.org/ontologies/people#cat-of-Kevin)

((http://cohse.semanticweb.org/ontologies/people#cat)
(http://cohse.semanticweb.org/ontologies/people#pet))))

6.1.6.9 The API of the Rule Engine

There is an extensive rule API. Please consult the reference manual. Moreover, rules can be
used in a “add all consequences at once”, or in a incremental “add one set of consequences
at a time” style.

nRQL doesn’t offer a predefined rule application strategy. However, API functions are pro-
vided which enable the client- / user-side definition of (different) rule application strategies.
See Section 6.2.4.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

160 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

6.1.7 Complex TBox Queries

*top*top

bottom *bottom*

has!synonym

has!child

bottom
bottom

top
top

woman woman

mothermother
woman!with!children woman!with!children

Figure 6.1: Left: Taxonomy. Right: Taxonomy ABox. Dashed nodes represent non-
representative concepts. Dashed arrows represent the has-synonym relationship, the other
arrows the has-child relationship.

Complex TBox queries are used to query the taxonomy of a TBox for certain sub/superclass
relationships. The idea is simple: whereas the ABox queries we have used so far bind vari-
ables against ABox individuals, the variables in a TBox query are bound against taxonomy
nodes. Node that a taxonomy node represents a set of synonym atomic concept names.

6.1.7.1 The Relational Structure of a TBox Taxonomy

The taxonomy of a TBox is a directed acyclic graph (DAG). A node in this DAG represents
an equivalence class of synonym concept (names). An edge between two nodes represents
a direct-subsumer-of relationship between the corresponding concepts. For example, the
taxonomy produced by the following example is depicted on the left hand side of Figure 6.1:

? (full-reset)
> :okay-full-reset

? (implies mother woman)
> :OKAY

? (define-concept mother woman-with-children)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 161

> :OKAY

? (atomic-concept-synonyms mother)
> (woman-with-children mother)

? (taxonomy)
> ((top NIL (woman))

((woman-with-children mother) (woman) (bottom))
(woman (top) ((mother woman-with-children)))
(bottom ((mother woman-with-children)) NIL))

We construct a special relational structure from the taxonomy which is then queried with
nRQL, see right hand side of Figure 6.1. This relational structure can also be seen as
“virtual” taxonomy ABox. Virtual means that this is not a real ABox. However, under this
perspective, TBox queries become easy to understand. So, a TBox query is just an ordinary
ABox query which is evaluated on the (virtual) taxonomy ABox.

The taxonomy ABox mirrors the taxonomy graph, see Figure 6.1. In the taxonomy,
there is one node, representing a whole set of synonym concepts, e.g., mother and
woman-with-children is represented as one node. One of these synonym concepts is called
the representative concept. The representative concepts are shown as bold (non-dashed)
circles in Figure 6.1. Thus, the taxonomy ABox contains one individual / node for each
concept name. The synonym individuals are then linked by means of has-synonym edges /
role assertions. Moreover, the individuals which correspond to the representative concepts
of the taxonomy will be instances of the (virtual) concept taxonomy-node. The edges of
the taxonomy are represented using (virtual) has-child edges / role assertions. In queries,
also the inverse of has-child can be used, has-parent, as well as the transitive closures
has-descendant and has-ancestor.

In principle, the taxonomy ABox could also contain additional edges, e.g., representing
disjointness information between concepts. This will be supported in a future nRQL version.

6.1.7.2 Using TBOX-RETRIEVE to Query the Taxonomy

We will no illustrate the TBox queries using the above constructed taxonomy.

First, let us retrieve all child concepts (subsumed concepts) of the concept woman:

? (tbox-retrieve (?x) (woman ?x has-child))
> (((?x woman-with-children)) ((?x mother)))

The inverse role is called has-parent:

? (tbox-retrieve (?x) (?x woman has-parent))
> (((?x mother)) ((?x woman-with-children)))

Nodes in the taxonomy ABox can be accessed by name, or by concept:

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

162 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

? (tbox-retrieve (?x) (?x mother))
> (((?x woman-with-children)) ((?x mother)))

? (tbox-retrieve (mother) (mother mother))
> (((?mother mother)))

The set of representative concepts can be retrieved using the (virtual query) concept
taxonomy-node:

? (tbox-retrieve (?x) (?x taxonomy-node))
> (((?x top)) ((?x woman-with-children)) ((?x woman)) ((?x bottom)))

Note that nRQL has selected woman-with-children, and not mother as the representative
concept. However, representative concepts are only needed in order to reduce the number
of query answer:

? (tbox-retrieve (?x ?y) (?x ?y has-child))
> (((?x woman) (?y mother))

((?x woman) (?y woman-with-children))
((?x mother) (?y *bottom*))
((?x mother) (?y bottom))
((?x woman-with-children) (?y *bottom*))
((?x woman-with-children) (?y bottom))
((?x top) (?y woman))
((?x *top*) (?y woman)))

? (tbox-retrieve
(?x ?y)
(and (?x ?y has-child) (?x taxonomy-node) (?y taxonomy-node)))

> (((?x top) (?y woman))
((?x woman-with-children) (?y bottom))
((?x woman) (?y woman-with-children)))

It is easy to retrieve the synonyms of concept:

? (tbox-retrieve (?y) (mother ?y has-synonym))
> (((?y mother)) ((?y woman-with-children)))

? (tbox-retrieve
(?y)
(and (mother ?y has-synonym) (neg (same-as mother ?y))))

> (((?y woman-with-children)))

We can also ask for the concepts which have no synonyms:

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 163

? (tbox-retrieve
(?x)
(neg
(project-to
(?x)
(and (?x ?y has-synonym) (neg (same-as ?x ?y))))))

> (((?x woman)))

Moreover, the two head projection operator concept-synonyms and describe are under-
stood:

? (tbox-retrieve
(?x (concept-synonyms ?x))
(?x taxonomy-node)
:dont-show-lambdas-p
t)

> (((?x top) (*top* top))
((?x woman-with-children) (woman-with-children mother))
((?x woman) (woman))
((?x bottom) (*bottom* bottom)))

> (tbox-retrieve
(?x (describe ?x))
(?x woman)
:dont-show-lambdas-p
t)

> (((?x woman)
(woman :told-primitive-definition nil
:synonyms (woman)
:parents ((*top* top))
:children ((woman-with-children mother)))))

To retrieve all subsumer or subsumees, use the has-descendant and/or has-ancestor role:

? (tbox-retrieve (?y) (and (?x woman) (?x ?y has-descendant)))
> (((?y woman-with-children))

((?y bottom))
((?y *bottom*))
((?y mother)))

? (tbox-retrieve
(?y)
(and (?x woman) (?x ?y has-descendant) (?y taxonomy-node)))

> (((?y bottom)) ((?y woman-with-children)))

? (tbox-retrieve

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

164 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

(?y (concept-synonyms ?y))
(and (?x woman) (?x ?y has-descendant) (?y taxonomy-node))
:dont-show-lambdas-p
t)

> (((?y bottom) (*bottom* bottom))
((?y woman-with-children) (woman-with-children mother)))

Also neg work as expected; for example, it is easy to retrieve all concepts different from
woman:

? (tbox-retrieve (?x) (neg (?x mother)))
> (((?x bottom))

((?x *bottom*))
((?x woman))
((?x top))
((?x *top*)))

Note that also woman-with-children satisfies mother; therefore, it is excluded from the
answer. However, if we refer to this concept using its name, we can retrieve all concepts
which have a name different from mother:

? (tbox-retrieve (mother) (neg (mother mother)))
> (((?mother bottom))

((?mother *bottom*))
((?mother woman))
((?mother woman-with-children))
((?mother top))
((?mother *top*)))

Please recall that the standard transformation replaces variables with representative vari-
ables.

6.1.7.3 How to Retrieve All Concept Names

The query (?x top) will retrieve those nodes which satisfy top. Unlike in a “real” ABox,
there are only two nodes which satisfy top:

? (tbox-retrieve (?x) (?x top))
> (((?x *top*)) ((?x top)))

To retrieve all individuals from the taxonomy ABox, use either the special top atom, or,
if you only want to retrieve the representative concepts, use taxonomy-node (as already
demonstrated):

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 165

? (tbox-retrieve (?x) (top ?x))
> (((?x bottom))

((?x *bottom*))
((?x woman))
((?x mother))
((?x woman-with-children))
((?x top))
((?x *top*)))

? (tbox-retrieve (?x) (?x taxonomy-node))
> (((?x top)) ((?x woman-with-children)) ((?x woman)) ((?x bottom)))

6.1.7.4 Complex TBox Queries

Finally, let us consider a more complex query which searches for for diamond-shaped super-
subclass relationships in the taxonomy. Thus, we are looking for a node ?x that has descen-
dants ?y and ?z that both have ?u as a descendant. Moreover, we must ensure that ?y and
?z are “not on the same path”, i.e., ?z is neither a descendant nor an ancestor of ?y:

? (tbox-retrieve
(?x ?y ?z ?u)
(and
(?x ?y has-descendant)
(?x ?z has-descendant)
(?y ?u has-descendant)
(?z ?u has-descendant)
(neg (same-as ?y ?z))
(neg (?y ?z has-descendant))
(neg (?y ?z has-ancestor))))

7 > (((?x woman) (?y mother) (?z woman-with-children) (?u *bottom*))
((?x woman) (?y mother) (?z woman-with-children) (?u bottom))
((?x woman) (?y woman-with-children) (?z mother) (?u *bottom*))
((?x woman) (?y woman-with-children) (?z mother) (?u bottom))
((?x top) (?y mother) (?z woman-with-children) (?u *bottom*))
((?x top) (?y mother) (?z woman-with-children) (?u bottom))
((?x top) (?y woman-with-children) (?z mother) (?u *bottom*))
((?x top) (?y woman-with-children) (?z mother) (?u bottom))
((?x *top*) (?y mother) (?z woman-with-children) (?u *bottom*))
((?x *top*) (?y mother) (?z woman-with-children) (?u bottom))
((?x *top*) (?y woman-with-children) (?z mother) (?u *bottom*))
((?x *top*) (?y woman-with-children) (?z mother) (?u bottom)))

So, nRQL has identified the synonym concepts mother and woman-with-children as pos-
sible bindings for ?y and ?z. However, we want to exclude synonym nodes here:

? (tbox-retrieve

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

166 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

(?x ?y ?z ?u)
(and
(?x ?y has-descendant)
(?x ?z has-descendant)
(?y ?u has-descendant)
(?z ?u has-descendant)
(neg (same-as ?y ?z))
(neg (?y ?z has-descendant))
(neg (?y ?z has-ancestor))
(neg (?y ?z has-synonym))))

> NIL

So, there are no non-trivial “diamonds” in the taxonomy. We can add one more node to
the taxonomy which produces some diamonds; in order to avoid getting all the synonym
matches as well we constrain the variable variables to taxonomy-node individuals only:

? (tbox-retrieve
(?x ?y ?z ?u)
(and
(?x ?y has-descendant)
(?x ?z has-descendant)
(?y ?u has-descendant)
(?z ?u has-descendant)
(neg (same-as ?y ?z))
(neg (?y ?z has-descendant))
(neg (?y ?z has-ancestor))
(neg (?y ?z has-synonym))
(?x taxonomy-node)
(?y taxonomy-node)
(?z taxonomy-node)
(?u taxonomy-node)))

> (((?x top) (?y man) (?z woman) (?u bottom))
((?x top) (?y man) (?z woman-with-children) (?u bottom))
((?x top) (?y woman-with-children) (?z man) (?u bottom))
((?x top) (?y woman) (?z man) (?u bottom)))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 167

6.1.8 Hybrid Representations with the Substrate Representation Layer

The so-called substrate representation layer is used to associate a RacerPro ABox with an
additional representation layer. This additional representation layer is called a substrate.

The coupling of a RacerPro ABox with a substrate results in a hybrid representation. The
substrate layer is useful for the representation of semi-structured data.

nRQL offers various types of substrates:

• the basic data substrate,

• the mirror data substrate, as well as

• the RCC substrate.

We will discuss each substrate briefly. More types of substrates will be added in the fu-
ture (e.g., the database substrate for coupling an ABox with a relational database is in
preparation).

6.1.8.1 The Data Substrate

Similar to an ABox, a data substrate is a relational structure which can be viewed as a
node- and edge-labeled directed graph. Nodes are named and have an optional description
(the node label). Edges must always have a description (the edge label).

6.1.8.1.1 Data Substrate Labels These descriptions of the nodes and/or edges are
called data substrate labels. The exact syntax can be found on Page 193, syntax rule
<data-substrate-label>.

A data substrate label is either

• a simple data literal, or

• a list of data literals, or

• a list of list of data literals.

Data literals are taken from the host language (Common LISP). Symbols, strings, numbers
as well as character are supported.

Such a data substrate label is similar to a boolean formula in Conjunctive Normal Form
(CNF). For example, the data substrate label (("foo" "bar") 123.3 foobar) somehow
“represents” the positive boolean “formula” (”foo” ∨ ”bar”) ∧ 123.3 ∧ foobar. Note that
"foo" and "bar" are strings, 123.3 is a floating point number, and foobar is a symbol.
Unlike boolean formulas, data literals are always positive and thus cannot be negated.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

168 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

6.1.8.1.2 Data Substrate Nodes, Edges and Labels To populate a data substrate,
nRQL’s substrate functionality must be enabled first. At its creation, a data substrate is
associated with a certain ABox, in this case, the default ABox:

? (full-reset)
> :okay-full-reset

? (in-data-box default)
> default

? (describe-substrate :abox default)
> ((:type data-substrate)

(:abox default)
(:no-of-nodes 0)
(:no-of-edges 0))

The output of describe-substrate shows us that there are yet no nodes or edges in that
data substrate.

We can now create a node in the substrate as follows:

? (data-node betty ("Betty" age 50) (and woman (= age 50) (some has-child human))))
> betty

This does three things:

1. Creates a data substrate node named betty;

2. labels this node with the description ("Betty" age 50) which is a “conjunction” of
three data literals;

3. creates an ABox individual called betty, and finally,

4. adds the concept assertion (instance betty (and woman (= age 50) (some
has-child human)) to the default ABox associated with this data substrate.

Note that not only symbols are valid as names for data substrate nodes, but also numbers,
characters, and even strings.

We easily verify that betty is an instance in the substrate as well as in the ABox:

? (all-concept-assertions)
> ((betty (and woman (= age 50))))

? (get-data-node-description betty)
> ((:node-name betty)

(:node-label ((Betty) (age) (50)))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 169

(:node-successors NIL)
(:node-predecessors NIL))

? (describe-all-nodes)
> (((:node-name betty)

(:node-label ((Betty) (age) (50)))
(:node-successors NIL)
(:node-predecessors NIL)))

? (describe-substrate)
> ((:type data-substrate)

(:abox default)
(:no-of-nodes 1)
(:no-of-edges 0))

Note that betty in the ABox and betty in the substrate are associated since the same
name is used. However, it is possible to create substrate individuals without associated
ABox individual; simply don’t supply a concept (a third argument) to data-node.

In general, RacerPro’s reasoning is completely unaffected by the presence of an associated
data substrate layer. Thus, you might ask, what is it good for at all? The answer is: You
can use nRQL to query the hybrid representation. nRQL is a hybrid query language.

To demonstrate this, we create one more node, as well as a data substrate edge:

? (data-node
alice
("Alice" age 80)
(and woman (= age 80) (some has-child human)))

> alice

? (data-edge
alice
betty
(has-child "Alice this mother of Betty")
has-child)

> (alice betty)

Note that data-edge accepts, similar to data-node, an optional argument. in case of
data-node, the optional argument is a RacerPro concept which adds a concept assertion
to the associated ABox, and in case of data-edge, a role assertion is created. Note that we
have attached the label (has-child "Alice this mother of Betty") to the edge, and
used the role has-child for the role assertion. Thus:

? (describe-all-edges)
> (((:from-node alice)

(:to-node betty)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

170 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

(:edge-label ((has-child) (Alice is mother of Betty)))))

? (get-data-edge-description alice betty)
> ((:from-node alice)

(:to-node betty)
(:edge-label ((has-child) (Alice this mother of Betty))))

> (all-role-assertions)
> (((alice betty) has-child))

? (all-concept-assertions)
> ((alice (and woman (= age 80) (some has-child human)))

(betty (and woman (= age 50) (some has-child human))))

? (node-label alice)
> ((Alice) (age) (80))

? (edge-label alice betty)
> ((has-child) (Alice is mother of Betty))

Let us add some trivial background knowledge to make the following queries more interest-
ing:

? (implies woman human)
> :OKAY

? (define-concept mother (and woman (some has-child top)))
> :OKAY

Please note that nodes and edges can also be deleted (see delete-data-node,
delete-data-edge). Please consult the API description of the data substrate facility in
the Reference Manual.

6.1.8.1.3 Querying the Hybrid Representation nRQL can now be used to query
the hybrid ABox+Substrate representation. A hybrid query consists of atoms of two kinds:
atoms for the data substrate, and atoms for the ABox. The reader is already familiar with
the ABox query atoms. The data substrate atoms are introduced now. Both kinds of atoms
are combined using the already introduced query body constructors and, union, neg,
project-to.

So, a hybrid query consists of two kinds of atoms. In order to distinguish substrate from
ABox atoms, a simple idea is used: The objects (variables / individuals) in the substrate
atoms are simply prefixed with an asterix “*” in order to distinguish them from the atoms
which reference the ABox:

? (retrieve

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 171

(?x ?*x ?y ?*y)
(and (?x woman) (?x ?y has-child) (?*x "Alice") (?*y (age 50))))

> (((?x alice) (?*x alice) (?y betty) (?*y betty)))

So, the variables prefixed with ?* are bound to substrate nodes, and the remaining variables
to ABox individuals. This means that (?x woman) and (?x ?y has-child) are ABox query
atoms, and (?*x "Alice") and (?*y (age 50)) are data substrate query atoms. We will
discuss these new atoms in a minute. The ?*x-prefixed variables are called substrate variables
(see rule <data-substrate-query-object>, Page 193).

Moreover, the variables in these atoms are bound pairwise, in parallel: If ?x is bound to
alice, then ?*x is automatically bound to the corresponding substrate node alice, and
vice versa. In case there is no corresponding node or individual, the pairwise binding fails
(and the query returns NIL resp. FALSE).

Query atoms can reference individuals resp. substrate nodes as well. The same naming
convention is used to refer to substrate nodes from within query atoms: Substrate nodes
are prefixed with * as well. Considering the result delivered by the query above, we see that
?x=alice, and ?*x=*alice, even though the name of the substrate node is in fact alice:

? (retrieve nil (*alice "Alice"))
> t

? (retrieve nil (alice "Alice"))
> (:ERROR

*** NRQL ERROR: Parser Error: Unrecognized concept expression Alice)

Not only the substrate nodes can be queried, but also the edges. Let us add one more atom,
a so called data substrate edge query atom:

? (retrieve
(?x ?*x ?y ?*y)
(and
(?x woman)
(?x ?y has-child)
(?*x "Alice")
(?*y (age 50))
(?*x ?*y has-child)))

> (((?x alice) (?*x alice) (?y betty) (?*y betty)))

There are also injective data substrate variables. All variables beginning with $?* are injec-
tive data substrate variables:

? (retrieve (?*x ?*y) (and (top ?*x) (top ?*y)))
> (((?*x alice) (?*y alice))

((?*x alice) (?*y betty))
((?*x betty) (?*y alice))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

172 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

((?*x betty) (?*y betty)))

? (retrieve ($?*x $?*y) (and (top $?*x) (top $?*y)))
> ((($?*x alice) ($?*y betty)) (($?*x betty) ($?*y alice)))

6.1.8.1.4 Data Substrate Query Atoms A data substrate variable is bound to a
substrate node having a certain node label if its label satisfies the given query expression.
We distinguish data node query expressions and data edge query expressions. Both are
commonly called query expressions. Query expressions have a structure very similar to the
structure of the labels. We already said that labels are positive boolean formulas in CNF.
Query expressions are CNF formulas with variables.

Consider the node query expressions (age 50) used in the data substrate query atom (?*y
(age 50)) in the example query above. Intuitively, this atoms matches all nodes which
have (age 50) on their node labels. As for the usual ABox concept query atoms, a notion
of logical entailment is employed for the matching process.

A data node matches a given data substrate node query atom iff the label of this node
logically implies the node query expression in the query atom.

So, betty matches the query atom (?*y (age 50)) because the label of betty is given as
("Betty" age 50) resp. ”Betty” ∧ age ∧ 50 and thus logically implies the weaker query
expression (age 50) resp. age ∧ 50, in signs: "Betty" ∧ age ∧ 50 |= age ∧ 50.

Similarly, the node description (("a" b) 1 2.3) will match the query atom (?*x (("a" b
#\c 123) (1 2) 2.3)), since (("a" b) 1 2.3) implies (("a" b #\c 123) (1 2) 2.3)
(note that (1 2) means “1 or 2”, and #\c denotes the character “c”). Since data query
expressions are conjunctions (in CNF), the query

(retrieve (?*x) (?*x (age 50)))

is equivalent to

(retrieve (?*y) (and (?*x age) (?*x 50))).

Note that the data substrate edge query expressions have a very similar structure.

Since disjunctions are available in the labels as well as in the queries, some flexibility is
achieved (this is why we call it a semi-structured data model). For example, it is easy to
retrieve the nodes whose label includes age and which are either 50 or 80:

? (retrieve (?*x) (?*x (age (50 80))))
> (((?*x betty)) ((?*x alice)))

? (retrieve (?*x) (?*x (age (50 60))))
> (((?*x betty)))

? (retrieve (?*x) (?*x (age (50 "Alice"))))
> (((?*x betty)) ((?*x alice)))

Note that (50 80) represents a disjunction. Moreover, of course, also union is available.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 173

6.1.8.1.5 Using Data Query Predicates Predicates can be used in substrate query
atoms. So far we have only used literals. Although disjunctions are available (even without
union), the matching conditions which can be specified for nodes are somewhat limited.
Predicates offer much more flexibility and querying power.

nRQL offers so-called data predicates. The recognized predicates are summarized on Page
193, see rule <data-query-predicate>. Here is query which uses a data predicate:

? (retrieve (?*x) (?*x (age (:predicate (< 40)))))
> NIL

? (retrieve (?*x) (?*x (age (:predicate (< 60)))))
> (((?*x betty)))

Whereas the item age is interpreted as before, the conjunct / list entry (:predicate (<
60)) matches those nodes whose labels contain a numeric literal that satisfies the predicate.
Predicates can be used in node atoms as well as in edge atoms.

Please note that the (:predicate ...) expressions plays the same role as a literal in the
and/or list structure:

? (retrieve
(?*x)
(?*x (age ((:predicate (= 50)) (:predicate (= 80))))))

> (((?*x betty)) ((?*x alice)))

? (retrieve
(?*x)
(?*x (age (:predicate (= 50)) (:predicate (= 80)))))

> NIL

So, these queries are somehow equivalent to

? (retrieve (?*x) (?*x (age (50 80))))
> (((?*x betty)) ((?*x alice)))

? (retrieve (?*x) (?*x (age 50 80)))
> NIL

Another example demonstrates that predicates are available which are not offered in the
concrete domain of RacerPro, for example, predicates which can search for substrings:

18 ? (retrieve (?*x) (?*x (:predicate (search "Bet"))))
18 > (((?*x betty)))

Moreover, it is even possible to find pairs of nodes ?*x and ?*y which satisfy a certain
predicate, even if there is no explicit edge between these nodes:

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

174 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

? (retrieve (?*x ?*y) (?*x ?*y (:satisfies (:predicate <))))
> (((?*x betty) (?*y alice)))

Here we have been searching for substrate nodes ?*x, ?*y which satisfy the binary predicate
"<" - this means that their node labels must contain numeric literals a and b such that
a < b holds. A :satisfies predicate must always have arity two. Please refer to 193, rule
data-edge-query-satisfies-expression for a list of currently supported predicates.

So, the query is somehow the equivalent of this concrete domain query:

? (retrieve (?x ?y) (?x ?y (constraint (age) (age) <)))
> (((?x betty) (?y alice)))

6.1.8.2 The Mirror Data Substrate

Most users will prefer a facility which automatically creates associated data substrate objects
for ABox individuals. This is what the mirror data substrate does.

The mirror data substrate is also very useful for users who want to query OWL KBs with
nRQL. If the facility is enabled, RacerPro will automatically create data substrate objects
for all elements in an OWL KB.

6.1.8.2.1 Populating and Querying the Mirror Data Substrate Let us consider
an example to demonstrate the benefits of the mirror data substrate; for this purpose we
must “augment” family-no-signature.racer a little bit. We also need some constrained
as well as constraint ABox assertions: 7

? (full-reset)
> :okay-full-reset

? (racer-read-file "nrql-user-guide-examples/family-no-signature.racer")
> :OKAY

? (define-concrete-domain-attribute name :type string)
> :OKAY

? (constrained betty betty-age age)
> :OKAY

? (constrained alice alice-age age)
> :OKAY

? (constrained betty betty-name name)
> :OKAY

? (constrained alice alice-name name)
> :OKAY

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 175

? (constraints (string= betty-name "Betty"))
> :OKAY

? (constraints (string= alice-name "Alice"))
> :OKAY

? (constraints (= betty-age 50))
> :OKAY

? (constraints (= alice-age 80))
> :OKAY

? (abox-consistent?)
> t

Let us enable the data substrate mirroring:

? (enable-data-substrate-mirroring)
> :okay-data-substrate-mirroring-enabled

? (describe-substrate)
> (:ERROR

*** NRQL ERROR: Can’t find mirror-data-substrate of ABox default
(TRY TO CALL "PREPARE-NRQL-ENGINE" FIRST))

However, the data substrate is not created before the first query has to be answered:

? (retrieve (?x) (?x top))
> (((?x alice)) ((?x betty)) ((?x charles)) ((?x eve)) ((?x doris)))

? (describe-substrate)
> ((:type mirror-data-substrate)

(:abox smith-family)
(:no-of-nodes 16)
(:no-of-edges 24))

We can already see that the mirror substrate contains 16 nodes, as well as 24 edges. A data
substrate node is created in the mirror

• for each ABox individual,

• for each concrete domain object, and

• for each concrete domain value.

Edges are created in the mirror for

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

176 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

• related as well as for

• constrained

axioms.

Let us inspect some nodes:

? (get-data-node-description 80)
> ((:node-name 80)

(:node-label ((:abox-object) (:abox-concrete-domain-value) (80)))
(:node-successors NIL)
(:node-predecessors (alice alice-age)))

? (get-data-node-description alice)
> ((:node-name alice)

(:node-label ((top) (mother) (:abox-object) (:abox-individual)))
(:node-successors (charles betty 80 alice-name alice-age))
(:node-predecessors (charles betty)))

? (get-data-node-description alice-name)
> ((:node-name alice-name)

(:node-label ((:abox-object) (:abox-concrete-domain-object)))
(:node-successors (Alice))
(:node-predecessors (alice)))

? (get-data-node-description "Alice")
> ((:node-name Alice)

(:node-label
((:abox-object) (:abox-concrete-domain-value) (Alice)))
(:node-successors NIL)
(:node-predecessors (alice-name)))

We see that there are various kinds of nodes: nodes for ABox individuals (alice), nodes for
concrete domain objects (alice-name), and nodes for told concrete domain / told datatype
values (80, "Alice"). Appropriate markers are added to the node labels in order to make
them “self describing” (see :node-label entries in the above descriptions). Note that this
information is available to queries.

There are three kinds of nodes:

1. The label of a node representing an ABox individual (e.g., alice) contains the con-
juncts / marker :abox-object, :abox-individual.

The node also contains concept membership information, e.g. for alice: (top)
(mother). This information has been extracted from the given concept assertions
in the KB.

2. The label of a node representing a concrete domain object (e.g., alice-name) contains
the conjuncts / marker :abox-object, :abox-concrete-domain-object.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 177

3. The label of a node representing a told concrete domain value / datatype
value (e.g., 80, "Alice"), contains the conjuncts / marker :abox-object,
:abox-concrete-domain-value.

Moreover, the node has the name of its value and also contains its value (contains
itself) in the label.

The related, constrained, and constraints Abox assertions give rise to appropriately
labeled edges in the substrate, connecting the different types of substrate nodes. Let us
inspect some edges:

? (get-data-edge-description alice betty)
> ((:from-node alice)

(:to-node betty)
(:edge-label
((has-child)
(:abox-relationship)
(:abox-role-relationship)
(has-descendant))))

? (get-data-edge-description alice alice-age)
> ((:from-node alice)

(:to-node alice-age)
(:edge-label
((:abox-relationship) (:abox-attribute-relationship) (age))))

? (get-data-edge-description alice-age 80)
> ((:from-node alice-age)

(:to-node 80)
(:edge-label
((:abox-relationship) (:abox-told-value-relationship))))

? (get-data-edge-description alice-name "Alice")
> ((:from-node alice-name)

(:to-node Alice)
(:edge-label
((:abox-relationship) (:abox-told-value-relationship))))

Please consider the :edge-label information. The meaning of the markers should be obvi-
ous, given the previous explanations for the :node-labels. Again, there are three types of
edges:

1. Edges connecting nodes representing ABox individuals (e.g., alice and betty); such
an edge is created due to a role membership ABox assertion.

2. Edges connecting a node representing an ABox individual with a node representing a
concrete domain (CD) object which is an attribute filler of the ABox individual (e.g.,
alice and alice-name). Such an edge is caused by a constrained ABox assertion.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

178 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

3. Edges connecting a node representing a CD object with node representing a told CD
/ datatype value (e.g., alice-age and 80). Such an edge is caused by a constraints
assertion.

Please also try (describe-all-nodes), (describe-all-edges).

We can now exploit the more expressive representation using hybrid nRQL. The same data
query atoms as already introduced in the previous section are used.

For example:

? (retrieve
(?*x ?*y ?*name-of-?*y ?*age-of-?*y ?*tv-1 ?*tv-2)
(and
(?*x (:abox-individual))
(?x ?y has-child)
(?y woman)
(?*y ?*age-of-?*y (:abox-attribute-relationship age))
(?*y ?*name-of-?*y (:abox-attribute-relationship name))
(?*age-of-?*y (:abox-concrete-domain-object))
(?*name-of-?*y (:abox-concrete-domain-object))
(?*age-of-?*y ?*tv-1 (:abox-told-value-relationship))
(?*name-of-?*y ?*tv-2 (:abox-told-value-relationship))
(?*tv-1 (:abox-concrete-domain-value (:predicate (< 90))))
(?*tv-2
(:abox-concrete-domain-value (:predicate (search "tty"))))))

> (((?*x alice)
(?*y betty)
(?*name-of-?*y betty-name)
(?*age-of-?*y betty-age)
(?*tv-1 50)
(?*tv-2 Betty)))

Moreover, the amount of information which is mirrored can be controlled. Let us consider
the node alice again:

? (get-data-node-description alice)
> ((:node-name alice)

(:node-label ((top) (mother) (:abox-object) (:abox-individual)))
(:node-successors (charles betty 80 alice-name alice-age))
(:node-predecessors (charles betty)))

So, the :node-label contains the (told) concept membership information (top) (mother).
This information is computed and added to the labels according to the current nRQL
mode, see the documentation of set-nrql-mode in the Reference Manual. The nRQL mode
controls the amount of completeness of the representation: For example, using nRQL mode

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 179

0, only the told syntactic information from the ABox is exploited. Thus, only the instance
assertions are analyzed and added to the label. In nRQL mode 1, also taxonomic information
can be added to the labels:

? (full-reset)
> :okay-full-reset

? (enable-data-substrate-mirroring)
> :okay-data-substrate-mirroring-enabled

? (racer-read-file "nrql-user-guide-examples/family-no-signature.racer")
> :OKAY

? (enable-smart-abox-mirroring)
> :okay-smart-abox-mirroring-enabled

? (retrieve nil (?x top))
> t

? (get-data-node-description alice)
> ((:node-name alice)

(:node-label
((top)
(woman)
(parent)
(human)
(mother)
(person)
(:abox-object)
(:abox-individual)))

(:node-successors (charles betty 80))
(:node-predecessors (charles betty)))

Much more information about alice is available now. Of course, in a query one can always
refer to the associated ABox individual of such a node, so full description logic reasoning is
always available.

Regarding the data edges created due to role membership assertions, also the role hierarchy
is taken into account:

? (get-data-edge-description doris eve)
> ((:from-node doris)

(:to-node eve)
(:edge-label
((has-sister)
(:abox-relationship)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

180 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

(:abox-role-relationship)
(has-sibling))))

Note that the ABox only contains the following role assertions:

? (all-role-assertions)
> (((eve doris) has-sister)

((doris eve) has-sister)
((charles betty) has-sibling)
((betty eve) has-child)
((betty doris) has-child)
((alice charles) has-child)
((alice betty) has-child))

Thus, the labeling information has-sibling has been added according to the role hierarchy,
since ((doris eve) has-sister) implies ((doris eve) has-sibling).

6.1.8.2.2 Markers Used in the Mirror Data Substrate Let us summarize the
markers which are used.

For the nodes:

• :abox-object,

• :abox-individual,

• :abox-concrete-domain-object,

• :abox-concrete-domain-value.

For the edges:

• :abox-object,

• :abox-relationship,

• :abox-role-relationship,

• :abox-attribute-relationship,

• :abox-told-value-relationship.

In addition, some additional markers are added in case the ABox has been created from an
OWL KB:

• :owl-object,

• :owl-relationship,

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 181

• :owl-individual,

• :owl-class,

• :owl-literal,

• :owl-object-property-relationship,

• :owl-datatype-property-relationship,

• :owl-object-annotation-property-relationship,

• :owl-datatype-annotation-property-relationship.

6.1.8.2.3 Using the Mirror Data Substrate on OWL Documents Especially in
the case of OWL KBs, the additional querying functionality provided by the mirror substrate
is valuable. OWL KBs tend to contain a lot of annotations and told (XML Schema datatype)
data values; thus, the query predicates (e.g., search) are helpful to retrieve certain resources
based on information which is not available for reasoning (note that the fillers / values of
annotation properties are not used for reasoning).

Note that substrate variables can now be bound to told values of OWL datatype or annota-
tion fillers! So, you no longer have to use the head projection operators in order to retrieve
told values. Moreover, retrieval conditions can be specified which couldn’t be specified with-
out the mirror substrate.

We will use nrql-user-guide-examples/owl-ex5.owl which contains all kinds of OWL
properties:

<?xml version="1.0"?>
<rdf:RDF

xmlns="http://www.owl-ontologies.com/Ontology1159352693.owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"

xml:base="http://www.owl-ontologies.com/Ontology1159352693.owl">

<owl:Ontology rdf:about="">
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
>Demo Ontology</rdfs:comment>

</owl:Ontology>

<owl:Class rdf:ID="class">
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
>This is a test class</rdfs:comment>

</owl:Class>

<owl:ObjectProperty rdf:ID="object-property">
<rdfs:domain rdf:resource="#class"/>

</owl:ObjectProperty>

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

182 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

<owl:DatatypeProperty rdf:ID="datatype-property">
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>
<rdfs:domain rdf:resource="#class"/>

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID="annotation-object-property">
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#AnnotationProperty"/>
<rdfs:domain rdf:resource="#class"/>

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:ID="annotation-datatype-property">
<rdfs:domain rdf:resource="#class"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#AnnotationProperty"/>

</owl:DatatypeProperty>

<class rdf:ID="test">
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
>Comment for individual test</rdfs:comment>
<object-property rdf:resource="#test"/>
<datatype-property rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
>123</datatype-property>
<annotation-object-property rdf:resource="#test"/>
<annotation-datatype-property rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
>456</annotation-datatype-property>

</class>

</rdf:RDF>

We have already listed the markers which are added for the various OWL elements. Lets us
briefly inspect the node and edge labels:

? (full-reset)
> :okay-full-reset

? (enable-data-substrate-mirroring)
> :okay-data-substrate-mirroring-enabled

? (owl-read-file "nrql-user-guide-examples/owl-ex5.owl")
> nrql-user-guide-examples/owl-ex5.owl

? (describe-all-nodes)
> (((:node-name 456)

(:node-label ((:owl-object) (:owl-literal) (456)))
(:node-successors NIL)
(:node-predecessors
(http://www.owl-ontologies.com/Ontology1159352693.owl#test)))

((:node-name
http://www.owl-ontologies.com/Ontology1159352693.owl#class)

(:node-label ((:owl-class)))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 183

(:node-successors (This is a test class))
(:node-predecessors NIL))

((:node-name This is a test class)
(:node-label
((:owl-object) (:owl-literal) (This is a test class)))
(:node-successors NIL)
(:node-predecessors
(http://www.owl-ontologies.com/Ontology1159352693.owl#class)))

((:node-name Comment for individual test)
(:node-label
((:owl-object) (:owl-literal) (Comment for individual test)))
(:node-successors NIL)
(:node-predecessors
(http://www.owl-ontologies.com/Ontology1159352693.owl#test)))

((:node-name 123)
(:node-label ((:owl-object) (:owl-literal) (123)))
(:node-successors NIL)
(:node-predecessors
(http://www.owl-ontologies.com/Ontology1159352693.owl#test)))

((:node-name
http://www.owl-ontologies.com/Ontology1159352693.owl#test)
(:node-label
((top)
(http://www.owl-ontologies.com/Ontology1159352693.owl#class)
(:abox-object)
(:abox-individual)
(:owl-object)
(:owl-individual)))

(:node-successors
(123
Comment for individual test
456
http://www.owl-ontologies.com/Ontology1159352693.owl#test))

(:node-predecessors
(http://www.owl-ontologies.com/Ontology1159352693.owl#test))))

? (describe-all-edges)
> (((:from-node

http://www.owl-ontologies.com/Ontology1159352693.owl#test)
(:to-node 123)
(:edge-label
((:owl-relationship)
(:owl-datatype-property-relationship)
(http://www.owl-ontologies.com/Ontology1159352693.owl#datatype-property))))

((:from-node
http://www.owl-ontologies.com/Ontology1159352693.owl#test)
(:to-node

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

184 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

http://www.owl-ontologies.com/Ontology1159352693.owl#test)
(:edge-label
((:owl-object-annotation-property-relationship)
(http://www.owl-ontologies.com/Ontology1159352693.owl#annotation-object-property)
(:abox-relationship)
(:abox-role-relationship)
(:owl-relationship)
(:owl-object-property-relationship)
(http://www.owl-ontologies.com/Ontology1159352693.owl#object-property))))

((:from-node
http://www.owl-ontologies.com/Ontology1159352693.owl#class)

(:to-node This is a test class)
(:edge-label
((:owl-relationship)
(:owl-datatype-property-relationship)
(:owl-datatype-annotation-property-relationship)
(http://www.w3.org/2000/01/rdf-schema#comment))))

((:from-node
http://www.owl-ontologies.com/Ontology1159352693.owl#test)

(:to-node 456)
(:edge-label
((:owl-relationship)
(:owl-datatype-property-relationship)
(:owl-datatype-annotation-property-relationship)
(http://www.owl-ontologies.com/Ontology1159352693.owl#annotation-datatype-property))))

((:from-node
http://www.owl-ontologies.com/Ontology1159352693.owl#test)

(:to-node Comment for individual test)
(:edge-label
((:owl-relationship)
(:owl-datatype-property-relationship)
(:owl-datatype-annotation-property-relationship)
(http://www.w3.org/2000/01/rdf-schema#comment)))))

It is now easy to retrieve the OWL classes which have an annotation, since also the classes
and its annotation are represented as nodes in the substrate (note that there are no ABox
individual, though). So, we can ask for the datatype property annotation of all OWL classes
which contain "test" as a substring:

? (retrieve
(?*x ?*y)
(and
(?*x :owl-class)
(?*x ?*y :owl-datatype-annotation-property-relationship)
(?*y (:predicate (search "test")))))

> (((?*x http://www.owl-ontologies.com/Ontology1159352693.owl#class)
(?*y This is a test class)))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 185

We already know that the #! prefix always expands into the cur-
rent default namespace of the OWL KB; thus, #!test means
http://www.owl-ontologies.com/Ontology1159352693.owl#test. However, we al-
ready mentioned that nodes in the substrate must be prefixed with an additional *. So, to
access the node http://www.owl-ontologies.com/Ontology1159352693.owl#test from
a substrate query atom, please either remember to add a * in front of the qualified name,
or use the #& prefix instead; the following queries demonstrate this:

? (retrieve (?*x)
(same-as ?*x http://www.owl-ontologies.com/Ontology1159352693.owl#test))

> (:ERROR
*** NRQL ERROR: Parser Error: Unknown expression
(same-as ?*x http://www.owl-ontologies.com/Ontology1159352693.owl#test) found)

? (retrieve (?*x)
(same-as ?*x *http://www.owl-ontologies.com/Ontology1159352693.owl#test))

> (((?*x http://www.owl-ontologies.com/Ontology1159352693.owl#test)))

? (retrieve (?*x)
(same-as ?*x #!test))

> (:ERROR
*** NRQL ERROR: Parser Error: Unknown expression
(same-as ?*x http://www.owl-ontologies.com/Ontology1159352693.owl#test) found)

? (retrieve (?*x)
(same-as ?*x #&test))

> (((?*x http://www.owl-ontologies.com/Ontology1159352693.owl#test)))

Some more queries should be sufficient to demonstrate the utility of the mirror substrate:

? (retrieve
(?*x ?*y)
(and
(?*x :owl-object)
(?*x ?*y :owl-datatype-property-relationship)
(?*y
(:owl-literal
(:predicate numberp)
(:predicate (>= 100))
(:predicate (<= 200))))))

> (((?*x http://www.owl-ontologies.com/Ontology1159352693.owl#test)
(?*y 123)))

? (retrieve (?*x) (?*x :owl-object))
> (((?*x http://www.owl-ontologies.com/Ontology1159352693.owl#test))

((?*x 123))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

186 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

((?*x Comment for individual test))
((?*x This is a test class))
((?*x 456)))

? (retrieve (?*x ?*y) (?*x ?*y :owl-relationship))
> (((?*x http://www.owl-ontologies.com/Ontology1159352693.owl#test)

(?*y http://www.owl-ontologies.com/Ontology1159352693.owl#test))
((?*x http://www.owl-ontologies.com/Ontology1159352693.owl#test)
(?*y 123))
((?*x http://www.owl-ontologies.com/Ontology1159352693.owl#test)
(?*y Comment for individual test))
((?*x http://www.owl-ontologies.com/Ontology1159352693.owl#test)
(?*y 456))
((?*x http://www.owl-ontologies.com/Ontology1159352693.owl#class)
(?*y This is a test class)))

6.1.8.3 The RCC Substrate - Querying RCC Networks

Many applications have to represent domain objects that also have spatial characteristics.
However, the applicability of standard DLs in spatial domains is limited. To support such
applications, we are offering a spatial representation layer - the RCC substrate.

The so-called Region Connection (RCC) Calculus provides a well-known and widely used set
of qualitative spatial relationships (QSRs). The QSRs offered by RCC are used to describe
the relative location of spatial objects to one another. They are closely related to natural
language prepositions such as contains, overlaps, adjacent etc.

6.1.8.3.1 The Purpose of the RCC Substrate The RCC substrate is a special
kind of data substrate which offers representation and querying facilities for so-called RCC
networks.

The edges of an RCC network are labeled with RCC relationships, denoting the relative
qualitative spatial arrangement of two objects. The RCC substrate offers the following sets
of RCC relationships:

• The set of RCC5 relationships distinguishes 5 relationships: DR = discrete from (mean-
ing that the two objects neither overlap nor are adjacent), PO = partial overlap (the
two objects overlap partially), EQ = equal (the two objects are congruent), PP = proper
part (meaning the first object is contained within the second one), and its inverse,
PPI = proper part inverse (denoting containment).

• The set of RCC8 relationships is a finer version of RCC5. It is finer than RCC5
because it also considers the relationships of the borders of the objects to refine the
qualitative spatial description. RCC8 includes the RCC5 relationships PO and EQ.
RCC8 distinguishes in the DR case whether two non-overlapping objects are adjacent
/ externally connected (EC), or whether they are disconnected (DC). Thus, the RCC5
relation DR is refined into the EC and DC case. Moreover, the PP and PPI relations are

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 187

refined by considering whether the contained object is a a tangential proper part (is
tangentially contained, i.e., touches the border from the inside) or not. In the former
case, TPP is used, and in the latter case the non-tangential proper part relationship
NTPP. The inverse relations are called TPPI and NTPPI.

Moreover, disjunctions of these relations can be used to represent coarser or indefinite
knowledge regarding the spatial relationship.

In general, the RCC edges labels have the same CNF structure as ordinary edge labels.
However, certain symbols denote RCC base relations. The following edge labels will be
recognized as RCC relations:

• either a single symbol in lowercase starting with a colon (“:”), e.g., :dr, :ppi, . . . , or

• a list of lists of such RCC symbols denoting a conjunction of disjunctions of RCC
relations, e.g., ((:ec :dc)). Note that :dr=((:ec :dc)), :pp=((:ntpp :tpp)),
and :ppi=((:ntppi :tppi)).

Please also note that an edge label such as (:ntpp :tpp) would actually denote a conjunc-
tion, and not a disjunction. Since the RCC base relations have the so-called JEPD (jointly
exhaustive, pairwise disjoint) property, such a conjunction denotes the empty relation.

The RCC substrate supports is aware of the “spatial characteristics” / “inherent properties”
of the RCC relationships. For example, suppose you want to represent the spatial situation
in which object a contains object b, and object b contains object c, but you also specify
that a and c are not overlapping (disjoint). Obviously, such a spatial situation can never be
realized in the physical world: The RCC substrate will thus become inconsistent.

Moreover, in an RCC network / substrate, logically implied / entailed relationships will
hold. These entailed relationships can be retrieved with nRQL. For example, suppose you
construct a network in which a contains b (PPI(a,b)), and in which a and c are disconnected
(DC(a,c)). A nRQL query asking for disconnected objects will now not only return (a, c),
but also (b, c), since DC(b,c) is logically entailed.

Usually, you will not create an “isolated” RCC network, but a network in which the nodes
also have associated (corresponding) ABox individuals. We have described this functionality
when we discussed the ordinary data substrate. Thus, the RCC substrate can serve an ABox
as an additional representation medium which is aware of the special characteristics of RCC
relationships and thus can be used the answer (qualitative) spatial queries.

Let us consider the example file rcc-substrate.racer (the ;;;’s are comments):

(full-reset)
(in-tbox geo-example)

(define-concrete-domain-attribute inhabitants :type cardinal)
(define-concrete-domain-attribute has-name :type string)
(define-primitive-attribute has-language)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

188 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

(in-abox geo-example)

;;; Create an RCC5 substrate which is associated with the ABox
;;; geo-example

(in-rcc-box geo-example :rcc5)

;;; Create some RCC substrate nodes.
;;; Note that "data-node" can be used
;;; as well.

(rcc-instance europe)

(rcc-instance germany
(country germany)
(and country

(string= has-name "Germany")
(all has-language german)
(some has-language language)
(= inhabitants 82600000)))

(rcc-instance france
(country france)
(and country

(string= has-name "France")
(all has-language french)
(some has-language language)
(= inhabitants 60656178)))

(rcc-instance hamburg
(city hamburg)
(and city

(some in-country germany)
(string= has-name "Hamburg")))

(rcc-instance paris
(city paris)
(and city

(some in-country france)
(string= has-name "Paris")))

;;; Create some RCC substrate edges.
;;; Europe contains Germany

(rcc-related europe germany :ppi)
(rcc-related europe france :ppi)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 189

(rcc-related germany hamburg :ppi)
(rcc-related france paris :ppi)
(rcc-related france germany :dr)

In this example, 5 RCC nodes are created (europe, germany, france, paris, hamburg),
and it is stated that europe contains france and germany, which do not overlap. Moreover,
paris is contained in france, and hamburg in germany. These are the only spatial relation-
ships given. For all nodes but europe, also corresponding ABox individuals are created and
instance assertions are added.

This spatio-thematic representation can now be queried with nRQL, as the following exam-
ples demonstrates:

? (retrieve
(?*x ?*y ?*z)
(and
(?x (and (string= has-name "Hamburg") (some in-country germany)))
(?y (and country (> inhabitants 8000000)))
(?*x ?*y :pp)
(?*y ?*z :pp)))

> (((?*x hamburg) (?*y germany) (?*z europe)))

? (retrieve
(?*x ?*y)
(and
(?*x ?*y :dr)
(?y (and city (some in-country germany)))
(?x (and city (some in-country france)))))

> (((?*x paris) (?*y hamburg)))

? (retrieve (?x) (and (*europe ?*x :ppi) (?x city)))
> (((?x paris)) ((?x hamburg)))

Note that nRQL has deduced that the :dr relation holds between paris and hamburg, and
that :pp holds between hamburg and europe, etc.

6.1.8.3.2 OWL and the RCC Substrate The RCC substrate can be used on OWL
KBs as well. The RCC mirror substrate has both the functionality of the mirror data
substrate as well as of the RCC substrate just discussed. Thus, it automatically creates and
populates the substrate from the (OWL) ABox. Moreover, certain OWL object properties
will be recognized as RCC relations, given they have been declared as RCC synonyms in
advance.
Consider the following OWL KB nrql-user-guide-examples/owl-rcc.owl:

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

190 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

<?xml version="1.0"?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns="http://www.owl-ontologies.com/Ontology1162148702.owl#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"

xml:base="http://www.owl-ontologies.com/Ontology1162148702.owl">
<owl:Ontology rdf:about=""/>
<owl:Class rdf:ID="city">
<rdfs:subClassOf>
<owl:Class rdf:ID="geo-thing"/>

</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="continent">
<rdfs:subClassOf rdf:resource="#geo-thing"/>

</owl:Class>
<owl:Class rdf:ID="country">
<rdfs:subClassOf rdf:resource="#geo-thing"/>

</owl:Class>
<owl:ObjectProperty rdf:ID="contains">
<rdfs:domain rdf:resource="#geo-thing"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="adjacent">
<rdfs:domain rdf:resource="#geo-thing"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="disjoint">
<rdfs:domain rdf:resource="#geo-thing"/>

</owl:ObjectProperty>
<country rdf:ID="germany">
<contains>
<city rdf:ID="hamburg">
</city>

</contains>
</country>
<continent rdf:ID="europe">
<contains>
<country rdf:ID="france">

<contains>
<city rdf:ID="paris"/>

</contains>
<adjacent rdf:resource="#germany"/>

</country>
</contains>
<contains rdf:resource="#germany"/>

</continent>
</rdf:RDF>

So, the object properties #!contains, #!adjacent and #!disjoint are meant to denote
qualitative spatial relationships in the OWL KB. In RCC8 terminology, these QSRs can be
expressed as the (disjunctive) relations (:ntppi :tppi)), (:EC), and (:DC). If we declare

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 191

these object properties as RCC synonyms, then the RCC substrate will recognize and process
them accordingly:

? (owl-read-file ‘‘nrql-user-guide-examples/owl-rcc.owl")
> nrql-user-guide-examples/owl-rcc.owl

? (enable-rcc-substrate-mirroring)
> :okay-rcc-substrate-mirroring-enabled

? (rcc-synonym #!contains (:ntppi :tppi))
> ((http://www.owl-ontologies.com/Ontology1162148702.owl#contains

(:ntppi :tppi)))

? (rcc-synonym #!adjacent (:ec))
> ((http://www.owl-ontologies.com/Ontology1162148702.owl#adjacent

(:ec))
(http://www.owl-ontologies.com/Ontology1162148702.owl#contains

(:ntppi :tppi)))

? (rcc-synonym #!disjoint :dc)
> ((http://www.owl-ontologies.com/Ontology1162148702.owl#disjoint

:dc)
(http://www.owl-ontologies.com/Ontology1162148702.owl#adjacent
(:ec))
(http://www.owl-ontologies.com/Ontology1162148702.owl#contains
(:ntppi :tppi)))

These RCC synonyms can be used in queries as well:

? (retrieve
(?*x ?*y)
(and
(?*x ?*y #!adjacent)))

> (((?*x
http://www.owl-ontologies.com/Ontology1162148702.owl#france)
(?*y
http://www.owl-ontologies.com/Ontology1162148702.owl#germany))

((?*x
http://www.owl-ontologies.com/Ontology1162148702.owl#germany)

(?*y
http://www.owl-ontologies.com/Ontology1162148702.owl#france)))

\begin{verbatim}

It is interesting to oberserve that the RCC substrate cannot prove that
{\tt \#!paris} and \#!france} are in {\tt :dc} relation - actually, they could be
{\tt :ec} as well. A coarser RCC relation specified with synonyms will also return

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

192 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

{\tt #\!paris} and {\tt \#!france}, try

\begin{verbatim}
(retrieve

(?*x ?*y)
(and
(?*x ?*y (#!adjacent #!disjoint))))

Moreover, note that the full annotations added by the mirror data substrate for the OWL
objects is available for retrieval as well:

? (get-data-node-description
http://www.owl-ontologies.com/Ontology1162148702.owl#paris)

> ((:node-name
http://www.owl-ontologies.com/Ontology1162148702.owl#paris)
(:node-label
((top)
(http://www.owl-ontologies.com/Ontology1162148702.owl#city)
(:abox-object)
(:abox-individual)
(:owl-object)
(:owl-individual)))

(:node-successors NIL)
(:node-predecessors
(http://www.owl-ontologies.com/Ontology1162148702.owl#hamburg
http://www.owl-ontologies.com/Ontology1162148702.owl#germany
http://www.owl-ontologies.com/Ontology1162148702.owl#europe
http://www.owl-ontologies.com/Ontology1162148702.owl#france)))

? (get-data-edge-description
http://www.owl-ontologies.com/Ontology1162148702.owl#france
http://www.owl-ontologies.com/Ontology1162148702.owl#germany)

> ((:from-node
http://www.owl-ontologies.com/Ontology1162148702.owl#france)
(:to-node
http://www.owl-ontologies.com/Ontology1162148702.owl#germany)
(:rcc-relation ((:ec)))
(:edge-label
((:abox-relationship)
(:abox-role-relationship)
(:owl-relationship)
(:owl-object-property-relationship)
(http://www.owl-ontologies.com/Ontology1162148702.owl#adjacent))))

Please note that the RCC synonym mechanism also applies to KBs / ABoxes which are not
in OWL format.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 193

6.1.9 Formal Syntax of nRQL

Here we give an EBNF syntax definition of nRQL. * means zero or more occurrences; "X"
denotes a literal; { "X" | "Y" | "Z" } means chose exactly one from the given literals
"X", "Y", "Z".

For example, the list (?x betty (age ?y)) is a valid <abox-query-head> (if age is a
concrete domain attribute, see <cd-attribute-name>), as well as (?x betty betty $?y
|http://a.com/ontology#a|). (), (nil) or (t) are invalid <abox-query-head>s.
The top level syntax is defined as follows:

(retrieve <query-head> <query-body>)

(retrieve-under-premise <query-premise> <abox-query-head> <abox-query-body>)

(tbox-retrieve <tbox-query-head> <tbox-query-body>)

(defquery <query-name> <def-query-head> <query-body>)

(firerule <rule-antecedence> <rule-consequence>)

Syntax of the query heads and premises:

<query-premise> -> List of RacerPro ABox assertions

<query-name> -> <symbol> (naming a defined query)

<symbol> -> any Lisp symbol
(e.g., huhu, foobar, |http://a.com/ontoly#a|)

WITH THE FOLLOWING EXCEPTIONS:

all-types types instantiators all-instantiators all-types-flat
all-instantiators-flat types-flat instantiators-flat direct-types
most-specific-types most-specific-instantiators direct-instantiators
direct-types-flat most-specific-types-flat most-specific-instantiators-flat
direct-instantiators-flat describe individual-synonyms concept-synonyms describe
nrql-equal-role bind-individual inv not neg and or one-of racer satisfies top
bottom true-query false-query constraint has-known-successor substitute insert
same-as equal = intersection union cap cup lambda told-value told-values
told-value-if-exists told-values-if-exists datatype-filler datatype-fillers
annotation-datatype-filler annotation-datatype-fillers unknown-operator
bindings-from no-told-value no-known-cd-objects project project-to pi real-top
real-bottom has-child has-parent has-descendant has-ancestor has-synonym

<def-query-head> -> "(" <def-head-entry>* ")"

<abox-query-head> -> "(" <abox-head-entry>* ")"

<tbox-query-head> -> "(" <tbox-head-entry>* ")"

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

194 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

<abox-head-entry> -> <query-object> |

<data-query-object> |

<abox-head-projection-operator> |

<lambda-application>

<tbox-head-entry> -> <query-object> |

<tbox-head-projection-operator> |

<lambda-application>

<def-head-entry> -> <query-object> |

<data-query-object>

<query-object> -> <query-variable> |

<query-individual>

<lambda-application> -> "(" "(lambda" "(" <lambda-var>* ")"
<lambda-body> ")"

<lambda-argument>* ")"

<lambda-var> -> <symbol>

<lambda-body> -> A MiniLisp S-expression, see the Manual

<lambda-argument> -> <query-object> |

<data-query-object> |

<head-projection-operator>

<query-variable> -> "?"<symbol> | "$?"<symbol>

<query-individual> -> <symbol> (naming an ABox individual or concept)

<data-query-object> -> <data-query-variable> |

<data-query-individual>

<data-query-variable> -> "?*"<symbol> | "$?*"<symbol>

<data-query-individual> -> "*"<symbol>

Data query objects can only be used if nRQL is used in hybrid mode, i.e., a data substrate mode is
enabled.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 195

The syntax of the head projection operators:

<abox-head-projection-operator ->
"(" <attribute-name> <query-object> ")" |

"(" { "told-value" | "told-values" }
"(" <attribute-name> <query-object> "))" |

"(" { "told-value-if-exists" | "told-values-if-exists" }
"(" <attribute-name> <query-object> "))" |

"(" { "datatype-filler" | "datatype-fillers" }
"(" <OWL-datatype-property> <query-object> "))" |

"(" { "annotation-datatype-filler" | "annotation-datatype-fillers" }
"(" <OWL-annotation-datatype-property> <query-object> "))" |

"(" { "all-types" | "types" | "instantiators" | "all-instantiators" |
"all-types-flat" | "types-flat" | "all-instantiators-flat" |
"instantiators-flat" | "direct-types" | "most-specific-types" |
"most-specific-instantiators" | "direct-instantiators" |
"direct-types-flat" | "most-specific-types-flat" |
"most-specific-instantiators-flat" | "direct-instantiators-flat" |
"describe" | "individual-synonyms" }

<query-object> ")"

<tbox-head-projection-operator ->
"(" { "concept-synonyms" | "describe" } <tbox-query-object> ")"

Query bodies and atoms are defined as follows:

<abox-query-body> ->
<empty-query-body> |

<abox-query-atom> |

<substrate-query-atom> |

"(" { "project-to" | "project" | "pi" }
<def-query-head> <abox-query-body> ")" |

"(" { "and" | "cap" | "intersection" } <abox-query-body>* ")" |

"(" { "or" | "cup" | "union" } <abox-query-body>* ")" |

"(" { "not" | "neg" } <abox-query-body> ")" |

"(" "inv" <abox-query-body> ")"

<tbox-query-body> ->
<empty-query-body> |

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

196 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

<tbox-query-atom> |

"(" { "project-to" | "project" | "pi" }
<def-query-head> <tbox-query-body> ")" |

"(" { "and" | "cap" | "intersection" } <tbox-query-body>* ")" |

"(" { "or" | "cup" | "union" } <tbox-query-body>* ")" |

"(" { "not" | "neg" } <tbox-query-body> ")" |

"(" "inv" <tbox-query-body> ")"

<empty-query-body> -> ""

<abox-query-atom> ->
"true-query" |

"false-query" |

"(" { "not" | "neg" } <abox-query-atom> ")" |

"(" "inv" <abox-query-atom> ")" |

"(" <query-object> <concept-expression> ")" |

"(" <query-object> <query-object>
{ <role-expression> | "nrql-equal-role" } ")" |

"(" <query-object> "nil" <role-expression> ")" |

"(" "nil" <query-object> <role-expression> ")" |

"(" top <query-object> ")" |

"(" bottom <query-object> ")" |

"(" <query-object> <query-object>
"(" "constraint"

<role-chain-followed-by-attribute>
<role-chain-followed-by-attribute>
<predicate-expression> "))" |

"(" "bind-individual" <abox-query-individual> ")" |

"(" { "substitute" | "insert" }
"(" <query-name>

{ <query-object> | <data-query-object> | "nil" }* "))" |

"(" { <query-object> | <data-query-object> | "nil" }*
<query-name> ")" |

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 197

"(" { "same-as" | "=" | "equal" }
<query-object> <query-object> ")" |

"(" <query-object>
"(" "has-known-successor" <role-expression> "))"

<tbox-query-atom> ->
"true-query" |

"false-query" |

"(" { "not" | "neg" } <tbox-query-atom> ")" |

"(" "inv" <tbox-query-atom> ")" |

"(" <query-object> <concept-name> ")" |

"(" <query-object> <query-object>
{ "has-child" | "has-parent" |

"has-descendant" | "has-ancestor" |
"has-synonym" } ")" |

"(" <query-object> "nil" <role-expression> ")" |

"(" "nil" <query-object> <role-expression> ")" |

"(" top <query-object> ")" |

"(" bottom <query-object> ")" |

"(" "bind-individual" <abox-query-individual> ")" |

"(" { "substitute" | "insert" }
"(" <query-name>

{ <query-object> | <data-query-object> | "nil" }* "))" |

"(" { <query-object> | <data-query-object> | "nil" }*
<query-name> ")" |

"(" { "same-as" | "=" | "equal" }
<query-object> <query-object> ")" |

"(" <query-object>
"(" "has-known-successor"

{ "has-child" | "has-parent" |
"has-descendant" | "has-ancestor" |
"has-synonym" } "))"

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

198 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

nRQL data substrate query language:

<data-query-atom> ->

"(" { "not" | "neg" } <data-query-atom> ")" |

"(" <data-query-object> <data-node-query-expression> ")" |

"(" <data-query-object> <data-query-object> <data-edge-query-expression> ")" |

"(" <data-query-object> "nil" <data-edge-query-expression> ")" |

"(" "nil" <data-query-object> <data-edge-query-expression> ")" |

"(" top <data-query-object> ")" |

"(" bottom <data-query-object> ")" |

"(" <data-query-object> <data-query-object>
<data-edge-query-satisfies-expression> ")" |

"(" "bind-individual" <data-query-individual> ")" |

"(" { "same-as" | "=" | "equal" }
<data-query-object> <data-query-object> ")" |

"(" <data-query-object>
"(" "has-known-successor" <data-edge-query-expression> "))" |

"(" { "substitute" | "insert" }
"(" <query-name>

{ <query-object> | <data-query-object> | "nil" }* "))" |

"(" { <query-object> | <data-query-object> | "nil" }* <query-name> ")"

Syntax of labels of data nodes and edges, used in (data-node <symbol>
<data-substrate-label>), (data-edge <symbol> <data-substrate-label>):

<data-substrate-label> -> <conjunction-of-data-items>

<conjunction-of-data-items> -> <data-literal> |

"(" <disjunction-of-data-items>+ ")"

<disjunction-of-data-items> -> <data-literal> |

"(" <data-literal>+ ")"

<data-literal> -> <symbol-data-literal> |

<character-data-literal> |

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 199

<string-data-literal> |

<numeric-data-literal>

<symbol-data-literal> -> a Common LISP symbol, e.g. symbol

<character-data-literal> -> a Common LISP character, e.g. #\a

<string-data-literal> -> a Common LISP string, e.g. "string"

<numeric-data-literal> -> a Common LISP number, e.g. 123, 3/2, 123.23

Syntax of nRQL data substrate queries:

<data-node-query-expression> -> <conjunction-of-data-query-items>

<data-edge-query-expression> -> <conjunction-of-data-query-items>

<data-edge-query-satisfies-expression> ->
"(" "satisfies"

{ <2-ary-data-query-predicate> |
"(" <disjunction-of-data-query-predicates>+ ")"

} ")"

<data-query-item> -> <data-literal> |

<data-query-predicate>

<conjunction-of-data-query-items> -> <data-query-item> |

"(" <disjunction-of-data-query-items>+ ")"

<disjunction-of-data-query-items> -> <data-query-item> |

"(" <data-query-item>+ ")"

<data-query-predicate> ->
"(" "predicate"

{ <0-ary-data-query-predicate> |
<1-ary-data-query-predicate> } ")"

<disjunction-of-data-query-predicate-items> -> <2-ary-data-query-predicate> |

"(" <2-ary-data-query-predicate>+ ")"

<0-ary-data-query-predicate> -> "stringp" | "zerop" | "integerp" |
"numberp" | "consp" | "symbolp" |
"keywordp" | "rationalp" | "floatp" |
"minusp"

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

200 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

<1-ary-data-query-predicate> -> "(" { "string=" | "string/=" |
"string-equal" | "string-not-equal" |
"string<" | "string<=" |
"string>" | "string>=" |
"string-lessp" | "string-greaterp" |
"string-not-lessp" | "string-not-greaterp" |
"search"

}
<string-data-literal> ")" |

"(" { "=" | "/=" |
">" | "<" |
">=" | "<=" }

<numeric-data-literal> ")" |

"(" "find" <character-data-literal> ")"

<2-ary-data-query-predicate> -> "string=" | "string/=" |
"string-equal" | "string-not-equal" |
"string<" | "string<=" |
"string>" | "string>=" |
"string-lessp" | "string-greaterp" |
"string-not-lessp" | "string-not-greaterp" |
"=" | "/=" |
">" | "<" |
">=" | "<="

Rule consequences:

<rule-consequence> -> "(" <generalized-abox-assertion>* ")"

<rule-antecedence> -> <query-body>

<generalized-abox-assertion> -> <instance-assertion> |

<related-assertion> |

<same-as-assertion> |

<constrained-assertion> |

<constraints-assertion> |

<forget-concept-assertion> |

<forget-role-assertion> |

<forget-constrained-assertion> |

<forget-constraint-assertion>

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. THE NRQL LANGUAGE 201

<generalized-object> -> <query-object> |

<new-ind-operator> |

<abox-head-projection-operator> |

<lambda-application>

<new-ind-operator> ->
"(" { "new-ind" | "new-individual" | "individual" |

"create-individual" | "new-symbol" | "new-atom" | "new-concept" }
<symbol> <query-object>* ")"

<concept-expression2> -> a RacerPro concept expression which may contain
<new-ind-operator>, allowing for the construction of
new atomic concepts based on bindings of <query-objects>.

<instance-assertion> -> "(" "instance" <generalized-object>
<concept-expression2> ")"

<related-assertion> -> "(" "related" <generalized-object>
<generalized-object>
<role-expression1> ")"

<same-as-assertion> -> "(" "same-as" <generalized-object>
<generalized-object> ")"

<constrained-assertion> -> "(" "constrained" <generalized-object>
<generalized-object>
<cd-attribute-name> ")"

<constraints-assertion> -> "(" { "constraints" | "constraint" } .. ")"
see RacerPro ‘‘constraints’’ syntax

Note that you can also use
<abox-head-projection-operator> and <lambda-application>
within constraint expression; thus, the syntax
has been extended by allowing also expression such as
(constraints (= (age b) (+ 30 (age a)))) or
(constraints (= (told-value (age ?y)) (age ?y))) etc.

<forget-concept-assertion> -> "(" "forget-concept-assertion"
<query-object>
<concept-expression2> ")"

<forget-role-assertion -> "(" "forget-role-assertion"
<query-object>
<query-object>
<role-expression1> ")"

<forget-constrained-assertion> -> "(" "forget-constrained-assertion"
<query-object>

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

202 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

<cd-object>
<cd-attribute-name> ")"

<forget-constraint-assertion> -> see RacerPro syntax. However, the
extensions mentioned in <constraints-assertion>
cannot be used here.

Auxiliary syntax rules:

<role-chain-followed-by-attribute> -> <cd-attribute-name> |

"(" <role-expression>* <cd-attribute-name> ")"

<concept-expression> -> see <C> on page 56, Fig. 3.1

<cd-attribute-name> -> see <AN> on page 57, Fig. 3.2

<cd-object-name> -> a RacerPro concrete domain object

<role-expression1> -> see <R> on page 56, Fig. 3.1 |

"(inv" <role-expression1> ")"

Note: a feature can be used for <R> as well.

<concept-expression> -> see <C> on page 56, Fig. 3.1

<role-expression> -> <role-expression1> |

"(not" <role-expression1> ")"

<OWL-datatype-property> -> see <R> on page 56, Fig. 3.1

Note: role-used-as-datatype-property-p
must return t (true) for <R>.

<OWL-annotation-property> -> see <R> on page 56, Fig. 3.1

Note: role-used-as-annotation-property-p
must return t (true) for <R>.

<prediate-expression> -> see <CDC> on page 57, Fig. 3.2 |

<CD-predicate>

<CD-prediate> -> "equal" | "unequal" | "string=" | "string<>" |
">" | "<" | ">=" | "<=" |
"<>" | "=" | "boolean=" | "boolean<>" |
"min" | "max" | "divisible" | "not-divisible"

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.2. THE NRQL QUERY PROCESSING ENGINE 203

6.2 The nRQL Query Processing Engine

The nRQL query processing engine implements the nRQL language and is integrated with
RacerPro. The nRQL engine offers various querying modi. In this section we describe the
core functionality of this engine.

6.2.1 The Query Processing Modi of nRQL

nRQL can be used in different querying modi. The two major modi are the set-at-a-time
mode and the tuple-at-a-time mode.

6.2.1.1 The Set-at-a-Time Mode

This is the mode we have used so far in our examples. You are already familiar with the
behavior of the nRQL API in this mode:

? (describe-query-processing-mode)
> ((:creating-substrates-of-type :racer-dummy-substrate)

:using-$?-prefix-for-injective-variables
:check-abox-consistency
:same-as-is-syntactic-same-as
:query-optimization-enabled
:optimizer-uses-cardinality-heuristics
:automatically-adding-rule-consequences
:warnings
:complete-mode
:mode-3
:set-at-a-time-mode
:deliver-kb-has-changed-warning-tokens)

? (retrieve (?x) (?x woman))
> (((?x alice)) ((?x betty)) ((?x eve)) ((?x doris)))

Note the :set-at-a-time-mode token in the result of
(describe-query-processing-mode).

In this mode, a call to retrieve returns the whole query answer at once, in one bunch.
Most users and/or client applications will be happy with this mode.

6.2.1.2 The Tuple-at-a-Time Modi – Incremental (Iterator-Based) Query Pro-
cessing

Sometimes it is preferable to compute and retrieve the answer tuples in an incremental,
iterator-based fashion. The user or application requesting the tuples can look at the tuples
already retrieved and decide whether yet another tuple is needed or not.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

204 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

The nRQL API provides the function get-next-tuple for this purpose. Applications can
also check for the availability of a next tuple by calling next-tuple-available-p:

? (process-tuple-at-a-time)
> :okay-processing-tuple-at-a-time

? (retrieve (?x) (?x woman))
> (:query-3 :running)

? (get-next-tuple :query-3)
> ((?x alice))

? (get-next-tuple :last)
> ((?x betty))

? (next-tuple-available-p :last)
> t

? (get-next-tuple :last)
> ((?x eve))

? (next-tuple-available-p :last)
> t

? (get-next-tuple :last)
> ((?x doris))

? (next-tuple-available-p :last)
> NIL

? (get-next-tuple :last)
> :exhausted

? (get-answer :last)
> (((?x alice)) ((?x betty)) ((?x eve)) ((?x doris)))

? (describe-query :last)
> (:query-3

(:accurate :processed)
(retrieve (?x) (?x woman) :abox smith-family))

In the incremental mode, a call to retrieve does not return the query answer, but instead
returns a so-called query identifier (ID), which can also be understood as a kind of “iterator”.
This ID is used as argument to API functions such as get-next-tuple. Moreover, the
identifier :last always refers to the last submitted query (or rule). In order to differentiate
queries from rules, also :last-query and :last-rule can be used instead of :last.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.2. THE NRQL QUERY PROCESSING ENGINE 205

6.2.1.2.1 Concurrent Incremental Query Processing The nRQL engine is a multi-
threaded query answering engine which allows you to run several queries concurrently (in
parallel).

Thus, is is possible to submit a number of calls to retrieve to the engine, and then request
tuples from these queries in a random order:

? (retrieve (?x) (?x man))
> (:query-4 :running)

? (retrieve (?x) (?x uncle))
> (:query-5 :running)

? (get-next-tuple :query-4)
> ((?x charles))

? (get-next-tuple :query-5)
> ((?x charles))

? (get-next-tuple :query-4)
> :exhausted

? (get-next-tuple :query-5)
> :exhausted

6.2.1.2.2 Lazy and Eager Tuple-at-a-Time Modi The incremental mode comes in
two forms – lazy and eager :

• In the so-called lazy incremental mode, the next tuple of a query is not computed
before it is actually requested by the user or application (unless get-next-tuple is
called). The thread computing the tuples – which is called the query answering thread
in the following - is put to sleep, and get-next-tuple re-awakes it.

• In the so-called eager incremental mode, the query answering thread is not put to
sleep. Instead, it continues to pre-compute tuples, even if the application has not yet
requested these “future tuples”. These tuples are put into a queue for future requests.

The API behaves identically in both modi. In any case, the query answering thread dies
after all tuples have been computed, or if the query was aborted, or a timeout was reached,
or the upper bound on the number of requested tuples was reached.

6.2.2 The Life Cycle of a Query

A query has a life cycle: It is created and prepared (parsed and compiled), then made active
(computes tuples), eventually goes to sleep, will be awoken again (compute some more
tuples), and eventually becomes inactive (its query answering thread dies), see Figure 6.2.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

206 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

Terminated
Queries

Prepared
Queries

execute!query

reexcute!query

reprepare!query

Running Queries

Sleeping Queries

Active Queries

(abort!query, ...)
retrieve

prepare!abox!query

Figure 6.2: Lifecycle of a Query

Even after its tread is terminated, the query is still present as a query object, and can be
reexecuted.

RacerPorter provides the “Queries” tab which can be used to inspect and manage the
queries as well as their current states. Moreover, the function describe-all-queries and
describe-query provide status information about queries.

We can distinguish the following lists / sets of queries according to their status:

1. The list of all queries. The corresponding API function all-queries returns this list.

As long as a query appears on this list, its ID is recognized by the API functions. Use
delete-query, delete-all-queries, etc. to remove queries from this list.

2. Queries which are ready to run, but have not been started yet. The corresponding
API function ready-queries returns this list. The function query-ready-p is used
to check whether a query is on this list.

The queries on this list are called ready queries or prepared queries. The queries on
this list have been parsed and compiled (prepared), but have not been started yet,
i.e., no query answering thread have been assigned to them.

The API function execute-query can be applied to queries on this list. In order to
put a query to this list without also starting its query answering thread, use the API
function/macro prepare-abox-query instead of retrieve.

3. The list of active queries. These queries have been started, and there is an ac-
tive query answering thread associated with them. The corresponding API function
active-queries returns this list. The function query-active-p is used to check
whether a query is on this list.

According to the mode in which the query had been started, this list is further par-
tioned into the following two list:

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.2. THE NRQL QUERY PROCESSING ENGINE 207

(a) The list of queries which are currently running. The corresponding API function
running-queries returns this list. The function query-running-p is used to
check whether a query is on this list.
A query which appears on this list is actively consuming CPU time; its thread
is not sleeping.

(b) The list of queries which are currently waiting (sleeping). The corresponding API
function sleeping-queries returns this list. The function query-sleeping-p
is used to check whether a query is on this list.
The thread of a query which appears on this list is currently sleeping; the query
had been started in lazy incremental mode. Note that queries started in the
set-at-a-time mode will never appear on this list.

4. The list of terminated (inactive) queries. The corresponding API func-
tion terminated-queries (also: processed-queries) this list. The function
query-terminated-p (also: query-processed-p) is used to check whether a query is
on this list.

A query is put on this list when its query answering thread terminates. Note that
different events can cause a query answering thread to terminate, e.g., all query answer
are computed, the query is aborted, the timeout is reached, etc.

The function reprepare-query puts an already processed query back on the list of
ready queries, and so a fresh life cycle can begin (“reincarnation”).

It is also possible to directly re-execute and thus put a query back on the list of active
queries by using the API function reexecute-query. Note that this function only
applies to terminated queries, not to ready queries. However, there is the function
execute-or-reexcute-all-queries.

6.2.3 The Life Cycle of a Rule

The same six different lists are also maintained for nRQL rules. RacerPorter provides the
“Rules” tab which can be used to inspect and manage the rules as well as their current
states.

The corresponding API functions are named

1. all-rules

2. ready-rules (equivalent)

3. active-rules

(a) running-rules

(b) sleeping-rules

4. terminated-rules (all equivalent)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

208 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

As for the queries, there are various synonym functions (please refer to the Reference Man-
ual).

Note that there is no facility which checks for applicable rules and applies them automat-
ically. The rules have to be fired by hand. However, the API function applicable-rules
returns the rules which can fire.

6.2.4 How to Implement Your Own Rule Application Strategy

A rule application strategy consists of two things: First the applicable rules have to identi-
fied. Then a subset of these rules must be applied / fired. Finally, in case any of these rules
produces more than one set of consequences, it must be decided which consequences to add
to the ABox.

nRQL only provides a function which identified the applicable rules: applicable-rules.
All other just mentioned aspects of a rule application strategy must be implemented by the
client / user.

Regarding the third step (deciding which rule consequences to add to an ABox), nRQL
provides an add all as well as a selected add only certain chosen sets of consequences to the
ABox functionality. In the latter case, nRQL must be advised which consequences to add –
the appropriate consequences must be “chosen”.

• In the set-at-a-time mode, all computed (produced) rule consequences can be added
automatically to an ABox if nRQL is in add-rule-consequences-automatically
mode. All computed rule consequences will be added to the ABox after the rule has
terminated.

In case dont-add-rule-consequences-automatically mode is used,
the computed set of rule consequences will be memorized, and later
add-chosen-sets-of-rule-consequences can be called on this rule to add
the memorized rule consequences (although nothing was really “chosen” here, please
read further).

• In the (incremental) tuple-at-a-time mode the nRQL API provides appropriate func-
tions which can be used to implement you own rule application strategy.

As in the incremental query answering modi, instead of returning the whole set of sets
of rule consequences at once in a bunch, nRQL will incrementally construct and return
one set of rule consequences after the other, one by one. The next set of rule conse-
quences must be explicitly requested using get-next-set-of-rule-consequences.
Then nRQL can be advised to memorize this computed set of rule consequences with
choose-current-set-of-rule-consequences.

In case nRQL is in add-rule-consequences-automatically mode, the chosen sets
of rule consequences are added automatically to the ABox after the last set had been
delivered. Otherwise (for example, in case the rule was aborted), the API function
add-chosen-sets-of-rule-consequences can be called to add the chosen sets of
consequence manually. However, add-chosen-sets-of-rule-consequences cannot
be called if the rule is still active. A rule which had been aborted never adds rule
consequences automatically to an ABox.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.2. THE NRQL QUERY PROCESSING ENGINE 209

Let us consider an example session which demonstrates these aspects of the API:

? (full-reset)
> :okay-full-reset

? (racer-read-file
"/home/mi.wessel/nrql-user-guide-examples/family-no-signature.racer")

> :OKAY

? (process-tuple-at-a-time)
> :okay-processing-tuple-at-a-time

? (describe-query-processing-mode)
> ((:creating-substrates-of-type :racer-dummy-substrate)

:using-$?-prefix-for-injective-variables
:check-abox-consistency
:same-as-is-syntactic-same-as
:query-optimization-enabled
:optimizer-uses-cardinality-heuristics
:automatically-adding-rule-consequences
:warnings
:complete-mode
:mode-3
:tuple-at-a-time-mode
:eager
:deliver-kb-has-changed-warning-tokens)

;;; Please note that ":automatically-adding-rule-consequences" is enabled

? (prepare-abox-rule
(?x woman)
((instance ?x mother)
(related ?x (new-ind child-of ?x) has-child)))

> (:rule-1 :ready-to-run)

? (ready-rules)
> (:rule-1)

? (applicable-rules)
> (:rule-1)

? (get-next-set-of-rule-consequences :rule-1)
> :not-found

? (execute-rule :rule-1)
> (:rule-1 :running)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

210 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

? (active-rules)
> (:rule-1)

? (get-next-set-of-rule-consequences :rule-1)
> ((instance alice mother) (related alice child-of-alice has-child))

? (get-current-set-of-rule-consequences :rule-1)
> ((instance alice mother) (related alice child-of-alice has-child))

? (choose-current-set-of-rule-consequences :rule-1)
> (((instance alice mother)

(related alice child-of-alice has-child)))

? (get-next-set-of-rule-consequences :rule-1)
> ((instance betty mother) (related betty child-of-betty has-child))

? (get-next-set-of-rule-consequences :rule-1)
> ((instance eve mother) (related eve child-of-eve has-child))

? (get-next-set-of-rule-consequences :rule-1)
> ((instance doris mother) (related doris child-of-doris has-child))

? (get-next-set-of-rule-consequences :rule-1)
> :exhausted

? (active-rules)
> NIL

? (processed-rules)
> (:rule-1)

? (all-role-assertions)
> (((alice child-of-alice) has-child)

((eve doris) has-sister)
((doris eve) has-sister)
((charles betty) has-sibling)
((betty eve) has-child)
((betty doris) has-child)
((alice charles) has-child)
((alice betty) has-child))

? (applicable-rules)
> (:rule-1)

? (execute-or-reexecute-all-queries :rule-1)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.2. THE NRQL QUERY PROCESSING ENGINE 211

> NIL

? (execute-or-reexecute-rule :rule-1)
> (:rule-1 :running)

? (execute-rule :rule-1)
> :not-found

? (get-next-set-of-rule-consequences :rule-1)
> ((instance betty mother) (related betty child-of-betty has-child))

? (applicable-rules)
> NIL

? (choose-current-set-of-rule-consequences :rule-1)
> (((instance betty mother)

(related betty child-of-betty has-child)))

? (get-next-set-of-rule-consequences :rule-1)
> ((instance alice mother) (related alice child-of-alice has-child))

? (add-chosen-sets-of-rule-consequences :rule-1)
*** NRQL WARNING: DENIED DUE TO DEADLOCK PREVENTION!

THE FOLLOWING RULES WILL NOT TERMINATE AUTOMATICALLY,
SINCE THEY HAVE BEEN STARTED IN LAZY INCREMENTAL MODE:
(rule-1).

> :denied-due-to-deadlock-prevention

? (get-next-n-remaining-sets-of-rule-consequences :rule-1)
> (((instance eve mother) (related eve child-of-eve has-child))

((instance doris mother)
(related doris child-of-doris has-child)))

? (get-next-n-remaining-sets-of-rule-consequences :rule-1)
> (:warning-kb-has-changed)

? (get-next-n-remaining-sets-of-rule-consequences :rule-1)
> NIL

? (all-role-assertions)
> (((betty child-of-betty) has-child)

((alice child-of-alice) has-child)
((eve doris) has-sister)
((doris eve) has-sister)
((charles betty) has-sibling)
((betty eve) has-child)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

212 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

((betty doris) has-child)
((alice charles) has-child)
((alice betty) has-child))

6.2.5 Configuring the Degree of nRQL Completeness

So far we have only used the complete modi of nRQL. In these modi, nRQL uses the basic
ABox querying functions of RacerPro in order to achieve completeness. However, on very
big or pathological KBs, this mode might fail to scale. In such cases you might consider
trying the incomplete modi of nRQL. For ABoxes / KBs which have a simple structure, for
example, ABoxes created from RDF(S) documents), the incomplete modi will be complete.

Many ABoxes simply contain data; those ABoxes are basically sets of ground terms and
thus contain no disjunctions, no role qualifications, etc. Bulk data from relational databases
would qualify for the incomplete modi. Note that in RDMS, usually the Closed World As-
sumption (CWA) is made, in contrast to RacerPro, which uses the Open World Assumption
(OWA). However, note that nRQL offers negation as failure, and thus, some form of CWA
negation is available.

In order to query such a potentially huge but simply structured ABox, nRQL can be config-
ured in such a way that it uses only the syntactic, told information from the ABox for query
answering, and exploits also information from the taxonomy to achieve better completeness.

Thus, query answering can be implemented using plain relational lookup techniques, and
only shallow reasoning is required. As mentioned, is also possible to take TBox information
into account; however, in this case, the TBox should be classified first in order to get as
many answers as possible.

6.2.5.1 The nRQL Modi in Detail

The nRQL engine offers the following degrees of completeness for query answering, which
are now discussed in oder of increasing completeness:

• Told information querying (Mode 0). In this mode, only the told syntactic information
from an ABox (the ABox assertions) will be used for query answering

For example, if an ABox contains the assertion (instance betty mother), then
(retrieve (?x) (?x mother)) will correctly return (((?x betty))), but the query
(retrieve (?x) (?x woman)) will fail, since this information is not explicitly given
in the ABox.

If the ABox contains 2 assertions (instance i a) and (instance i b), then both
(retrieve (?x) (?x a)) and (retrieve (?x) (?x b)) return (((?x i))), but
the query (retrieve (?x) (?x (and a b))) fails as well. However, (retrieve (?x)
(and (?x a) (?x b))) will succeed. The mode is therefore severely incomplete, but
sufficient for data. You could also write a nRQL rule to augment the ABox syntacti-
cally: (firerule (and (?x a) (?x b)) ((instance ?x (and a b)))).

In order to achieve better completeness, conjunctions in the concept instance asser-
tions are broken up and made syntactically explicit: If an ABox concept assertion such

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.2. THE NRQL QUERY PROCESSING ENGINE 213

as (instance i (and a b)) is found, then also (instance i a) and (instance i
b) will be added. Please note that these concept assertions are only “virtually” added;
the original ABox is not modified. Thus, (retrieve (?x) (?x a)) and (retrieve
(?x) (?x b)) will succeed.

Regarding the relational structure of the ABox which is spawned by the role assertions,
nRQL is only complete in this mode if there are no at-most number restrictions
present in the ABox, and if there are no features used.

Thus, nRQL will be complete up to the description logic ALCHIR+ concerning the
relational structure of the ABox, even in this incomplete mode. This means, the effects
of role hierarchies, transitively closed roles and inverse roles are completely captured.

If you consider to query a plain relational structure (and you don’t need a TBox) with
labeled nodes (for example, a big graph representing a public transportation network
with a few 10.000 nodes or the like), then this is the nRQL setting you will need
and which is “complete enough” for your application. You could also use the data
substrate.

In order to enable this mode, use (set-nrql-mode 0).

• Told information querying plus taxonomic information for atomic concepts / con-
cept names (Mode 1). In addition to the “virtual” concept membership assertions
already added in Mode 0, this mode considers the concept assertions of the form
(instance i C) for atomic concepts C, and adds implied concept assertions of the
form (instance i D), if D is implied by C w.r.t. the TBox. In order to find appro-
priate D to add, nRQL classifies the TBox (computes the taxonomy) , and uses the
atomic-concept-synonyms and atomic-concept-ancestors of C for D.

For example, if the ABox contains the concept assertion (instance betty mother),
then also (instance betty woman) will be added, since woman is a member of
(atomic-concept-ancestors mother).Moreover, conjunctions are broken up, like in
Mode 0, and the same process is applied recursively until no more assertions can be
added. The resulting “upward saturated ABox” is then queried like in the previous
setting.

Note that, in contrast to the previous setting, (retrieve (?x) (?x woman)) now
correctly returns (((?x betty))). However, this mode will still fail for the query
(retrieve (?x) (?x (and woman human))). This is what the next mode achieves.

In order to enable this mode, use (set-nrql-mode 1).

• Told information querying plus taxonomic information for all concepts (Mode 2). This
mode is like Mode 1, but now, the atomic concept synonyms and ancestors will also
be computed for arbitrary (and not only atomic) concepts C in concept membership
assertions (instance i C).

Thus, if the ABox contains, (instance betty (or woman mother)), then RacerPro
will compute the equivalent concepts and concept ancestors of the compound, non-
atomic concept (or woman mother). This will result in assertions such as (instance
betty woman) and (instance betty human), etc.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

214 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

But carefully: For big ABoxes containing many different concept expressions, this
process might take a long time, since each of this concept expressions must be classified
into the TBox.

In order to enable this mode, use (set-nrql-mode 2).

• Complete RacerPro ABox reasoning (Mode 3). We don’t need to discuss this mode,
since it is the default mode and has been discussed all the time in this manual.

In order to enable this mode, use (set-nrql-mode 3).

• See below for an explanation of (set-nrql-mode 4) and (set-nrql-mode 5).

• If you use (set-nrql-mode 6), then this mode behaves like (set-nrql-mode 3).
Thus, mode 6 is a complete mode. However, mode 6 might be faster than mode 3. See
below for an explanation.

Please note that the incomplete modi will only achieve a certain degree of completeness
if you restrict yourself to concept query atoms which use only concept names instead of
arbitrary concept expressions. If you insist on using complex concepts in the concept query
atoms of your nRQL queries, then the complete nRQL modi will be needed.

6.2.5.2 An Example Demonstrating the Different nRQL Modi

The following log demonstrates the different nRQL modi and the degrees of completeness
they achieve:

? (full-reset)
> :okay-full-reset

? (instance alice grandmother)
> :OKAY

? (instance betty (and woman (some has-child top)))
> :OKAY

? (implies grandmother mother)
> :OKAY

? (define-concept mother (and woman (some has-child top)))
> :OKAY

? (set-nrql-mode 0)
> :okay-mode-0

? (retrieve (?x) (?x woman))
> (((?x betty)))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.2. THE NRQL QUERY PROCESSING ENGINE 215

? (set-nrql-mode 1)
> :okay-mode-1

? (retrieve (?x) (?x woman))
> (((?x alice)) ((?x betty)))

? (retrieve (?x) (?x mother))
> (((?x alice)))

? (set-nrql-mode 3)
> :okay-mode-3

? (retrieve (?x) (?x mother))
> (((?x betty)) ((?x alice)))

6.2.5.3 The Two-Phase Query Processing Modi

The so-called two-phase query processing modi are special lazy incremental (tuple at a time)
modi. The modi 4, 5 and 6 are two-phase processing modi. All modi are complete.
Mode 4 and 5 are lazy incremental modi, whereas mode 6 is (like mode 3) a set-a-t-time
mode.
Let us describe the modi 4 and 5 first. If nRQL is used in these modi, then delivery of tuples
will be arranged in two phases:

• In phase one, the so-called cheap tuples will be delivered,

• followed by the expensive tuples in phase two.

The idea is simple: The tuples from phase one (the cheap tuples) will be provided by the
incomplete modi just discussed. In mode 4, mode 1 is used, and in mode 5, mode 2. The
remaining (expensive tuples) delivered in phase 2 will be provided by the complete mode
3. Thus, all two-phase processing modi are complete. Note that RacerPro’s basic ABox
retrieval functions are only called in phase two.

6.2.5.3.1 The Warning Token nRQL can be advised to deliver a so-called phase-two-
starts warning token before phase two starts, informing the application or user that the next
call to get-next-tuple will invoke RacerPro’s ABox retrieval functions. However, delivery
of this warning token is optional. Please refer to the Reference Manual for more details.

6.2.5.3.2 Mode 4 and 5 Cannot be Used for Queries with NEG Please note that
only queries that do not make use of the NAF-negation neg can take advantage of the
two-phase query processing modi, because the complement set constructed by neg will be
too big if neg is applied to a set which contains less tuples (than the complete answer).
Thus, the complement will contain wrong (incorrect) tuples.
If nRQL is in mode 4, 5, or 6, and a containing neg is posed, then mode 3 is used. Please
note that mode 3 can be used in set-at-a-time as well as tuple-at-a-time mode.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

216 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

6.2.5.3.3 Two-Phase Modi Example Session The following log demonstrates the
nRQL modi 4 and 6. Let us first set up the small example KB:

? (full-reset)
> :okay-full-reset

? (implies mother woman)
> :OKAY

? (implies grandmother mother)
> :OKAY

? (define-concept mother (and woman (some has-child top)))
> :OKAY

? (instance alice grandmother)
> :OKAY

? (instance betty (or mother grandmother))
> :OKAY

? (related betty eve has-child)
> :OKAY

? (instance betty (all has-child woman))
> :OKAY

Let us switch to mode 4 and retrieve the instances of woman:

? (set-nrql-mode 4)
> :okay-mode-4

? (retrieve (?x) (?x woman))
> (:query-3 :running)

? (get-next-tuple :last)
> ((?x alice))

? (get-next-tuple :last)
> :warning-expensive-phase-two-starts

? (get-next-tuple :last)
> ((?x betty))

? (get-next-tuple :last)
> ((?x eve))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.2. THE NRQL QUERY PROCESSING ENGINE 217

Now let us switch to mode 5. Please observe that phase one is no able to produce one more
tuple (before :warning-expensive-phase-two-starts is delivered):

? (set-nrql-mode 5)
> :okay-mode-5

? (retrieve (?x) (?x woman))
> (:query-4 :running)

? (get-next-tuple :last)
> ((?x alice))

? (get-next-tuple :last)
> ((?x betty))

? (get-next-tuple :last)
> :warning-expensive-phase-two-starts

? (get-next-tuple :last)
> ((?x eve))

6.2.5.4 Mode 6 vs. Mode 3

Mode 6 is like mode 3 in set-at-a-time mode. However, unlike mode 3, in mode 6 nRQL
will exploit the two-phase query processing schema. Thus, the more expensive ABox re-
trieval functions are avoided whenever possible. However, since phase one is incomplete, it
may be the case that no tuples can be computed in phase one at all, thus leaving all the
work for phase two. Nevertheless it is worth trying to use mode 6 whenever you encounter
performance problems in mode 3.

6.2.6 Automatic Deadlock Prevention

Certain types of queries (or rules) must temporary change the queried ABox in order to
be answered, i.e., ABox assertions must be added. This is, for example, the case if classical
negated roles are used in role query atoms. If more than one query (or rule) is currently
active which reference the same ABox, then these different queries most be isolated from
one another. nRQL uses locking techniques to achieve this isolation: The queried ABox is
thus locked, so other queries cannot access this ABox as long as the query is active. This
means that nRQL may not permit the execution of other queries on that ABox. The query
has to wait until all active queries querying that ABox have been terminated.

However, there is a problem: In lazy mode, these queries may not terminate automatically.
If such a situation is encountered, nRQL will deny starting yet another query and print out
a warning message:

? (full-reset)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

218 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

> :okay-full-reset

? (define-primitive-role r :range (not c))
> :OKAY

? (instance i top)
> :OKAY

? (instance j c)
> :OKAY

? (instance k c)
> :OKAY

? (process-tuple-at-a-time)
> :okay-processing-tuple-at-a-time

? (enable-lazy-tuple-computation)
> :okay-lazy-mode-enabled

? (retrieve (?x ?y) (?x ?y (not r)))
> (:query-1 :running)

? (get-next-tuple :last)
> ((?x k) (?y k))

? (get-next-tuple :last)
> :warning-kb-has-changed

? (active-queries)
> (:query-1)

? (waiting-queries)
> (:query-1)

? (running-queries)
> NIL

? (retrieve (?x) (?x c))
*** NRQL WARNING: DENIED DUE TO DEADLOCK PREVENTION!

THE FOLLOWING QUERIES WILL NOT TERMINATE AUTOMATICALLY,
SINCE THEY HAVE BEEN STARTED IN LAZY INCREMENTAL MODE:
(query-1).

> :denied-due-to-deadlock-prevention

? (get-answer :last)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.2. THE NRQL QUERY PROCESSING ENGINE 219

> (((?x k) (?y k))
((?x k) (?y j))
((?x j) (?y k))
((?x j) (?y j))
((?x i) (?y k))
((?x i) (?y j)))

? (retrieve (?x) (?x c))
> (:query-2 :running)

? (get-answer :last)
> (((?x j)) ((?x k)))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

220 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

6.2.7 Reasoning with Queries

The services described in this Section should be considered as non-essential add-ons and
are still experimental.

6.2.7.1 Reporting Inconsistent Queries

If you are wondering why a certain query never returns any tuples and you think it should,
you should consider using the consistency checking service for queries. An inconsistent query
must necessarily produce an empty answer on all ABoxes; thus, CPU cycles can be saved
if such queries are recognized in advance, before executing them.

Even though the reasoning mechanism offered by nRQL for queries are incomplete (and yet
experimental), they are still useful. The consistency checking service is sound and complete
for queries which do contain at most one occurrence of neg.

The idea of the algorithm is simple: The query is first transformed into DNF. Then, for
each disjunct, a canonical ABox is constructed, witnessing the satisfiability of the query.
Note that each disjunct is a grounded conjunctive query.

Please note that the ABox is not taken into account; e.g., even if betty is an instance of
woman, and woman and man are disjoint, then the query (retrieve () (betty man)) is not
recognized as inconsistent. The reasons is that (in principle) there could be and ABox in
which betty is indeed a man.

Here is an example session, demonstrating the utility of nRQL’s reasoning facilities:

? (full-reset)
> :okay-full-reset

? (racer-read-file
"/home/mi.wessel/nrql-user-guide-examples/family-no-signature.racer")

> :OKAY

? (report-inconsistent-queries-and-rules)
> :okay-reporting-inconsistent-queries-and-rules

? (retrieve (?x) (and (?x woman) (?x man)))
> :inconsistent

? (describe-query :last)
> (:query-1

(:accurate :processed)
(retrieve (?x) (and (?x woman) (?x man)) :abox smith-family))

? (reexecute-query :last)
> :inconsistent

? (prepare-abox-query

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.2. THE NRQL QUERY PROCESSING ENGINE 221

(?x)
(and
(?x woman)
(?x ?y has-child)
(?y (all has-parent (all has-descendant woman)))
(?y ?z has-child)
(?z ?u has-child)
(?u uncle)))

*** NRQL WARNING: query-2 IS INCONSISTENT
> (:query-2 :ready-to-run)

? (prepare-abox-query
(?x)
(and
(?x woman)
(?x ?y has-child)
(?y (all descendant-of (all has-descendant woman)))
(?y ?z has-child)
(?z ?u has-child)
(?u uncle)))

> (:query-3 :ready-to-run)

? (define-primitive-role descendant-of :inverse has-descendant)
> :OKAY

? (prepare-abox-query
(?x)
(and
(?x woman)
(?x ?y has-child)
(?y (all descendant-of (all has-descendant woman)))
(?y ?z has-child)
(?z ?u has-child)
(?u uncle)))

> (:query-4 :ready-to-run)

? (execute-query :last)
> :inconsistent

? (retrieve
(?x)
(union
(and (?x man) (?x woman))
(and (?x grandmother) (?x uncle))))

*** NRQL WARNING: query-5 IS INCONSISTENT
> :inconsistent

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

222 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

? (retrieve nil (and (?x grandmother) (neg (?x woman))))
*** NRQL WARNING: query-6 IS INCONSISTENT
> :inconsistent

? (retrieve nil (and (?x grandmother) (?x (not woman))))
*** NRQL WARNING: query-7 IS INCONSISTENT
> :inconsistent

? (concept-satisfiable? (and woman man))
> NIL

? (prepare-abox-query nil (betty man))
> (:query-8 :ready-to-run)

? (query-consistent-p :last)
> t

6.2.7.2 Reporting Inconsistent Rules

The described reasoning services are also provided for rule. In this case, also the consequence
of the rule is taken into account:

? (full-reset)
> :okay-full-reset

? (report-inconsistent-queries-and-rules)
> :okay-reporting-inconsistent-queries-and-rules

? (prepare-abox-rule
(and (?x c) (?y d))
((instance ?x d)
(related ?x ?y r)
(instance ?y (all (inv r) (not d)))))

*** NRQL WARNING: rule-1 IS INCONSISTENT
> (:rule-1 :ready-to-run)

? (prepare-abox-rule (and (?x c) (?x (not c))) ((instance ?x d)))
*** NRQL WARNING: rule-2 IS INCONSISTENT
> (:rule-2 :ready-to-run)

? (prepare-abox-rule
(and (?x c) (?x d))
((instance ?x (not (and c d)))))

*** NRQL WARNING: rule-3 IS INCONSISTENT
> (:rule-3 :ready-to-run)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.2. THE NRQL QUERY PROCESSING ENGINE 223

6.2.7.3 Checking for Query Entailment

The function query-entails-p checks whether one query is more specific than another
one. This is also known as query subsumption. The function query-equivalent-p checks
whether both queries mutually entail (subsume) each other. The query entailment check is
complete for queries which do not contain neg.

The query entailment check is reduced to a series of query consistency checks. The query
(and a11 ... a1n) entails the query (and a21 ... a2m) iff all queries (and a11 ...
a1n (neg a21)) are inconsistent; moreover, if the queries contain union, then they are
brought into DNF, and each combination of disjuncts is checked accordingly. Note that
we have just stated that the query inconsistency checker is complete for queries containing
at most one neg. Thus, we claim that the entailment check is complete for queries which
contain no negs.

Moreover, if should be noted that the entailment check implemented here only considers the
bodies of the queries; the head is irrelevant. What matters for query subsumption is thus
not a subsumption / set inclusion relationship between the query results, but between the
tuple sets denoted by the query bodies. Thus, the query (retrieve (?x) (?x woman)) is
entailed by (retrieve () (?x grandmother)).

Obviously, there is also variable renaming issue: Should the queries (?x woman) and (?y
woman) be considered as equivalent? And what about (and (?x man) (?y woman)) vs.
(and (?y man) (?x woman))? Are they equivalent?

In nRQL, the answer to the first question is yes, and the answer to the second question
is no. The rationale is that we want to avoid having to consider an exponential (factorial)
number of possible ways to rename variables. Each nRQL query body is associated with a
so-called object vector which is a sequence / list of lexicographic ordered objects (variables
and individuals) mentioned in the query body. So, the object vector of (?x woman) is <?x>,
and <?y> for (?y woman). Moreover, <?x,?y> for (and (?x man) (?y woman)) and (and
(?x woman) (?y man)).

In order to check whether the query a is more specific than query b, the variables in b
are renamed to match the names of the variables in a, according to their positions in the
object vectors. So we are not considering all possible ways to rename the variables, but only
consider one way to rename them: We match them according to their positions in the object
vectors which are lexicographically ordered. The names of the variables thus matter.

Thus, for the queries a = (and (?x man) (?y woman)) and b = (?a man) (?b woman) we
would rename <?a,?b> into <?x,?y> and thus see that (and (?x man) (?y woman) (neg
(?x man))) as well as (and (?x man) (?y woman) (neg (?y woman))) are inconsistent.
This show that b entails a (and vice versa). However, for b = (?b man) (?a woman), neither
(and (?x man) (?y woman) (neg (?x woman))) nor (and (?x man) (?y woman) (neg
(?y man))) are inconsistent. This shows that there is no entailment in this case.

Note that it is quite reasonable not to consider all possible mappings if one accepted the
“typed tuple positions” perspective: Under this perspective, the object vectors denote the
structure of the tuple sets denoted by the query bodies. The element positions of the tuples
in these sets can be considered as “typed”, e.g., the type of the tuples in (and (?x woman)
(?y man)) is <woman,man>. In contrast, the types of the tuples in (and (?b woman) (?a

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

224 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

man)) is <man,woman>. So it is obvious that these two sets can never be in a subsumption /
subset relationship to one another. Note that this is very similar to the covariance paradigm
used in programming languages.

Let us give some practical examples:

? (full-reset)
> :okay-full-reset

? (racer-read-file
"/home/mi.wessel/nrql-user-guide-examples/family-no-signature.racer")

> :OKAY

? (prepare-abox-query nil (?x woman))
> (:query-1 :ready-to-run)

? (prepare-abox-query nil (?x grandmother))
> (:query-2 :ready-to-run)

? (query-entails-p :query-2 :query-1)
> t

? (query-entails-p :query-1 :query-2)
> NIL

? (prepare-abox-query nil (and (?x woman) (?x ?y has-child)))
> (:query-5 :ready-to-run)

? (prepare-abox-query nil (?z mother))
> (:query-6 :ready-to-run)

? (query-entails-p :query-5 :query-6)
> t

? (query-entails-p :query-6 :query-5)
> NIL

;;; Please note that :query-6 and :query-5 are *not*
;;; equivalent. :Query-5 is stronger (more specific),
;;; since it requires the existence of some has-child filler
;;; in the ABox, whereas for :query-6 this child most
;;; not be explicitly present in the ABox

;;; However, an alternative definition of "mother" will be
;;; recognized as equivalent to the :query-6
;;; (not that

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.2. THE NRQL QUERY PROCESSING ENGINE 225

? (prepare-abox-query
nil
(and (?x (and woman (some has-child top)))))

> (:query-9 :ready-to-run)

? (query-entails-p :query-9 :query-6)
> t

? (query-entails-p :query-6 :query-9)
> t

;;;
;;;
;;;

? (prepare-abox-query (?x) (?x mother))
> (:query-12 :ready-to-run)

? (prepare-abox-query nil (?x grandmother))
> (:query-13 :ready-to-run)

? (query-entails-p :query-13 :query-12)
> t

? (prepare-abox-query nil (and (?x woman) (?y man)))
> (:query-16 :ready-to-run)

? (prepare-abox-query nil (and (?a woman) (?b man)))
> (:query-17 :ready-to-run)

? (prepare-abox-query nil (and (?b woman) (?a man)))
> (:query-18 :ready-to-run)

? (query-equivalent-p :query-16 :query-17)
> t

? (query-equivalent-p :query-16 :query-18)
> NIL

? (prepare-abox-query
nil
(and (?a mother) (?b uncle) (?c grandmother)))

> (:query-22 :ready-to-run)

? (query-entails-p :query-22 :query-16)
> t

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

226 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

? (query-entails-p :query-16 :query-22)
> NIL

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.2. THE NRQL QUERY PROCESSING ENGINE 227

6.2.8 The Query Repository - The QBox

The query entailment check (see previous Section) is used for the maintenance of a query
repository. This repository is also called the QBox. If enabled, a QBox is maintained for
each queried ABox. The QBox is created on demand (if needed). The QBox serves as
a hierarchical cache. The service is still experimental and should be considered an non-
essential “add on”.

For each new query to be answered, its set of most specific subsumers as well as its most
general subsumes are computed. This process is called query classification. The QBox can
be seen as a “taxonomy” for queries.

If a classified query is about to be executed, the cached answer sets of its parent queries
(direct subsuming queries) can be utilized as superset caches, and the cached answer sets
of its children queries (direct subsumed queries) serve as subset caches. In case the QBox
already contains an equivalent query with a cached answer set, this set will be returned
immediately.

The query entailment check which is used for query classification is slightly stricter than the
query entailment check just discussed. Here we require in addition that the object vectors
must have the same length. The rationale is that we want to exploit and directly reuse
the cached tuples; the tuples from the caches must therefore have the same arity as the
requested tuples.

Please consider the following example session to get familiar with the QBox facility:

? (full-reset)
> :okay-full-reset

? (racer-read-file
"/home/mi.wessel/nrql-user-guide-examples/family-no-signature.racer")

> :OKAY

? (enable-query-repository)
> :okay-query-repository-enabled

? (retrieve (?x) (?x top))
> (((?x alice)) ((?x betty)) ((?x charles)) ((?x doris)) ((?x eve)))

? (retrieve (?a) (?a human))
> (((?a eve)) ((?a doris)) ((?a charles)) ((?a betty)) ((?a alice)))

? (retrieve (?b) (?b woman))
> (((?b alice)) ((?b betty)) ((?b doris)) ((?b eve)))

? (retrieve (?y) (and (?x woman) (?x ?y has-child) (?y human)))
> (((?y doris)) ((?y eve)) ((?y betty)) ((?y charles)))

? (show-qbox-for-abox)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

228 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

;;;
;;; QBOX FOR racer-dummy-substrate FOR ABOX smith-family
;;;
;;; 0:master-top-query
;;; |---4:query-9
;;; | ___0:master-bottom-query
;;; ___1:query-1
;;; ___2:query-2 = (SUBQUERY-3-OF-query-9)
;;; ___3:query-5 = (SUBQUERY-1-OF-query-9)
;;; ___0:master-bottom-query
> :see-output-on-stdout

? (show-qbox-for-abox smith-family t)
;;;
;;; QBOX FOR racer-dummy-substrate FOR ABOX smith-family
;;;
;;; master-top-query
;;; |---(and (?x-ano1 woman) (?x-ano1 ?y has-child) (?y human))
;;; | ___master-bottom-query
;;; ___(?x top)
;;; ___(?a human)
;;; ___(?b woman)
;;; ___master-bottom-query
> :see-output-on-stdout

? (query-equivalents :last)
> NIL

? (retrieve (?y) (and (?x mother) (?y ?x has-parent) (?y man)))
> (((?y charles)))

? (show-qbox-for-abox smith-family t)
;;;
;;; QBOX FOR racer-dummy-substrate FOR ABOX smith-family
;;;
;;; master-top-query
;;; |---(and (?x-ano1 woman) (?x-ano1 ?y has-child) (?y human))
;;; | ___(and (?x-ano1 mother) (?y ?x-ano1 has-parent) (?y man))
;;; | ___master-bottom-query
;;; ___(?x top)
;;; ___(?a human)
;;; ___(?b woman)
;;; ___master-bottom-query
> :see-output-on-stdout

? (query-children :last)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.2. THE NRQL QUERY PROCESSING ENGINE 229

> (master-bottom-query)

? (show-qbox-for-abox smith-family nil)
;;;
;;; QBOX FOR racer-dummy-substrate FOR ABOX smith-family
;;;
;;; 0:master-top-query
;;; |---4:query-9
;;; | ___5:query-43
;;; | ___0:master-bottom-query
;;; ___1:query-1
;;; ___2:query-2 = (SUBQUERY-3-OF-query-9)
;;; ___3:query-5 = (SUBQUERY-1-OF-query-9)
;;; ___0:master-bottom-query
17 > :see-output-on-stdout

? (query-children :query-9)
> (:query-43)

? (query-parents :query-43)
> (:query-9)

? (retrieve nil (and (?a mother) (?a ?b has-child) (?b man)))
> t

? (show-qbox-for-abox smith-family t)
;;;
;;; QBOX FOR racer-dummy-substrate FOR ABOX smith-family
;;;
;;; master-top-query
;;; |---(and (?x-ano1 woman) (?x-ano1 ?y has-child) (?y human))
;;; | ___(and (?x-ano1 mother) (?y ?x-ano1 has-parent) (?y man))
;;; | ___master-bottom-query
;;; ___(?x top)
;;; ___(?a human)
;;; ___(?b woman)
;;; ___master-bottom-query
> :see-output-on-stdout

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

230 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

? (show-qbox-for-abox smith-family nil)
;;;
;;; QBOX FOR racer-dummy-substrate FOR ABOX smith-family
;;;
;;; 0:master-top-query
;;; |---4:query-9
;;; | ___5:query-43 = (query-56)
;;; | ___0:master-bottom-query
;;; ___1:query-1
;;; ___2:query-2 = (SUBQUERY-3-OF-query-9)
;;; ___3:query-5 = (SUBQUERY-1-OF-query-9)
;;; ___0:master-bottom-query
> :see-output-on-stdout

? (query-equivalents :last)
> (:query-43)

? (query-equivalents :query-56)
> (:query-43)

? (query-equivalents :query-43)
> (:query-56)

? (retrieve (?a) (?a mother))
> (((?a betty)) ((?a alice)))

? (show-qbox-for-abox smith-family nil)
;;;
;;; QBOX FOR racer-dummy-substrate FOR ABOX smith-family
;;;
;;; 0:master-top-query
;;; |---4:query-9
;;; | ___5:query-43 = (query-56)
;;; | ___0:master-bottom-query
;;; ___1:query-1
;;; ___2:query-2 = (SUBQUERY-3-OF-query-9)
;;; ___3:query-5 = (SUBQUERY-1-OF-query-9)
;;; ___6:query-88
;;; ___0:master-bottom-query
> :see-output-on-stdout

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.2. THE NRQL QUERY PROCESSING ENGINE 231

? (show-qbox-for-abox smith-family t)
;;;
;;; QBOX FOR racer-dummy-substrate FOR ABOX smith-family
;;;
;;; master-top-query
;;; |---(and (?x-ano1 woman) (?x-ano1 ?y has-child) (?y human))
;;; | ___(and (?x-ano1 mother) (?y ?x-ano1 has-parent) (?y man))
;;; | ___master-bottom-query
;;; ___(?x top)
;;; ___(?a human)
;;; ___(?b woman)
;;; ___(?a mother)
;;; ___master-bottom-query
> :see-output-on-stdout

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

232 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

6.2.9 The Query Realizer

Query realization can be called a semantic query optimization technique which will enhance
the amount of information that is available for the heuristic, cost-based query optimizer.
Moreover, the added conjuncts can also enhance the overall query answering speed, since
the search process computing the answer tuples is somewhat “better informed” if more
information regarding the query is made explicit by means of inference. However, the service
is still experimental.

The query realization process is similar to an ABox realization process: logically implied
conjuncts are added. The realized query is semantically equivalent to the original query.

Let us consider the following example session:

? (full-reset)
> :okay-full-reset

? (racer-read-file
> :OKAY

? (enable-query-realization)
> :okay-query-realization-enabled

? (retrieve (?x) (and (?x woman) (?x ?y has-child) (?y human)))
> (((?x betty)) ((?x alice)))

? (describe-query :last)
> (:query-1

(:accurate :processed)
(retrieve
(?x)
(and
(?y-ano1 (and human person))
(?x ?y-ano1 has-child)
(?x (and woman mother)))
:abox
smith-family))

;;; DESCRIBE-QUERY outputs, by default,
;;; always the internally rewritten query
;;; Note that nRQL has deduced that
;;; ?x is in fact a mother, not only a woman!

;;; You can also get the original query by
;;; providing the optional nil argument:

? (describe-query :last nil)
> (:query-1

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.2. THE NRQL QUERY PROCESSING ENGINE 233

(:accurate :processed)
(retrieve
(?x)
(and (?x woman) (?x ?y has-child) (?y human))
:abox
smith-family))

? (retrieve
(?x)
(and
(?x woman)
(?x (all has-descendant man))
(?x ?y has-child)
(?y human)))

> NIL

? (describe-query :last)
> (:query-2

(:accurate :processed)
(retrieve
(?x)
(and
(?x (and woman (all has-descendant man) mother))
(?x ?y-ano1 has-child)
(?y-ano1 (and human man)))

:abox
smith-family))

;;; Note that nRQL has deduced that ?y-ano1 / ?y must be a man,
;;; and that ?x is a mother

Since a realized query contains more syntactically explicit information, the search for an-
swer tuples can eventually be more constrained and thus eliminate candidate bindings for
variables which otherwise would be considered. So-called thrashing (a term borrowed from
constraint programming) is thus minimized. However, candidate generation for variable
bindings will also be more expensive, since the concepts used in concept query atoms will
be more complex. Thus, it depends on the KB and the query if the realized query will
perform better than the non-realized one.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

234 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

6.2.10 The nRQL Persistency Facility

nRQL maintains a so-called substrate data structure for each RacerPro ABox which was
queried. This ABox-associated substrate data structure contains index structures and other
auxiliaries needed for query answering. Computation of these index structures is triggered
on demand (if needed). The first time a query is posed to a certain ABox which has not
seen a nRQL query before, nRQL creates a corresponding substrate for the ABox as well
as all its index structures. Thus, answering the first query to an ABox takes considerably
longer than subsequent queries to the same ABox.

In order to avoid recomputation of these index structures, it is possible to dump
(store) the complete substrate data structure into a file. Moreover, also the data
substrate or RCC substrate may contain nodes which have been created by hand
and which must be saved somehow. The API functions store-substrate-for-abox
and store-substrate-for-current-abox are provided for this purpose. You can also
dump all substrates: store-all-substrates. Restoring substrates is easy as well:
restore-substrate, restore-all-substrates. Please consult the Reference Manual for
more details on these API functions.

Dumping a substrate will always automatically dump the associated ABox and TBox as
well. Moreover, there can be defined queries (see Section 6.1.5) associated with a TBox, the
substrate can also have an associated QBox, etc. All these data structures are also saved.

However, it is not possible to resurrect the queries from the QBox - they merely serve as
caches. Thus, you cannot call reexecute-query on a query Id which you see in a restored
QBox.

This list of queries, processed queries, active queries etc. are NOT saved. If you really want
to save queries into a file, we ask you the define these queries (see Section 6.1.5). Restored
definitions can be reused. See the example below.

We have also discussed in Section 6.1.8 that there are specialized types of substrates avail-
able, tailored for special representation tasks. For example, the data substrate, or the RCC
substrate. These substrates can be saved as well, and thus, the created hybrid representation
can be preserved.

The following session demonstrates the utility of the nRQL persistency facility:

? (full-reset)
> :okay-full-reset

? (racer-read-file
"/home/mi.wessel/nrql-user-guide-examples/family-no-signature.racer")

> :OKAY

? (enable-query-repository)
> :okay-query-repository-enabled

? (retrieve (?x) (?x woman))
> (((?x alice)) ((?x betty)) ((?x eve)) ((?x doris)))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.2. THE NRQL QUERY PROCESSING ENGINE 235

? (defquery
mother-with-son
(?x ?y)
(and (?x woman) (?x ?y has-child) (?y man)))

> mother-with-son

? (show-qbox-for-abox)
;;;
;;; QBOX FOR racer-dummy-substrate FOR ABOX smith-family
;;;
;;; 0:master-top-query
;;; ___1:query-1
;;; ___0:master-bottom-query
> :see-output-on-stdout

? (describe-all-definitions)
> ((defquery

mother-with-son
(?x ?y)
(and (?x woman) (?x ?y has-child) (?y man))))

? (store-substrate-for-abox "test-substrate-image")
> :done

The substrate can now, for example, be restored on a different RacerPro server:

? (restore-substrate "test-substrate-image")
> smith-family

? (all-aboxes)
> (default smith-family)

? (all-individuals)
> (eve doris charles betty alice)

? (all-atomic-concepts)
> (top

bottom
father
uncle
woman
human
male
sister
brother

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

236 CHAPTER 6. THE NEW RACERPRO QUERY LANGUAGE - NRQL

grandmother
man
aunt
female
person
mother
parent)

? (describe-all-definitions)
> ((defquery

mother-with-son
(?x ?y)
(and (?x woman) (?x ?y has-child) (?y man))))

? (show-qbox-for-abox)
;;;
;;; QBOX FOR racer-dummy-substrate FOR ABOX smith-family
;;;
;;; nil:master-top-query
;;; ___nil:query-1
;;; ___nil:master-bottom-query
> :see-output-on-stdout

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

Chapter 7

Outlook

Future releases of RacerPro will provide:

• Support for complete reasoning on SHOIQ(Dn)− knowledge bases (SHIQ + nomi-
nals in concept terms, arithmetic concrete domains with n-ary predicats and without
features chains) [13]. New optimization techniques for nominals have to be developed.

• Instead of role hierarchies, more expressive role axioms (so-called acyclic role axioms)
can be supported and are useful in practice. The description logic is called SRIQ
[13]. Future version of RacerPro will support acyclic role axioms. New optimization
techniques have to be developed for this language feature.

• Feature chains for ω-admissible concrete domains (such as RCC or pointizable
ALLEN) [16].

• Feature chain equality for ALCF(D).

• SWRL rules with first-order semantics.

• Persistency for ontologies, persistency for A-boxes, database access.

• Proper algorithmic support for incremental A-box changes.

The order in this list says nothing about priority, and this list is probably not complete.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

238 CHAPTER 7. OUTLOOK

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

Appendix A

Another Family Knowledge Base

In this section we present another family knowledge base (see the file family-2.racer in
the examples folder).

(in-knowledge-base family)

(define-primitive-role descendants :transitive t)

(define-primitive-role children :parents (descendants))

(implies (and male female) *bottom*)
(equivalent man (and male human))
(equivalent woman (and female human))
(equivalent parent (at-least 1 children))
(equivalent grandparent (some children parent))
(equivalent mother (and woman parent))
(equivalent father (and man parent))
(implies (some descendants human) human)
(implies human (all descendants human))
(equivalent father-having-only-male-children (and father human (all children male)))
(equivalent father-having-only-sons (and man

(at-least 1 children)
(all children man)))

(equivalent grandpa (and male (some children (and parent human))))
(equivalent great-grandpa (and male

(some children (some children (and parent human)))))

(instance john male)
(instance mary female)
(related john james children)
(related mary james children)
(instance james (and human male))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

240 APPENDIX A. ANOTHER FAMILY KNOWLEDGE BASE

(instance john (at-most 1 children))

(individual-direct-types john)
(individual-direct-types mary)
(individual-direct-types james)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

Appendix B

A Knowledge Base with Concrete
Domains

In this section we present another family knowledge base with concrete domains (see the
file family-3.racer in the examples folder).

(in-knowledge-base family smith-family)

(signature :atomic-concepts (human female male woman man
parent mother father
mother-having-only-female-children
mother-having-only-daughters
mother-with-children
mother-with-siblings
mother-having-only-sisters
grandpa great-grandpa
grandma great-grandma
aunt uncle
sister brother sibling
young-parent normal-parent old-parent
child teenager teenage-mother
young-human adult-human
old-human young-child
human-with-fever
seriously-ill-human
human-with-high-fever)

:roles ((has-descendant :domain human :range human
:transitive t)

(has-child :domain parent
:range child
:parent has-descendant)

(has-sibling :domain sibling :range sibling)
(has-sister :range sister

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

242 APPENDIX B. A KNOWLEDGE BASE WITH CONCRETE DOMAINS

:parent has-sibling)
(has-brother :range brother

:parent has-sibling))
:features ((has-gender :range (or female male)))
:attributes ((integer has-age)

(real temperature-fahrenheit)
(real temperature-celsius))

:individuals (alice betty charles doris eve)
:objects (age-of-alice age-of-betty age-of-charles

age-of-doris age-of-eve
temperature-of-doris
temperature-of-charles))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

243

;; the concepts
(disjoint female male human)
(implies human (and (at-least 1 has-gender) (a has-age)))
(implies human (= temperature-fahrenheit

(+ (* 1.8 temperature-celsius) 32)))

(equivalent young-human (and human (max has-age 20)))
(equivalent teenager (and young-human (min has-age 10)))
(equivalent adult-human (and human (min has-age 21)))
(equivalent old-human (and human (min has-age 60)))
(equivalent woman (and human (all has-gender female)))
(equivalent man (and human (all has-gender male)))
(implies child human)
(equivalent young-child (and child (max has-age 9)))

(equivalent human-with-fever
(and human (>= temperature-celsius 38.5)))

(equivalent seriously-ill-human
(and human (>= temperature-celsius 42.0)))

(equivalent human-with-high-fever
(and human (>= temperature-fahrenheit 107.5)))

(equivalent parent (at-least 1 has-child))
(equivalent young-parent (and parent (max has-age 21)))
(equivalent normal-parent (and parent (min has-age 22) (max has-age 40)))
(equivalent old-parent (and parent (min has-age 41)))
(equivalent mother (and woman parent))
(equivalent father (and man parent))
(equivalent teenage-mother (and mother (max has-age 20)))

(equivalent mother-having-only-female-children
(and mother

(all has-child (all has-gender (not male)))))
(equivalent mother-having-only-daughters

(and woman
(at-least 1 has-child)
(all has-child woman)))

(equivalent mother-with-children
(and mother (at-least 2 has-child)))

(equivalent grandpa (and man (some has-child parent)))
(equivalent great-grandpa

(and man (some has-child (some has-child parent))))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

244 APPENDIX B. A KNOWLEDGE BASE WITH CONCRETE DOMAINS

(equivalent grandma (and woman (some has-child parent)))
(equivalent great-grandma

(and woman (some has-child (some has-child parent))))
(equivalent aunt (and woman (some has-sibling parent)))
(equivalent uncle (and man (some has-sibling parent)))

(equivalent sibling (or sister brother))
(equivalent mother-with-siblings (and mother (all has-child sibling)))
(equivalent brother (and man (at-least 1 has-sibling)))
(equivalent sister (and woman (at-least 1 has-sibling)))

(implies (at-least 2 has-child) (all has-child sibling))
;(implies (some has-child sibling) (at-least 2 has-child))

(implies sibling (all (inv has-child) (and (all has-child sibling)
(at-least 2 has-child))))

(equivalent mother-having-only-sisters
(and mother

(all has-child (and sister
(all has-sibling sister)))))

;; Alice is the mother of Betty and Charles
(instance alice (and woman (at-most 2 has-child)))
;; Alice’s age is 45
(constrained alice age-of-alice has-age)
(constraints (equal age-of-alice 45))
(related alice betty has-child)
(related alice charles has-child)

;; Betty is mother of Doris and Eve
(instance betty (and woman (at-most 2 has-child)))
;; Betty’s age is 20
(constrained betty age-of-betty has-age)
(constraints (equal age-of-betty 20))
(related betty doris has-child)
(related betty eve has-child)
(related betty charles has-sibling)
;; closing the role has-sibling for charles
(instance betty (at-most 1 has-sibling))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

245

; Charles is the brother of Betty (and only Betty)
(instance charles brother)
;; Charles’s age is 39
(constrained charles age-of-charles has-age)
(constrained charles temperature-of-charles temperature-fahrenheit)
(constraints (equal age-of-charles 39) (= temperature-of-charles 107.6))
(related charles betty has-sibling)
;; closing the role has-sibling for charles
(instance charles (at-most 1 has-sibling))

;; Doris has the sister Eve
(related doris eve has-sister)
(instance doris (at-most 1 has-sibling))
;; Doris’s age is 2
(constrained doris age-of-doris has-age)
(constrained doris temperature-of-doris temperature-celsius)
(constraints (equal age-of-doris 2) (= temperature-of-doris 38.6))

;; Eve has the sister Doris
(related eve doris has-sister)
(instance eve (at-most 1 has-sibling))
;; Eve’s age is 1
(constrained eve age-of-eve has-age)
(constraints (equal age-of-eve 1))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

246 APPENDIX B. A KNOWLEDGE BASE WITH CONCRETE DOMAINS

;;; some T-box queries
;; are all uncles brothers?
(concept-subsumes? brother uncle)

;; get all super-concepts of the concept mother
(concept-ancestors mother)

;; get all sub-concepts of the concept man
(concept-descendants man)

;; get all transitive roles in the T-box family
(all-transitive-roles)

;;; some A-box queries
;; Is Doris a woman?
(individual-instance? doris woman)

;; Of which concepts is Eve an instance?
(individual-types eve)

;; get all descendants of Alice
(individual-fillers alice has-descendant)

(individual-direct-types eve)

(concept-instances sister)

(describe-individual doris)

(describe-individual charles)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

Appendix C

SWRL Example Ontology

<?xml version="1.0"?>
<rdf:RDF

xmlns:swrlb="http://www.w3.org/2003/11/swrlb#"
xmlns:swrl="http://www.w3.org/2003/11/swrl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
xmlns="http://www.owl-ontologies.com/unnamed.owl#"
xmlns:dc="http://purl.org/dc/elements/1.1/"

xml:base="http://www.owl-ontologies.com/unnamed.owl">
<owl:Ontology rdf:about="">

<owl:imports rdf:resource="http://www.daml.org/rules/proposal/swrlb.owl"/>
<owl:imports rdf:resource="http://www.daml.org/rules/proposal/swrl.owl"/>

</owl:Ontology>
<owl:Class rdf:ID="Person"/>
<owl:ObjectProperty rdf:ID="hasChild"/>
<owl:ObjectProperty rdf:ID="hasSibling"/>
<swrl:Imp rdf:ID="Rule-1">

<swrl:body>
<swrl:AtomList>

<rdf:first>
<swrl:IndividualPropertyAtom>

<swrl:argument2>
<swrl:Variable rdf:ID="y"/>

</swrl:argument2>
<swrl:propertyPredicate rdf:resource="#hasChild"/>
<swrl:argument1>
<swrl:Variable rdf:ID="x"/>

</swrl:argument1>
</swrl:IndividualPropertyAtom>

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

248 APPENDIX C. SWRL EXAMPLE ONTOLOGY

</rdf:first>
<rdf:rest>
<swrl:AtomList>

<rdf:rest>
<swrl:AtomList>

<rdf:first>
<swrl:DifferentIndividualsAtom>
<swrl:argument2>

<swrl:Variable rdf:ID="z"/>
</swrl:argument2>
<swrl:argument1 rdf:resource="#y"/>

</swrl:DifferentIndividualsAtom>
</rdf:first>
<rdf:rest rdf:resource=

"http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>
</swrl:AtomList>

</rdf:rest>
<rdf:first>
<swrl:IndividualPropertyAtom>

<swrl:propertyPredicate rdf:resource="#hasChild"/>
<swrl:argument1 rdf:resource="#x"/>
<swrl:argument2 rdf:resource="#z"/>

</swrl:IndividualPropertyAtom>
</rdf:first>

</swrl:AtomList>
</rdf:rest>

</swrl:AtomList>
</swrl:body>
<swrl:head>

<swrl:AtomList>
<rdf:first>
<swrl:IndividualPropertyAtom>

<swrl:propertyPredicate rdf:resource="#hasSibling"/>
<swrl:argument2 rdf:resource="#z"/>
<swrl:argument1 rdf:resource="#y"/>

</swrl:IndividualPropertyAtom>
</rdf:first>
<rdf:rest rdf:resource=

"http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>
</swrl:AtomList>

</swrl:head>
</swrl:Imp>
<Person rdf:ID="alice">
<hasChild>

<Person rdf:ID="betty"/>
</hasChild>

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

249

<hasChild>
<Person rdf:ID="charles"/>

</hasChild>
</Person>

</rdf:RDF>

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

250 APPENDIX C. SWRL EXAMPLE ONTOLOGY

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

Appendix D

LUBM benchmark

;;; -*- Mode: Lisp; Syntax: Ansi-Common-Lisp; Base: 10 -*-

(in-package :CL-USER)

(setf (logical-pathname-translations "racer")

’(("lubm;**;*.*.*" "c:/Ralf/LUBM/**/*.*"))) ; edit this line

(defconstant +no-of-runs-per-query+ 1)

(defmacro benchmark (universities departments no query vars)

‘(let ((t1 (get-internal-real-time))

(number-of-answers nil)

(id ’,(intern (format nil "LUBM-QUERY-~A" no))))

(dotimes (i +no-of-runs-per-query+)

(racer-prepare-query ’,vars ’,query :id id)

(setf number-of-answers (get-answer-size id t)))

(let ((time (/ (/ (- (get-internal-real-time) t1)

internal-time-units-per-second)

+no-of-runs-per-query+)))

(format t "*** Universities: ~2,D Max. Deps: ~2,D Query: ~2,A Answers: ~7,D Time: ~A~%"

(1+ ,universities)

(if (null ,departments)

:all

(1+ ,departments))

,no

(if (null number-of-answers)

0

number-of-answers)

(float time)))))

;;; ==

(defun load-kbs (n-universities max-n-departments)

(let ((kb-name (owl-read-file (namestring

(translate-logical-pathname

"racer:lubm;university;univ-bench.owl"))

:verbose t :kb-name ’lubm)))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

252 APPENDIX D. LUBM BENCHMARK

(loop for i from 0 to n-universities

as n-departments

= (1- (length

(directory

(namestring

(translate-logical-pathname

(format nil "racer:lubm;university;university~A-*.owl" i))))))

do

(loop for j from 0 to (if (null max-n-departments)

n-departments

(min max-n-departments n-departments))

as filename =

(namestring

(translate-logical-pathname

(format nil "racer:lubm;university;university~A-~A.owl" i j)))

do

(owl-read-file filename

:verbose t

:init nil

:kb-name kb-name

:ignore-import t)))))

(defun prepare-lubm-data-n-universities (check-abox-consistency

n-universities max-n-departments)

(let ((t1a (get-internal-real-time)))

(time (load-kbs n-universities max-n-departments))

(let ((t1b (get-internal-real-time)))

(let ((t2a (get-internal-real-time)))

(format t "~%~%ABox preparation ")

(time (prepare-abox))

(format t "done.~%")

(let ((t2b (get-internal-real-time)))

(when check-abox-consistency

(format t "~%~%ABox consistency checking... ")

(time (abox-consistent?))

(format t "done.~%"))

(let ((t2c (get-internal-real-time)))

(format t "~%Compute index structures... ")

(time (prepare-racer-engine))

(format t "done.~%")

(let ((t2d (get-internal-real-time)))

#+:Allegro (gc t)

(format t

"~%Load: ~,20T~,4F ~%Preparation: ~,20T~,4F ~%~

Consistency: ~,20T~,4F ~%Index: ~,20T~,4F~%"

(/ (- t1b t1a) internal-time-units-per-second)

(/ (- t2b t2a) internal-time-units-per-second)

(if check-abox-consistency

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

253

(/ (- t2c t2b) internal-time-units-per-second)

0)

(/ (- t2d t2c) internal-time-units-per-second)))))))))

;;; ==

(defun run-lubm-benchmark (benchmark-function

check-abox-consistency

&optional (univs 0) (min-deps 0) (max-deps min-deps))

(loop for deps1 from (if (null min-deps)

0

min-deps)

to (if (or (null max-deps) (not (zerop univs)))

0

max-deps)

do

(format t "~%Initializing...~%")

(prepare-lubm-data-n-universities check-abox-consistency

univs

(if (or (null max-deps) (not (zerop univs)))

nil

deps1))

(format t "~%Querying...~%")

(funcall benchmark-function

univs (if (or (null max-deps) (not (zerop univs)))

nil

deps1)))

(values))

(defun original-lubm (universities departments)

;;; Query 1

(benchmark universities

departments 1

(and

(?x |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#GraduateStudent|)

(?x |http://www.Department0.University0.edu/GraduateCourse0|

|http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#takesCourse|))

(?x))

;;; Query 2

(benchmark universities

departments 2

(and

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

254 APPENDIX D. LUBM BENCHMARK

(?x |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#GraduateStudent|)

(?y |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#University|)

(?z |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#Department|)

(?x ?z |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#memberOf|)

(?z ?y |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#subOrganizationOf|)

(?x ?y

|http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#undergraduateDegreeFrom|))

(?x ?y ?z))

;;; Query 3

(benchmark universities

departments 3

(and

(?x |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#Publication|)

(?x |http://www.Department0.University0.edu/AssistantProfessor0|

|http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#publicationAuthor|))

(?x |http://www.Department0.University0.edu/AssistantProfessor0|))

;;; Query 4

(benchmark universities

departments 4

(and (?x |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#Professor|)

(?x |http://www.Department0.University0.edu|

|http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#worksFor|)

(?x (a |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#name|))

(?x (a |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#emailAddress|))

(?x (a |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#telephone|))

)

(?x

(:datatype-fillers

(|http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#name| ?x))

(:datatype-fillers

(|http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#emailAddress| ?x))

(:datatype-fillers

(|http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#telephone| ?x))))

;;; Query 5

(benchmark universities

departments 5

(and (?x |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#Person|)

(?x |http://www.Department0.University0.edu|

|http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#memberOf|))

(?x))

;;; Query 6

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

255

(benchmark universities

departments 6

(?x |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#Student|)

(?x))

;;; Query 7

(benchmark universities

departments 7

(and (?x |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#Student|)

(?y |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#Course|)

(|http://www.Department0.University0.edu/AssociateProfessor0|

?y

|http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#teacherOf|)

(?x ?y |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#takesCourse|))

(?x ?y))

;;; Query 8

(benchmark universities

departments 8

(and (?x |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#Student|)

(?y |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#Department|)

(?x ?y |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#memberOf|)

(?y |http://www.University0.edu|

|http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#subOrganizationOf|)

(?x (a |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#emailAddress|)))

(?x ?y (:datatype-fillers

(|http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#emailAddress| ?x))))

;;; Query 9

(benchmark universities

departments 9

(and (?x |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#Student|)

(?y |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#Faculty|)

(?z |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#Course|)

(?x ?y |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#advisor|)

(?x ?z |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#takesCourse|)

(?y ?z |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#teacherOf|))

(?x ?y ?z))

;;; Query 10

(benchmark universities

departments 10

(and (?x |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#Student|)

(?x |http://www.Department0.University0.edu/GraduateCourse0|

|http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#takesCourse|))

(?x))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

256 APPENDIX D. LUBM BENCHMARK

;;; Query 11

(benchmark universities

departments 11

(and (?x |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#ResearchGroup|)

(?x |http://www.University0.edu|

|http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#subOrganizationOf|))

(?x))

;;; Query 12

(benchmark universities

departments 12

(and (?x |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#Chair|)

(?y |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#Department|)

(?x ?y |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#memberOf|)

(?y |http://www.University0.edu|

|http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#subOrganizationOf|))

(?x ?y))

;;; Query 13

(benchmark universities

departments 13

(and (?x |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#Person|)

(|http://www.University0.edu|

?x

|http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#hasAlumnus|))

(?x))

;;; Query 14

(benchmark universities

departments 14

(?x |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#UndergraduateStudent|)

(?x)))

(defun simple-lubm (universities departments)

(benchmark universities

departments 1

(?x |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#Chair|)

(?x))

(benchmark universities

departments 2

(and (?x |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#Chair|)

(?y |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#Department|)

(?x ?y |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#memberOf|)

(?y |http://www.University0.edu|

|http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#subOrganizationOf|))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

257

(?x ?y))

(benchmark universities

departments 3

(and (?x |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#Student|)

(?y |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#Faculty|)

(?z |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#Course|)

(?x ?y |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#advisor|)

(?x ?z |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#takesCourse|)

(?y ?z |http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#teacherOf|))

(?x ?y ?z)))

;;;

;;;

;;;

(defun run-lubm-tests (benchmark-function univs

&key (max-deps-univ-1 nil)

(mode 1)

(check-abox-consistency (> mode 2)))

(full-reset)

(set-nrql-mode mode)

(enable-optimized-query-processing (= mode 1))

(set-unique-name-assumption t)

(when (and (> univs 1) max-deps-univ-1)

(error "Maximum number of departments may only be specified ~

if only one university is processed."))

(run-lubm-benchmark benchmark-function

check-abox-consistency

(1- univs) (and max-deps-univ-1 (1- max-deps-univ-1))))

(defun test1 (n &optional (mode 1) (check-abox-consistency (> mode 2)))

(run-lubm-tests ’simple-lubm n

:check-abox-consistency check-abox-consistency

:mode mode))

(defun test2 (n &optional (mode 1) (check-abox-consistency (> mode 2)))

(run-lubm-tests ’original-lubm n

:check-abox-consistency check-abox-consistency

:mode mode))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

258 APPENDIX D. LUBM BENCHMARK

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

Bibliography

[1] F. Baader, D. Calvanese, D. MacGuinness, D. Nardi, and P.F. Patel-Schneider, editors.
The Description Logic Handbook. Cambridge University Press, Cambridge, UK, 2003.

[2] F. Baader, I. Horrocks, and U. Sattler. Description logics as ontology languages for
the semantic web. In Festschrift in honor of Jörg Siekmann, Lecture Notes in Artificial
Intelligence. Springer, 2003., 2003.

[3] Franz Baader, Bernhard Hollunder, Bernhard Nebel, Hans-Jürgen Profitlich, and En-
rico Franconi. An empirical analysis of optimization techniques for terminological
representation systems or “making KRIS get a move on”. In B. Nebel, W. Swartout,
and C. Rich, editors, Principles of Knowledge Representation and Reasoning: Proceed-
ings of the 3rd International Conference, pages 270–281, San Mateo, 1992. Morgan
Kaufmann.

[4] S. Bechhofer, P. Crowther, and R. Möller. The description logic interface. In D. Cal-
vanese, G. De Giacomo, and E. Franconi, editors, International Workshop on Descrip-
tion Logics, pages 196–203, September 2003.

[5] M. Buchheit, F.M. Donini, and A. Schaerf. Decidable reasoning in terminological
knowledge representation systems. Journal of Artificial Intelligence Research, 1:109–
138, 1993.

[6] V. Haarslev, R. Möller, and M. Wessel. The description logic ALCNHR+ extended
with concrete domains: A practically motivated approach. In R. Goré, A. Leitsch,
and T. Nipkow, editors, Automated Reasoning. First International Joint Conference
(IJCAR’01), Siena, Italy, June 18–23, 2001, Proceedings, volume 2083 of Lecture Notes
in Artificial Intelligence, pages 29–44, Berlin, 2001. Springer-Verlag.

[7] I. Horrocks. Optimising Tableaux Decision Procedures for Description Logics. PhD
thesis, University of Manchester, 1997.

[8] I. Horrocks, U. Sattler, and S. Tobies. A PSpace-algorithm for deciding ALCIR+-
satisfiability. LTCS-Report 98-08, LuFg Theoretical Computer Science, RWTH
Aachen, Germany, 1998.

[9] I. Horrocks, U. Sattler, and S. Tobies. Reasoning with individuals for the description
logic shiq. In David MacAllester, editor, Proceedings of the 17th International Confer-
ence on Automated Deduction (CADE-17), number 1831 in Lecture Notes in Computer
Science, pages 482–496, Germany, 2000. Springer Verlag.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

260 BIBLIOGRAPHY

[10] I. Horrocks, U. Sattler, and S. Tobies. Reasoning with individuals for the descrip-
tion logic SHIQ. In David MacAllester, editor, Proceedings of the 17th International
Conference on Automated Deduction (CADE-17), number 1831 in Lecture Notes in
Computer Science, Germany, 2000. Springer Verlag.

[11] I. Horrocks and S. Tobies. Reasoning with axioms: Theory and practice. In Proc. of the
7th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2000),
pages 285–296, 2000.

[12] Ian Horrocks and Ulrike Sattler. Optimised reasoning for SHIQ. In Proc. of the 15th
Eur. Conf. on Artificial Intelligence (ECAI 2002), pages 277–281, July 2002.

[13] Ian Horrocks and Ulrike Sattler. Decidability of SHIQ with complex role inclusion
axioms. Artificial Intelligence, 160(1–2):79–104, December 2004.

[14] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. A description logic with transitive
and converse roles, role hierarchies and qualifying number restrictions. LTCS-Report
99-08, LuFg Theoretical Computer Science, RWTH Aachen, Germany, 1999.

[15] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for expressive
description logics. In Harald Ganzinger, David McAllester, and Andrei Voronkov,
editors, Proceedings of the 6th International Conference on Logic for Programming and
Automated Reasoning (LPAR’99), number 1705 in Lecture Notes in Computer Science,
pages 161–180. Springer-Verlag, 1999.

[16] C. Lutz and M. Milicic. A tableau algorithm for dls with concrete domains and gcis.
In Proceedings of the 2005 International Workshop on Description Logics (DL2005),
number 147 in CEUR-WS, 2005.

[17] P.F. Patel-Schneider and B. Swartout. Description logic knowledge representa-
tion system specification from the krss group of the arpa knowledge sharing ef-
fort. Technical report, Bell Labs, 1993. Available as http://www-db.research.bell-
labs.com/user/pfps/papers/krss-spec.ps.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

Index

Protégé, 31
RacerEditor, 27
RacerMaster, 6
RacerPlus, 5
RacerPorter, 5, 9, 25
RacerPro, 5
AND query, 119
HAS-KNOWN-SUCCESSOR query atom, 109
NEG query, 124
PROJECT-TO operator, 130
SAME-AS query atom, 107
UNION query, 120

ABox augmentation, 139
ABox modification, 139
active domain semantics, 93
APIs, 20
assertion, 65
associated ABox individual, 150
associated Abox individual, 150
associated substrate node, 150

binary query atom, 92
body projection operator, 130
boolean query, 130
bug reports, 24

cheap query, 182
cheap rule, 182
cheap tuple, 182
closed-world assumption, 73
complex query, 118
complex TBox query, 144
concept axioms, 59
concept definition, 60
concept equation, 59
concept query atom, 93

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

262 INDEX

concept term, 56
concrete domain restriction, 59
concrete domain value query, 110
concrete domains, 61
concurrent query processing, 173
conjunction of roles, 61
conjunctive query, 119
consistency of qualitative spatial networks, 161
constraint query atom, 102
creating individuals with a rule, 140

data representation, 149
data substrate, 149
data substrate edge, 149
data substrate edge query expression, 152
data substrate label, 149
data substrate node, 149
data substrate node query expression, 152
data substrate predicate, 153
data substrate query expression, 152
deadlock prevention, 185
defined query, 133
defined query and NAF, 135
defined query and PROJECT-TO, 135
DIG, 22
disjoint concepts, 59
disjunctive query, 120
domain restriction, 61

eager mode, 174
editions, 5
equal role, 99
exists restriction, 57
expensive query, 182
expensive rule, 182
expensive tuple, 182
explicit role filler query, 101
extended OWL query, 154, 158

feature, 60
feature chains in queries, 104

GCI, 59
graphical client interfaces, 29

head projection operators, 110
hybrid ABox individual, 150

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

INDEX 263

hybrid OWL query, 154, 158
hybrid query, 151, 154
hybrid representation, 149

implicit role filler query, 101
incomplete mode, 179
incremental mode, 172
incremental query processing, 173
individual, 92
inference modes, 66
injective variable, 92
installation, 6

JRacer, 20

lazy mode, 174
local closed-world assumption, 85
LRacer, 21

macro query, 133
marker, 157
mirror data substrate, 154
mirror of an ABox, 154
mirror substrate, 154
mirror substrate marker, 157
mirror substrate query, 154
mirroring an ABox, 154
mirroring an OWL file, 154
mirroring OWL documents, 158

NAF, 124
NAF in constraint query atom, 128
NAF in query with individuals, 128
NAF in SAME-AS query atom, 128
NAF query, 124
negation as failure, 124
nominals, 70, 142
nominals in queries, 142
nRQL API, 172
nRQL EBNF, 164
nRQL engine, 172
nRQL grammar, 164
nRQL mode, 179
nRQL mode 0, 179
nRQL mode 1, 180
nRQL mode 2, 181
nRQL mode 3, 181

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

264 INDEX

nRQL mode 4, 181
nRQL mode 5, 181
nRQL mode 6, 181
nRQL modes, 172, 181
nRQL persistency, 201
nRQL syntax, 164
number restriction, 57

object, 92
open-world assumption, 72
optimization strategies, 77
options, 22
OWL, 74
OWL annotation property filler query, 115
OWL annotation property value query, 115
OWL constraint checking, 106
OWL constraint query atom, 106
OWL datatype property filler query, 115
OWL datatype property value query, 115
OWL instances query, 95
OWL mirror, 154, 158
OWL object property filler query, 100
OWL query, 95, 100, 106, 115, 158

persistency, 78
predicate, 153
predicate query, 153
preferences, 25
primitive concept, 60
projection, 130
projection operator, 130
pseudo-nominal, 142
publish-subscribe mechanism, 79

QBox, 195
qualitative spatial reasoning, 161
query API, 172
query atom, 92
query body, 93
query cache, 195
query conjunct, 119
query consistency, 188
query disjunct, 120
query engine, 172
query entailment, 190
query head, 93, 110
query inconsistency, 188

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

INDEX 265

query inference, 188
query life cycle, 175
query predicate, 153
query realization, 199
query realizer, 199
query reasoning, 188
query repository, 195
query subsumption, 190
querying qualitative spatial networks, 161

range restriction, 61
RCC consistency, 161
RCC constraint checking, 162
RCC query, 162
RCC substrate, 161
RDF edge query, 100
RDF instance query, 95
RDF node query, 95
referencing a data substrate node, 153
region connection calculus, 161
relational algebra, 4
retraction, 67
retrieving concrete domain values, 110
role chains in queries, 104
role hierarchy, 61
role query atom, 96
role query atom with features, 98
role query atom with negated role, 97
rule, 139
rule antecedent, 139
rule application, 139, 176
rule application strategy, 176
rule consequence, 139
rule engine, 139, 172
rule firing, 176
rule life cycle, 176
rule postcondition, 139
rule precondition, 139
rule strategy, 176
rules and pseudo-nominals, 142
rules and the concrete domain, 141

scalable query answering, 179
semantic cache, 195
semantic web, 1
semantically identical individuals, 99

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

266 INDEX

semi-structured data, 149
services, 1, 3
set at a time mode, 172
signature, 56
socket interface, 20
spatial query, 162
spatial reasoning, 161
spatial reasoning substrate, 161
spatio-thematic query, 162
stored defined query, 201
stored QBox, 201
stored substrate, 201
substrate, 149
substrate layer, 149
substrate persistency, 201
substrate query, 151
SWRL, 44
system requirements, 6

TBox query, 144
told value query, 110
transitive role, 60
tuple at a time mode, 172
two-phase query processing, 182

unary query atom, 92
unique name assumption, 65, 73

value restriction, 57
variable, 92

warning token, 182

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

	Introduction
	Views on RacerPro
	RacerPro as a Semantic Web Reasoning System and Information Repository
	RacerPro as a Description Logic System
	RacerPro as a Combination of Description Logic and Specific Relational Algebras

	Application Areas and Usage Scenarios
	Racer Editions, Installation, Licenses, and System Requirements
	Editions
	Installation
	Licenses
	System Requirements

	Acknowledgments

	Using RacerPro
	Sample Session with RacerPorter
	The RacerPro Server
	The File Interface
	TCP APIs
	Web Service Interface
	HTTP Interface: DIG Interface
	Options for the RacerPro Server

	How to Send Bug Reports
	RacerPorter
	Preferences
	RacerEditor
	Tabs in RacerPorter
	Known Problems

	Other Graphical Client Interfaces for RacerPro
	RICE
	Protégé
	Using Protégé and RacerPorter in Combination
	TopBraidComposer

	SWRL: Semantic Web Rule Language

	RacerPro Knowledge Bases
	Naming Conventions
	Concept Language
	Concept Axioms and T-boxes
	Role Declarations
	Concrete Domains
	Concrete Domain Attributes
	Individual Assertions and A-boxes
	Inference Modes
	Retraction and Incremental Additions

	Description Logic Modeling with RacerPro
	Representing Data with Description Logics (?)
	Nominals or Concrete Domains?
	Open-World Assumption
	Closed-World Assumption
	Unique Name Assumption
	Differences in Expressivity of Query and Concept Language
	OWL Interface

	Knowledge Base Management
	Configuring Optimization Strategies
	The RacerPro Persistency Services
	The Publish-Subscribe Mechanism
	An Application Example
	Using JRacer for Publish and Subscribe
	Realizing Local Closed-World Assumptions

	The New RacerPro Query Language - nRQL
	The nRQL Language
	Query Atoms, Objects, Individuals, and Variables
	Query Head Projection Operators
	Lambda Head Operators to Evaluate Expressions
	Complex Queries
	Defined Queries
	ABox Augmentation with Simple Rules
	Complex TBox Queries
	Hybrid Representations with the Substrate Representation Layer
	Formal Syntax of nRQL

	The nRQL Query Processing Engine
	The Query Processing Modi of nRQL
	The Life Cycle of a Query
	The Life Cycle of a Rule
	How to Implement Your Own Rule Application Strategy
	Configuring the Degree of nRQL Completeness
	Automatic Deadlock Prevention
	Reasoning with Queries
	The Query Repository - The QBox
	The Query Realizer
	The nRQL Persistency Facility

	Outlook
	Another Family Knowledge Base
	A Knowledge Base with Concrete Domains
	SWRL Example Ontology
	LUBM benchmark
	Index

