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Preface

Welcome to the Workshop on Spatial and Temporal Reasoning at IJCAI-2009 in Pasadena, California.
This workshop continues in the spirit of a series of such activities over the last dozen years spanning
related communities of researchers that study representing and reasoning about either space or time or
both. In addition, the workshop has encouraged a mix of theory and applied work. While a number of
central themes recur, a wide variety of topics typify the workshops.

Various basic representational problems in space (direction, location, proximity, geometry, intersection)
and in time (coincidence, order, concurrency, overlap, granularity) attract repeated attention due to their
fundamental and difficult nature. Likewise, common reasoning problems thread their way through many
papers on space (path finding, orientation, relative position) and time (constraint satisfaction, schedule
optimisation, precedence). Beyond that, however, the richness of different ontologies, different
applications, and different objectives assures that no small collection of “solutions” will serve to satisfy
all needs. The established intractability of many reasoning problems also broadens the search for
approximate and partial solutions.

The interchange between spatial research and temporal methods has proved fruitful, particularly in the
domains of qualitative reasoning and modelling. It is the continued wish of the organisers that the
presentations and interchange in this workshop stimulate cross-fertilisation, new applications of known
techniques, and new approaches to well-studied applications. Your attendance at the workshop indicates
your interest in finding computerised solutions to representation and reasoning problems that deal with
space and time, be they geographic or robotic, dealing with transportation or communication, theoretical
or applied. We hope you come away with a richer knowledge, sharing our view that space and time may
serve as a unifying theme for many areas, and that we may contribute to some standardisation of
terminology, principles, and results which cut through so much research.

Hans W. Guesgen
Mehul Bhatt
(Workshop Co-Chairs)
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Abstract

We propose a new approach for Temporal Diagnosis Prob-
lems. This approach is an extension of Bouzid and Ligeza’s
method for temporal diagnosis problems. In this latter work,
the authors define a Temporal Causal Graph (TCG) where
time delays are expressed as temporal instants. We extend
the TCG by including two quantitative relations in order to
handle temporal intervals. We call this new model ExXTCG
. Solving a temporal diagnosis problem represented by the
ExTCG consists of finding all possible explanations. It is
performed using a backtrack search algorithm. In many diag-
nosis applications, the generation of all possible explanations
is not necessary. For this reason, we augment the EXTCG in
order to consider the degree of causality between symptoms.
We call weighted EXTCG this extended model. Solving it
consists of finding the explanation having the highest prob-
ability to occur. Through a real world diagnosis application
in medicine, we illustrate the weighted ExXTCG and its corre-
sponding solving algorithm.

Introduction

The goal of Model Based Diagnosis (MBD) (Brusoni et al.
1998) is finding the cause of the abnormalities observed
in the behavior of the studied system. To reach this goal,
MBD uses a model of the system to determine which com-
ponents are responsible for observed abnormalities. We dis-
tinguish two families for MBD : diagnosis based on the co-
herence (Taouf 2005) and abductive diagnosis (Brusoni et
al. 1998). The abductive diagnosis consists in finding ex-
planations for given observations by using rules of inference
based on the causal dependences of the system. From the
begining it was clear that time is important for MBD (Ham-
scher, Console, and Kleer 1992). In fact, the assumptions
that a system to be diagnosed is static and that all observa-
tions are given at the same instant, are restrictive in many
domains such as medicine where the duration and the or-
der of the arisen symptoms constitute a determining factor
to differentiate two pathologies. However, taking time into
account makes the diagnosis more complex both from the
conceptual and practical point of view (Hamscher and Davis
1984). For this reason, there are few works in literature han-
dling temporal diagnosis (Kautz 1999). They differ in the
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expressiveness of the temporal knowledge.

We are interested in the approach for temporal abduc-
tive diagnosis presented in (Bouzid and Ligeza 2000). The
causal structure is an AND/OR/NOT causal graph' repre-
sentating the various kinds of causal dependencies. The
temporal dimension is represented with delays. The authors
define a Temporal Causal Graph (TCG) incorporating two
types of connections components. The first one is a set of ba-
sic logical connectives. The second one is a set of time delay
components. A temporal diagnostic problem is defined as a
TCG and a set of positive (resp. negative) manifestations
observed at given instants. Solving such problems consists
of finding the set of initial symptoms with their truth val-
ues explaining the set of observations. It is performed using
backward search algorithm in TCG by propagating tempo-
ral information ensuring coherence. Each step of the algo-
rithm consists in replacing one node by its possible cause.
For logical nodes, the transformation rules are exactly the
same as in the static case ; no changes over time instants
are performed. For time delay nodes, a node n is replaced
by its cause (node n’) and the time index changes accord-
ing to the time delay specification. This approach allows to
deduce dependencies between causes and effects by taking
time into account. However it is not expressive enough for
many real life applications as we will see in the following
example motivating our work.

Example 1. An alarm begins to ring after some smoke is
detected and continues to ring as long as there is smoke. The
alarm is electric and can be cut if there is a power outage.

We consider the situation depicted in figure 1: smoke is
observed and electricity is down.

cut-electricity
smoke ] i

not(alarm) |

« _alarm , alarm

Figure 1: Graphic of the situation.

To ensure a coherent chaining of these events, extra
knowledge is needed: the cut of electricity is not persistent.

! AND/OR/NOT causal graph is a directed acyclic graph



More precisely, when electricity is back on; if smoke still
persists the alarm starts ringing again. To represent this situ-
ation, we need to clarify the relations between the beginning
and the end of this phenomenon:

o the beginning of smoke causes the alarm to ring if elec-
tricity is on,

e the beginning of cut of electricity causes the end of the
alarm,

e at the end of cut of electricity, the alarm starts ringing
again if smoke is still there.

The above information cannot be modelled with the TCG. In
TCG, we can modelize the causality and the delay between
events, but we cannot specify overlapping between events.
Indeed, it is not able to place in time the beginning and the
end of this phenomenon. We extend the work in (Bouzid
and Ligeza 2000) as follows. First we extend the TCG, by
introducing two quantitative relations in order to manipulate
intervals. We call extended TCG (ExTCG) this new model.
A temporal diagnosis problem is now defined by an ExXTCG
and a set of observations. To solve it, we propose an algo-
rithm of temporal propagation in the EXTCG, in order to find
all possible explanations. The generation of all explanations
is not always necessary. For example, for a group of symp-
toms a doctor is going to prefer one diagnosis over others,
by taking into account some criteria, particularly the degree
of causality between symptoms. We distinguish three kinds
of causality and we give a numeric qualification (a weight)
for each one. This weight is considered as a probability. It
allows us to get explanations having the highest probability
to occur. In this way, we define the Weighted ExXTCG. To
find such explanations, we propose an algorithm of tempo-
ral propagation taking into account the weight of causality
in the Weighted ExTCG.

The rest of the paper is organized as follows. First, we
describe how we extend the TCG. Then, we give the cor-
responding solving method. After, we define the Weighted
ExTCG, and we give the second method of resolution. Then
we present an application based on the second approach. Fi-
nally, we conclude and discuss the future work.

Extended Temporal Causal Graph
The language of temporal representation

From a topological point of view, we suppose that we are in
a frame where time is linear and discrete. The ontology of
time considers both the instant and the interval. A symptom
s is interpreted:

e on an interval [¢1, t2] : s is true for all instants between 1
and t» (¢ and ¢, included),

e Or on an instant : s is true over t7.

Definition 1 (episode). An episode is defined by a pair (s, 1)
where s is a symptom. i is an interval or an instant. A symp-
tom represents some phenomenon reflecting an occurence of
a partial characteristic of the system.

We are interested in the truth value of s over time. An
episode can have dates beginning as noted by start_date

or of ending as noted by end_date. To indicate that a
start_date or end_date are unknown we use —1. For ex-
ample if these dates are unkonwn for s we note as follow:
(8, [_L _1])'

The diagnosis is based on the analysis of several observa-
tions spaced out in a unpredictable way in time.

Definition 2 (observation). The observations are given by
a set OBS of pairs (0,1) where o is a symptom and i is an
interval or an instant.

The semantics of (o, ) is that o was observed during 4 (if
1 is an interval), or at the instant ¢ (if 7 is an instant).

Relations

Let us note by R the set of relations proposed in our ap-
proach. R = {(r¢,7.) | + € Ry, r. € Rc} where:

R defines all the causal relations and R7 defines all the
temporal relations.

Causal relations Causality means influence leading to oc-
curence of selected episodes as a result of the appearance of
some other ones. There are three different causal relations
reffering to the “strength” of causality. First one, episode e
always causes episode ¢/ when the former occurs, the oc-
curence of n’ is bound to be caused by n. Second one,
episode e always causes episode ¢’ always causes episode
¢’ when the former occurs, but there are serval possible dif-
ferent episodes causing ¢’ as well. Third one, occurence of
episode e may cause episode €’ to occur, however there are
cases when e’ does not follow e. We assume the second type
of causality and we noted by cause.

Causal relations between episodes are expressed by arcs
in the graph structure. In other words, whenever there is a
causal relation between nodes n and n/, there is a directed
arc pointing from n to n’.

To express logical relations between episodes, we con-
sider three basic logical functions : AND, OR and NOT as
dipected in figure 2.

AND OR NOT

n n n
nl...ni...nn nl...ni...nn nl

Figure 2: Graphical representations of AND/OR/NOT func-
tions.

If episodes {n1,...,n,} cause n only when occuring to-
gether, then all the arcs from {nq,...,n,} to n are joined
by an “ horizantal” arc and form an AND branching. We
call n an AND-node. If there are arcs pointing to n indepen-
dently from more than one node, then n is refered to as an
OR-node. Further, there is an arc labelled NOT from n; to
n, whenever the negation of n; causes n to occur and vice
versa.



Temporal relations Ry = {ry(0t) | ry € RoL}, where
Ot is a positive integer indicating the delay and Rqy the
set of two temporal relations defined below and described in
figure 3.

after_fstart Cause
N —
d Effect
after_end P g
! 4P
Bl Effect

Figure 3: Quantitative relations.

after_end represents that the effect is after the end of
the cause. after_start represents that the effect is after the
beginning of the cause. These relations are transformed into
equations and inequalities allowing to refer to an instant or
to locate two episodes one to another. In a more precise way;
we have e, ¢; and ¢, three episodes:

e If the relation is after_start with a delay d; between
¢1 and e then start_time(c;) = start_time(e) — d; and
end_time(cy) > start_time(e) — dg.

o If the relation is after_end with a delay ds between
¢y and e then end_time(cg) = start_time(e) — dg and
start_time(cg) < start_time(e) — dj.

Extension of a TCG

Definition 3. A Temporal Causal Graph (TCG) is a struc-
ture G = (N, F, H), where :

o N : set of all symptoms.

o F={(n,f,[ni1,...,nk])} denotes the set of logical con-

nections such that f € {AND,OR,NOT}, nq,...,ng
are the input nodes and n the output node.

o H = {(n,k,n’)} denotes the set of time delay compo-
nents where n is the input node, k is the time delay and n’
is the output node.

The graphic representation of a relation r, € R, is given
by an edge labelled by r; and r. (where r, € Ry and r. €
R¢). An extended temporal causal graph noted ExXTCG is a
TCG where nodes are episodes, and edges are the relations
defined by the set R.

Definition 4. An Extended Temporal Causal Graph
(ExTCG) is a structure G = (E, F, R), where:

e [ : set of episodes.

o [ : is the same set defined in a TCG.

e R : set of causal and temporal relations between
episodes.

Example 2. Figure 4 represents an ExXTCG.

Remark 1. It is assumed that there are only “pure” AND,
OR, NOT and H connections. If the connection is of a mixed
type, it can be split into separate ones by introducing an
artifcial intermediate node. The intention is to keep a clear

after_start(0), cause after_end(2), cause

after_start(2), cause
after_end(3), cause

b,[-1.-1])

after_start(0), cause

after_start(1), cause

after_start(1), cause
after_end(1), cause after_end(1), cause

after_start(3), cause

h,[-1,-1]

Figure 4: An example of an ExXTCG.

disticntion between AND, OR, NOT and delay nodes. In our
approach, we keep this principle in order to have pure AND,
OR and NOT nodes but we allow that a node can be pointed
by edges each having a precise temporal link.

Solving Method

Solving a Temporal Diagnostic Problem, means finding all
the episodes explaining the given observations and placing
them in time.

Definition 5 (Temporal Diagnostic Problem). A
Temporal diagnostic problem P is defined by an
ExTCG and a set of observations OBS as follows:
{ExzTCG,0BS = ((01,%01),---(0n,%0,))}

where ExTCG represent the theoretical domain and OBS
the set of observations oy, at the instants i,,.

Definition 6 (Solution to a Temporal Diagnostic Prob-
lem). Let us consider a temporal diagnostic problem P =
{ExzTCG,0BS}. A solution S to P is defined by a set of
pairs of initial nodes: {(e1,ic,),. .., (en,lc,)}, where i,
can be an interval or an instant, such that:

ExTCG U S |= OBS and S is consistent.

To solve a temporal abductif diagnostic problem, we pro-
ceed in the following two steps.

Step 1 : Abduction and propagation

In general, abductive reasoning consists in finding the best
explanation for a set of data or observations by using infer-
ence rules which are interpreted backwards. For the sake of
this approach, abduction is considered as a backward search
procedure.

This step allows to generate all sets of explanations
as well as the equations and inequalites corresponding to
temporal information. A solution, noted sol is a couple
(explanation, {equations/inequalities}). Let us note
by Solsoive, all the solutions sol generated in this step.



Given an observation o, we visit the EXTCG using a depth-
first strategy, moving backward from o to non abductibles
episodes. In every step of abduction, we replace a node by
its possible cause. Every temporal relation is converted into
equation and inequality. In a more formal way :

e At abductive step k, o is an AND node, caused by
{c1,¢2,...,¢,} so: for each ¢;, we convert 1 (r; tempo-
ral relation between c¢; and o) in equations and ineqalities,
and o is replaced by {c1,ca,...,cn}

e At abductive step k, o is an OR node, caused by
{c1,¢a,...,cn} so : we select one by one the causes of
o. For the number of causes, we duplicate the solution sol
for every c;, so we have one sol., by node c;. We replace
o by every cause ¢; and we do the same thing. Finally, we
add every sol., t0 Solsopye.

e At abductive step k, o is an NOT node, caused by c. The
steps are the same as for the link AND. Furthermore, it is
necessary to modify the truth value of c; if the truth value
of o is true (resp. false) then we set c to false (resp. true).

If in a step one node is not abductible, it is considered to be
explaining o. It will be added to the explanation correspond-
ing to sol. This step generates the set Solsoppe-

Example 3. Let P be a temporal diagnosis problem given
by (0,10) and by the ExTCG in figure 4.

At time 10, o is an AND-node caused by the conjunction
of a and b (see figure 4). By logical transformation (AND)
o is replaced with the conjunction of a and b. Also, we have
indication about delays between causes (a and b) and obser-
vation (0). By temporal transformation, we have :

o start_time(o) = 10.

o start_time(a) = start_time(o) — 0,
end_time(a) > start_time(o) — 0.

o start_time(b) < start_time(o) — 2,
end_time(b) = start_time(o) — 2.

Now, the set of OBS = {a, b}. First, we consider a as an
observation. We do the transformations by respecting log-
ical and time relations. We do this in recursive way. We
consider c the new observation. It is an OR-node. By logi-
cal transformation (OR) c is repalced by g or h. So we con-
sider two possible solutions. Time transformation is done
as described in the Section 2.2.2. When the current node is
not abductible we stop the backward search. If the set of
OBS is not empty, we take the next observation in this set.
The next one is b, an OR-node. So we consider two pos-
sible paths. Finally, this step allows to generate Solsope =
{so0ly, sola, sols, soly }. Each sol; has an explanation,; and
a 57

We give here just one of these solutions :
explanation, = (g,[—1,-1]) A (4,[-1, =1])

start_time(o) = 10

start_time(a) = start_time(o) — 0
end_time(a) > start_time(o) — 0

start_time(c) < start_time(a) — 8
end_time(c) = start_time(a) — 3

soli = start_time(g) = start_time(c) — 1
&1 =< end_time(g) > start_time(c) — 1

start_time(b) < start_time(o) — 2
end_time(b) = start_time(o) — 2

start_time(e) = start_time(b) — 2
end_time(e) > start_time(b) — 2

start_time(j) = start_time(e) — 1
end_time(j) > start_time(e) — 1

The possible explanations to this problem: (g, [—1, —1])A

(.7:’ [_1’ _1])7 (ga [_17 _1]) A (l’ [_1’ _1])’ (h7 [_17 _1]) A
(]7 [717 71]) or (h7 [717 71}) A (lv [715 71])

Step 2 : Resolution

This step consists in solving equations and inequalities gen-
erated in the first step. The intention is to locate the explana-
tion temporally. We consider these equations and inequali-
ties as numeric temporal constraints. For this reason we use
the Simple Temporal Problem (STP) (Planken, de Weerdt,
and van der Krogt 2008).

An STP is defined by the structure(V, C) :

e V : setof variables {X7,..., X, }.

e (' : set of binary constraints over pairs of these variables.
The variables have continuous or discrete domains; each
variable represents a time point.

A solution to the STP is an assignment of a real value to
each time-point variable such that the differences between
each constrained pair of variables fall within the range spec-
ified by the constraint. To see how an STP can be used to
find the ansewer to our question, we first consider :

e the set of temporal variables V' = {z1,...,z2,}
representing the start and the end of n episodes
(x; =start_date or end_date),

o the domain : N7,
o and the set of equations and inequalities constitues C.

Then we define the relation of precedence between two
episodes F; and E5 as :

o start_date(Ez) — start_date(E;) € [d,4oo[ and,
o start_date(Ez) — end_date(E;) € [d, +o0],

where d is a positif integer indicating the delay. We use
STP in order to verify the coherence of the given temporal
information and to solve equations/inequalities.

To solve the formed STPs we use the P2C algorihtm pre-
sented in (Planken, de Weerdt, and van der Krogt 2008).

Example 4. By applying P3C to sol; we have the following
explanation to P : (g,[5,7]) A (4, [4,5]).



This kind of search called exhaustive search returns k so-
lutions, where every solution sol; = (explanation,, stp;).
In order to locate all explanation, we must solve every stp;.
For example, for an ExXTCG with five OR nodes, we have
40 STPs to solve. In order to reduce this number, we can
use different types of causality as described in the following
section.

Weighted ExTCG
In literature, there are serval types of causality. We assume
here three types. For every type of causality we give a nu-
meric qualifcation (a weight):
e 1: episode e always causes episode €', the occurence of
¢’ is bound to be caused by e,

e 0.7 : episode e always causes episode €', but there are
several possible different episods causing e’ as well,

e 0.3 : occurence of episode e may cause episode ¢, how-
ever there are cases where e’ does not follow e.

So, R¢ becomes R¢ = {r.(p) with p = {1,0.3,0.7}}.
A Weighted EXTCG is an EXTCG where each edge is la-

belled by the temporal relation and the weight of causality
of this link. Figure 5 describes the ExXTCG in figure 4 when

adding causality weights.

after_start(0), 1 after_end(2), 1

after_start(2), 0.3
aft d@3), 0.7
er_end(3) after_start(0), 0.7

after_start(1), 0.3 after_start(1), 1

after_end(1), 0.7 after_end(1), 0.3

after_start(3), 0.3

{o,[-1,-1]

Figure 5: A Weighted ExTCG.

Computation of the weight of causality
We define three functions : W.ciation, Wiever and Weorution.-

Definition 7 (Weight of a relation). Let ey causes es
(e1,e2 € E). Wieiation(e1 — e2) is a function giving the
weight of relation between ey and es : Wyeiation(€1 — €2)
= p

In a more general way, let us consider e an episode caused
by {e1,e2,...,es}. eis an AND node. If all relations have
the same weight p, we note : Wiciation({€1, €2, ...,e5} —
e)=np.

A Weighted EXTCG is a graph. An observation is a root.
We decompose this graph into levels. The first one, level 0
corresponds to root. The last level is given by the depth of
the tree (see figure 6). At level 0, the weight is equal to 1. At
level 4, the weight is computed with the function Wieqe; ()
as follows.

P X\\
=3
—- —w, ——

o V2 e
( e2w <e3> ( e43 _____________ 2
Wy

Wle'uel (0) =1

Wlevel(l) = Wlevel(o) * Wrelation(el — O)

Wievel (2) = I/‘/le'uel(l) * WTelation({621 €3, 64} — el)
Wlevel(g) = Wlevel(2) * Wrelation(€5 — 62)

*Wrelation(eG — 63) * Wrelation(e7 — 64)

3
= Wlevel(2) * H Wrelation(e? — 8?)
=1

Definition 8 (Weight of level). Wi, (%) is a function giving
the weight of level 1 :

Ix'~*1

Wlevel(i) - Wlevel(i - -Z) * H Wlevel(e; h— 6;71)
j=1
o X' set of episods of level i and | x| the number of episods
inx'
° eg» : is the episode 7 in x*

Let e be an OR node in level (i — 1), caused by
{e1,...,en}. Level i has n values of weight of levels.

A solution sol is given by a weighted ExXTCG which
is a sub graph of the principal weighted ExXTCG. Com-
puting the weight of a solution means multiplying all the
weights labelling every edge, of the weighted ExXTCG, con-
sidered as a solution. In a more formal way, we note
Wsotution (€xplanation, stp) this product.

The search for explanations uses the weight of causality
as heuristics and is performed in three steps. The third step
is the resolution of STPs, and is the same as in exhaustive
search. We describe here the two first steps of the search
with heuristic.

Step 1 : Search for threshold solution and its
weight

It consists in bakward research by replacing every OR node,
having serval causes, with a cause having the heighest



weight of causality. Formally, for an OR node e caused by
{c1,¢2,...,cn} We select a cause ¢, as :
Wrelation(cc — 6) =
maX(Wrelation(Cl — 6), gy Wrelation(cn — 6))
So, we build the first solution. We consider this solution

as a threshold solution, noted (soiution. Its weight noted
Plaoturion 18 the threshold weight.

Example 5. Let us consider the part of Weighted ExTCG
given by the figure 7. b is an OR node caused by {e, f}.

after_end(1),0.3
after_end(1),0.7

Figure 7: A sub graph of Weighted ExXTCG.

We prune the subtree in which e is a root and we select
the subtree in which f is a root. More precisely, we have :

maX(Wrelation(f - b)a Wrelation(e - b))

= Wrelation(f - b)

In the case where all relations have the same weight, we
select the subgraph with minimal depth. Finally, we deter-
mine the threshold solution Csorution = ((h A1), stpe) with
aweight pe = (.0308.

A robust explanation is an explantion been considered
many times for one observation. So, it has a high proba-
bility to occur. In oder to generate this kind of expalanation,
we use the threshold weight as a minimal weight and we try
to find explanations with better weight.

Step 2 : Search for solutions having better weight
then the threshold weight

It consists in going through the graph by replacing every
node by its causes with respecting the fact that the weight of
the current level is superior to the threshold weight. More
precisely, at level ¢, we replace a node e of this level with
its causes if and only if: Wieyper (%) > Pc.ojurion- 1N Case
this condition is not satisfied, we do not explore the sub-
tree below this node. This allows us to reduce the num-
ber of solutions. This step allows to generate the solu-
tion having the upper weight in threshold weight. For-
mally, Solsowe = {(exp,stp),..., (exp,stp)m}, where
Wsolution((el‘pa Stp)i) > Plootution

Example 6. For the same problem P given in Example 4,
we have instead of four solutions to solve, just two solu-
tions. More precisely, this method of search generates :
Solsoive = {8011, s0la}, where : soly = ((gNj), stpr) witha
Wotution((g A7), stp1) = 0.063 and sols = ((h A j), stpa)
with a Wiorution (R A7), stps) = 0.147.

Introducing the causality as an heuristic allows to reduce

the number of STPs to solve. Also, it allows to retrun the
explantions having a very strong causality. For example, in

the case of a weighted EXTCG with 5 OR nodes, we have
with this method only one STP to solve.

We will now give the complexity of the abduction and
propagation steps. The complexity in the worst case of these
steps in the exhaustive search and search based on weight of
causality is the same. The complexity is O(nm”), where n
is the number of AND nodes , m is the number of OR nodes
and k is the depth of the ExXTCG.

Case Study

Temporal abductive diagnosis is very important for
medicine. In literature several examples exist and the most
known one is MYCIN (Shortliffe 1976). We set up an appli-
cation dedicated to identify the causes of death owed to the
bardycardia.

Formalization

We make some official reports’from the results given by
the medical examination of Holter(Avilés et al. 2004) and
we have deduced the causes of death. We give here serval
causes ordered by the weight of causality:

e cardiac diseases (sinus node disease, heart attack, . . .),

e not cardiac diseases (intoxication with certain drugs, seri-
ous illnesses, .. .),

e and in certain cases, no cause is identified.

Our example concerns patients having a congenital heart dis-
ease and as pathology the bradycardia.

congenitalheartdisease N bradycardia — death

By exploiting statistics, this causality is very important
since these two pathologies often cause death. So we deduce
that the weight of causality is 0.7:

{congenitalheartdisease, (a fterstart(0),0.7)} A
{bradycardia, {(afterstrat(1),0.7)} — (death, 8)

This is how we construct our knowledge base.

Approach based on weight of causality

Figure 8 is an extract of screen shot of our application. It
points out the problem of diagnosis to be solved, observation
(death, 8) and all the rules given by the weighted EXTCG
(the left graph of figure 8).

For this example, the explanation having the upper weight
in threshold weight (given by the right graph of figure 8)
is: the patient has a ishmic heart disorder and a bradycardia
caused by a very important stress during the interval of time
[5, 6], where the time unit is one day. The weight of this
explanation is 0.2401. In this example, it is the threshold so-
lution that we consider since there are no solutions of better
weight.

For ishmic heart disorder the location in time is not really
important, because it is a genetic malformation. For this
reason, we consider the relation a fter_start with delay 0.
Another possible formalization for this relation is to set the
delay to 8 since the observation is (death, 8), so, we can say
that heart disorder ischmic starts at date 0 to the death.

2We do not take into account a context in diagnosis, for example
the age and sex of the patient.
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Figure 8: Diagnosis problem and its solution.

Discussion

In this paper we define an extended temporal causal graph
to solve diagnosis problems.

Abduction corresponds to a backward search. Initially,
the graph is traversed from observations to the initial break-
downs by going up the causal relations in order to determine
a candidate explanation. Then a predicative step is carried
out in forward search in order to assure the coherence. In or-
der to reject the explanations temporally incoherent, the tem-
poral constraints are propagated in each step of abduction. In
the past years, two approaches have been proposed for tem-
poral abduction (Gamper 1996) (Brusoni et al. 1997). These
two approaches differ by the type of temporal constraints
handled: qualitative for (Gamper 1996) and both qualitative
and quantitative for (Brusoni et al. 1997). The temporal con-
straints used in (Brusoni et al. 1997) are represented by an
STP, which makes it possible to benefit from the properties
of local propagation (by using LaTer). The two approaches
limit the complexity of abduction by assuming that an initial
breakdown can have only one single occurrence. (Gamper
1996) made a very restrictive assumption that an effect can
have a single cause.

In our approach, we consider that an effect can be caused
by several causes. Abduction is made to replace each effect
by these temporal causes and to propagate temporal infor-
mation progressively. Our objective is to describe the qual-
itative temporal information between the episodes and to be
able to transform this description into quantitative informa-
tion being able to be propagated to ensure the temporal co-
herence of the explanation. These relations enable us to de-
fine the limits of intervals.

In the case where all relations have the same weight, we
select the subgraph with a minimal depth. This choice is
arbitrary. We suppose that in this kind of situation one will
prefer the explanation giving less intermediate causes.

Conclusion and Future Work

We have extended the TCG (Bouzid and Ligeza 2000) by
including two qualitative relations in order to manipulate
time intervals. In order to take into account the causality
between symptoms, we have augmented the extended TCG
(ExTCG) into a new structure that we call weighted EXTCG.
We have developed search algorithms respectively for solv-
ing the EXTCG and the weighted ExXTCG. These algorithms
consist in a backward search by propagating temporal infor-
mation. Temporal information are considered as constraints.
Thus, we formalize a set of constraints associated to each
possible explanation as an STP. To solve the STP we use
the P3C algorithm. Finally we showed how to apply the
weighted EXTCG to a real life application in medicine.

One possible improvement to this work is to integrate
more powerfull models into the weighted EXTCG in order to
manipulate the weights expressing preferences. These mod-
els can be qualitative such as CP-nets (Boutilier et al. 2004)
or quantitative such as c-semiring (BISTARELLI, MONTA-
NARI, and ROSSI 1997).
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Abstract

The introduction of metric information in Qualitative
Spatial Reasoning represents an important expressive-
ness gain, but in order to be of more practical appli-
cation, it should provide a way to specify vagueness
and uncertainty. In this paper Rectangle Algebra is ex-
tended using Fuzzy Sets Theory and an integrated ap-
proach for adding metric information is proposed. A set
of 25 fuzzy Point-Region relations is defined to provide
a link between points and regions, in this way a Spatial
Qualitative Algebra (SQA) between points and regions
is obtained. Fuzzy metric information is then added to
SQA by providing transformation functions that allow
passing from qualitative to metric information and vice
versa.

The new framework is applied to a small example which
shows the reasoning capabilities of the integrated spatial
reasoning model.

Keywords: Spatial Reasoning, Integrated models, Fuzzy
Algebras

Introduction

Spatial Reasoning plays a central role in many Artificial
Intelligence applications such as robot navigation, visual
object recognition, intelligent image information systems,
query processing in geographic databases. As in the case of
other qualitative reasoning formalisms, there are basically
two approaches to build a model suitable for spatial reason-
ing: model physical space and the objects within it or model
the relationships between the objects (Frank 1996); a set of
qualitative relations may be incomplete and even inconsis-
tent, and the consistent integration of such information relies
on the algebraic properties of the qualitative relations. Spa-
tial Reasoning can be formulated using the framework of
Constraint Satisfaction Problems (CSPs), for example TC-
SPs have been defined for reasoning about time (Dechter,
Meiri, and Pearl 1991).

Different aspects of space can be considered; here, the
more common classification of spatial relations into topo-
logical relations and directional relations is taken into ac-
count. Also distances are considered, but in the usual con-
text of metrics, not as qualitative relations. Topological spa-
tial relations are those that are invariant under continuous

transformations, such as rotation or scaling. Directional re-
lations are defined between a reference object and a primary
object with respect to a fixed frame of reference, usually
determined by a predefined entity such as the North Pole.
Topological information is commonly represented using ex-
tended regions as basic entities, while orientation is based
on points. In this paper an algebra dealing with relations
between regions, namely the Rectangle Algebra (Balbiani,
Condotta, and Farifias del Cerro 1998) is combined with the
algebra of Cardinal Directions (Frank 1996). This allows
obtaining a more expressive algebra, which will be called
Spatial Qualitative Algebra (SQA); moreover, also metric
information about distances has been added.

In Temporal Reasoning the most classical model of inte-
gration between qualitative and quantitative constraints was
proposed by Meiri (Meiri 1996) who defined an extended
Temporal CSP able to deal with both types of information
using an unique constraint network. In Spatial Reasoning
Condotta (Condotta 2000) proposed to manage these two
types of information using distinct CSPs (as made for Tem-
poral Reasoning in (Kautz and Ladkin 1991)). This paper
applies the idea of Meiri to spatial constraints, that is an
unique constraint network for both qualitative and metric in-
formation.

Realistic applications usually contain information per-
vaded by vagueness and uncertainty. This kind of notions
can be dealt in the framework of Fuzzy Constraint Satis-
faction Problem (FCSP) (Dubois, Fargier, and Prade 1996)
where constraints are satisfied to a degree, rather than satis-
fied or not satisfied, and the acceptability of a potential so-
lution is a gradual notion. The spatial constraints taken into
account are extended in a fuzzy way by associating a prefer-
ence degree to each basic relation of the qualitative relations
and a pyramidal preference distribution to each metric con-
straint.

In the following section Rectangle Algebra and Cardinal
Directions Algebra are extended to the fuzzy case; in the
next section the metric spatial constraints are defined. Then,
the Point-Region relations are introduced to allow building
the Spatial Qualitative Algebra, and the integration of quali-
tative and metric temporal constraints in a fuzzy framework
is presented. Finally algorithmic and complexity issues are
considered and a simple application scenario is provided.



Qualitative constraints
The Fuzzy Rectangle Algebra f RA

Balbiani et al. (Balbiani, Condotta, and Farifias del Cerro
1998) define the Rectangle Algebra (RA) as an extension of
the well-known Allen’s Interval Algebra (IA) (Allen 1983)
to the bidimensional space. The IA models the relative po-
sition between any two intervals as a suitable set of thirteen
basic (or atomic) relations Z, namely: before, meets, over-
laps, starts, during, finishes (b, m, o, s, d, f) together with
their inverses (bi, mi, oi, si, di, fi) and the basic relation
equal (eq). The domain considered in the Rectangle Alge-
bra is the set of rectangles with sides parallel to the axes of
some orthogonal basis in R2, this domain is called REC. A
basic relation between two rectangles (atomic RA-relation)
is a pair (r,,r,) of basic IA-relations: the x-axis relation
and the y-axis relation; their set is called A,... In this way,
there are 132 = 169 possible basic relations between any
two given rectangles. If ¢ and b are two rectangles in REC
then a (r4,ry) b is a basic RA-constraint which is satisfied
if and only if the IA-constraints a;7,;b, and a,r,b, are sat-
isfied by the projections a, b, and a,, b, respectively.

An RA-constraint R = J,{(74,i,7y,:)} is satisfiable if
and only if there exist two rectangles a and b satisfying
one of the basic RA-relations in R. In Rectangle Algebra
the usual operations of inversion, intersection and composi-
tion are defined. All the operations are performed on pairs
of unions of basic relations; recall that the projected basic
relations are IA relations, so the operations can be easily
defined (Balbiani, Condotta, and Farifias del Cerro 1998),
for example the inverse of relation R = J,{(r,i,7y,i)} is
RY=U{(r;i,71) : (rei,7ry) € R}. Composition be-
tween atomic IA refations has been defined in (Allen 1983)
by means of a transitivity table which has an entry for all the
132 = 169 combinations of atomic relations pairs. It is a
true composition (see Table 1 in (Renz and Ligozat 2005)).

An RA-network is a graph G = (V, E) given by a set
of variables V' which represent rectangles and a set M
of RA-constraints between the variables in V. An RA-
network N with variables V' = {v1,...v,} is consistent
if and only if there exists a solution given by n rectangles
(a1,...,ay),a; € REC™ such that all RA-constraints are
satisfied by the assignment v; = a;,% = 1, ..., n. The Rect-
angle Algebra has the same complexity of the IA, as far as
the consistency problem of an RA-network is concerned.

Saturated RA-relations are those which are obtained
though the Cartesian product of two Interval Algebra rela-
tions, as an example, relation { (b, d), (b,b), (d,0), (d,d)} <
(b,d) x (b, d) is saturated, while {(b, ), (d, b)} is not.

IA relations are somewhat similar to mono-dimensional
Region Connection Calculus (RCC) relations over regular
regions (Randell, Cui, and Cohn 1992), and to give to the
spatial constraints a more intuitive meaning,in this paper a
sort of “orientation” in RCC relations has been introduced
for relations DC| EC, O and T P P; in this way the analogy
is clearer, and 13 atomic relations R corresponding to the
13 Allen’s atomic relations Z can be devised, as shown in
Table 1 and Figure 1.

Definition 1. the set R is the set of the atomic relations

BDC'A BEC A BOo'A  BTPPi A BNTPPiA BEQA B TPPI* A

ADCB AECB AOB ATPP-B ANTPPB AEQB A TPP'B
A B A B A B A A A A
—_— — — — — — — —
— — — — —
AbB AmB AoB AsB AdB AeqB AfB
BaA Bmi A Boi A BsiA Bdi A Beq A BfiA

Figure 1: similarities between IA and extended RCC.

{DC~, DC*, EC~, EC*, O~, O*, TPP~, TPPT,
TPPi~, TPPit, NTPP, NTPPi, EQ}.

Table 1: correspondences between IA and R relations.

T R 7 R
inverses

b DC~ a DCT

m EC~ mi ECt

0 O~ oi ot

s TPP~ | si TPPi~

d NITTP | di NTPPi

eq EQ eq EQ

f TPPT | fi TPPit

If R relations are combined over two orthogonal axes, re-
lations that satisfy RCC relations are obtained; Figure 2 de-
picts all 13?2 = 169 combinations, for example

Aleq,di)B < A(TPPi)B
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Figure 2: correspondence between RA and RCC; the box repre-
sents the relation A (eq, di) B < A (T PPi) B.

Flexibility and uncertainty can be introduced in Rectan-
gle Algebra in a way similar to that proposed in (Giisgen,
Hertzberg, and Philpott 1994; Badaloni and Giacomin
2006). The definition of RA-constraints is relaxed by as-
signing to every atomic relation r; € R a degree «; € [0, 1],



which tells the preference degree of the corresponding as-
signment among the others; in this way a fuzzy Rectangle
Algebra f RA can be defined.

Definition 2. Let a and b be two rectangles in REC, then a
fRA constraint is defined as

R= U{(Tm,i;ry,i)[ai])}

where v, ;,z € {z,y},i = {1,...,13} are R relations and
a; € [0,1] are the preference degrees of v, ;. Each disjunct
(T2,i,7y,i) [ is an atomic fuzzy RA relation.

As usual, when the preference degree is zero the corre-
sponding R relations are not specified, when 1 it is omit-
ted. Using preference degrees the expressiveness of classical
RA-relations can be increased, for example it is possible to
denote the fact that Portugal is West w.r.t Spain but partially
also South and South-West (see Figure 3).

%%/ —

Figure 3: “Portugal is almost West w.r.t. Spain, but also partially
South and partially South-West of it”.

Example 1. the position of Portugal (P) w.rt. Spain (E)
can be expressed using the f RA constraint

P{(EC™,EQ),(EQ,ECT)[0.2],(EC™,ECT)[0.5]}E

The preference degree of the first pair (EC~,EQ) is 1
and it has been omitted; the other two pairs have preference
degrees less than 1 but greater than zero, so their prefer-
ence degrees have been written. The remaining combina-
tions have not been specified at all, since their preference
degrees are zero. Notice that, according to the Fuzzy Set
Theory, the preference degrees have not to sum up to 1 as in
Probability Theory.

Saturated fRA relations will be written as a(R;, R,)b,
where R, and R, are fuzzy R relations, that is R relations
with an associated preference degree; as said before for the
classical RA, they can be viewed as a Cartesian product of
R, and R, atomic relations. In the case of fRRA relations
each component will have a preference degree given by the
minimum between the pair elements, since both projections
must be satisfied. The usual conventions for preference de-
grees zero and 1 hold.

Definition 3. a saturated f RA relation can be written as

a<RI,Ry>b
where R, = (rgilozal,....rza3lamas]), Ry =
(ryalagal, . ryaslaygas]), 7. 2z € A{z,yhi €

{1,...,13} are the 13 basic R relations and o, ; € [0,1]
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are the preference degrees of r, ;. It is equivalent to the ex-
plicit relation

a{(re,1,my,1)[min(ag,1, 1)),
ey (Tg1,7y13) [min(ay 1, ay13)],
ey (T213,Ty,13) [min(ag 13, ay13) 10
The notation aR2b = a(R,, R, )b will be also used if the
two components of the pair are the same.
Example 2. an example of a saturated f RA constraint is

((DC~[0.7], NTPPI[0.5]),(DC~, NTPPI[0.3]))

and its graphic representation is shown in Figure 4;
it expresses the fact that none of the implied spa-
tial relations (DC—,DC™)[0.7], (DC—,NTPP)[0.3],
(NTPP,DC7)[0.5], (NTPP,NTPP)[0.3] is fully plau-
sible, since this fact would require a preference degree of
1, but the first is the most preferred while the last two are
equally the least preferred.

A
deg
07 — —
0.5 — e
03 —
y
e
DC
NTPP

DC NTPP

Figure 4: representation of the saturated fRA relation
((DC~[0.7], NTPP|0.5]), (DC~,NTPP[0.3])).

With respect to classical RA now preference degrees have
to be taken into account, therefore intersection and union
have to combine them, and they will be called conjunctive
and disjunctive combination respectively. The operations
between fRA constraints are defined as follows:

Definition 4. given a fRA relation R =
U {(ra,isry,i)ci])}, the inverse relation R~ is defined,
according to Table 1, as

R = ({05 d Do) : (gm0l € B)

Example 3. if R = ((DC~,EQ)[0.3]) then is R~ =
((DC*, EQ)[0.3]).

Definition 5. given two fRA relations R =
Uil (rzyisryd)lea))} and S = U{(52,5,54,5)[8;])}
the disjunctive combination between R and S is defined as
RS =Ud{ (reprydlil: (resryi)les] € RA
(82,5, 5y.5) 03] € S ATai = 805 A

Tyi = Syj,vi = max(a;, 5)}



Example 4. the disjunctive combination of the fRA rela-
tions

R={(DC~,EQ)[0.3],( NTPPi, EQ)[0.7]} and

S ={(DC~,EQ)[0.5], (NTPPi,DCT)[0.7]} is

T ={ (DC~,EQ)0.5],)(NTPPi, EQ)[0.7],
(NTPPi, DC)[0.7]}

Definition 6. given two fRA relations R =

Uil (re,iryi)lea])} and S = Ui{(s0,5, 8y.5)[s])}

the conjunctive combination between R and S is defined as

ReS =Ud (reiryd)vil: (reiryi)loi] € RA
(82,51 Sy, ) Bil € S ATy =855 A
Ty,i = Sy,iy Vi = min(aia ﬁ])}

Example 5. the conjunctive combination of the f RA rela-
tions

R = {(DC~,EQ)[0.3],(NTPPi, EQ)[0.7]} and S =
{(DC~, EQ)[0.5],

(NTPPi, DCT)[0.7]} is

T ={(DC™, EQ)[0.3]}

Definition 7. given two fRA relations R =
Uid(raisryi)lail)} and S = U{s25,54.5)[0;])} th

composition between R and S is defined as

RolS = @{(tm, ty.)[min(an, Br)]
hyk 2 (raon, Ty,n) © (Saks Syk) = (bayisty,i)}

composition between atomic relations is performed as in
the case of classical Rectangle Algebra taking into account
the correspondences between I and R.

Example 6. the composition of the fRA relations
R = {(DC—,EQ)[0.3], (NTPPi,EQ)[0.7]} and S =
{(DC~, EQ)[0.5], (NTPPi, DC1)[0.7]} is

T = {(DC~,EQ)[0.5],(DC~,DCh)[0.3],
(NTPPi, EQ)[0.5], (0, EQ)[0.5], (EC~, EQ)[0.5],
(TPPit, EQ)[0.5], (NTPPi, DCT)[0.7]}

The fRA is an algebra, that is a set of relations closed
under certain operations. It is easy to see that inversion
is closed, since every atomic relation in fRA has an in-
verse. Also combinations (conjunctive and disjunctive) give
relations belonging to fRA, in fact the resulting relations
are formed by atoms in R coming from both or either
operands. In composition the disjunctive composition of
relations coming from the classical composition of atomic
relations is used, while preference degrees are computed by
means of max and min functions. Stableness (Balbiani, Con-
dotta, and Farifias del Cerro 1998) is guaranteed by saturated
relations (also in the fuzzy case), therefore in the following
just these will be considered.
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The Fuzzy Cardinal Directions Algebra

When qualitative spatial positions between two points have
to be described, a natural way is to model them using car-
dinal directions. Frank (Frank 1992) suggested methods
for describing the cardinal direction of a point with re-
spect to a reference point in a geographic space, i.e., di-
rections are in the form of “North”, “East”, “South”, and
“West” depending on the granularity. He distinguishes
between two different methods for determining the dif-
ferent sectors corresponding to the single directions: the
cone-based method and the projection-based method. The
projection-based system consists of nine acceptance ar-
eas, one for each of the directions plus a neutral zone
EQ: C = {E,NE,N,NW,W,SW,S,SE,EQ}. The
projection-based approach describes these relations in terms
of the Point Algebra (PA) (Vilain, Kautz, and van Beek
1989) by specifying a point algebraic relation for each of
the two axes separately. This provides the projection-based
approach with a formal semantics and allows defining the
Cardinal Directions Algebra, or CDA. For this reason the
second method has been preferred here.

Flexibility and uncertainty can be introduced also in CDA
by assigning to every atomic relation r; € C a degree «; €
[0, 1], which tells the preference degree of the corresponding
assignment among the others, obtaining in this way a fuzzy
Cardinal Directions Algebra, or fC DA

Definition 8. Let a and b be two points, then a fCD A con-
straint is defined as

R= U{(miﬂ“y,i)[ai])}

where 1, ;,z € {x,y},i = {1,2,3} are basic Point Alge-
bra relations {<,>,=} and «; € [0, 1] are the preference
degrees of v, ;. Each disjunct (r4;,7y ;)] is an atomic
fCDA relation.

As in the case of fuzzy RA relations, saturated C'D A re-
lations can be defined and the notation is similar to that for
fuzzy RA.

Definition 9. a saturated fC D A relation can be written as
a(Ry, Ry)b

where Ry = (< [0z <], =2 [z =], >z [ag,>]) and R, =
(<y lay<],=y lay=],>y [ay>]) and a.; € [0,1] are
the preference degrees of T ;. It is equivalent to the explicit
relation

a{(<w7 <y)[min(aw,<7 ay,<)]a ceey
(<w,<7 >y,>)[min(am,<v ay,>)]a ceey
(T2,> Ty7>)[min(az,>’ay,>)]}b

The notation aR2b = a(R,, R, )b will be also used if the
two components of the pair are the same.

Due to the limited number of basic relations involved,
each pair of relations can be interpreted in a more natu-
ral way, as shown in Table 2 and Figure 5. For example
a((>[0.7], =), (= [0.9])b < a{(>,=)[0.7], (=,=)[0.9]}b
becomes a{E[0.7], EQ[0.9]}b.



Table 2: interpretation of atomic fC D A relations.

Pair interpretation Pair interpretation
(:7 :) EQ <<7 :) w
(>,=) E (<, <) SW
(>a >) NE (:7 <) S
(=,>) N (>, <) SE
(<,>) NW

N
(=>)
NW NE
(<,>) >=>)
EQ
w (==) E
(<Y=) ® (>,=)
sSw SE
(<,2) (>.<)

Figure 5: Point-point spatial relations.

The operations on fC'D A constraints are defined in a way
analogous to what done for fuzzy RA, with the only differ-
ence that now the atomic relations belong to PA? and no
more to R>.

Fuzzy Spatial Metric constraints

In (Condotta 2000) metric spatial knowledge is represented
by means of two constraint networks (V, C'), one for each
coordinate, which limit the possible distances between the
variables in V. In this paper the metric constraints still
limit the distances between the variables, but there is an
unique constraint network for both coordinates. The vari-
ables therefore take values on R2. Moreover, a fuzzy relation
Rp(C;ij) : R xR — [0, 1] is associated to each constraint
C;; between variables v; and v; in V. [Rp(C;)](dy,dy)
indicates to what extent an assignment (v;|, — v;i|, vj]y —
Vily) = (ds, dy) satisfies the constraint C;;.

Normalized trapezoidal possibility distributions usually
adopted in Fuzzy Temporal Networks (Marin et al. 1997;
Godo and Vila 2001) are extended here to two orthogonal
dimensions. They will be called pyramidal distributions.

Definition 10. a pyramidal distribution is a pair of normal-

ized 'trapezoidal distributions plus an associated preference
degree: (T, T,)[a], € [0,1]

The trapezoidal possibility distributions proposed in
(Badaloni, Falda, and Giacomin 2004) is adopted; each T, is
described by a 4-tuple of values, each describing four char-
acteristic points of the two orthogonal trapezoids in x and
Y.

'in the Fuzzy Set Theory a normalized possibility distribution
is a distribution which contains at least a preference degree equal
to 1, that is fully plausible.
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Definition 11. a well-formed trapezoid T is a 4-ple
da, b, ¢, dr> where a,b € RU {—00}, ¢,d € RU {400}, <
is either ( or [ and 1> is either ) or ]. A trapezoidal dis-
tribution T is allowed if and only if it satisfies the following
conditions:

e a<b<c<d

o ifa = —ocothenb=—oc0 A <is (
if a < bthen < is (
ifa=dthen<tis [ A >is ]

e ifd=+4+oothenc =400 A >is)
if ¢ < d then > is )

Definition 12. the set of well-formed pyramidal distribu-
tions is denoted by P.

A metric constraint C;;, is a disjunction of pyramidal distri-
butions:

Definition 13. A metric constraint Cyj is a set of pyramidal
distributions
Cij ={P1-- Pn}

where P, = (T 1, Ty 1) [ou].

The semantics of a constraint Cj; is identified by the pos-
sibility distribution

[Rp(Cip))(,) = max [Rp(PY))(x,y)

corresponding to the disjunction of pyramidal distribu-
tions Rp(P) : R x R — Rand

[Rp, (Cij)l(z,y) = min{[Rr, , (Cij)](z), [Rr, , (Cij)](y)}

where

0 if z<a,r V
(z=a.r A <is ()
(z=d.p N D>is))
z>d

[Rr, . (Ciy)l(2) = ca., . =k
az’k(m if Az, k <z < bz,k
—d, .
az’k(czz.kftij.k) if cop <2<dai
Qk otherwise

Example 7. as an example of metric constraint, on the right
of Figure 6 a region with an undefined boundary is repre-
sented and, on the left, a possible corresponding fuzzy con-
straint. The fuzzy constraint could be expressed, in relative
coordinates, as

{((0,5,10,15), (0,3,8,11))[0.7], (7, 10, 13, 16), (5,8, 11, 14))[1.0]}

-

Figure 6: Example of spatial metric constraint.

The height of the pyramidal distribution is not neces-
sarily normalized to 1, and this allows reasoning about



preferences, truth of imprecise events, priorities and so on
(Dubois, Fargier, and Prade 1996). For instance, the user
can set the possibility degrees according to his own prefer-
ences using non-normalized distributions to indicate partial
inconsistency of constraints coming from unreliable infor-
mation sources.

Operations between metric constraints

All operations between pyramidal possibility distributions
involve pairs of trapezoids and are applied independently on
the orthogonal projections. The usual operations are pro-
vided:

Definition 14. given a metric constraint Cj; =
{Py,---, Py} between variables v; and vj, each dis-
junct of the inverse constraint C’if is defined as

—1
Pk = <<]$ - dz,k; —Cx k, 7b:c,k7 7am,k>zv

Ly — dy ks —Cy ks —by o, —Qy kD>y) k]

Definition 15. given two metric constraints Ci; =
{Pi,---,Ppn} between variables v; and v; and C’j’-w =
{P],---, P} between variables v; and v, the constraint
Cijo Cl,, = U, Py is such that for any two disjuncts Py, =
(Tyies Ty ) low) € Cij and P/ = (T, ,,T! )eu] € C

z,l) Ty, Jw
Py = (Top o Ty, Ty 0 Ty ) [minf{ o, au}]

where composition between trapezoidal distributions is de-
fined as in (Badaloni, Falda, and Giacomin 2004).

The disjunctive and the conjunctive combinations corre-
spond to the usual set-theoretic operations and can be ob-
tained by reasoning about the orthogonal projections, which
are both trapezoids.

Definition 16. given two metric constraints C;; =
{P1,-+, P} and C; = {P],---, P,} between variables
v; and vj, the constraint C;; & Céj = U, P/ is such that
for any two disjuncts P, = (T, Tyr)lox] € Csj and
Pl =(T3,, T, )] € C;

x,l
Py = (To ks @ Ty, Ty e © Ty ) [max{o, i }]

Definition 17. given two metric constraints Cy; =
{P1,-+, Pp}and C; = {P],---, P,} between variables
v; and vj, the constraint C;; @ CZ{j = U, Py is such that
for any two disjuncts P, = (T, Tyr)lox] € Cij and
P =(1},, T, )] € Cj;

x,l
Py = (Top @ Ty, Ty @ T,y ) [min{ag, ar}]

Finally, the composition operations is defined as:

Definition 18. given two metric constraints Ci; =
{P1,-+, Pp}and C; = {P],---, P,} between variables
v; and vj, the constraint Cjj o C'{j = U, P} is such that
for any two disjuncts Py = (Tp ., Tyr)low] € Cij and
Pl = <T"2,l77-‘g;,l>[al] € Cj;

P,/L/ = <Tw,k o] T'/-,l’ Ty,k o T;;,l> [min{ak, OqH

x
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Qualitative and metric constraints

In (Condotta 2000) Condotta proposed to build two con-
straint networks, one for qualitative constraints and the other
for metric constraints. In this paper the idea used by Meiri
to integrate temporal constraints (Meiri 1996) is adopted: a
single network for both types of constraints.

Relations between Points and Regions

The first step to integrate metric and qualitative information
is to define an algebra that includes all the combinations that
can occur between a point and a (rectangular) region. There
is therefore the need to find relations that link points with
regions. An intuitive way to do this is to extend in two
dimensions the Point-Interval relations for Temporal Rea-
soning. Being 5 the atomic mono-dimensional relations be-
tween a point and an interval, in the spatial case there will be
2% = 25 atomic relations; they are represented in Figure 7.
In this paper the mono-dimensional relations coming from
the projections of a spatial relation on an orthogonal axis
will be named in a different way w.r.t. Meiri’s Point-Interval
relations:

Definition 19. the set of atomic Point Region relations is
defined on the set PR = {E~, T, 1, Tt ET}.

Flexibility and uncertainty can be introduced in PR rela-
tions by assigning to every atomic relation r; € PR a degree
a; € [0, 1], which tells the preference degree of the corre-
sponding assignment among the others, and obtaining in this
way a set of fuzzy Point-Region relations, or f PR.

Definition 20. Let a be a point and b € REC, thena fPR
constraint is defined as

R= U{(?‘Lmry,i)[ai])}

where v, ;,z € {x,y},i = {1,2,3} are PR relations and
a; € [0,1] are the preference degrees of r, ;. Each disjunct
(rg,i,Ty.i)|] is an atomic f PR relation.

Saturated f PR relations can be defined as follows.

Definition 21. a saturated f PR relation can be written as

a(Ry, Ry)b
where R, = (rzilomil,...,rz5l005]), Ry =
(ryaloyals - ryslays)) e,z € {x,y},i = 1,...,5

are the 5 atomic Point-Region relations in PR, and o, ; is
the preference degree of 1, ;.. It is equivalent to the explicit
relation

a{(re,1,my,1) [min(ag,1, ay1)l,
o (repa,rys)[min(ag 1, oy 5)],

B (T:C,57ry,5)[min(aﬁf,57ay75)}}b

The notation aR2b = a(R,, R, )b will be used if the two
components of the pair are the same.

Also fPR relations can be interpreted in a more natural
way; besides the standard names of the (combined) cardi-
nal directions, 16 additional relations have been added; they
have been named as in Table 3 and Figure 8.
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Figure 7: Point-Region spatial relations.
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Figure 8: Point-Region spatial relations.

The Fuzzy Spatial Qualitative Algebra (fSQA)

Once the fuzzy Point-Region relations have been defined, an
algebra that encloses all the fuzzy relations between Points
and Regions can be defined; it will be called Fuzzy Spatial
Qualitative Algebra or fSQA.

Definition 22. the Fuzzy Spatial Qualitative Algebra fSQ A
is given by
fRAU fCDAU fPR

where f RA is the fuzzy Rectangle Algebra, fCDA the
fuzzy Cardinal Directions Algebra and fPR is the fuzzy
Point Region set.

The fSQA algebra is closed under the inversion, inter-
section and composition operations; inversion and intersec-
tion for A,.. and fCD A relations concern operands com-
ing from the same algebra, and these have already been de-
fined before. As far as f PR relations are involved, inverse
f PR relations are denoted by adding a suffix “i” to the cor-
responding relations in PR (for example, given a region a
and a point b if a {NE b then b ,NF; a), while disjunc-
tive and conjunctive combination operations are defined as
follows.

Definition 23. given two fPR
Ud(re,isryi)loa])} and S =

relations R =
i)

Ui (52,5, 50.5)185])
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Table 3: relations for f PR interpretation.

Pair relation | Pair relation
(I1,1) EQ (T-,E~) SSW
(E+,I) E (TY,E-) SSE
(ET,ETY) NE (ET, T7) ESE
(I,E™) N (ET, TT) ENE
(E-,ET) NW (T, 1) )
(E—,I) w (T+,T+) +NE
(E-,E7) SW (I, T) N
(I,E™) S (T, TT) +TINW
(ET,E~) SE (T-,1) W
(T+,E+) NNFE (T, T7) SW
(T—,ET) NNW | (I, T7) S
(E-,TT) WNW | (T*T,T7) SE
(E-,T7) WSW

the disjunctive combination between R and S is defined as
Ui ry ) ]+ (i ry )] € RA

(82,55 8y,3)[Bi] € S ATwi = 845 A

Tyi = Sy, = max(aa ﬁ)}

RoS =

Definition 24. given two fPR relations R =

Ud(rei,ryi)laal)} and S = U {(s2.5,89,5)[05])}
the conjunctive combination between R and S is defined as

R®S = U{(Tm,i,ry,i)[%'] (e ry)lai] € RA

(82,55 8y, i) [Bi] € SATe; =855 A
Ty,i - Sy,j7’y = min(a, 6)}

The composition operation may involve operands belong-
ing to different algebras, and therefore it is defined in terms
of a combined composition table which takes into account
all possible combinations between a point and a region; pref-
erence degrees are again obtained by means of a “max-min”
weighting. Table 4 shows all these combinations; the sym-
bol “P”” denotes illegal combinations.

Table 4: transitivity table of SQA

CDA PR RP RA
CDA | Tcpa T 0 0
PR 0 0 Ty Ty
RP | (T)T T3 0 0
RA 0 0 (Ty)T Tga

Table Topa is the transitivity table of CDA Algebra
(Frank 1996). Tr4 is the transitivity table of the Rectangle
Algebra (Balbiani, Condotta, and Farifias del Cerro 1998),
which can be replaced by a double look-up in the IA transi-
tivity table (Allen 1983), one for each of the two orthogonal
components of an RA relation.

The remaining tables 77,...7T, are analogous to those
proposed by Meiri (Meiri 1996) considering the correspon-



dences between temporal and spatial relations discussed be-
fore (see Figures 1 and 7) but have not been reported here
for space limits.

Definition 25. given two fSQA relations R =
Uid(rai,ryi)laal)} and S = Uj{s25,5y,5)[0])} the

composition between R and S is defined as

RoS = (tai,ty.:)[min(an, Bi)]
ha k- (Tr,ha Ty,h) o (Sm,lm Sy,k) = (tr,iaty,i)
where the composition between atomic relations

(rg,jsTy.j) and (Sg K, Sy.k) is given by Table 4.

Transformation functions

Having defined the possibility distributions of the metric
constraints as a combination of two trapezoidal distributions
along two orthogonal axes and having said that (fuzzy) CDA
relations are formed by PA relations along orthogonal axes,
the transformation functions introduced originally by Meiri
(Meiri 1996) and extended then by (Badaloni, Falda, and
Giacomin 2004) in order to be applied to trapezoidal distri-
butions can be easily defined.

More specifically a (qualitative) fC DA constraint can
be transformed in a metric constraint by applying the
QUANf “# function to both its components (which are
PA/" relations)

Definition 26. given a fCDA constraint R
Ui{(ra,isryi)loa])}  the  function  fQUAN2(R)
fCDA — P is defined as

<EB{QUAN ()} EB{QUAN 2 (ry) el }

Example 8. The fCDA constraint R =
{(<,<)[0.5], (<,=)[0.3]} becomes a pyra-
midal distribution fQUAN2(R) =

{{(0,0, 400, +00), (0,0, +00, +00)}[0.5],
((0,0,+00,+00),[0,0,0,0})[0.3]}.

On the other hand, if C' = |J,(T} «, Ti,y)[cv;] is a metric
constraint then it can be transformed in a qualitative con-

straint by applying the QUALY"* function to both compo-
nents 7; ; and T; ,, of each disjunct (which are trapezoids).

Definition 27. the function fQUAL2(R) : P — fSQA is
defined as

fQUAL2(R) = <EB{QUALf“Z<Ti,w[aZ-D},

DHoUAL ™ (T, o))

The resulting qualitative constraint is saturated because
metric constraints are defined as a Cartesian product of two
orthogonal trapezoidal distributions.

Example 9. The metric constraint C =
{{(-5,5,10,15), (0,3,6,9))[0.5]} becomes a saturated
fCDA constraint fQUAL2(C) = {(< [0.5],= [0.25], >
[0.25]), (< [0.5])).
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Notice that the explicit representation of different kinds of
extremes, open, closed or unbounded, is essential to define
such transformation functions, since they require general-
ized trapezoids.

By means of the concepts introduced above, spatial net-
works whose variables can represent both points and rectan-
gular regions, and whose edges are accordingly labelled by
qualitative and quantitative fuzzy spatial constraints can be
modelled.

In particular, as in (Badaloni, Falda, and Giacomin 2004),
Point-Point metric constraints are maintained in a numerical
form as long as possible, while Region-Region and Point-
Region constraints are necessarily qualitative, that is they
are modelled as f RA and f PR relations, respectively.

On the basis of these considerations it is possible to define
the operations involving all kinds of constraints introduced
so far. Since metric constraints can be defined only between
points, the definitions of the operations between qualitative
and metric constraints can be limited, without loss of gener-
ality, to the following cases:

Definition 28. given a metric constraint Cy; and a quali-
tative constraint Cy; between variables v; and v; their dis-
Jjunctive combination is

Cij & Cj; = Cyy @ fQUAN2(CY;)

Definition 29. given a metric constraint Cy; and a qualita-
tive constraint C;; between variables v; and v; their con-
Jjunctive combination is

Ci; ® ng =05 ® fQUANQ(Cz{j)

Definition 30. given a metric constraint C;; between vari-
ables v; and v; and a qualitative constraint C;. » ¢ fPR
between variables v; and vy, their metric composition is

Definition 31. given a metric constraint C;; between vari-
ables v; and v;j and a qualitative constraint C;. . € fPR
between variables v; and vy, their qualitative composition is

In this last case since only fC D A relations can be trans-
formed in metric constraints the operation must be per-
formed in a qualitative way. By means of these opera-
tions, an integrated qualitative-metric Fuzzy Spatial Con-
straint Network N = (V, E) can be defined: V is a set of
points and regions and F is a set of qualitative and metric
fuzzy spatial constraints between them.

Reasoning about space
Algorithms and complexity

Given an qualitative-metric Fuzzy Spatial Constraint Net-
work (FSCN), the most interesting reasoning tasks are find-
ing an optimal solution, determining the degree of consis-
tency and finding the minimal network; the latter is the most



difficult, because it requires to find all solutions; in this work
only the first two have been considered. Since the problem
of determining the consistency of a classical RA network is
NP—Complete (Balbiani, Condotta, and Farifias del Cerro
1999) and RA is a particular instance of a FSCN where pref-
erences degrees are all zero or 1 and variables are regions,
the consistency of a FSCN is, in general, a N'P—Complete
problem.

An algorithm that can be applied to find consistency is
Path-Consistency (PC), which is polynomial. This method
can be applied to any relations algebra provided that it is
closed under the operations of inversion, intersection and
composition, and that the composition is not weak. The
composition in fSQA is a true composition: RA has a
true composition, CDA and PR can be viewed as subsets
of RA where one or more ontological entities are collapsed
to a point. Unfortunately, however, in the general case
Path-Consistency is a sound but not complete method for
finding consistency, therefore the solution space has to be
searched in a systematic way using backtracking. It is pos-
sible to prune the search space exploiting heuristic tech-
niques guided by preference degrees, obtaining in this way
a Branch & Bound algorithm; for example all instantiations
that give preference degrees lower than the current partial
solution can be discarded, and PC method can be applied at
each step of the Branch & Bound algorithm to exclude in-
consistent partial instantiations. In (Balbiani, Condotta, and
Farinas del Cerro 1999) a tractable subclass of RA is de-
fined and in (Condotta 2000) the same subclass augmented
with STP metric constraints is proved to be still polyno-
mial: if enough expressive they could be the basis for finding
a tractable subclass of the new fuzzy framework proposed
here.

Application example

In order to show the expressiveness of the integrated system
a small scenario is presented. In a touristic town, whose map
is in Figure 9, a new hotel has to be built and there are some
constraints on the possible locations. There are two allowed
areas (marked with the number 7), the first, more attractive,
near the sea, the second at the end of the valley that closes
the town.

fff.S

Figure 9: map.
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Starting from information given, six significant coordi-
nates plus an origin can be identified and therefore the prob-
lem can be modelled in a graph with seven vertices:

1. the origin for the relative coordinates;

the lower left limit of the town;

the upper right limit of the town w.r.t. point 2;

the lower left limit of the hotel area;

the upper right limit of the hotel area w.r.t point 4;

the town,;

Nk » D

the hotel area.

The constraints that compose the scenario can be derived
from the map of the scenario and from deductions coming
from background knowledge as, for example, the first one:

1. “the hotel must be inside the town” (implicit):

6((NTPP,NTPPi,Ot,0~,TPP™,
TPPi~, TPP*Y TPPit,EQ)*)7

2. “the lower left coordinates of the town w.r.t. point I are”:
1{((2.5,3,3.5,4), (2.5, 3,3.5,4)) }2

3. “the upper right coordinates of the town w.r.t. point 2

.,

are .
2{((6.5,7,7.5,8), (9.5,10,10.5,11))}3

4. “the lower left coordinates of the two hotel areas w.r.t.
point I are”:

1{((3.25,3.5,3.5,3.75), (1.75, 2,2, 2.25)),
((6.25,6.5, 6.5,6.75), (10.75, 10, 10,10.25)) }4

5. “the upper right coordinates of the hotel area w.r.t. point
4are”:

4{([2,2,2,2],(2,2,2,2])}5

To express the fact that “the (hotel) area near the sea is more

attractive”: the preference degree for the second disjunct of

the constraint between points 1 and 4 has been lowered.
The resulting constraint graph is depicted in Figure 10.

Figure 10: graph for the example.



(a) first case (b) second case

Figure 11: solutions.

Solving the problem

The solutions of the FSCN problem modelled so far can be
obtained applying a Branch & Bound algorithm, as said in
the previous subsection. A first solution is represented in
Figure 11a; this solution tells that the hotel can be build near
the sea.

Suppose now that the following additional condition
holds:

“The hotel cannot be built near the sea because of en-
vironmental restrictions”

In this case the first choice in the constraint between vertices
1 and 4 must be deleted. The new solution has now a degree
of consistency 0.7, due to the degree of the metric relation
between nodes 1 and 4 that has been chosen. The hotel in
this case can still be built, but only near the end of the val-
ley, as depicted in Figure 11; the consistency degree of the
solution is lowered with respect to the previous solution.

Conclusions

A general constraints satisfaction framework for spatial rea-
soning able to manage fuzzy spatial constraints involving
qualitative points, rectangular qualitative regions and metric
points has been presented.

Rectangle Algebra and Cardinal Direction Algebra have
been extended with the Fuzzy Sets Theory and a new set of
25 Point-Region relations has been defined in order to build
an integrated Spatial Qualitative Algebra (SQA) which in-
volves points and regions. Metric spatial constraints can be
imposed between points and are modelled using fuzzy pos-
sibility distributions, in particular pyramidal distributions.
Metric and qualitative constraints are managed within a sin-
gle constraint network and are transformed one into another
when needed; two transformation functions have been pro-
vided for this purpose.

The study of ad-hoc algorithms for the fundamental rea-
soning tasks such as determining the consistency of the
network and finding the optimal solutions have been just
sketched, and there is room for enhancing them. Another
interesting research direction would be the introduction of
line segments or complex regions in the SQA.
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Abstract

Linguistically the temporal information of an event is
often introduced in an incremental and incomplete fash-
ion, and understanding a complete temporal scenario
requires both a flexible event-level representation and
a global model capable of capturing the interactions
among them. In this paper we describe a method of
constructing a Dependency Simple Temporal Problem
with Mixed Granularities (DGSTP) from a set of event-
level representations. The constraint network can then
be solved to obtain a set of possible times for the events
and to discover implicit temporal relationships among
them.

Introduction

The capability to deduce the temporal location of an event
described linguistically can benefit many real-world appli-
cations such as question answering, text summarization and
intelligence analysis. Like many phenomena in natural lan-
guage, however, temporal information about events are usu-
ally given throughout a discourse in a piecemeal fashion,
often incomplete. For example, consider the following sen-
tence in a news story published on Aug 16, 2006:

Karr admitted to being involved in the death of the 6-
year-old beauty pageant winner.

Lacking any additional information, one might assume that
the death had occurred in the same year as the publication
and be tempted to conclude that the victim was born in year
2000. But if the reader is given another sentence from the
same story:

Authorities are examining John Mark Karr’s writings
for clues that might link him to the death of JonBenet
Ramsey 10 years ago.

It is then possible to conclude that the victim was born in
1990, assuming that the two death events described are iden-
tical. These observations can be summarized using the fol-
lowing fomulae:

ey
@
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t, = {to + |6year|}
1, = {{2®®6year, aug, 16day} - |1®year|a = tl}
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Each formula encodes the local temporal information of a
death event: (1) defines temporal variable ¢, to be a time
point 6 years after the birth of the victim (¢,), and (2) defines
variable #, to be a point 10 years before the publication date.
The assumption that the two events are identical is then ex-
plicated as a conjunctive constraint in the second half of (2)
(= 11) - this assumption can come from an automatic event
coreference system, or simply come from a human analyst
performing a what-if experiment.

In the above we have captured the global information of a
temporal scenario in a set of time formulae, and all there is
left is a way to systematically solve for the variables. In this
paper we will describe a method for solving such formulae
by constructing a temporal constraint problem called Depen-
dency Simple Temporal Problem with Mixed Granularities
(DGSTP), where temporal relations among events are en-
coded as temporal constraints among the temporal variables.
The resulting constraint network can then be solved to deter-
mine its consistency, to obtain a set of possible times for the
variables, and to discover other valid temporal relationships
among the variables.

In the next section we will first make a brief introduction
on our event-level temporal representation called TCNL. We
will then describe in the following three sections a progres-
sion of three classes of temporal constraint problems: Tem-
poral Constraint Satisfaction Problems (and in particular its
subclass STP), GSTP as an extension to STP with mixed
granularities, and the further extension DGSTP. In particu-
lar the core solution procedures are described in the section
Modeling Temporal Scenarios, and the methods for translat-
ing TCNL formulae into a DGSTP, our tool for modeling a
temporal scenario, are discussed in the section From Formu-
lae to Dependency GSTP. Finally we conclude the paper and
suggest future work in the final section.

Event-Level Representation

Temporal information of an event can be conveyed linguis-
tically via verbal tenses, temporal expressions (“/0 years
ago”), prepositional words (“before” and “during”) and as-
pectual relations (“admitted to being involved” where the ad-
mission happened after the involvement). We encode this
information using an arithmetic-like formalism called Time
Calculus for Natural Language (TCNL), where temporal in-
formation is viewed as constraints to the possible times an



event can take place. In the recent years TCNL has been
successfully applied to the task of normalizing temporal ex-
pressions found in emails (Han, Gates, and Levin 2006b),
newswire and web texts (Florian et al. 2007). In this sec-
tion we will provide a concise review of TCNL, but readers
are recommended to refer to (Han, Gates, and Levin 2006a)
and (Han 2008) for a more detailed description.

Calendar Models

The foundation of TCNL is a constraint-based calendar
model providing a repertoire of temporal concepts for writ-
ing time formulae. There are two kinds of concepts: tem-
poral units (e.g., month) and temporal values (e.g., feb),
and each unit can take on a set of fully ordered values. The
entire calendar model is therefore a constraint satisfaction
problem (CSP) (Dechter 2003), with each temporal unit act-
ing as a variable, and the modeling task involves designing
constraints among a set of units (e.g., February in a non-leap
year cannot have 29 days).

Temporal units in the calendar model are ordered by two
relations: the measurement relation and the periodicity rela-
tion. Unit u; is measured by u;, written as u; < u;, if every
value of u; can be mapped to a set of consecutive values of u;
on a time line; e.g., month is measured by day. A unit u; is
periodic in u;, written as u; > u;, if u; is measured by u; and
iterating through the values of u; does not advance the value
of u;;! e.g., day (days of a month) is periodic in month but is
not periodic in week, because iterating through all possible
values of days of month surely advances the time from one
week to another. These two relations play a crucial role in
defining the concepts of granularity and the anchoring status
of a time entity.

TCNL Formulae

Built on top of the constraint-based calendar model is a
way of representing temporal semantics via formulae. Ev-
ery TCNL formula is of one of the three possible types:
coordinates (C), quantities (Q) and enumerations (E)? A
coordinate represents a time point and is essentially a set
of assignments to the temporal units of a calendar model;
e.g., {fri, 134,y ) represents the under-specified expression
“Friday the 13th”> A quantity represents a certain num-
ber of temporal units or coordinates; e.g., |24ay| means “2
days” and |2£4)| represents “two Fridays”. Finally an enu-
meration represents a set of coordinates such as intervals
([{wed}: {fri}] for “Wednesday to Friday) and discontigu-
ous sets ([{wed}, {fri}] for “Wednesday and Friday”). The
basic idea behind a TCNL formula is to translate whatever is
said in an expression into a constraint satisfaction problem
in the hope of inferring more information.

IThis is a simplified definition — the complete definition in-
volves concepts of periods and the immediate measurement rela-
tion (Han 2008)

2We use {-}, | -| and [-] respectively to mark the formulae of
these types.

3Subscript dow (day-of-week) is dropped for fri since there is
no ambiguity.
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Associated with a formula f is its granularity: it is the set
of minimal units (under the measurement relation) appearing
in f:

g(f) = min({ulu € f}) 3)

For examples g({2006yc.r,aug}) = {month} (because
month < year) and g(|24ay|) = {day}. We also say g(f1) <
g(f2) if for every unit u; € g(fi) we can find u; € g(f>) such
that u; < u;. Granularity of a coordinate can also be used
to check the “anchoring” status of a coordinate. Intuitively
{2007year,may} (“May 2007”) is anchored in the sense that
it can be identified as a unique interval on a timeline, but
{may} is not. This distinction is defined as follows: a coor-
dinate c is anchored if for every u; € g(c) there exists a path
Uy, ...,ur) such that m, (c) is defined, where u; > u;, for
i =1...(n-1) and u, is a maximal unit under the mea-
surement relation. E.g., ¢ = {2007.,,, may} is anchored be-
cause month € g(c), Myonth(c) = may and myear(c) = 2007,
month > year and year is a maximal unit under the mea-
surement relation.

Operators and Relations

The representational power of TCNL mostly comes from its
set of infix operators and relations (see Table 1 and 2). Each
of them has a set of type requirements stipulating the types
of its operands; e.g. in {_ + |14ayl} (“the next day”) the left
operand ‘_’ (a temporal variable representing the temporal
focus) must be of type C or E, the right operand |14,,| must
be of type Q, and the entire term is of type C. Each opera-
tor also ensures the result is at the granularity of one of its
operands. The operators ‘+’/‘—" implement a granularity-
sensitive arithmetic: the granularity of the left operand (op;)
will first be converted to that of the right operand (op,) be-
fore the addition/subtraction, therefore the result is at the
granularity g(op,); e.g., {{2006year, feb, 1gay}+|2montnl} 1S
evaluated to {2006y.,r, apr}, with the information at day
granularity eliminated. The selection operator ‘@’ picks
time points from op, based on the constraints given by opy,
therefore the result granularity is g(op;). Finally the merg-
ing operator ‘&’ merges the non-conflicting constraints from
opy to op, (result granularity is g(op;)) and the proximity op-
erator picks the nearest time point around op; that satisfies
the constraints given in op, (result granularity is g(op,)).

Temporal Variables

Temporal variables in TCNL serve two purposes: they are
used to represent contextual information and to encode in-
teractions among formulae. There are two kinds of variables
in TCNL: the pre-defined variables speech time ‘now’ (of
type C) and temporal focus ‘ ’ (of type C or E), and user
variables (can be of type C or E). Formulae making refer-
ences to only the pre-defined variables are always easy to
evaluate — we just need to substitute the variables with their
denotations and evaluate away4. On the other hand, formu-
lae using user variables are not always straightforward; e.g.,

“The denotation of ‘ ’ needs to be determined by an external
module.



Operator | Semantics | Type Result granularity Example
requirements
+ and - Arithmetic | (C|E)xQ — C g(op,) {_ + |Laayl} (“the next day”)
@ Selection Qx(C|E)—-»C g(op)) {12(suny| @ {now + [Oayyl}} (“the 2nd Sunday
(C|E)X(C|E) > this May”)
E [{9hour} @ [{now + [Oeql}: {£ri}]] (“9am on
this Wednesday, Thursday, and Friday”)
& Merging CxC-C g(op)) {now & {now + |1yearl}} (“this time next year”)
A Proximity | (C|E)xC — C g(op,) {{I1imon}| @ {now + [0sep|}} A {weekend}} (“this
Labor Day weekend”)
Table 1: Operators in TCNL; op;/op, is the left/right operand.
Relations Semantics Type Examples
requirements
<, <=, =>=> before, before or equal-to, equal-to, af- | Cx C {< {2006ycar, may}}
ter or equal-to, and after (“sometime before May 2006”)
b,s,d,de,f,di before, starting, during, during/equal, | C X E {d [{now + [Qqayl}: [3dayl]}
finishing, and after; de :=(s or d or (“sometime during the 3-day period starting from
f) today”)
b,s,f,bi before, starting at, finishing at, and after | [E X C [s now] (“from now on”)
b,m,o0,s,d,f, =, | See (Allen 1984). E X E
fi,di,si,oi,mi,bi

Table 2: Selected relations in TCNL.

{to+|6year|} is resolvable only when ¢, is defined with a re-
solvable formula #, := {1990year} (or we say when f is re-
solvable). For a unresolvable formula the process of variabi-
lization kicks in to automatically introduce a variable repre-
senting the formula (e.g., t; = {f,+|6yearl}), and the con-
straints between this variable and the others in the formula
can then be extracted for constraint solving (described later).

Temporal Constraint Satisfaction

As motivated in Introduction, to fully understand a tem-
poral scenario it is often insufficient to consider events in-
dividually. Instead we will capture the temporal relations
among events by way of constructing a variation of Tempo-
ral Constraint Satisfaction Problems (TCSP). This section
introduces the basic concepts behind TCSP and its subclass
STP.

A TCSP is a particular kind of constraint satisfaction
problems (Dechter, Meiri, and Pearl 1991): it contains a
set of temporal variables {#;, ..., t,} with continuous do-
mains and a set of unary/binary constraints. A binary con-
straint between variable #; and ¢; must be formulated as a dis-
junction of allowed time differences between the variables:
(a <tj—t; b)Y V...V (ax £ tj—1; < by) (also written
as a set of disjunctive intervals {[a;, b1], ... [ak, br]} and is
said to have a scope {t;,1;}), and a unary constraint on #; is
encoded as a binary constraint between #; and 7y, which is an
artificially introduced variable with a singleton domain {0}.
A tuple (ay, ... a,) is a solution to a TCSP if the assignment
(t1 = a1, ... t, = a,) violates no constraint, and a TCSP is
consistent if there exists at least one solution to the problem.

Solving a TCSP is a NP-hard problem. However if no
disjunction is allowed in any constraint, solving the problem
- a Simple Temporal Problem (STP) - takes only polynomial

21

time. This is done by converting an STP to its corresponding
“distance graph”: for a constraint [ay, bi] from variable #; to
t;, we add an edge (#;, ¢;) of distance by and an edge (¢}, ;) of
distance —a to the graph. We can then run Floyd-Warshall’s
all-pairs-shortest-paths algorithm on the distance graph to
derive the minimal but equivalent STP (takes O(n?) time): a
constraint from ¢; to ¢; is [a;, b}] when the shortest distance
from 7; to ¢; (or ¢; to #;) is b (or —a;). The STP is consistent
if no negative cycle is detected, and a backtrack-free search
can be used to assemble a solution.

Despite its no-disjunction-allowed restriction, STPs are
attractive in its simplicity and efficiency. We shall there-
fore focus on STPs in the rest of the work, with a note that
our approach is generally extensible to include the use of
disjunctions.

Modeling Temporal Scenarios

STPs have many deficiencies for our purpose due to their
disconnect from natural language. For one they do not ac-
commodate temporal constraints expressed in mixed granu-
larities (e.g., [10,20]day and [5, 10]month). Another prob-
lem is their use of the artificial “origin of time” (#;) to trans-
form unary constraints into binary ones: this approach is not
applicable to many unary constraints often encountered in
natural language, such as “variable f, must be a Tuesday.”
In this section we describe GSTP as an extension to STP
that allows mixed granularities. Our formulation is based
on (Bettini, Wang, and Jajodia 2002) but specifically de-
signed to work with our event-level representation TCNL.

Formulating the GSTP

In our version of GSTP each variable can have a set of unary
constraints specified in the form of a (usually unanchored)




coordinate, and the domain of the variable contains all possi-
ble anchored coordinates satisfying the constraints (e.g., the
domain of variable f, in Fig. 1 contains all possible Tues-
days). Each binary constraint zc in a GSTP is colored by
a temporal unit #, and we overload the granularity function
in (3) to give g(tc) = {u}. The granularity of a variable ¢,
on the other hand, is determined by its unary constraints uc
(a coordinate) and T'C, the set of binary constraints whose
scopes include ¢:

g0 = gb(C | gte) U glue)) 4)
tc;,eTC
glb(-) is a function returning the greatest lower bound unit of
the input set under the measurement relation. For example
in Fig. 1 we have g(t3) = glb(month, day) = {day} (recall
day < month).

In an STP a qualitative constraint such as #; <= t; can be
represented by converting it into its quantitative counterpart
[0, c0]. In a GSTP this can be done similarly with special
care taken to infer appropriate granularity for the resulting
constraints: for a qualitative constraint f¢ whose scope is
{t;,t;}, we add a quantitative constraint of granularity {u}
for every u; € min(g(#;) U g(¢;)). E.g., if g(t;) = {day} and
g(tj) = {hour}, we can convert t; <= ¢; into [0, co]hour,
or t; < tj into [1, co]hour. It can be easily shown that this
conversion will ultimately lower every variable weakly con-
nected by qualitative constraints into a common granularity
(because of (4)), but it will not alter the granularity of any
of the other variables. This allows us to use the following
one-pass procedure for inferring granularity in a GSTP with
both quantitative and qualitative constraints:

Procedure 1 (Granularity inference).

1. For every variable ¢ compute g(¢) according to (4) if pos-
sible; if not (because ¢ has no unary constraint and partic-
ipates no quantitative constraint), assign a default granu-
larity to g(7).

2. For a set of variables T weakly connected by qualitative
constraints, assign g(t;) = glb(U,cr g(t;)) forallz; € T.

Constraint Propagation

Using a coordinate as the implicit domain of a variable has
two consequences: the domain is no longer contiguous, and
the propagation processes of the unary and the binary con-
straints are now separate. The first consequence also im-
plies that disjunctions are back to the GSTP, thus break-
ing the decomposability that enables a backtrack-free search
for solutions (Dechter, Meiri, and Pearl 1991). Assuming a
GSTP with only quantitative constraints (i.e., all qualitative
constraints are already quantified), we use an approximate
method similar to the one described in (Bettini, Jajodia, and
Wang 2000) to propagate the binary constraints (pictorially
depicted in Fig. 1):

Procedure 2 (Approximate constraint propagation).

1. We first decouple a GSTP into single-granularity STP,,
where {u;} is a granularity.

2. We then run the all-pairs-shortest-paths algorithm on each
STP,, to derive its minimized counterpart. If any nega-
tive cycle is detected, stop the algorithm and report the
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inconsistency. E.g., in Fig. 1 the constraint [30, 60]day in
STPgay is produced by this step.

3. For every STP,, we convert its constraints into granular-

ity {u;} and add them into STP,;, meaning intersecting a
preexisting constraint between the same pair of variables
with the new one. If any constraint is refined as a result,
we go back to the previous step. E.g., in Fig. 1 the con-
straint from #, to t3 in STPygnn Was [—o0, oo] before this
step, and is refined to [1,2]month afterwards. We will
come back to the granularity conversion of a constraint
later.

4. Finally we conjoin the constraints of all possible granu-

larities and produce a propagated GSTP.

Procedure 2 is an approximation because the granularity
conversion done in the step 3, although guaranteeing no loss
of solutions, could unduly enlarge the set of solutions. The
advantage of this procedure is its polynomial time complex-
ity: if we have m different granularities and n variables, the
overall runtime is O(mn*I(m + n)) where I is the number of
the iterations. For GSTP with single granularity this reduces
to O(n?), otherwise the loop can run at maximum mn®w iter-
ations (w is the maximum width of any constraint after the
first iteration). Although in practice the procedure seldom
runs longer than a few iterations, when quantifying a quali-
tative constraint we replace co with a large number to avoid
this potentially infinite runtime.

Granularity Conversion

The step 3 of Procedure 2 converts a constraint [a, b]u; into
[@',b'Ju, where u; and u, are two different temporal units
and a < b,b > 0. The conversion must satisfy one crite-
rion: if an assignment satisfies [a, b]u;, the same assignment
must also satisfy [a’, b']u, (i.e., no loss of solutions). E.g.,
in Fig. 1 the constraint [0, 1Jmonth is a valid conversion of
[10,20]day since all possible assignments of #; and #, with
difference between 10 to 20 days must also fall within a O-
to 1-month window. It is therefore clear that we prefer a
“tighter” conversion since the target constraint can be made
arbitrarily lenient to let in more assignments.

In general this conversion task can be very difficult be-
cause temporal granules do not always have fixed sizes. As
an example, we could argue that in Fig. 1 [1, 2]month is not
the tightest conversion possible for [20,40]day from vari-
able 1, to 3, since the difference between March 1, 2006 and
April 9, 2006 is clearly less than two months. Our approach
is only a result of compromise: it is a constant-time oper-
ation and it requires much simpler engineering in terms of
calendar modeling.

We first define two utility functions minsize(u;, u;) and
maxsize(u;, u;) where u; and u; are two temporal untis and
u; < u;: the functions return the min/max number of con-
secutive granules of u; that can overlap on a timeline with
a granule of u;. E.g.,, minsize(month,day) = 28 and
maxsize(month, day) = 31. The conversion is then given



Figure 1: Approximate method for constraint propagation on a GSTP.

as follows (1 = glb(u;, up)):
(b +1) - maxsize(u;,u) — 1
minsize(uy, u)
, {(a — 1) - minsize(u;, u) + IJ

b =

(ifa>0)

- maxsize(uy, i)
Note when a < 0 we can simply swap the two bounds and
treat —a as an upper bound.

Assembling Solutions

After constraint propagation is done on a GSTP and no in-
consistency is reported, we still need to check if any solution
exists to confirm its consistency. For certain applications it
is also desirable to find some or all solutions of a GSTP. For
these purposes we use a simple backtracking method for as-
sembling solutions of a propagated GSTP:

Procedure 3 (Backtracking search for solutions of a propa-
gated GSTP).

1. For each variable #; compute its initial domain.
2. From a list of unassigned variables pick #;.

3. Pick the next possible anchored coordinate from the do-
main of #; at its inferred granularity; if it is not possible,
backtrack to the previously assigned variable as the new
t; and re-run this step; if no previously assigned variable
is available, stop.

4. For each possible granularity and variable ¢; # f;, up-
date the domain of ¢; based on the constraint from ¢; to
t; in that granularity. If the domain of ¢; should become
empty, return to 3. Note that when updating domains we
use the TCNL operator ‘+’ and invoke granularity conver-
sion on coordinates if necessary. Continuing the exam-
ple given in Fig. 1, assuming ¢, is already assigned with
{2006ycar, feb, 142y} and we want to update #3 using the
constraint [2, 2Jmonth, we first compute {#; + |2pontnl} =
{2006ycar, apr}. We then convert the granularity of the
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result to g(r3) = f{day} and derive the new bounds
{2®®6yearv apr, lday} and {2®®6year» apr, 30day}-

5. t; is now assigned; if there is no unassigned variable left,

report all possible assignments as solutions, then back-
track to the previously assigned variable as the new #; and
return to 3. Otherwise return to 2.

Note that the ordering of the unassigned variables in step 2
can greatly affect the performance of the procedure. One
useful ordering is to pick a more constrained variable with a
smaller domain earlier in the search process. For example, in
Fig. 1 we use the ordering #; — t, — t3: after assigning the
only possible coordinate {2006ycar, feb, 14y} to #; we up-
date the domain of #, to contain only {2006yc.r, feb, 144ay}
and {2006y.,r, feb, 214,,} and the domain of #; to contain
only {2006year, apr, lgay} and {2006ycar, apT, 24ay}. Later
iterations will eliminate {2006yc,r, feb, 144,y } from the do-
main of ¢, and give us two solutions in total.

From Formulae to Dependency GSTP

We are now left with the final task of translating a set
of TCNL formulae into a GSTP. Naturally this translation
needs to deal with the various syntactic and semantic de-
vices provided by TCNL. An immediate complication is that
several of the TCNL operators — such as the proximity op-
erator ‘@’ — have semantics not expressible in the form of
a time-difference constraint. We will propose an extension
Dependency GSTP (DGSTP) to address this problem.

At a higher level, since our GSTP extension only al-
lows variables with coordinate domains to be present, while
TCNL allows variables to be of type C or E, we need to
re-interpret a constraint to eliminate any possible variable
of type E in its scope. A corollary is that we need to infer
variable types first - this is our next topic below.



Variables and Their Types

Variables in a TCNL formula can be of type C or E. If a
variable is defined explicitly, it must have the same type as
its definition (e.g., in ¢ := {f, + |6year|} We have type(t) = C).
Otherwise its type can be inferred from the contexts as fol-
lows. For each context the variable is in, if it is used as an
operand to an operator/relation, the context allows the types
compatible with the requirements of the operator/relation
(see Table 1 and 2), otherwise we assume the context allows
both types. After considering all of the contexts, the variable
is assigned the type that is compatible to all: if both C and E
are compatible, C is picked, but if no compatible type can be
found, a type mismatch is detected and no more processing
is attempted. E.g., in {{15pour} @ #} we have type(t) = C,
but in formulae {z, 1540y} and [d 7] we assign type(t) = E.

A slight complication for determining fype(?) arises when
variable ¢ is involved in relation ‘=" (both a C X C and an
E X E relation): if we have t = ¢’ and type(t) = E, we will
assign type(t’) = E as well. This “type propagation” can be
easily done over the closure of the ‘=’ relation.

Having decided types for variables, for every variable ¢
of type E we then create two bound variables t[t* (of type
C) to represent its lower/upper bound, and we also add a
constraint = < ¢* to relate the two. Our goal later in the sec-
tion Constraint Re-interpretation will be replacing all occur-
rences of 7 (of type [E) in constraints with its bound variables
and re-interpreting the constraints.

Translating Coordinates

A coordinate formula in TCNL can pack a lot of infor-
mation. Among the terms that can appear inside a co-
ordinate are temporal values (e.g., {feb}), embedded co-
ordinates (e.g., {{feb}, 14ay}), terms with operators (e.g,
{now + |6ycar|}) and relations (e.g., {< {2006ycar, may}}). A
unresolved variable can appear almost at any place where a
coordinate/enumeration is expected. Below we will discuss
each of the possibilities.

Translating a term with operator + or — is straightforward:
if aterm ¢;+q (or t;+q) appears in the formula represented by
t; and g(g) = {u}, we add a constraint [¢~, ¢* Ju from variable
tj to t; (or from ¢; to t;, respectively), where ¢~/g* is the
lower/upper bound of g. E.g., for t, = {t, +| <= |6yearll} we
add a constraint [0, 6]year from #; to t;.

We call the terms containing the other operators (@, &
and A) dependency terms (or d-terms for short) since there
are “dependencies” among the involved variables that can-
not be made explicit by a time-difference constraint. As a
simplification TCNL only allows resolvable formulae to be
used as the left operand for the operators ‘@’ and ‘&’ and
the right operand for the operator ‘A’. From these terms
we can still add useful time-difference constraints based
on the semantics of the operators, thus making it possi-
ble for Procedure 2 to narrow down the domains of the in-
volved variables. We can also inversely infer the possible
values of a unassigned variable if some of the other vari-
ables in these terms are assigned. Consider the formula
t = {|24ay|l @ [t,: £,]} (the second day between #; and f,,
inclusive): obviously the constraints t; <t < t, and t; < 1,
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must be true, and if we know 7, is May 2, 2006 then #; must
be on or before May 1, 2006 and ¢ must be on or before
May 2, 2006. We will defer the discussion on the inverse
inference to the section Solviong DGSTP.

Fig. 2 shows the three allowed d-terms and their accompa-
nied time-difference constraints: g and ¢ are a quantity and
coordinate constant respectively, and each d-term is repre-
sented by a new variable d. For all of the operators the d-
terms are obviously equal to 7 at the respective result gran-
ularity. For the merging operator ‘&’, we constrain ¢ to be
equal to the result of the operator at the granularity lub(g(c)U
g(t")) (lub() returns the least lower bound unit of the input
set under the measurement relation) based on the intended
use case of the operator; e.g., in ¢ = {{now+|04ay|}&?’} for
“this day in that week”, we constrain the d-term with ¢’ via
constraint [0, Olweek (lub({day} U {week})). For the proxim-
ity operator A we specify a “search window” by introducing
the constraint [—w, w]u, between the d-term and ¢, because
the output of such a term cannot be constrained otherwise;
e.g., {t' A{fri, 134ay}} (the closest Friday the 13th relative
to ¢') can be earlier or later than ¢ depending on what ¢’ is
resolved to.

Translating a term with a C X C relation (Table 2) is
straightforward since we can always quantify qualitative
constraints using Procedure 1. Translating terms with C X E
relations is also easy since we can reduce them into a con-
junctive set of C x C relations; e.g., f == {d [¢, : £,]} is equiv-
alenttor = {>t,,< 1,}.

For terms of sole variables such as ¢ := {’, ...}, they have
different semantics compared to t := {=¢',...}: the former
uses ¢’ to build up 7 while the latter declares both variables to
be equivalent. They also contribute different constraints: the
former gives a quantitative constraint [0, O]u; for every u; €
g(1'), but the latter gives a qualitative constraint ¢ = ¢’, which
will result in a granularity propagation that brings both g(¢)
and g(¢') to a common granularity according to Procedure 1.

Translating Enumerations

Given an enumeration formula [..., t’,...] where ¢’ is a un-
resolved term, from above we know a variable ¢ of type E
will be introduced via the variabilization process together
with two bound variables ¢~ /t*. If type(’) = C, we can ac-
count for the term by introducing constraints t~ < # and
¥ < t*; otherwise we produce constraints 1~ < ¢~ and
't <rtiftype(t’) = E.

For terms that use the selection operator @, we will in-
troduce constraints relating the bound variables of the host
formula and those of the right operand of the operator, i.e.,
fort := [c @¢,...] where c is a coordinate constant and
type(t') = E, constraints t~ < £~ and #* < ¢* will be intro-
duced.

Finally, terms using any relation involving type E in Ta-
ble 2 can easily be made to use a conjunctive set of C X C
relations; e.g., t; = [b t;] (£, is of type [E) is equivalent to
1T={< 5}

Constraint Re-interpretation

When following the instructions given above to translate
TCNL formulae into constraints, we need to make sure ev-



t={d=1tNnc,..}
[0,0] =
o -W,W] U, 0
g(c) ={uy ...} g(c) ={uq -}

lub(g(c)ug(t)) = u

Figure 2: Converting dependency terms into constraints; lub(-) returns the least upper bound unit of the input set under the

measurement relation.

ery variable appearing in the scope of a constraint is of type
C, since the final DGSTP only allows variables of type C.
E.g., we should translate ¢ := {< ¢} into a constraint t* < ¢'~
(instead of ¢ < ') if both variables are of type E. In gen-
eral, when adding a constraint with scope {t,#'}, we should
re-interpret the constraint based on type(¢) and type(t’) so no
enumeration variable can slip into the scope. We list below
the re-interpretations needed when type(?) = type(t’) = E (a
and b are integers and u is a temporal unit):

t<t -t <t” 5)
t<t >t <t andr" < 6)
t=f -t =¢{"andt =¢"* @)
t—t €la,blu—t —t* e€la,blu )

Note that (5) is essentially the [E X E relation b , and (6) is
equivalent to the disjunction (b ;m ;0 ;s ;f;=). Also, (8) in
effect disallows overlapping between ¢ and ¢, and with (7)
they will force t~ = % = ¥~ = " whena = b = 0. This
might seem strange, but note that (8) is added only when a
quantitative constraint is introduced between ¢ and ¢, which
intuitively asserts that the two enumerations should never
overlap.
If type(t) = E but type(t’) = C, and ¢’ is not a bound

variable, the re-interpretations are

t<t -1t <t

1<t >t <t

t>t -t <t

t2t -t <t

t—-t ela,blu—t -t €la,blu

Note that r = #’ can never occur because of the type propa-
gation described earlier. If the types of both variables are the
same but ¢’ is a bound variable, the re-interpretations include
the above plus

t=t >t =t (if ¢’ is a starting bound) 9)

t=t stt="¢ (if ¢ is an ending bound) (10)
Note that (9) is equivalent to (¢’ s 7) and (10) is equivalent to
(' £1).

Solving DGSTP

Solving a DGSTP is almost identical to solving a GSTP:
we first run Procedure 2 to narrow down the domains of the

variables, we then run a revised backtracking search based
on Procedure 3 to assemble the solutions. This new search
method uses both propagated constraints and d-terms to up-
date variable domains: if a variable is assigned in a d-term,
we can inversely infer the possible values for the other. Here
we will only describe how the inverse inference procedure
works for the major cases in the d-terms of operator @ and
A.

Consider the d-term d = {|ng|@[#,: t,]} where n is an
integer constant and x is a unit or a coordinate. If only d
is assigned, we can infer that {—|(n + 1),|@{<=d}} < 1; <
{—Ing|@{<=d}} and 1, > d; e.g., if d is Sunday, Jan 21, 2007
ind = {]2{sun}|@[#, : £,]}, we should have Jan 7, 2007 < #; <
Jan 14, 2007 and #, > Jan 21, 2007. If only ¢, is known, we
can easily compute d = {ny|@{>=1,}} and #, > d. If only
t, is known, than we should have d = {—|14|@{<=1,}} and
{=l(n + Dyl@{<=d}} < 1 < {-Ins|@{<=d}}.

Consider the d-term d := {tAc} where ¢ is a coordi-
nate constant. If only d is known, we can find ¢; =
{(—2¢|@{<=d}} and ¢; = {|2.|@{>= d}}, and compute I,
and &, as the distance between ¢; and d and between d and
¢y, respectively. We can than infer that {d — |[61/2],]} <t <
{d +102/2],]} where u is the greatest lower bound of g(c).
E.g.,if d = {tA{sun}} and d is Jan 21, 2007, we should have
Jan 18, 2007 < r < Jan 24, 2007.

We now present the revised search procedure:

Procedure 4 (Backtracking search for DGSTP). Replace
the step 4 in Procedure 3 with the following:

4’ For each possible granularity and variable ¢; # t;, update
the domain of #; based on the constraint from ¢ to ¢; in
that granularity. Additionally, if ¢ is a variable appearing
in a d-term, update the domains of the other variables in
the d-term using the inverse inference procedure. If any
of the updated domains should become empty, return to 3.

Conclusion and Future Work

In this paper we have described a method for modeling
a temporal scenario via Simple Temporal Problems with
Mixed Granularities (GSTP). More specifically, we capture
event-level semantics using a compact representation Time
Calculus for Natural Language (TCNL) and construct a De-
pendency GSTP (DGSTP) from a set of TCNL formulae
by: (1) creating variables for unresolved formulae and in-
ferring the variable types; (2) translating the formulae into
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constraints whose scopes contain only coordinate variables;
and (3) inferring variable granularities and quantifying qual-
itative constraints accordingly (Procedure 1). We can then
propagate the constraints of the resulting DGSTP to narrow
down the variable domains (Procedure 2), and search for
the solutions by using a backtracking search method (Pro-
cedure 4). Finally, qualitative relations can be discovered by
inspecting the propagated domains of the relevant variables.

There are at least three parameters in our method that are
open for tuning. In the granularity inference procedure (Pro-
cedure 1) a default granularity is assigned to a variable if its
granularity cannot be inferred from its context. In such cases
if we know the typical durations of the events associated to
the variable (such information is learned in (Feng, Mulkar,
and Hobbs 2006)), we could assign a more sensible granu-
larity to it. A second parameter is the large number we use to
replace co when quantifying a qualitative constraint (to avoid
the theoretical infinite run-time of Procedure 2). Again we
might be able to set this number based on the granularities
or the other contextual information of the involved variables.
Similarly, contextual information might also be useful in set-
ting the width of the search window imposed in the d-term of
the proximity operator A (Fig. 2). In summary, these ques-
tions can only be answered from an empirical study using
real-world data.
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Abstract

In this paper we discuss the applicability of evolutionary al-
gorithms enhanced by heuristics and adaptive fitness compu-
tation for solving the Temporal Constraint Satisfaction Prob-
lem (TCSP). This latter problem is an extension of the well
known CSP, through our TemPro model, in order to handle
numeric and symbolic temporal information. We test the evo-
lutionary algorithms on randomly generated TCSPs and an-
alyze and compare the performance of the algorithms tested,
based on different measures. The results show that heuris-
tics do not promise better performance for solving TCSPs.
The basic genetic algorithm (GA) and Microgenetic Iterative
Descendant (MGID) are the most effective ones. We also no-
ticed that MGID is more efficient than basic GA for easier
problems.

Introduction

The Temporal Constraint Satisfaction Problem (TCSP)
based on our model TemPro (Mouhoub, Charpillet, and Ha-
ton 1998; Mouhoub 2004b) is a framework used for repre-
senting and answering queries when solving numeric and
symbolic temporal constraint problems. A TCSP is a par-
ticular case of a CSP where variables are temporal events
defined on a set of numeric intervals and the constraints are
disjunctions of Allen primitives (Allen 1983) and represent
the possible temporal relations between events. The domain
of events (set of intervals) can be seen as unary quantita-
tive constraints while the disjunctive relations between the
events are the binary qualitative constraints. TCSPs are ap-
plicable to a variety of scheduling (Poesio and Brachman
1991) and planning problems including manufacturing and
natural language processing (Song and Cohen 1988), tem-
poral databases and instruction optimization for compilers
information.

Most of the methods that are being used for solving tem-
poral CSPs are systematic and deterministic search algo-
rithms in which the search space is explored in a system-
atic way sometimes with getting help of some heuristics.
However, there have been few works for solving tempo-
ral CSPs in nonsystematic ways (Mouhoub 2004b; 2004a;
Thornton et al. 2004; 2002; Beaumont et al. 2001) unlike
general CSPs for which there have been many attempts in
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this area. Evolutionary Algorithms (EAs) are good exam-
ples of nonsystematic searches. Evolutionary algorithms for
solving CSPs are usually fallen into two categories: EAs
with adaptive fitness functions and heuristic based EAs.

In this paper, we apply some well known heuristics for
solving CSPs, to the TCSP case, and compare them together
and with the basic genetic algorithm (GA). These heuristics
try to guide the search by changing the mutation or crossover
operator or by changing the way they compute the fitness
throughout the search process .Although the use of heuris-
tics can guide the search toward a better solution, it may also
bias the search toward local optima which is not desirable.
For this reason, in most of the heuristics we use in this paper,
there is also a uniform random mechanism that helps explor-
ing different parts of search space. From the experiments
we conducted and reported in this paper, these algorithms
do not necessarily perform better than basic GA. From what
we conclude, basic GA and Microgenetic Iterative Descent
Algorithm (MGID) seem to be the best algorithms in terms
of effectivity (success rate) and efficiency (measured by the
average number of conflict checks).

The paper is organized as follows. Section 2 does an
overview over Tempro model. Section 3 describes the al-
gorithms enhanced with heuristics to solve CSP problems.
The algorithms with adaptive fitness are presented in section
4. Section 5 reports the experimental study we conducted on
random TCSPs. Finally, the conclusion and possible future
work are presented in section 6.

Tempro model

TemPro (Mouhoub 2004b) transforms a temporal problem
under qualitative and quantitative constraints into a binary
CSP where constraints are disjunctions of Allen primitives
(see Table 1 for the definition of the Allen primitives) and
variables, representing temporal events, are defined on do-
mains of time intervals. Each event domain (called also
temporal window) contains the Set of Possible Occurrences
(SOPO) of numeric intervals the corresponding event can
take. The SOPO is the numeric constraint of the event. It
is expressed by the fourfold: [earliest_start, latest_end, du-
ration, step] where: earliest_start is the earliest start time of
the event, latest_end is the latest end time of the event, du-
ration is the duration of the event and step is the discretiza-
tion step corresponding to the number of time units between



Relation Symbol| Inverse Meaning
. X Y
X Before Y B Bi
X
X Equals Y E E
quals Y
X Meets Y M Mi X v
X Overlaps Y| O Oi X Y
X During Y D Di X Y
X Starts Y S Si X Y
X Finishes Y F Fi v X

Table 1: Allen primitives.

the start time of two adjacent intervals. For some applica-
tions, the consistency of the problem depends on the dis-
cretization step. In this particular case, if the solution is
not found, the user can decrease the value of the step and
run again the solving algorithm. Decreasing the discretiza-
tion step will however increase the complexity of the prob-
lem. Indeed, the total number of combinations (potential
solutions) of a TCSP is DV where N is the number of vari-
ables and D their domain size. D is computed as follows:
D= M(,ZXISI'SN(%M) where sup;, inf;, d; and s; are
respectively the latest end time, earliest start time, duration
and step of a given event Evt;. As we can easily see, decreas-
ing the value of s; will increase the domain size D which in-
creases the total number of possibilities of the search space.
Note that begintime, endtime, duration and step can be con-
stant values or variables taking values from a discrete and
finite domain. We can also use constraints, in the form of
equations or inequalities, in order to restrict the values these
variables can take (Mouhoub 2004a).

For applying an evolutionary algorithm to a problem, an
appropriate presentation for the potential solution should be
depicted. The potential solution in our case is a complete
assignment of time intervals to all events. Usually each
individual is an array of genes. Since events are the vari-
ables of the problem, each gene in an individual represents
an event and the value of the gene would be a time interval
allotted to that event. Each interval is shown as (StartTime,
EndTime), in which StartTime is the actual start time of the
event and EndTime is the actual end time which is the sum-
mation of StartTime and duration of the event. StartTime of
each event should be selected based on the unary constraints
it is involved in. Hence, if we consider the Tempro model,
domain of StartTime of event i would be earliest_start+(X
* step) where X ranges in the interval of [0, (latest_end-
earliest_start -duration)/step]. Now that the individuals are
defined as an array, genetic operators like crossover can be
applied on them the same as they are applied to other array
representations. For instance, in the case of the mutation, a
random possible interval for the event will be assigned to the
gene representing that event.
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10.
11.

Let us illustrate the representation of a TCSP with
evolutionary algorithms through the following example.
Example 1

1. John, Mary and Wendy separately rode to the soccer
game.

2. It takes John 30 minutes, Mary 20 minutes and Wendy 50
minutes to get to the soccer game.

3. John either started or arrived just as Mary started.

4. John left home between 7:00 and 7:10.

5. Mary arrived at work between 7:55 and 8:00.

6. Wendy left home between 7:00 and 7:10.

7. John’s trip overlapped the soccer game.

8. Mary’s trip took place during the game or else the game

took place during her trip.
9. The soccer game starts at 7:30 and lasts 105 minutes.
John either started or arrived just as Wendy started.

Mary and Wendy arrived together but started at different
times.

Figure 1 shows a graph corresponding to the TCSP of the
above problem. A possible individual is presented here with
the value of fitness equal to 3. Examples of mutation and
crossover operators are respectively presented in figures 2
and 3.

Fitness = 3
() JC) Jjc1)y Jja)
Fitness = 4
() JC)H) JC1)y ()

Figure 2: Mutation Operator.

Fitness = 3 Fitness = 3

[ (6 36] (39 54030 13§510 60} | (5 35[ (40 64030 13F19 s59)

ST L

[ 6 36] 40 64u30 13110 60}

Fitness = 4

Figure 3: Crossover Operator.

Heuristic based GAs

Evolutionary algorithms can be extended by some heuris-
tics for solving particular types of problems. Some of
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Figure 1: GA representation of a TCSP.

the known heuristics developed for the purpose of solv-
ing CSP problems are used in Heuristic Genetic algorithms
proposed by Eiben et al(Eiben, RauC, and Ruttkay 1993;
Eiben, Raue, and Ruttkay 1994), Knowledge Based Fitness
and Genetic Operators (ARC-GA)(M.-C 1998). In this sec-
tion we use some of the successful algorithms for random
binary CSPs according to (Craenen and Eiben 2003) to solve
Temporal CSP problems.

HGA

In (Eiben, RauC, and Ruttkay 1993) and (Eiben, Raue, and
Ruttkay 1994), Eiben et al. propose to incorporate exist-
ing CSP heuristics into genetic operators. Two heuristic
based genetic operators are specified: an asexual operator
that transforms one individual into a new one and a multi-
parent operator that generates one offspring using two or
more parents.(Craenen, A.E.Eiben, and E.Marchiori 2000)
In the next two subsections we discuss both heuristic based
evolutionary algorithms.

Asexual heuristic based genetic operator

The asexual heuristic based genetic operator selects a num-
ber of variables in a given individual, and then selects new
values for these variables. We consider the operator that
changes up to one fourth of the variables, selects the vari-
ables that are involved in the largest number of violated
constraints, and selects the values for these variables which
maximize the number of constraints they are involved in that
become satisfied. In our implementation, for this purpose all
the possible values for that gene are computed. We name a

GA applying this operator with a random mutation HGA1
(Craenen, A.E.Eiben, and E.Marchiori 2000).

Multiparent heuristic crossover

The basic mechanism of this crossover operator is scanning:
for each position, the values of the variables of the parents
in that position are used to determine the value of the vari-
able in that position in the child. The selection of the value
is done using the heuristic employed in the asexual oper-
ator. The difference with the asexual heuristic operator is
that the heuristic does not evaluate all possible values but
only those of the variables in the parents. The basic mech-
anism of multi-parent operators is scanning. The idea be-
hind scanning is to examine (put a marker on) the positions
of the parents consecutively and choose one of the values
on the marked positions for the child. Choosing from the
marked genes can be done problem independently. For in-
stance choosing the one that occurs the most or by a random
mechanism either uniform or biased by the fitness of the
parents. Scanning can be enriched by problem dependent
heuristics relying on extra information, e.g. edge length for
routing problems. A particular way of adjusting scanning to
special types of problems is to base it on special marker up-
date mechanisms, e.g. shifting the markers to the first value
that does not yet occur in the child and thus obtaining an
operator applicable for permutation based problems, such as
routing or scheduling.(Eiben, Raue, and Ruttkay 1994) For
this problem we scanned different positions in the parents in
two ways. One way is by giving the child the value that is
repeated in that special position in most parents. The other
way is to scan each position in the parents based on the num-
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Online weight update mechanism
Set initial weights of constraints
while no termination do

for the next N generation do

let GA go with current weights

end for
Redefine weights of constraints and re evaluate the fitness
function for all individuals
end while

Figure 4: Online weight adaption mechanism (SAW).

ber of violated constraints they are involved in and choose
the value of the one involving in least constraints to give to
the child. After applying both of these approaches we found
the second one more effective and used that for our tests.
We name a GA applying this operator with a random muta-
tion HGA2. We call a GA which combines both heuristics
HGA3.

Evolutionary algorithms with adaptive fitness

In this section, we describe some methods that guide the
search by changing the way they compute fitness during the
search so that they evaluate the individuals based on some
special characteristics they may have. Two of these success-
ful methods are depicted in this section.

Stepwise Adaption of Weights(SAW)

The SAW mechanism has been introduced by Eiben (Eiben
and Van Der Hauw 1998) and van der Hauw (van der
Hauw 1996) as an improved version of the weight adapta-
tion mechanism of Eiben et al. The basic idea behind the
SAW-ing mechanism is that constraints that are not satis-
fied or variables causing constraint violations after a certain
number of steps must be hard, thus must be given a high
weight (penalty). These high weights probably motivate the
algorithm to solve these constraints. Thus, finding a way
for setting the constraints weights so that they can show the
hardness of constraints properly seems to be essential. One
idea can be initializing the weights first and incrementing
the weight of the constraints that are not satisfied in the best
individual of the population after a certain number of gen-
erations. Using this algorithm can be done in two modes:
offline and online mode (Eiben and van Hemert 1999). In
offline mode, weights of constraints are set first through run-
ning an evolutionary algorithm for a limited number of gen-
erations and then the algorithm is run on the problem with
the modified weights. In the online mode, modifying the
constraints weights is done while the algorithm is running on
the problem. Figure 4 shows the pseudo code for a SAW-ing
EA in online mode. To compute the fitness for an individual
in a SAWing GA, the weights of the unsolved constraints are
simply added together.

In (Craenen and Eiben 2003) there have been studies for
testing different heuristics EAs for solving random binary
CSPs. The best performing EA in terms of effectivity (suc-
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cess rate) and efficiency (measured by the average number
of conflict checks) was the SAW algorithm.

Microgenetic Iterative Descent Algorithm (MGID)

Studies in (Eiben et al. 1998) shows that the Microgenetic It-
erative Descent Algorithm (MGID) of Dozier et al (Dozier,
Bowen, and Bahler 1994) gives the best results for binary
CSP problems. MGID applies heuristics to the reproduction
mechanism and to the fitness function in order to direct the
search towards better individuals. Microgenetic algorithms
have fairly small populations. MGID initializes the popula-
tion by 8 individuals. It incorporates a steady state reproduc-
tion system and a roulette wheel selection which is not gen-
erational. Individuals are ranked based on their fitness and
each individual would have a probability to get selected for
being a parent and reproducing an offspring. Each offspring
is created by mutating a special gene of the parent which is
called pivot gene and then it replaces its parent in the popula-
tion. The mechanism for selecting pivot gene considers the
genes that involve in more constraints and are more prob-
able to improve. The form of inheritance is designed in a
way that allows a line of successors to try to minimize the
number of constraints violations for a gene that is the cur-
rent pivot and also allows successors to move on to another
pivot if the current pivot can no longer be optimised. The
fitness of a chromosome is determined by the sum of the
number of constraints violated by each gene for all genes
and the sum of the weights of breakouts that each individual
has. A breakout consists of two parts: 1) a pair of values for
two genes that violates a constraint; 2) a weight associated
to that pair that shows how much this pair is bad(nogood tu-
ple) . The set of breakouts is empty at first, but during the
execution new breakouts are added to the set and also the
weights of the existing breakouts may increase. The mech-
anism of adding the breakout tuples is that after a number
of generations which is based on the number of genes in an
individual and the number of values of each of these genes,
if no progress would be seen in the best individual of the
population the pairs of values in the best individual that vi-
olate the constraints would be considered as breakouts and
be added to the breakout set. Once the breakouts are created
or the weights of the preexisting breakouts are incremented,
the fitness of each structure within the population is updated.

Experimentation

The purpose of these experiments is to compare different
heuristic based evolutionary algorithms or EAs with adap-
tive fitness in terms of effectivity and efficiency. Percent-
age of all cases in which a solution is found or success
rate and the average of the fitness value of the best in-
dividual found can be a good measure to show effectiv-
ity. Also the time it takes to reach a solution (in sec-
onds) and number of fitness calculations is a good mea-
sure to show efficiency. For running the algorithms we
used a SUN SPARC Ultra 5 station. All the procedures
are coded in C/C++. TCSPs are randomly generated using
the model RB proposed in (Xu and Li 2000). This model
is a revision of the standard Model B (Gent et al. 1998;



Smith and Dyer 1996), has exact phase transition and the
ability to generate asymptotically hard instances. Follow-
ing the model RB, we generate each TCSP instance in two
steps as shown below and using the parameters n, p, o and r
where :

e 1 is the number of events,

e p (0 < p < 1)is the constraint tightness which can be mea-
sured, as shown in (Sabin and Freuder 1994), as the frac-
tion of all possible pairs of intervals from the domain of
two events that are not allowed by the constraint,

e and r and o (0 < o < 1) are two positive constants.

1. Select with repetition rnlnn random constraints. Each
random constraint is formed by selecting without repe-
tition 2 of n events.

2. For each constraint we uniformly select without repetition
pd? incompatible pairs of intervals from the domains of
the pair of events involved by the constraint. d = n® is the
domain size of each event.

In heuristic based algorithms, other than specified
heuristics we also used a roulette wheel selection oper-
ator, random mutation and replacement operator. With
replacement operator we are able to introduce new random
individuals to the population so that we can explore the
search space more properly and we do that by replacing the
worst individuals in the population with new random ones.
In table 2 the operator used in each algorithm is shown.

The asexual operator is not a crossover operator because
it only operates on one individual. However, in HGA1 we
used the assexual operator instead of the crossover operator.
In Figure 5 a pseudo code of the basic genetic algorithm
used in our implementations is shown. Table 2 shows the
operators used in different algorithms. For crossover we
used one point crossover for all algorithms which cuts
the parent individuals in a random point and swaps the
data beyond that point between two parents. The resulting
individuals would be children of the two parents. For
selection, we use roulette wheel selection in all algorithms.
In roulette wheel selection each individual has a probability
for getting selected which depends on its fitness. The
better the fitness of an individual the more it is likely to be
selected. By replacing different operators in a GA based on
the above table, other heuristic based GAs can be reached.
For example, using asexual operator instead of crossover
operator in a basic GA gives us the HGA1 algorithm.
The main features of these three versions of HGA are the
same as the ones implemented in (Craenen and Eiben 2003).

All heuristic based GAs and Sawing GA were run for the
same set of parameters, with the population size of 300, mu-
tation rate of 1, crossover rate of 0.7 and replacement rate
of 0.2. Mutation rate and crossover rate are the probabilities
with which these operators can be applied to the individu-
als and replacement rate shows the ratio of the individuals
in population that will be replaced by new individuals. The
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Initialize the population with random individuals
Repeat
1. Select best-ranking individuals to reproduce

2. Create a crossovered population by applying crossover
operator on the selected individuals

3. Create a mutated population by applying mutation
on crossovered population

4. Replace the worst individuals of the mutated population
with new random individuals

Until termination

Figure 5: Pseudo code of the used GA.

fitness for heuristic based and basic GA is computed by the
number of unsolved constraints for each individual.

Table 3 shows the success rate, the time to reach the solu-
tion and the average of the best fitness each algorithm could
reach in a specified time for problems with different tight-
ness. The success rate shows the percentage of runs in which
a solution could be found. Each problem has 80 variables,
was run for 20 times and was given a maximum time of 70
seconds.

As we can see in the table, sawing GA wins from other
algorithms with regard to success rate. Clearly constraint
weighting approach used in Sawing GA was successfull in
finding the group of hardest constraints. HGA2 and HGA3
are not successful in solving the problems even the easiest
ones. Multiparent heuristic fails to solve the problem while
the performance of asexual genetic algorithm is not very
different from basic GA. We can conclude that heuristic
based GAs do nothing better than basic GA and in case of
HGA?2 and HGA3 where we use Multiparty crossover it
actually reduces the performance. The reason for this might
be that the scanning mechanism was not appropriate for this
particular problem.

Figure 6 shows the best fitness each algorithm could
reach after a specified amount of time (70 second) for an
unsolvable temporal CSP problem with tightness of 0.64.
As we can see, basic GA wins from other methods.

Figure 7 shows the average number of fitness compu-
tations to reach the solution for the easiest tightness and
for the algorithms which could reach the solution. As we
can see, Microgenetic algorithm has the least number of
computations. This is because the population size for this
algorithm is very small. Also, it does not require evaluating
all the individuals of the population in each generation as
the other algorithms do.



GA

HGA1

HGA2

HGA3

Selection operator

Roulette Wheel

Roulette Wheel

Roulette Wheel

Roulette Wheel

Mutation operator

Random Mutation

Random Mutation

Random Mutation

Asexual operator

Crossover operator

One Point Crossover

Asexual operator

MultiParent Crossover

MultiParent Crossover

Replacement operator

Worst Chromosomes

Worst Chromosomes

Worst Chromosomes

Worst Chromosomes

Replacement Replacement Replacement Replacement
Table 2: Genetic operators.
0.24 0.16 0.05
SR | Time | Bfit | SR | Time | Bfit | SR | Time | Bfit
GA 0.2 50 1 0.9 18 0.1 1 3 0
HGA1 0.1 61 2 109 21 0.1 1 5 0
HGA2 0 - 19 0 - 8.15 | 0.05 65 1.6
HGA3 0 - 19 0 - 8.2 0 - 2.05
Sawing GA | 0.7 | 45 0.4 1 1 0 1 5 0
MGID 0 - 44 1 0 1 1 0

Table 3: Success rate and average fitness for different heuristic based algorithms.
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Figure 6: The best fitness each of the algorithms could reach
in an specified amount of time.
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Figure 7: The number of fitness computation that algorithms
do till they reach the solution.
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Conclusion

In this paper we tested some evolutionary algorithms that
use heuristics for solving Temporal CSP problems and com-
pared their results. We used Tempro model for modeling
Temporal CSP problems and generated our problems ran-
domly. Overall, the following points can be concluded from
the outcomes of the experiments: Adding heuristics to a ge-
netic algorithm does not necessarily help this latter to per-
form better. It may cause more unnecessary computations
which results in slowing the pace to reach the solution or
may lead the genetic algorithm to get stuck in local opti-
mums. Failing genetic algorithms enhanced with asexual
operator and multiparent operator validates this argument.
Sawing GA is the best with regards to success rate, with be-
ing able to spot harder constraint and focusing the search
on them it was even able to solve the hardest solvable in-
stance with a good success rate. In easier instances Sawing
GA and MGID seem to have the same performance and both
were better than basic GA. Our work can give some sugges-
tions for future research. First of all, it seems essential not
to rely hard on heuristics which bias search and limit the
exploration of search space. This suggests a good balance
between randomness and guidance. Also finding some pos-
sible heuristics specified to Temporal CSPs can be another
step to complete this work.
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Abstract

Most spatial calculi target spatial relations between single-
type objects, whereas there are also a number of spatial
models that distinguish spatial relations between objects in
different domains. How to equip such cross-domain spatial
models with reasoning capability is left as a research ques-
tion. As a first step, this paper develops a series of qualita-
tive spatial calculi based on the 9-intersection. The 9-
intersection distinguishes topological relations between var-
ious objects (points, lines, regions, bodies, etc.). We formu-
late two sorts of calculi: homogeneous 9-intersection calculi
target the topological relations between single-type objects,
while heterogeneous 9-intersection calculi can deal with
multiple sets of topological relations between various com-
binations of objects. As the foundation of these calculi,
composition tables and lists of converse relations are devel-
oped for various sets of topological relations in R and R?.
For heterogeneous 9-intersection calculi, the sets of base re-
lations, composition tables, and list of converse relations are
integrated, such that the algebraic framework of ordinary
single-domain spatial calculi can be reused. Finally, the use
of the new calculi is demonstrated.

Keywords: qualitative spatial calculi, topological relations,
cross-domain spatial models, 9-intersection, composition
tables

1.Introduction

Qualitative spatial calculi provide reasoning capability for
the models of spatial relations. With these calculi, for in-
stance, incompletely-observed spatial arrangements of ob-
jects can be disambiguated with regard to a specific set of
spatial relations. Interestingly, most of existing qualitative
spatial calculi target spatial relations between single-sort
objects. For instance, Allen’s interval algebra [1], Region
Connection Calculus [2], Cardinal Direction Calculus [3],
and Double Cross Calculus [4] feature a set of relations be-
tween two intervals, two regions, two points, and three
points, respectively. Such single-domain spatial calculi fit
nicely into an algebraic framework (relation algebra or its
family), since their operations are closed under the single
set of spatial relations. On the other hand, spatial database
communities have developed a number of spatial models
that distinguish spatial relations between objects in differ-
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ent domains. For instance, the 9-intersection [5] can distin-
guish the topological relations between a line and a region,
in addition to the relations between two regions or those
between two lines. In [6], the target of cardinal direction
relations is extended to arbitrary combination of objects
(points, lines, and regions). In [7], spatial arrangements of
a path and a landmark are modeled as relations between a
directed line and a region using a Double-Cross-like frame
of spatial reference. How to equip such cross-domain spa-
tial models with reasoning capability is left as a research
question. For instance, imagine a space where point-like
objects, line-like objects, and region-like objects coexist.
Given partial knowledge about their arrangement, can we
disambiguate it? If this is possible by computation, the ap-
plicability of qualitative spatial calculi will be expanded
considerably.

As a first step, this paper develops a series of qualitative
spatial calculi based on the 9-intersection [5]. These 9-
intersection calculi consist of homogeneous 9-intersection
calculi, which target a set of topological relations between
single-type objects (e.g., line-line relations), and heteroge-
neous 9-intersection calculi, which can deal with multiple
sets of topological relations between various combinations
of objects (e.g., mixture of line-line, line-region, and re-
gion-region relations). We show that the algebraic frame-
work of ordinary single-domain spatial calculi can be
reused for the heterogeneous 9-intersection calculi and,
consequently, we can use existing reasoning tools of spa-
tial calculi, such as SparQ [8] and GQR [9], to conduct
reasoning in the heterogeneous 9-intersection calculi. We
expect that a similar approach achieves reasoning capabili-
ty in other cross-domain spatial models as well.

A secondary but important challenge of this paper is to
develop composition tables for various combinations of to-
pological relations. The composition table of two topologi-
cal region-region relations in R? is reported in [10], but the
tables for other combinations are not fully developed yet.
We therefore develop these composition tables i systemati-
cally with a small number of composition rules.

The remainder of this paper is organized as follow: Sec-
tions 2 and 3 summarize major concepts of qualitative spa-
tial calculi and the 9-intersection, respectively. Section 4



develops the lists of converse relations and composition
tables for various topological relations. Section 5 develops
the 9-intersection calculi based on these lists and composi-
tion tables. Section 6 demonstrates the use of these calculi
for qualitative spatial reasoning. Finally, Section 7 con-
cludes with a discussion of future problems.

2.Qualitative Spatial Calculi

Qualitative spatial calculi (and their lower dimensional
counterparts, qualitative temporal calculi) have been stu-
died extensively in Al communities [11, 12]. In a broad
sense, qualitative spatial calculi are the calculi formed by a
set of spatial relations and operations on these relations.
Typically, binary spatial calculi are equipped with two op-
erations, conversion (converse) and composition, in addi-
tion to set-theoretic operations. By conversion we can de-
rive the relation between A and B from the relation be-
tween B and A, while composition enable us to derive
possible relations between A and B from the relation be-
tween A and C and that between C and B. Ternary spatial
calculi also have counterparts of these operations [13].
This paper focuses on binary spatial calculi, since topolog-
ical relations are binary relations.

Normally each binary spatial calculus targets a jointly
exclusive and pairwise disjoint set of spatial relations that
may hold between two arbitrary objects in a spatial object
domain D (points, regions, etc.), including an identity rela-
tion. These spatial relations are called base relations and as
a set they are denoted B.

In order to process incomplete knowledge about spatial
relations, the set of all base relations that may hold be-
tween a pair of objects is treated as a unit of computation,
called (general) relation. For instance, if the topological
relations between two regions A and B are known to be
disjointgr or meetrg, the relation between A and B is
represented as {disjointrr, meetzr}. If nothing is known
about the possible spatial relations between A and B, the
relation between A and B is represented by the set of all
base relations in B, which is called the universal relation
and denoted U.

The set of all relations (essentially B’s power-set 28) is
denoted R. The converse ~ and the composition ; on R are
defined based on those on B as equations 1-2. The set R,
together with its converse and composition operations
closed under R, gives rise to an algebra. Normally, a bi-
nary spatial calculus forms a non-associative algebra (or
even its stronger version, a relation algebra or a semi-
associative algebra, depending on its associativity [12]).
Actually, from an algebraic point of view, Ligozat and
Renz [12] defined a qualitative binary spatial calculus as a
tuple of a non-associative algebra and its weak representa-
tion.

VRe:RRu=U o~ (1)
TER

35

(rsm) @)

VRIIRZ € RRl, RZ = U
rL-ERl,rjERZ

The merit of such an algebraic treatment is that we can
computationally disambiguate the relations between many
objects by algebraic computation without paying attention
to actual geometry of the objects. This problem corres-
ponds to a constraint satisfaction problem (CSP). The
CSP’s key question is consistency checking, i.e., to identi-
fy the presence or absence of the variables that satisfy the
given constraints. In spatial calculi, the variables and con-
straints correspond to spatial objects and their relations, re-
spectively. Through checking algebraic closeness of every
scenario, we can detect invalid combinations of spatial re-
lations that cannot hold between the objects (or the absence
of such combinations). By filtering them out, we can de-
rive the candidates for the possible combinations of spatial
relations between the objects (although at this level we
cannot guarantee that all of these candidates are geometri-
cally realizable). There are already some effective tools to
support such constraint-based reasoning on user-defined
spatial/temporal (e.g., SparQ [8] and GQR [9]).

3.The 9-Intersection

The 9-intersection [5] is a model of binary topological rela-
tions based on point-set topology [14]. This model has
been studied extensively in spatial database communities,
primarily because it applies to various combinations of ob-
jects systematically. In this model, the relations between
two objects are distinguished by certain properties of inter-
sections between their fopological parts (interior, boun-
dary, and exterior). The interior, boundary, and exterior of
a spatial object X, denoted X°, dX, and X, are defined as
the union of all open sets contained in X, the difference be-
tween X’s closure (i.e., the intersection of all closed point
sets that contain X) and X°, and the complement of X’s
closure, respectively. The 9-intersection matrix in equation
3 concisely represents the 3x3 parts’ intersections between
two objects A and B.

A°NB° A°NndB A°NB~
M(4,B) = <6AnB° 0ANOB 0ANB~
A"NB~ A" NoB A NB~

3)

In the most basic approach, topological relations are dis-
tinguished by the presence or absence of these 3x3 inter-
sections. Thus, we consider two-valued 9-intersection ma-
trix whose element are either empty (@) or non-empty
(—0). By the patterns of the two-valued 9-intersection ma-
trix, for instance, we can distinguish two point-point rela-
tions, three point-line relations, and eight line-line relations
in a 1D Euclidian space R? (figure 1). Note that by defini-
tion a point does not have an interior and the line’s boun-
dary refers to the set of its two endpoints.

The set of topological relations distinguished by the pat-
terns of two-valued 9-intersection is denoted T'p p,-s,



where D; and D, are the domains of two objects (P:
points, L:simple lines, R:simple regions, and B:simple bo-
dies) and § is the space. For instance, 'y g1 refers to the
set of topological line-line relations in R (figure 1d). Ta-
ble 1 summarizes the numbers of topological relations dis-
tinguished by the patterns of the two-valued 9-intersection
matrix.
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Figure 1. Topological relations between points, lines, and their
combinations in RY distinguished by the patterns of the two-
valued 9-intersection.

Table 1. Numbers of topological relations distinguished by the
patterns of the two-valued 9-intersection matrix [15].

4.Conversion and Composition

Conversion and composition are fundamental operations of
qualitative spatial calculi. This section develops these two
operations for a variety of topological relations.

The converse of a relation 7 in I'p, p, s is a relation in
Tp,p,-s - For instance, the converse of containsgp in
Trpr2 (region-point relations) is insidepr in Tpg g2
(point-region relations). We can derive the converse of a
relation r in J'p p,.s simply by transposing 7 ’s 9-
intersection matrix and finding the same pattern from the
two-valued 9-intersection matrices that represent the rela-
tions in Iy, p, 5. By repeating this process for every rela-
tion in I'p, p, s, we can obtain the converse list of Ty, p, s,
denoted T-CLp,p,s , which shows the mapping from
Tp,p,-s to Tp,p, s by conversion (e.g., table 2).

Table 2. Converse list of topological point-line relations in R

(T-CLpy ).
r disjointp. meetpL insidep
r" disjointyp meetyp cotainsyp

R! R? R? st s?

Point-Point 2 2 2 2 2
Point-Line / Line-Point 3 3 3 3 3
Point-Region / Region-Point - 3 3 - 3
Point-Body / Body-Point - - 3 - -
Line-Line 8 33 33 11 33
Line-Region / Region-Line - 19 31 - 19
Line-Body / Body-Line - - 19 - -
Region-Region - 8 43 - 11
Region-Body / Body-Region - - 19 - -
Body-Body - - 8 - -
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The composition of a relation 7y in Ty p,_s and a rela-
tion 15 in I'p,p, s is a subset of Ty p, 5. The composition
table of two topological relation sets Ty p,_s and T'p,p, s>
denoted T-CTp, p,p,-s, shows the mapping from Ip p, s X
Tp,p,-s to 2701035 (the power-set of I'p,p,-s) by compo-
sition. In this study, we develop composition tables for the
combination of topological relations between simple ob-
jects in R (i.e., T-CTpppr1> T-CTpprrt > T-CTprprl> ---»
T-CTy g ) and for those in R? (i.e., T-CTpppgz > ---s
T-CTrrrr2)-

Given three objects A, B, and C (A € D4,B € Dy, C €
D.), the following set-theoretic constraints, originally in-
troduced in [16] for deriving T-CTgpgp rz, always hold for
the composition of the topological relation between A and
B and that between B and C:

« A’s topological part p, and C’s topological part p, do
not intersect if B has a topological part pp that includes
pa but does not intersect with p. or that includes p. but
does not intersect with p,; and

* p, and p. intersect if B has a topological part pg that in-
tersects with p, and is included in p; or that intersects
with p. and is included in p,.

By filtering all relations in Jp ,p..s with these constraints,
we obtain the candidates for the composition of the topo-
logical relation between A and B and that between B and
C. Each candidate is examined if they have geometric in-
terpretations. Then, the set of valid candidates are ap-
proved as the composition of the topological relation be-
tween A and B and that between B and C. By repeating this
process for every relation pair in I'p,p,_s X Tpyp,-s, We
can develop the composition table of Iy ,p, s and T'pyp,. s



(i.e., T-CTppyp,-s)- For instance, table 3 shows the com-
position table of line-line relations and line-point relations
in R? (i.e., T-CTy pg1) derived by this method.

Table 3. Composition table of topological line-line relations and
topological line-point relations in R* (T-CTy;p.g1).

disjoint p meety p containsyp

equaly disjoint,p meetyp containsyp

disjoint, . Upp disjoint,p disjoint,p

meety . Uwp disjoint,p | meetp disjoint,p
overlapsy,. Urp Urp Upp
coversyy, disjoint,p disjoint,p | meetyp Urp

coveredBy . U meetyp / containsip containsyp
containsyy. disjointyp disjoint,p Upp

According to our investigation, the previous two con-
straints are sufficient when developing the most composi-
tion tables (T-CTppp.gt, .., T-CTypr gt and T-CTppp.g2, .-,
T-CTrrrg2), but not 7-CTy; gz—in this case, the derived
composition candidates may have no geometric interpreta-
tion. For instance, imagine that there are three simple lines
A, B, and C, where A contains B and B crosses C (fig-
ure 2). Obviously, A cannot contain C. The constraints in
equation 4, however, do not exclude the composition can-
didate where A contains C.

A

Figure 2. The arrangements of three lines A, B, and C, from
which we can conclude that A cannot contain C.

In general, when A contains/covers B, A cannot con-
tains/covers C if:

» ( directly links B’s interior and exterior (figure 3);
* B directly links C’s interior and exterior; or
» A covers B and B is inside of C (figure 4).

We can tell from the given relations that the first two situa-

tions occur whenever the relation between B and C belong

to the topological line-line relations not realizable in R!

(i.e., the line-line relations other than equali;, disjoint;y,

meetyy, overlapsiy, coversiy, containsyy, and insideyy).

Thus, the previous condition is simplified as follows:

* If containsy (4, B) and the relation between B and C is
neither equaly;, disjoint, |, meet,;, overlapsi;, covers;,
containsy 1, nor insidey,, then A~ N C° = —0;

 If coversy (A, B) and the relation between B and C is
neither equaly,, disjoint |, meet, |, overlapsi;, covers,
nor containsy, then A~ N C° = —@;

Similarly, the following two constraints hold:
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« If insidey,(B,C) and the relation between A and B is
neither equaly, disjoint;;, meety;, overlaps,, coversyy,
containsy 1, nor insidey ., then A° N C~ = =@; and

* If coveredBy; (B, C) and the relation between A and B
is neither equaly;, disjoint;;, meety;, overlaps,;, co-
versiy, nor containsyy, then A" N C~ = —Q.

By adding these four constraints, we can successfully de-
rive the composition candidates that have geometric inter-
pretations and, accordingly, we can develop the composi-
tion table accordingly, we can develop the composition ta-
ble T-CTyppg2-

] - = o = 9

Figure 3. Examples of arrangements where a line C directly con-
nects the interior and exterior of a line B.

W S
C
Figure 4. If a line A covers a line B and B is inside of a line C,

then A cannot contain/covers C.

5.9-Intersection Calculi

First, to conduct reasoning on topological relations be-
tween single-type objects, we introduce homogeneous 9-
intersection calculi. These calculi are defined for each ob-
ject domain and each space. The homogeneous O9-
intersection calculus for the object domain D and the space
S, denoted Homo9ICp g, is formulated based on the fol-
lowing elements:
* aset of base relations T'pp s;
 aconverse list T-CLpp.s; and
* a composition table 7-CTppp_s-
These elements satisfy the requirements of ordinary qualit-
ative spatial calculi (non-associative algebra); that is,
* Tpps is jointly exclusive, pairwise disjoint, and contains
an identity element;
 the converse operation on Tpp s is closed under T'pp s
(i.e., Vr € TDD5 rv e TD]}5); and
» the composition operation on Tpps is closed under
Tpps (i€, Vr, 13 € Tpps 11572 S Tppos)-
Consequently, spatial reasoning can be conducted in an al-
gebraic framework.
Next, to conduct reasoning on topological relations be-
tween various combinations of objects, heterogeneous 9-

intersection calculi are introduced. These calculi are de-
veloped for each space. The heterogeneous 9-intersection



calculus for the space S, denoted Het9ICg, have the ability
to deal with all sorts of simple objects (points, simple lines,
simple regions, and simple bodies) that S can contain. Na-
turally, if § is a d-dimension space, Het9ICg covers:

* d+1 object domains {Dy, ..., Dy};

« (d+1)* sets of topological relations {T Dl.Dj,g} ’ d};
i,j€{0,...,

* (d+1)* converse lists {T—CLDL.DFg }i,je{o,...,d}; and
. + 3 1t1 |
(d+1)’ composition tables {T CTDI.D]. Dy-s }L',j,ke{o,...,d}

For instance, Het9ICg1 covers:
* two object domains: P and L;

« four sets of topological relations: T'pprt, Tprrt> TLpRL,
and Ty p1;

+ four converse lists: 7-CLpp g1, T-CLpy g1, T-CLypp1, and
T-CLyy gt and

+ cight composition tables: T-CTpppgrt » T-CTppLgt »
T-CTprprts T-CTpryrts .o T-CTyp gt

These elements are integrated as follows. First, the gene-
ralized object domain D* and the generalized base relations
B* are defined as follows:

* D" = Uieqr,..ay Di
s B = (Ui,je{l,...,d} BDiDj) U {equal}

Basically B* refers to the relations between two arbitrary
objects in D*, but it also contains an identity relation
(equal). The presence of an identity relation is a require-
ment of the calculi’s algebraic framework (non-associative
algebra). This identity element is different from domain-
level identity elements equalp,p,. In Het91ICg:1, for in-
stance, B* contains equal, equalpp, and equaly;. We did
not integrate these identity elements to prevent senseless
compositions. For instance, equalpp; disjointy; must be
empty since the composition of a point-point relation and a
line-line relation is impossible. However,
equal; disjointy;, = {disjoint;;} by definition and, ac-
cordingly, it is not appropriate to substitute equalpp by
equal. Thus, equal is considered a purely abstract relation
with no geometric interpretation (i.e., VA, B € D* (4,B) ¢
equal). Then, we can consider B a jointly exhaustive and
pairwise disjoint set of base relations, which is also a re-
quirement of the calculi’s algebraic framework.

Next, we integrate the relevant converse lists and com-
position tables. The integrated converse list T-CLp«p=s is
derived by concatenating the relevant converse lists

{T —CLDiD]_,S} and adding an item “equal” = equal.” For
instance, table 4 shows T-CLp+p+ g1, which is derived from
T-CLppgt, -y T-CLyy gt. Similarly, the integrated compo-
sition table 7-CTp+p*p+s is derived by adjoining the rele-
vant composition tables {T *CTDL-D,-D,(S} and adding one
row and one column about equal-related composition. For
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instance, table 5 shows T-CTpsp+p~p1, Which is derived
from T-CTpppgt, -, T-CTyprR?-

Table 4. Integrated converse list T-CLp-p-r1 (the highlighted
part corresponds to T-CLpy r1 in Table 2).

r r r r
equal equal equaly;, equaly ;.
equalpp equalpp disjointy;, disjointy .

disjointpp disjointpp meety meety
disjointp. disjoint,p overlaps; . overlaps,,.
meetpr. meetp coversy coveredByy .
insidepy, containsyp coveredByy 1, coversy
disjointp disjointp;, containsy . insidey .
meetp meetpr, insider . containsy
containsyp insidepy.

Now we have:

+ an integrated set of base relations B, which is jointly
exclusive, pairwise disjoint, and contains an identity re-
lation;

* an integrated converse list TR-CLp+p+ 1, which is
closed under B*; and

 an integrated composition table T-CTp«p:p+gt, Which is
closed under B".

Consequently, it is expected that spatial reasoning on the
topological relations between arbitrary objects in D* can be
conducted in an algebraic framework, just like we can do
in ordinary single-domain spatial calculi. This will be
demonstrated in Section 6.

Simple Assessment of 9-Intersection Calculi

Based on the converse lists and composition tables devel-
oped in Section 4, we developed seven basic calculi:
Homo9ICp 1 , Homo9ICp g1 , Homo9ICppr2
Homo9IC,; 2, Homo9ICq gz, Het9ICk:, and Het9ICk:= .
We conducted simple assessment of these calculi.

First, for the composition table of each calculus, we cal-
culated the crispness and the ratio of unique compositions
(table 5). These two measures are used in spatial database
studies for assessing the effectiveness of composition
tables [17, 18]. We found that Het9ICy: and Het9ICg2
marked high crispness, but this result is not so meaningful
because the integration of composition tables yields the in-
crease of relations not contained in each composition and
increases the crispness. We also found that Homo9IC; _p2’s
ratio of unique compositions was very low. This is because
in many compositions the presence or absence of intersec-
tion between two lines’ interiors cannot be determined.
Het9ICg2’s ratio of unique compositions was also low, be-
cause its composition table has many empty cells that cor-
respond to impossible compositions.



Table 5. Integrated composition table T-CT pyp+p-.g1 (the highlighted part corresponds to T-CTp.g1 in Table 3;
eq: equal, dj: disjoint, mt: meet, ov: overlap, cv: covers, cB: coveredBy, ct: contains, and in:inside).

eq eqep  djep djpL mitpy, inpr. djip mipp ctip eqLL djiL mi oviL CVLL cBiL ch ingy
eq eq eqee  djep djp. mtpy, inp djie  mtip  chp eqrL djir miyy ovLL cviL cBiL chiL inLL
eqpp eqrp eqee  djep djp mtpy, inp.
djrp djrp djp  djrp Up UpL UpL
dje dje Usrp djrp djrp djpL UpL UpL UpL djpr UpL djpr UpL
. . . djpL djpL mtpr . .
mipL mitp djep Urp djrp mitpr djpL UpL . djpr npy
mitpy mipr inpL
inpp inpp djpp djpp Upp inpL djp. djpr UpL UpL inpL UpL inpy
djiL djiL
mi mip
djie djip djip Upr Uil ovLL ovLL
cBiL cBiL
ingy ingL
djir eqLL
mtyy, mtyy, o
miyp mtp | mirp Upp oviLL oviL cBrL
cBiL VL iny
inL cBrL
djiL ovLL
mi ovLL cviL
Ctip Clip Ctip UpL oviLL cvLL cBrL
cBiL ctiL ctiL
inyy ing
eqiL eqiL djip mirp Clip eqiL djir miyy ovLL CVLL ¢BiL chiy inL
djiL djiL djir djie
miy miy mty mty
djLL djiL Urp djLP djLP djiL UL ovLL ovLL djLL ovLL djLL ovLL
cBiL cBiL cBiL cBiL
inLL inpL inLL ingy
. eqLL .
d]LL di d/ LL
JiL miyy
dj miy L mt miyg di o ovL
Lp g LL LL LL .
mt L miLL Uwp djip mi L ovLL ovLL djL cBry
mtyp ovLL miLp cBiL .
CVLL v cBiL in L
LL A LL
ch myL
- cBrL
djuL djir djie dju
miLp mi L miLp ovLL miL oviLL
ovLL ovLL Urp Upp Urr ovLL ovLL ovLL UL ovLL cBrL ovLL cBiL
cviL cviL oL inyL oL in.L
cliL chiL cliL cliL
djiL
miry eqiL
mi L ovLL ovLL
mirp oviL CcVLL ovLL
CVLL CVLL Upp clip CVLL ovLL CVLL ctL cBiL
ctip cvLL ctiL cvLL .
cvLL ctiL inyL
ctiL cBiL
cliy
- eqrL i
djiL di djiL
miy;. JiL mty
g djip . djir miyy ¢BrL ;
cBiL cBiL djLP 4 Urp cBiL d_]LL oVLL . OoVLL mnLL
mtyp miyy ovL ingy
cBrL cviL
in v ct
LL Biy LL
. eqLL
djiL
oL
mtyy, oviL oviL oviL o
LL
cliy cly Urp Clip ctip cliL ovLL cvLL cviL cty cvLL cliy B
LL
cviL cty ch cty ot
LL
ety ;
mnLL
djiL djiL
mi miyL
inie inLL djLP djLP Up inyy djLL djl_l_ ovVLL oVLL inyy UL iniL
cBiL cBiL
ingy inyy
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Next, we examined the associativity of the compositions
in each calculus (i.e., whether (A; B); C = A; (B; C) holds
or not) (table 6). We found that Homo9IC; 2 is not asso-
ciative, and accordingly Het9ICgz as well. Alternatively,
the compositions in these two calculi satisfy semi-
associativity (i.e., (A;U); U = A; (U;U) holds). On the
other hand, other five calculi are all associative. One ex-
ample of non-associativity in Homo9IC| zz is that
coversyy; (coversyy; crossyy) D coversy; (equations 4-
6), but (coversy; coversyy); crossy, ? coversy;, (equa-
tions 7-10). This conflict arises from the ambiguity of the
pattern (—.g @@ —.3) In equation 4, this pattern is inter-

preted as diverge&cross&divergedBy,,, relation (see B and

D in figure 5a), whereas in equation 6 this pattern is inter-
preted as overlapy; relation (see B and D in figure 5b). Un-
fortunately, the ambiguity of this pattern is an intrinsic
problem of the 9-intersection.

-0 -0 -0
coversyy; Crossyy, 3 <—|(Z) 0 —u(Z)) (@)
-0 =0 =0/
-0 -0 -0
coversyy; (—@ [0} —|(2)) 3 coversyy, (5)
-0 -0 0/
~ coversyy; (coversyy; crossy.) D coversy, (6)
(coversyy; coversyy); crossyy,
= (coversy, V containsy;); crossyy, @)
= coversy; crossyy, V containsy; crossyy,
coversyy; Crossyy, d coversyy, ®)
containsy; crossyy, d coversyy, )
=~ (coversyy; coversyy); crossy, d coversyy, (10)

Table 6. Properties of 9-intersection calculi for R* and R?.

6.Examples

This section demonstrates the application of the proposed
9-intersection calculi for qualitative spatial reasoning. We
start from Homo9IC; 2 as the representative of homoge-
neous 9-intersection calculi.

In the Boston metropolitan area, there are four interstate
highways; 1-90, 1-93, 1-95, and 1-495. Their actual network
is like figure 6a, but here we consider a simplified network
in figure 6b. Table 7 lists the topological relations between
the highways in the simplified network. Imagine that we
drive two of these four highways and observe their connec-
tions to other highways. For instance, figure 7a/b illustrates
the knowledge obtained from the drive on 1-90 and 1-95/1-
93. Based on such knowledge, what can we say about the
relations between the remaining two highways? With
HomoO9IC, rz, we can derive possible relations between
unvisited highways from partial knowledge about the
highway network.

2
1-90 J
4
~
(@) )

Figure 6. (a) Network of four interstate highways in the Boston
metropolitan area and (b) its simplified version for experiment.

Table 7. Topological relations between pairs of highways in the
network of figure 6b.

N z % 5 % ] 1-90 1-93 195 1-495
S g & o & CR
= = = = = O = 1-90 - diverges,. CrossLL divergesi.
: f F f %% o ;
g g é g :IO: o) en) 1-93 divergedBy1. — &Zre;ifj divergesi.
Number of . divergedBy meet-at-
relations 2 8 2 33 8 17 94 1-95 crossu &crossi, both-ends .
i . . t-at-
Crispnessof = 5,0 ()3 375 645 623 869 910 1495 | divergedBy,,  divergedBy, "¢ -
compositions both-endsy
Ratio of
unique 750 422 750 080 422 553 .167 1405
composition _ 1495
Associativity N Y N N . ‘5’\
Semi- N N J N N N N 3 7 = 0 95
Associativity b 90 B 2 8
B
D A —1-93
f—"‘—\ A 1-95 \9
® — = 8 ~295.
C BD (@) (b)
(a) ) Figure 7. Partial knowledge about the highway network, obtained
through the drive on (a) 1-90 and I-95 and (b)I-90 and 1-93.

Figure 5. lllustrations of (a) equation 5 and (b) equation 6.



For actual computation, we put the data of Homo9IC; g2
(T Lr2-T-CLy g2, and T-CTy;y g2) into SparQ [8] and cal-
culate all consistent scenarios under the constraint network
that follows table 7 but replaces the relations between un-
visited highways by Uy ;. The computation result is shown
in table 8. For each pair of unvisited highways we obtained
4 to 28 possible relations. Each solution successfully con-
tained the actual relation in the network of figure 6b.

Table 8. Possible relations between pairs of unvisited highways
derived as algebraically-consistent scenarios.

Unknown Derived solution
relation (dv: diverges, dB: divergedBy)

(195,1495)  All but equaly 1, coversyy, coveredByy ., containsyy, insider ;.

(193, 1495) disjoint,y, crossy., divergesy ., diverges&crossy .
(193, 195) disjointyy, crossi, diverges, ., diverges&cross, .,
(190, 1495) disjointy, crossi., diverges ., diverges&crossy..
(190, 195) disjointy, crossi., diverges., diverges&crossy..
disjointyy, coversy, coveredByyy, crossi, meety,
meet&crossy i, diverges, ., dv&cross, L, divergedBy, .,
(190, 193) dB&crossy 1, dv&meetyy, dv&cross&meety |, dB&meety 1,

dB&cross&meety 1, dv&dB ., dv&cross&dBi .,
dv&dB&meety 1, dv&cross&dB&meety

For the scenario in figure 7a, we obtained four possible
relations between 1-93 and [-495—disjointyy, crossiy, di-
vergesi 1, and diverges&crossyy. This solution look reason-
able, since we can say from the given knowledge that (i)
both endpoints of [-495 do not intersect with 1-93 and (ii)
one endpoint of 1-93 do not intersect with 1-495. On the
other hand, for the scenario in figure 7b, we obtained as
many as 28 possible relations between 1-95 and 1-495, be-
cause from the given knowledge we can only say that [-95
is neither contained nor covered by 1-495 and vice versa.

Next, we enrich the previous map by adding two areas—
Boston city and the urban area (covering the Boston city).
Their spatial arrangement is illustrated in figure 8. Imagine
that we have driven three of the four highways and ob-
tained the knowledge about how the three highways con-
nect to other highways and two areas. Based on such
knowledge, what can we say about the relation between the
remaining highway and two districts? For instance, in fig-
ure 9a/b, how 1-95/1-93 goes with regard to two districts?
To solve this problem, we use Het91Cy2, since it concerns
the following heterogeneous sets of topological relations:

* topological line-line relations between the visited high-
ways;

* topological line-region between the visited highways
and the two areas; and

» topological region-region relations between the two
areas—coveredBygr (Boston, Urban).
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In addition, we also use the following optional information

to obtain finer solutions:

* topological point-region relations between the highway
junctions and the two areas; and

* topological line-point relations between the visited
highways and the highway junctions.

Urban Area

Boston City

Py
Figure 8. Spatial arrangement of highways and two districts in
the Boston metropolitan area.

(@) )
Figure 9. Partial knowledge about the highway network, obtained
through the drive on highways except (a) 1-95 and (b) 1-93.

For actual computation, we put the data of Het9ICy2 in-
to SparQ and calculated all consistent scenarios under the
constraints described above. We obtained 1 to 16 possible
relations for each scenario (table 9). Each solution success-
fully contains the actual relations in the highway-district
arrangement of figure 7a.

For the scenario in figure 9a, we obtained a solution in
which [-95 goes through the urban area, and either goes
through, touches, or avoids the Boston city. This solution
looks reasonable, as we know that (i) both endpoints of I-
95 are out of the two districts and (ii) I-95 passes through
the urban area. The solutions for 1-90 and I-495 also look
reasonable. The solution for 1-93, however, looks strange.
Even though both endpoints of I-93 are located out of the
urban area (figure 9b), the derived solution does not filter
out such unrealizable relations as goInto, g (193, Urban).
This is because the current reasoning process does not use
the commonsense knowledge that the line’s boundary con-
sists of two endpoints, but regard it simply as a point set'

" On the other hand, in figure 9a, the possibility of
golnto; g (195, Urban) is successfully excluded, because the da-
ta already tells that 1-95’s boundary is completely contained in I-
495’s interior.



This indicates that we can still improve the reasoning mak-
ing use of the structural information of spatial objects.

Table 9. Possible relations between an unvisited highway and two
districts, derived as algebraically-consistent scenarios.

Unknown Derived solution (g7 r: goThroughg,
relations gIBE x: golntoThenBackToEdge )

[gTir, gT1r], [gT1r, touchir], [gTir, disjointir],
[touchir, touchir], [touchyr, disjointig],
[disjoint, r, disjoint, ;]

[(1-495, Urban),
(I-495, Boston)]

[(I-95, Urban),

(1-95, Boston)] [gTir, gT1r], [gTir, touchir], 18T ir, disjoint x|

18Tr, disjointir], [golntoLr, golntorr],
[goIntorr, gTir], [golntorr, gIBER]
[gIBEr, gT1r], [gIBEr, gIBER]

[(I-93, Urban),
(I-93, Boston)]

[(I-90, Urban),

(1-90, Boston)] [goInto, golnto]

7.Conclusions

This paper developed a series of qualitative spatial calculi
based on the 9-intersection [5]. These calculi can be used
for qualitative spatial reasoning on topological relations
between various combinations of objects. Unlike many
other calculi, the heterogeneous 9-intersection calculi are
concerned with situations where multiple sorts of objects
coexist in the same space. However, by integrating sets of
base relations, composition tables, and converse lists, such
heterogeneity is no longer an obstacle to conduct spatial
reasoning in an algebraic framework.

In this work, we featured the 9-intersection because of
its popularity in spatial database studies. However, the re-
cent extension of the 9-intersection, called the 9°-
intersection [15, 19], serves as a more flexible framework
for modeling topological relations. For instance, the 9'-
intersection can distinguish the topological relations be-
tween two directed lines in R, which can be mapped to
temporal relations between two intervals [15]. Thus, if we
extend the 9'-intersection into qualitative spatial calculi,
the resulting 9'-intersection calculi will cover temporal
calculi as well (e.g., Allen’s interval calculus [1]). In addi-
tion, the 9"-intersection calculi will support topological re-
lations between a directed line and a point/line/region in
R? and, accordingly, it will be useful for integrating know-
ledge about path-landmark arrangements collected by mo-
bile agents. We are planning to develop such 9'-
intersection calculi and provide a library of both the 9- and
9" intersection calculi on SparQ [8] and CASL [20] for
public use.

Another interesting future topic is to develop qualitative
spatial calculi that feature non-topological relations (say,
cardinal direction relations, relative orientations, distance
relations, etc.) between multi-domain objects. We expect
that we can use similar integration techniques for the de-
velopment of such heterogeneous spatial calculi.
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Abstract

This paper discusses the problem of representing and reason-
ing about the spatio-temporal aspects of events in the context
of the monitoring of complex, multi-agent events, using nat-
ural language input. The proposals discussed in the paper
are used for the development of a system providing assis-
tance to the security staff during a large scale event involv-
ing a large number participants. A subsystem deals with the
SMS messages sent by the security staff (observers) and pro-
cesses the information they convey. The system provides the
security personnel (analysts) with visualisation facilities and
suggestions for actions, and keeps track of the information
exchanged for further use. The paper presents arguments in
favor of the formalism called XRCDC (an extension of the
Region Cardinal Direction Calculus) designed to represent
events and spatio-temporal reasoning about them.

Keywords spatio-temporal reasoning, computer under-
standing of natural language

1. Introduction
The general context of the research

Enhancing the processing of information in real-life situa-
tions where the decision making depends on the quality and
adequateness of the information acquired by the deciding
person or body is an important problem. Typical cases are
situations involving the presence of large concentrations of
people sharing strong emotions and feelings, and participat-
ing in events spanning extended periods of time. In such
situations, an early detection and diagnosis may be decisive
for taking adequate preventive actions.

In those situations, the organizers and/or specific services
(e.g. the police) are responsible for setting up an appropri-
ate security structure. Typically, such a structure involves
at least three categories of agents: observers, analysts (or
decision makers), and operating forces.

The role of human observers is to keep close attention
to what is happening around them and to inform the ana-
lysts at a central crisis management center (CMC) of any
unusual or menacing event they may have observed. Ob-
servers communicate with analysts using appropriate com-
munication channels. The limitations in capacity of those

Copyright (© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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channels, as well as the structure of the deciding body, may
result in incapacitating bottlenecks in case of critical situa-
tions (such as a large number of simultaneously incoming
messages from different observers). The possible existence
of contradictory pieces of information, and the impossibility
of interpreting all messages in real time may lead to seri-
ous (sometimes critical) misinterpretations of the incoming
messages. Therefore, a partial or total automatization of the
information processing task can be considered to constitute
a very desirable goal.

In this paper, we focus on the particular case of the moni-
toring of sports events, such as large public soccer matches,
where potentially dangerous events can occur at hardly pre-
dictable moments. Because of the particular circumstances
(a noisy and hostile environment) a privileged way of com-
munication is provided by the use of SMS messages. This
requires the development of a specific subsystem using natu-
ral language short messages as input. The task of the system
consists in spying on the flow of natural language informa-
tion from the observers to the central management center
(and in some cases in interacting with the users) and in in-
terpreting and processing information (including doing con-
sistency checking and visualisation). The overall structure
of the system! is illustrated in Fig. 1.

The main focus of this paper is on the methods used by
the system for processing the spatial and temporal informa-
tion. The central idea is to process the information conveyed
by the messages in terms of events. Those events are located
at various locations, and they occur at definite moments of
the general event. Hence representing the spatial and tem-
poral aspects of the information to be processed is one of the
central functionalities of the monitoring system.

The general considerations of the paper are illustrated by
the study case of a soccer match for which the system is be-
ing implemented. The interest to consider this study case
as an illustration of a much more general situation is clear
considering its complex but transparent information struc-
ture (see section 2).

'The system presented here (POLINT-112-SMS) is an exten-
sion of the original POLINT system, a question-answering system
developped for the Polish language (Vetulani 1995). Notice how-
ever that the considerations in this paper are meant to be language-
independent.



POLINT - 112
automatic processing tl
information considering
understanding the text,
integration of the information,
soMng the contradiction,

aiding of making a decision

Figure 1: The POLINT-112-SMS system (Vetulani et al.
2008)

The spatio-temporal component

As already mentioned, the main function of the system is
to provide information to the CMC and to assist the deci-
sion makers in their decisions about security matters. These
decisions are based upon the knowledge gathered by the in-
formers and on the inferences and conclusions that may be
derived from it. As a consequence, concerning the specific
aspect of temporal and spatial knowledge, the system is sup-
posed to allow to represent the information gathered from
the sources and to perform necessary reasonings.

Reasoning

The reasoning activity may involve various tasks, such as
deciding the right time for a specific action, identifying the
components of a complex event and characterizing its tem-
poral structure, deciding that events (in a sequence of events)
may be causally related (e.g. an explosion followed by a
movement of the crowd) or not (the same events in the re-
verse order). A specific reasoning activity is also required
by the component of the system that provides the user with
visualisation tools (to be discussed more in detail below).

Main components of the representation

The representation formalism is based upon a set of primi-
tive notions:

e cvents, which are spatio-temporal entities with a temporal
span (an interval) and a spatial extent (a region);

e relations between events, especially qualitative relations,
including purely temporal relations (such as precedence)
and purely spatial relations (such as inclusion or overlap-
ping);

e anchoring relations, which provide anchors from the
events to a referential 3D space (spatial anchoring) and
a time line (temporal anchoring);

e individuals, which may take part in the events with a spe-
cific role (witness, actor, victim, etc.);

e groups of individuals.
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Events, which are the central notion in this framework,
are complex entities. From the point of view of the spatio-
temporal model, their temporal span and spatial extent are
primary properties used in reasoning. For instance, two
events such as : X insulting Y and : Y striking X will be
candidates for a causal interpretation if the temporal span of
the first event immediately precedes that of the second, and
the spatial extents of both events are in a relation of prox-
imity. This of course will require that the two individuals
referred to as X and Y are correctly identified as participants
in those events with suitable roles.

Further requirements

The notion of an individual participating in a given event is
of a complex nature: different individuals may participate in
an event (for instance a war) during various periods which do
not necessarily coincide with the temporal span of the event
itself. The system has to provide suitable ways of dealing
with this fact.

One function of the system is to suggest preventive ac-
tions to be taken. Subsequently, decisions about taking those
actions can be made. The system, and in particular its visu-
alisation component, should therefore allow the possibility
of representing the consequence of a decision which has not
yet been made (such as a special color or mode of appear-
ance on the screen).

A further step toward the representation of non-existing
events is to provide the user with tools for hypothetical rea-
soning (for instance, based on not yet implemented deci-
sions).

Partial or fuzzy knowledge about events also has to be
accommodated. As will be discussed below, many quali-
tative formalisms allow the representation of partial knowl-
edge about relations between events, and we use this facility
in the system. Suitable ways of visually representing fuzzy
or partially determined events have to be determined.

2. The spatio-temporal component: general
principles

The input is represented in a conceptual space (Girdenfors
2004) of events which possesses a spatial and a temporal
dimension.

Since the point of view of various informers may give var-
ious kinds of biases to the pieces of knowledge, the system
has the capability of representing various views of a situa-
tion: the view of the system, and the views of various in-
formers. According to the view considered, various degrees
of reliability can be assigned according to the informer.

The static structure of a stadium

A stadium as a static element has a well-defined structure
with hierarchical aspects: there is the playing field (but see
below) and there are tribunes which are subdivided into sec-
tors, ranks, exits, etc. Most of the action, from the point
of view of security, is likely to happen outside the playing
field (excepting the rare possibility that groups of supporters
or spectators enter the playing field). So the main locations



will refer to regions in the part of the stadium where specta-
tors and supporters are present.

The a priori knowledge

The situation of a soccer game involves a great deal of a
priori knowledge about what a game is and what has to be
expected from the supporters (and players) in a “normal”,
undisturbed game, in order to detect the abnormal, poten-
tially dangerous situations as soon as possible.

As a process, a soccer game has a well-defined structure,
which implies consequences for the temporal and spatial
structures: the teams are supposed to play for well-defined
durations at well-defined locations, one of the main distinc-
tions being between the two periods. Each event has to be
inserted in this pre-existing frame, and part of the reasoning
and decisions to be taken depend on the particular temporal
environment of this event.

The system of representation of knowledge has to inte-
grate all these elements. Various aspects have to be consid-
ered and represented using adequate formalisms.

3. Active map (AM) and initial events (IE)

Our proposal is that the processing of spatio-temporal infor-
mation in the system is mediated through the maintenance
of an animated visualisation component which we call the
active map (AM).

The active map allows the representation of events based
on a fixed background representing (in the case of infor-
mation concerning the stadium) the stadium itself. On this
fixed background gradually appear representations of events
as the information accumulates due to the processing of the
messages. Each new message either generates a new ele-
ment of representation, or adds information to a pre-existing
one. In the first case, this will trigger the generation of an
initial event (IE) with a set of features associated to it.

As an illustrative example, assume that the system has to
process the following message: Some supporters in sector 4
are throwing rocks at the security personnel.

This message triggers the creation of an initial event with
this text as an associated text, and the following set of fea-
tures:

e source (the observer)

e actors (acting agents: supporters; patients: security per-
sonnel)

e location (sector 4)

e temporal span (time during which the event happened)
e time of reception (time of reception of the message)

e action (type of action: throw; instruments: rocks)

e aspectual type (on-going event)

4. Introducing new events in the active map

The system receives a sequence of messages. For each new
message, either a new Initial Event is created, and then if
co-references are detected to some previous initial event the
decision has to be made to graft the new information onto
this pre-existing event, hence adding new information to it.
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As an example of grafting, let us consider the follow-
ing message by the same informers: Some among them are
wielding baseball bats. First a new IE is created :

e source (the informer)
e actors (agents: subset of supporters; patients: none)
e location (sector 4)
e temporal span (coincides with that of the previous event)
o time of reception of the message
e action (type of action: wield; instruments: baseball bats)
e aspectual type (on-going event)
Here the system detects co-references:
e the same source;

e actors: the agents are subset of the original set of agents,
there are no patients;

e the same location
e the same aspectual type of action

So, the system could decide to add new features (for ex-
ample : presence of potential weapons) to the representation
of the first IE in the active map.

S. Using the active map

The overall goal of the spatio-temporal component is to as-
sist decision making from the part of the security personnel.

Events are present in the active map in various forms. In
order to visualize the kind of tool the active map constitutes,
one might think of the traditional maps used by the army.
In the General Headquarters of World War II, officers used
pins, small flags or any other gadgets indicating the locations
and moves of the various troops in order to evaluate the sit-
uation and to take appropriate decisions. The AM is meant
as a sophisticated version of such traditional maps. The idea
of building active maps is closely related to previous work
on the visualisation of military campaigns described in the
literature (Ligozat, Nowak, and Schmitt 2007). Here, the
active map is based on a static background representing the
stadium. Events are represented by schematic images, but
also can have sounds, colored lights, blinking lights asso-
ciated to them. These representations can be interrogated
e.g. clicking on them would provide the original texts which
resulted in the generation of the initial events (still to be im-
plemented). The active map also provides zooming facilities
which allow the user to “take a closer look” at local situa-
tions if necessary.

6. Requirements for the spatio-temporal
components

As already mentioned above, the languages used to represent
the temporal and the spatial structures of the events have
to allow the representation of qualitative or indeterminate
information. Such formalisms as those derived from Allens
calculus (Allen 1983), such as the rectangle calculus or the
region cardinal direction calculus have this property.



The choice of a suitable language of representation de-
pends on making decisions about the parameters of the tem-
poral and spatial representation which imply answering the
following questions:

1. Ontological questions: of what type are the objects to be
represented? Can they be abstracted as points, lines, re-
gions with geometrical shapes, connected regions, to cite
only a few possible choices?

2. Nature of the information: is it quantitative (the kind of
information a robot receives from its sensors) or predomi-
nantly qualitative (as is mainly the case with the informa-
tion carried by natural language)?

3. Nature of the surrounding space: can we make use of
global systems of reference (like north, south, for in-
stance) or do we have to be content with local frames of
reference (typically, the frame of reference represented by
some moving person or object)?

4. What is the dimension of the surrounding space? Can we
reason in 2D, in an augmented version of 2D (for instance
with a finite number of 2D levels), or do we need a full
3D space?

5. Nature of the kind of spatial relations we want to repre-
sent. If one looks at the state of the art in the domain of
qualitative spatial reasoning, three main types of relations
have been predominantly studied: topological informa-
tion, that is relations such as containment, partial overlap,
having adjacent boundaries, or disjointedness; directional
information, with respect to some frame of reference; and
qualitative distance information (near, far, very far).

6. Is time continuous or discrete? In the representation of
linguistic data, continuity is usually assumed (since it is
a property of language that it is able to “open up” any
event and re-consider a previously punctual situation and
present it in a second consideration as an extended one).
It has to be remarked, however, that many formalisms can
accommodate both a continuous and a discrete interpreta-
tion. This is in particular the case of Allens calculus.

7. Questions linked to the way of anchoring the abstract
model to the actual situation: for instance, a match in-
volves absolute temporal landmarks (beginning of the
game, end of the game, half-period, additional time) as
well as occasional, or contingent temporal landmarks (im-
portant events of the game such as goal, penalty, and so
on).

7. Choosing a formalism

Since the input to the system is of a linguistic nature (written
or spoken natural language), it is to be expected that most of
the spatial information to be processed will be of a qualita-
tive nature; even such expressions as about 50 meters from
me may be interpreted in a qualitative, imprecise sense.

The entities to be represented are individuals, groups, or
regions. One can argue that an individual can be seen as
(small) region in which this person can be located at a given
time. As for the temporal dimension, Allens calculus is
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Figure 2: The rectangle calculus

based on intervals, but time points can also be easily accom-
modated, using for instance the point-and-interval calculus.

The environment, be it inside the stadium or around it, is
very clearly structured by the presence of the stadium and its
various subdivisions, as well as by the surrounding parts of
the city. It seems reasonable, for this reason, to use a global
frame of reference, most of the events being presumably lo-
cated with respect to the frame of reference offered by the
environment.

Because of the presence of this fixed frame of reference,
formalisms using directional information may be given a
preference. Such are the rectangle calculus, a 2-dimensional
extension of Allens calculus (first proposed by Guesgen in
(Giisgen 1989)), and the region cardinal direction calculi.

8. The rectangle calculus and the region
cardinal direction calculus

The rectangle calculus

The rectangle calculus considers objects which are rectan-
gles whose sides are parallel to the axes. Given such a rect-
angle as a reference, the qualitative position of any other
rectangle can be described using the projections on the axes
of coordinates, which are intervals (Fig. 2). Hence those
positions are described by a pair of Allens relations. For
instance, in Fig. 2, rectangle A is in relation (oi, mi) with
respect to rectangle B, since the horizontal projection of A
is overlapped by that of B (Allens oi relation) while the ver-
tical projection of A is met by that of B (Allens relation mi).

One obtains in this way a formalism whose composition
table, which is the main tool for propagating knowledge, is
basically Allens table. The formal properties of the calculus
have been extensively studied by Balbiani, Condotta, and
Farinas del Cerro (Balbiani, Condotta, and Farifias del Cerro
1998; Balbiani, Condotta, and Farifias del Cerro 1999).

The rectangle calculus can be easily extended to a calcu-
lus about rectangles, points and lines, with the restriction
that the lines have to be parallel to the axes. For objects hav-
ing other shapes, the simplest method consists in replacing
them by their minimal bounding rectangle. For instance, in
the case of Fig. 3, the two regions A and B have two min-
imal bounding rectangles mbr(A) and mbr(B), and their
relative position can be encoded as a rectangle relation.
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Figure 3: Two objects and their minimal bounding rectan-
gles

The drawback is that much information can be lost in this
way. For instance, disjoint objects may have overlapping
rectangles. This is illustrated in the same figure, where two
objects A and B which are disjoint have overlapping bound-
ing rectangles.

The Region Cardinal Direction Calculus

The basic cardinal calculus deals with points in 2D space
and the eight basic cardinal directions N, S, E, W, NE, SE,
NW, SW, augmented by the identity relation eq. Actually,
the basic cardinal direction calculus is a 2D version of the
time-point calculus, in the same way as the rectangle cal-
culus is a 2D version of Allens calculus. It has also been
studied extensively and its formal properties are well known
(Frank 1992; Ligozat 1998).

In order to deal more precisely with arbitrary extended
regions in 2D space, an extension of the cardinal direction
calculus, called the RCDC (region cardinal direction calcu-
lus) has been proposed by Goyal and Egenhofer (Goyal and
Egenhofer 2001) as well as by Skiadopoulos and Koubarakis
(Skiadopoulos and Koubarakis 2001; 2004).

The starting point of the representation consists in consid-
ering the nine regions (called tiles) defined by the minimal
bounding rectangle of a reference object B (Fig. 4). Eight
of them, labelled N, S, E, W, NE, SE, NW, SW, are infinite
regions. The minimal bounding rectangle itself, labelled O,

NQA
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Figure 4: The region cardinal direction calculus
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constitutes the ninth tile. In this way, the position of any
region A can be described by listing the set of tiles which
intersect the interior of A. Alternatively, it can be described
by a boolean array dir(A, B) of length 9 listing whether A
has a non-empty intersection (denoted by 1) or an empty in-
tersection (denoted by 0) with each of the nine tiles NW, N,
NE, W, O, E, SW, S, SE, in that order. For instance, in Fig. 4,
the relation of A with respect to B is (N:NE:E), or, using the
boolean array dir(A, B) = [0,1,1,0,0,1,0,0, 0].

The RCDC possesses very interesting properties: it deals
with (connected) regions in the plane and, although still
based on the same basic relations, allows a finer expression
of the relative positions of more general regions.

Because of its extended base, the RCDC also implicitly
encodes topological information (as does the rectangle cal-
culus). For instance, referring back to Fig. 4, the fact that
A and B do not intersect is a consequence of the stronger
fact that A does not intersect the tile containing B, and this
fact is encoded in the representation (O does not belong to
(N:NE:E)). Moreover, the RCDC may be considered as a re-
finement of the rectangle calculus. Recent results (Zhang et
al. 2008) show that basically it allows to consider a spatial
configuration as “pixelized” by the objects present in the en-
vironment, so that those “pixels” can be used to characterize
a “silhouette” of each object which is finer than its bounding
rectangle. This means also in particular that, if we decide
to replace the objects by their minimal bounding rectangles,
we get in substance the rectangle calculus.

9. Representing spatio-temporal information

We use the RCDC for the representation of spatial relations,
and we add to it a temporal dimension, which is also inte-
grated to the framework of the RCDC, yielding a calculus
called the XRCDC, the Extended Region Cardinal Direction
Calculus. An advantage of this choice is that space and time
are treated in the same way and that the corresponding for-
malisms have been studied in depth. In particular, their the-
oretical complexity has been determined, and a whole range
of algorithms has been developed to solve the basic reason-
ing problems. An important point is that using the XRCDC
formalism allows us to process information more precisely
than using the rectangle calculus. Let us analyse the fol-
lowing example: The fight started during the meeting, to the
south of and touching the place of the meeting. After the
meeting finished, the fight had also extended to the meeting
place. Fig. 5 (a) and Fig. 5 (b) show a graphical interpreta-
tion of the scene in projection on one of the spatio-temporal
planes (the T-S plane) using the XRCDC formalism and the
rectangle calculus respectively.

It is clear that using techniques based on the extension of
Allens algebra may cause distortions and even errors, which
is a critical shortcoming for a public security application.
For example, interpreting Fig. 5 (b) we may conclude that
the fight and the meeting were localized in the same place
for some period of time, which is not true (c¢f. Fig. 5 (a)) and
may lead to inappropriate decisions.
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Figure 5: Comparison of two techniques: (a) the XCDC, (b)
the rectangle calculus

An example of the use of the XRCDC

The following example shows how the XRCDC formal-
ism, as described in (Osinski 2009), is applied within the
POLINT-112-SMS system.

Let us consider three objects located in the analysed area
(part of a stadium) represented in the active map (Fig. 6).
The information about these object is expressed in natural
language by the following English sentences: Sector A is to
the north with respect to sector B and touches it. Sector A is
to the east with respect to the soccer ground and touches it.
Sector B is to the east of the soccer ground and touches it.
We also assume that the soccer ground was chosen to be the
central point of the map.

Now suppose that a new text message is sent by an in-
former to the security system: The meeting took place in
front of sector A (between A and the soccer ground), close
to sector A. The fight started just after the meeting, to the
south with respect to the meeting place, and close to this
place. 1In the first step of the processing the phrase “in
front of” is interpreted as the relative direction relation r-
in-front, the sentence “to the south of” as the absolute direc-
tion relation r-south, the phrase “just after” as the time rela-
tion r-after and time distance r-right, and finally the “close
to” and “touching” as the distance relation r-close and r-
touch respectively. The objects are represented by their
unique identifiers, id-fight, id-meeting and id-sectorA. Then
the second step is the generation of a ts-relation structure.
We denote by dir[D1,D2](X,Y) the direction-relation ma-
trix for the projection on the (D1,D2) plane representing
the localization of X with respect to Y (e.g. for Fig. 4,
dir(B,A)=[0,1,1,0,0,1,0,0,0]). The qualitative parameters
s-dis and t-dis represent qualitative spatial and temporal dis-
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Sector A

Sector B

Figure 6: The analysed area in the projection on the soccer
ground plane
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tances.

Other elements of the ts-relation structure (in particular
the direction-relation matrix) are generated using predefined
conversion rules. In the case of the r-in-front-of relation it
is necessary to indicate the absolute direction relation be-
tween sector A and the soccer ground which is the cen-
tral point of the map. This allows us to infer the abso-
lute direction relations between the meeting place and sec-
tor A from the relative ones. In the case where informa-
tion is missing (or is not precise enough) we have to take
into account all possible situations. In the example anal-
ysed here, conversion rules describe both r-south and r-after
relations as independent and fill all the tiles in direction-
relation matrices. Finally the two following ts-relation struc-
tures are added to the system knowledge base: ts-relation(id-
meeting, id-sectorA, [0,0,0,1,0,0,0,0,0], [0,0,0,0,0,1,0,0,0],
[0,1,0,0,1,0,0,1,0], [0,1,0,0,1,0,0,1,0], [1,0,0,1,0,0,1,0,0],
[0,0,1,0,0,1,0,0,1], 3, 0), and ts-relation(id-fight, id-meeting,
[0,0,0,0,0,0,0,1,0], [0,1,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,1], [0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0], 3,
2). It is worth noticing that before any new relation is added
to the knowledge base a consistency check is performed in
order to check whether or not this relation is consistent with
the set of relations already stored in this knowledge base. If
the new relation is incompatible, the old relation will be re-
moved as we assume that in a dynamic environment a new
information (if it comes from a reliable informer) is always
to be considered as more truthful then the old one. (This is a
strong assumption which may have to be modified according
to the context.)

Now suppose the new text message comes from an-
other informer: I am in sector B. Where was the meet-
ing? Leaving aside the new information to be added into
the system knowledge (actual position of the informer),
we can interpret this message as a question about the
space relation between the two considered entities: the
fight and sector B. In this situation the get-space-relation
algorithm is applied. In the first step it looks for ts-
relation(id-meeting, id-sectorB,) or ts-relation(id-sectorB,
id-meeting,) structures. There this search fails as there
is no information of this type in the system knowledge
base. However this knowledge base contains the fol-
lowing two structures: ts-relation(id-sectorA, id-sectorB,
[0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0], [0,0,1,0,0,1,0,0,1],
[1,0,0,1,0,0,1,0,0], [0,1,0,0,1,0,0,1,0], [0,1,0,0,1,0,0,1,0], 2,
0) and ts-relation(id-meeting, id-sectorA, [0,0,0,1,0,0,0,0,0],
[0,0,0,0,0,1,0,0,0], [0,1,0,0,1,0,0,1,0], [0,1,0,0,1,0,0,1,0],
[1,0,0,1,0,0,1,0,0], [0,0,1,0,0,1,0,0,1], 3, O).

These structures can be used in the second step of the get-
space-relation algorithm performing the composition of car-
dinal direction relations. Composition is realized for both
dir[N,E] matrices in the ts-relation structure definition. As
a result we get the following direction relation matrices:
dir[N,E](id-meeting, id-sectorB) =[1, 1, 0, 0, 0, 0, 0, 0, 0],
dir[N,E](id-sectorB, id-meeting) = [0, O, 0, 0, 0, 0, O, 1, 1].
Now, using the appropriate conversion rule, these matrices
can be translated into the absolute direction relation r-north-
west. The distance relations are composed also by analysing
the dir[N,E](id-meeting, id-sectorB) matrix. As a result we
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Figure 7: The graphical interpretation of the knowledge
about the events collected in the system consists of (a) the
projection on the north-east plane, (b) the projection on the
time-north plane, (c) the projection on the time-east plane

get the relation r-far. The message received by the informer
would correspond to the following sentence: The fight took
place to the north-west and far from sector B.

Similarly we can ask for the time relation between the
fight and the meeting. In the example discussed the answer
may be found in the first step of searching as the appropri-
ate ts-relation structure is already in the database. However
the relation can be also computed using the composing al-
gorithm if necessary. In such a situation the composition
is realized for the dir[T,N] and dir[T,W] matrices in the ts-
relation structure.

Sometimes adding information about the ensuing event
may be not enough for the visualisation module. In such
a situation the visualisation module must request the exact
(absolute) location of the event. Receiving an answer (from
other system modules or from a human operator) exempts it
from reasoning. From the point of view of visualisation the
precise localization of events is necessary, otherwise visuali-
sation could display a distorted view of the situation. In case
of a lack of precise information it is necessary to adjust the
image from the visualisation module to the precision level
the system has (e.g. we can say that X is in the stadium if we
do not know in which sector it is exactly). Solutions of this
type also protect us from the situation where the get-space-
relation algorithm would not be able to find the specific rela-
tion. The system executes the find-location algorithm which
uses a predefined ordered list of objects and relations. They
determine the sequence in which objects should be searched
(first look for seats, then entrances, communication routes,
sectors, groups, people, and if all this fails choose the whole
stadium as a reference point) and which relations should
be chosen (prefer the r-in relation and small distances). In
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the example analysed, the reference point would be sector
A with the direction relation r-west and distance relation r-
close.

Analysing concurrently time and space relations can also
help us to discover deeper dependencies between objects.
For example, as we know that the fight was located very
close to the place of the meeting and started just after it, we
may assume that the fight was initiated by people attending
the meeting.

10. Conclusions

We have discussed the questions raised by the development
of a spatio-temporal module for representing and reasoning
about the events involving the participation of a large num-
ber of people (such as an international soccer match in pres-
ence of an emotional crowd) in the context of the construc-
tion of a system assisting the security personnel. We have
examined various requirements of such a construction, and
proposed a number of solutions. In particular, we have de-
signed and implemented a visualisation facility, the active
map, which involves the use of the XRCDC formalism, a
temporal extension of Region Cardinal Direction Calculus.
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Abstract

Commonsense reasoning, in particular qualitative spatial
and temporal reasoning (QSTR), provides flexible and
intuitive methods for reasoning about vague and uncertain
information including temporal duration and ordering, and
spatial orientation, topology and distance. Despite
significant theoretical advances in QSTR, there is a distinct
absence of applications that employ these methods. The
central problem is a lack of application-level standards and
metrics that developers can use to measure the effectiveness
of their QSTR applications. To address this we present a
fundamental metric called H-complexity that quantifies the
expressiveness of QSTR systems according to the number
of distinct scenario classes that can be encoded. In this
paper we show that H-complexity can be employed in a
range of powerful and practical ways that support QSTR
application development. To illustrate this, we present two
examples: calculating test coverage for validation, and
quantifying the reduction in expressiveness due to
constraints. We thereby demonstrate that H-complexity is a
useful tool for determining whether a QSTR system meets
the needs of a specific application.

Introduction

Commonsense reasoning aims to address the limitations of
purely numerical systems, by providing coarser and more
intuitive  knowledge representation and reasoning
techniques (Kuipers, 1994). The subdiscipline of
qualitative spatial and temporal reasoning (QSTR) aims to
formalise our intuitive understanding of everyday physical
relationships such as size, orientation, topology, and
distance, and temporal relation-ships such as ordering,
coincidence, and duration (Cohn and Renz, 2007). A
seminal example of QSTR is Allen’s interval calculus
(Allen, 1983) which defines a set of thirteen atomic

Copyright © 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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relations between time intervals, and an algorithm for
reasoning about networks of temporal relations, e.g. (where
* is a composition operator)
t, before 1, * t, contains t; = t; before 13
t; overlaps 1, * 1, during t; =
t; (overlaps, or during, or starts) #;

Despite significant theoretical advances, there is a
distinct absence of applications that make use of these
techniques (Dylla et al., 2006). The central problem is the
significant lack of support for adapting and integrating
existing QSTR methods with other domain specific
qualitative spatial and temporal models. Specifically, there
are no methods for assessing the quality of a QSTR system
or comparing QSTR systems to determine which one is the
most effective for solving a given problem.

Most of the existing research on QSTR analysis has
focused on proving correctness of composition
(Wolfl et al., 2007), characterising reasoning complexity
(Vilain et al., 1989) and determining tractable subsets of
well known formalisms (Nebel and Biirckert, 1995).
While it is important to know when a problem is NP
complete, reasoning complexity cannot be used by the
developer to determine whether the particular QSTR
system addresses the task at hand, how a change to the
system will impact its effectiveness, or how QSTR
application validation can be performed to ensure that the
application is fit for purpose.

To address this we present a fundamental metric called
H-complexity that quantifies the expressiveness of a given
QSTR system, in terms of the number of distinct scenario
classes that can be encoded by the system. The developer
can use expressiveness to guide application design in a
range of powerful ways, for example:

(i) comparing different QSTR systems to help determine
whether one is more suitable than the other;

(i) calculating test coverage during the validation phase
of development to quantify confidence in the
application being fit for purpose;



(iii) quantifying the reduction in expressiveness due to
constraints to assist in developing a test plan.
In this paper we derive a very simple equation for
calculating H-complexity, and we consider two
applications addressing points (ii) and (iii) above, where
we derive very simple equations and a reference table for
improved runtime efficiency. We thereby demonstrate that
our complexity metric is a flexible and effective tool for
supporting the development of QSTR applications.

The remainder of the paper is structured as follows. In
the following section we review the basic theory of QSTR
systems. We then derive H-complexity in two steps.
Firstly we define the concept of homogeneous sets as the
fundamental folding of objects into equivalence classes
permitted by the QSTR language. We then use
homogeneous sets to quantify QSTR expressiveness by
identifying a one-to-one relationship between accessible,
unique subsets and scenario classes. In the succeeding
section we derive methods for calculating homogeneous
sets in relations of any arity. We then present two methods
for employing H-complexity: calculating test coverage for
validation, and quantifying the reduction in expressiveness
due to constraints. In the final section we present the
conclusions of this paper.

Foundations of QSTR

Informally, QSTR applications model, infer, and check the
consistency of object relations in a scenario. We will
define QSTR applications in terms of model theory
(Marker, 2002; Hodges, 1997) and then define the roles of
QSTR application designs and users.

We use the notation 1 to represent the exponent
operator, xty=x". In model theoretic terms, a language L
(or vocabulary, or signature) is a finite set of relation
symbols R and arities ap for each ReR. A model M of
language L (or L-structure, or interpretation) consists of a
universe U (or domain, or underlying set) and for each
relation symbol Re R there is a set Ryyc U TaR. That is, M
provides a concrete interpretation of the symbols in L
based on the underlying set U. Finally, a scenario (or
configuration, or substructure) is a model V that can be
embedded into M, that is, an injective homomorphism
f:V—U exists such that, for each Re R with arity a,

Y Vi, Va€ V- (1,...,v)E Ry & (f(v)),....f(v,))E Ry

A QSTR application has a language L that specifies the
set of relation symbols that the designer has deemed
relevant to the task at hand. The model M of a QSTR
application is the interpretation of the relations,
implemented using constraints between the relations (what
objects must, or must not, exist in different combinations
of relations). For each relation type ReR with arity ag,
and for each tuple of arity ag, the relation either holds, does
not hold, or is not applicable for that tuple. Thus, for each
relation symbol Re R in the language, a QSTR application
model M requires three sets, Ry (holds), Ry (does not
hold) and Ry, (not applicable), with the axiom
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Axiom I. ¥V ReR - U Tag =Ry ARy ARy,

where A is symmetric difference (the set theoretic
equivalent of mutual exclusion). For brevity we will omit
the y and simply write R".

The application designer is responsible for selecting an
appropriate set of relation symbols and encoding an
appropriate set of constraints. A QSTR application user
can then construct scenarios by specifying a model V and
reasoning is used to determine whether the scenario is
valid with respect to the model M (by proving that V can
be embedded in M). Table 1 relates these roles to the
formal semantics in model theory and QSTR applications.

Often parts of the user’s scenario are indefinite or
unknown, and reasoning with the application constraints is
used to help resolve this ambiguity. For each relation
ReR, the user can place tuples (of objects from V) with
arity ag in a fourth indefinite set, Ry that is mutually
exclusive with the three corresponding definite sets. This
is a shorthand for specifying a set of models V,..., V,
each representing a possible scenario.

An example of a scenario is

V={kitchen, lounge, study}

adjacent” ={(lounge, study), (lounge, kitchen)}
adjacent’ ={(lounge, lounge), (study, lounge), ...}
adjacent ={}.

The adjacent relation can be defined as symmetric using
the constraint {(x,y) | (y,x) € adjacent'} c adjacent”. The
LHS of the constraint as evaluated in the scenario is
{(study,lounge), (kitchen,lounge)}. The RHS as evaluated
in the scenario does not contain these tuples as required by
the proper subset relation, and so reasoning moves the
offending tuples out of adjacent’ and into adjacent® thus
satisfying symmetry.

Model QOSTR Application Actor
Theory Domain
language L specification of useful
qualitative relations QSTR
model M constraints that determine app.hcatlon
based on L the interaction between the designer
relations
model V Using a QSTR application to | QSTR
based on L represent and reason about application
embedded in M | objects. user

Table 1. Comparing the domains of model theory, QSTR
applications, and the roles of QSTR application designers and
users.

Homogeneous and Definable sets

In model theory (Marker, 2002), a set X is definable in
model M if there is some formula ¢ such that
X={(vi,....v)eU" | ME@Hvy,...,vy)} (where entails =
means that the formula is true in M). Alternatively, if no
formula exists that can separate two objects, then the
objects are considered equivalent, and we say that they are
in the same homogeneous set. Let H={h,, ..., h,} be a set




of homogeneous sets, where each h;c U. By definition,
hy, ..., h, partition U, that is, they are mutually exclusive
and jointly exhaustive. A homogeneous set / is evaluated
in scenario s, s(h) c V.

All possible queries are equivalent to some union of
homogeneous sets. We define a query g to be a set of
homogeneous sets g={h,,...,h,}, and we say a query q is
executed in scenario s, s(q)= s(hyu...Us(hy).

Constraints

The model of a QSTR application is defined by constraints
between the qualitative relations. If a scenario does not
satisfy a constraint then reasoning attempts to move the
offending tuples out of indefinite sets (R”) and into one of
the definite sets (R*, R”, or R7). If offending tuples are not
indefinite then reasoning has identified a contradiction and
the scenario is inconsistent.

Let constraint ¢ = X 0 Y, where o {c,C,&,#,=,...} is a
set comparison and X, Y are set expressions that are
evaluated in scenarios. Set expressions are either sets, or
the result of set operations.

We now define the complete set of possible comparisons
from which J can be selected. Two sets LHS, RHS either
share some objects, or they do not. The degree of overlap
can be used to define all possible set relationships. Let
LHS = h,0...0h, and RHS = h...Uh, let
qrus={hy...,h,} and grys={h,,...,h,} (queries for LHS and
RHS respectively). Let

(H sets exclusively in LHS)
(H sets exclusively in RHS)
(H sets in both LHS and RHS)

q1=qius | Grus
qr= qrus ! Grus
qLr= qrLHs M qrHS

For any pair of sets LHS and RHS, the queries g;, gg, and
q:r Will evaluate to be either empty or non-empty, giving
2’=8 different basic set comparisons, as illustrated in
Table 2. In each table entry, the outer circle represents the
set of all scenarios, and three inner circles each represent a
subset of scenarios where a condition holds. The top left
circle specifies those scenarios where H sets in the query
qr are empty, s(q))=2 and so on. For example, the
constraint X = Y is satisfied in exactly those scenarios
where both ¢, (elements exclusively in X) and g (elements
exclusively in Y) evaluate to empty and g;x (elements
shared by both X and Y) is not empty. The comparison &
can consist of any disjunction of these basic set
comparisons (e.g. C is = v C), thus there are 2°~1 = 255
possible comparisons.

Basic Combinatorics

Finally, we provide some basic equations from
combinatorics that will be used in the paper. The size of
the powerset of set X is 2. The number of subsets that
contain elements from either set X or set Y is 2%V Y', the
number of subsets that contain all elements from X and not
Y is 2%/ Y', and the number of subsets that contain all
elements from X and neither ¥ nor Z is 2%/ 722",
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scenarios ) scenarios
(shaded=valid (shaded=valid
scenarios) scenarios)
s4qr)=0 slqr)=D S(qr)=0  silqr)=D
siqrr)=2 si(qr)=2
(e =
$(q)=2 siqr)=0 $(q)=2 sdqr=D
si(qLr)=2 si(qLr)=2
) Cy
§(q)=0 silqr)=3 S(q)=0 ‘siqr)=D
siqrr)=2 siqrr)=2
+
g Dy
s{qr)=0 ‘slqr)=D S(qr)=0  silqr)=D
siqrr)=2 si(qrr)=2

Table 2. Eight basic relationships between sets derived from the
overlap between H sets. Outer circles represent the set of all
scenarios, and three inner circles each represent a subset of
scenarios where a condition holds. Shaded regions represent
scenarios that satisfy the set relationship.

Equivalently, we use bit-string encodings, where the
number of unique combinations that can be represented by
a bit-string of length n is 2". The number of combinations
of two bit-strings of length n; and n, is 2""*"%. If m bits are
fixed in a bit-string of length n then the number of unique
combinations that contain the m fixed bits is 2" ™.

Table 3 gives some equations for calculating the
number of scenarios that satisfy conditions required by
constraints. For example, in each table entry the top left
circle specifies those scenarios where H sets in the query
q; are empty, s(gD:@, and the number of such scenarios is
QM 1all — pHI=lall g ynderstand this, consider a bit-string
of length n=|H|, where m=lg;| bits are fixed to ‘0’
(representing that s(g7)=<); the number of unique
combinations that this bit-string allows is 2"~ " = 2~ 4!
Scenarios where H sets in both ¢, and g are empty,
s(q)=D A s(gp)=D is 2"/ 4k R = PHGLINR (recall that,
by definition, ¢g; and gz are mutually exclusive). A
bit-string of length n=I|HI, where m=Iq, U 3RI=I 1I=lggl, bits
are fixed to ‘0" admits 2" " = 277U ynique
combinations.



Sformula scenari

(shaded=valid scenarios)
IH-gLI
olH-lg.

s(qr)=0  si(qr)=2

symmetric with

|HI-lgRI
2 q
5(qLr)=2
|HI-IgLR|
2 q
2|H|—|qL U ¢RI
symmetric with sqr)=0 slqr)=2
2|H|—|qL U gLRI
olH-lgLR L gRI siqrr)=2

2|H|—IqL U gR U gLRI

Si(q)=0 siqr)=2

si(qrr)=9

Table 3. Combinatorial formulae for calculating the number of
scenario classes that satisfy particular conditions.

H-Complexity

In this section we present the central theory of
H-complexity. H-complexity is a measure of the number
of different scenario classes that can be encoded by a given
QSTR language. It identifies the most extreme partitioning
of objects that the language allows, so that all other
practical partitioning schemes will consist of some subset
of the distinctions made in H-complexity.

Homogeneous Sets

If no possible set theoretic query exists that can separate
two objects, then the objects are considered equivalent.
This inherent limitation fundamentally folds objects into
homogeneous sets, or H sets, providing the foundation for
a measure of expressiveness or complexity. H sets
represent the maximum refinement permitted by the QSTR
language, i.e. the point where no further distinctions are
possible. Thus, H-complexity = |HI.

Assume for simplicity that all relations have an arity of 1
(i.e. they represent qualitative properties such as round or
large). If there are n relations, and each relation is
represented by four sets, then there are 4" different
combinations of these relations, i.e.
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I. R"nRy N ..NR,",
2. RFNnRYN..NR}

4" R NR, " Nn..NR,
In general,
lHl:HReR |HR| (1)

where |Hgl=|Agl for unary relations, Ay is the selection of
relation sets used by R (e.g. + and -), and [] is the
sequence product operator. We calculate H sets for
relations with higher arities in a later section.

For H sets to truly represent the maximum refinement
possible, they must be jointly exhaustive and pairwise
disjoint (JEPD) so that every object in a scenario will
appear in exactly one H set. This property is critical; if it
did not hold then further refinements could be achieved by
taking H set intersections and differences. The H sets from
Equation 1 are pairwise disjoint because, for any relation
R;, the relation’s four sets are mutually exclusive, and any
two H sets always differ by at least one R; set. They are
also jointly exhaustive because, for any relation R;, each of
its four jointly exhaustive sets is covered by some H set.

Query Complexity

A query is used to access a subset of objects in a scenario.
Query complexity is the maximum number of unique
non-empty subsets that can be accessed by some query.
We will now show that all accessible, unique subsets of
objects in a scenario can be represented as the union of
some combination of H sets.

H sets are indivisible and mutually exclusive, and so the
query that returns the smallest non-empty subset of objects
contained in an H set is the set expression of the H set
itself, e.g. R\ N R," m ... N R,". The smallest subset
containing objects from two different H sets h, h, is the
union of those two H set expressions /;Uh,. It follows that
any accessible subset of objects must be the union of some
combination of H sets. Thus query complexity is the
number of different combinations of H sets, 2!

Scenario Complexity

If two objects in a scenario can not be separated by a
query, then the objects are considered equivalent and
indistinguishable, that is, the objects are in the same H set.
If the only difference between two scenarios is the number
of indistinguishable objects in each non-empty H set, then
the scenarios are considered equivalent. This follows the
intutive understanding that qualitative models, unlike
metric systems, do not deal with numerical quantities.
Thus, a scenario equivalence class is defined by the
combination of H sets that are empty and non-empty, 2"
There is an interesting parallel between query and
scenario complexity. The number of unique, accessible,
non-empty subsets of a QSTR application is equal to the
number of distinct scenario classes that can be expressed.



An alternative interpretation is that a scenario is defined by
the combination of queries that return non-empty results,
ie. if query ¢; returns & in scenario s; and some
non-empty result in s,, then the scenarios are logically
distinct.

Calculating Homogeneous Sets

In this section we derive the equation for |Hgl admitted by a
relation R of arity ag, and then derive |HI for a QSTR
system. Once relations have an arity greater than 1 there
are an infinite number of potential H sets, because a binary
relation constitutes a total order. Thus, Equation 1 cannot
be used to compare QSTR systems with binary or higher
relations. We proceed in our analysis by representing a
scenario of binary relation R; as a graph, where objects
represent vertices and directed edges represent tuples as
illustrated in Figure 1.

R={ (a,p), * ™
(eb)} o —
R=((@a), @h), (@c), 2 Fb—u
(d.d), (d,e), (e,c)} —rd—>e i
Figure 1. Two graphs representing binary relations R; and R,.

b

A set theoretic query describes the structure of a graph and
specifies the vertex to be selected with v bound variables,

Axp A, X EF XA CCAXIEXA L AX E X

For brevity, we will omit explicitly stating these
quantifications and conditions for all further queries, and
for simplicity we do not allow the universal quantifier V.
For example, the query {x| (x;,x2)er A (x3,x2)e R} will
access b from the graph of R, in Figure 1.

Calculating |Hgl| with Arbitrary Arity

While there are an infinite number of potential graphs and
unique accessible subsets, homogeneous sets still exist that
contain indistinguishable objects. For example, regarding
the graph of R;, no query exists that can separate objects a
and ¢ (without directly referring to those objects),

{a.c}={xil (x1.x2)€R A (X3,02)€ R, }

={x3l (x1,X2)€ Ry A (x3,02)€ Ry

and the graph of R, has three H sets, accessed by the query
{xil (xp.x)€RIA (X1,02)E Ry A (X2, 43)E Ry A

(X4,X)€E Ry A (x4,X5)E Ry A (X5,03)E R,
namely {a,d} when i=1 or 4, {b,e} when i=2 or 5 and {c}
when i=3. Thus, homogeneous sets correspond to graph
symmetries or automorphisms. Given a graph of a
scenario, the number of H sets is the number of vertices
minus the number of automorphisms.

In order to make |H,| a function of QSTR systems rather
than scenarios (particular graphs), the query language must
be restricted. If the restricted language only recognises a
finite number of graphs, it will admit a finite number of H
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sets. It is then possible to quantify the complexity of a
relation independent of a particular scenario, and measure
the relative difference in expressiveness between two
QSTR systems. Two basic restrictions are to limit the
number of variables (vertices) and the number of tuples
(edges). We will consider the former case. Previously,
queries have referred to variables x; where i can be any
positive integer. The strongest restriction on the number of
variables is i<l, affording only one query, {x| (x;,x;)€ R;}.
If i<2 then the allowable tuples are (x;,x1), (x;,X2), (x2,X1),
and (x,x,). If v is the number of variables allowed in a
query, and ag is the arity of relation R (i.e. the size of the
tuples) then for each query,
number of tuples = vTag

All binary tuples of n objects in relation R; appear in
exactly one of the R; sets (holds etc.), and thus we focus on
those queries that contain all vTay tuples permitted by the
language. We refer to these as atomic queries. The
difference between two atomic queries is the combination
of R; sets in which the tuples must appear. For example,
Table 4 gives an extract of the atomic queries where v=2
and az=2. Some graphs are automorphic, e.g. in row 1, and
some graphs are isomorphic, e.g. rows 2 and 3. Initially
there are 16 graphs x 2 variables = 32 different executable
atomic queries. 4 graphs (8 queries) have pairs of
automorphic variables making 8/2 queries redundant, and
the remaining 12 graphs (24 queries) can be put into
symmetric pairs, making an additional 24/2 queries
redundant, leaving 32 — 4 — 12 = 16 unique atomic queries.
An easy way to arrive at the number of unique atomic
queries is to allow every graph, but restrict the selection to
the first variable x; (this can be viewed as fixing the
variable and rotating the edges of the graph to cover
symmetries). Thus,

number of unique atomic queries = | A" O tPles
where number of tuples = vlag. Finally, to calculate |Hgl
we must determine the smallest JEPD queries that contain
the atomic queries. Atomic queries are not JEPD when
their corresponding graphs are overlapping induced
subgraphs of the full scenario graph. For example,
consider the scenario graph in Figure 2.

a——»b £
a e<a
C—bd g

Figure 2. Graph consisting of three disconnected subgraphs.
Subgraphs {a,b} and {c.d} correspond to atomic queries, where
{e.f.g} contains both atomic queries as induced subgraphs.

If v=2 then two atomic queries are:
{211 (1 x)ER™ A (x1,1)ERT A (2. x)ER A (12, 02)€ R }={a.e
{211 (1 x)ER™ A (x1,1)ERT A (13.x))ER A (2. X0)€ R} ={c.e

}s
}.



The atomic queries are not JEPD, as vertex e appears in
both results. However, if we take all combinations of
atomic queries by intersection and difference, we can
produce a JEPD collection of H sets, hence

|H |_2number of unique atomic queries 1
rlI= —

where the number of graphs = |Ag™™ °f Wl g
summarise,

IHl=2 1AMV ag) — 1. 2)

Calculating |H| with Arbitrary Arity

The problem is now calculating |HI, the total number of H
sets across all relations when those relations can take any
arity. Previously, we only referred to one relation within a
query. Given v bound variables, queries will now take the
form,

{x; 1 query Ry, query R», ..., queryR,}

where query R; is one of the unique atomic queries for
relation R;. The number of queries permitted in this form is

latomic R, queries| X ... x latomic R, queries|.

We have shown that the number of atomic queries for R; is
lA,1TvTa,, thus

IHI = 21( latomic R; queries|
X...X
latomic R, queriesl)

= ZT( (IAleTVTClR]) X...X (IAR anVTClR n) )
=21 [ger (AglTv1ag). 3)

Using this formulation we can identify some basic
properties of expressiveness. In general, H-complexity is a
function of the number of atomic queries that the QSTR
language allows. Restricting the number of variables in a
query to v makes complexity a function of the number of
relation states, |Agl, the number of variables v, and the
relation arity. Moreover, Equation 3 specifies the relative
influence that each component has on complexity; relation
arity has the most influence, followed by the number of
variables having exponentially less influence, and finally
arity having exponentially less influence again. These
properties help to inform the developer about how changes
to each component affects expressiveness, and the relative
difference in expressiveness between two QSTR systems.

Applying H-Complexity

In this section we present two ways that H-complexity can
be employed to assist QSTR application development.

Test coverage

Application test space is defined according to system
inputs and outputs, and the system structure such as
decisions and control paths. Covering the entire, often
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infinite test space is clearly impractical and thus software
engineers employ methods that isolate key subsets such as
boundary checking, equivalence class partitioning, and
cause-effect graphs (Burnstein, 2003). Test coverage is a
standard metric in software engineering used to guide
testing. H-complexity can be used to quantify a QSTR
application’s potential test space for calculating test
coverage, as it specifies the degree of refinement permitted
by the language. Consider the following application-
specific constraint for determining apparent room colour
temperature (Schultz et al., 2009):

“If a room has at least one warm light, and does not have
lights of any other temperature, then the room has a warm
colour temperature”

This constraint may then be integrated into an existing
QSTR system that reasons about spatial arrangements of
light sources and surfaces. One formal encoding of this
constraint might be

(x| @y. light'(y) A in*(y,x) A warm™(y)) 3)
A3y’ light' (') A in' (v’ x) Awarm (v)))} € warm”.

Based on the structure of the constraint, the developer may
decide to test the class of scenarios where the LHS is not
empty dx-Jya—dy’, and where the LHS is empty
Vx - 3yady’. Based on the relations in the constraint, the
developer may decide to test all combinations of conditions
for both y and y’; noting that not all conditions are
independent (e.g. if there exists y such that ye warm” then
there must also exist y’ such that y’e warm®), this provides
a test set size of 2°. The issue is that the developer needs to
know how many tests must be executed before achieving
some level of confidence that the application is fit for
purpose.  Three test coverage metrics are

1. proportion of H sets tested, |H7| / |HI

2. proportion of relevant H sets tested, |HHl / |H,l

3. degree of tested combinations for particular clusters of H
sets (e.g. some subset H’cH tested up to all triples)

where the Hy is the set of tested homogeneous sets, and
relevant homogeneous sets H, are defined according to the
application (e.g. using probability distributions over inputs,
and weighting critical inputs that must be handled
correctly). If Hy is not precisely known, then it can be
roughly approximated if the tradeoff between the number
of tested H sets and the degree of combination testing is
known’:

a) exhaustive combination testing, log,(ITN)=IHA,
b) k combinations, | (k!-IT)" + k/2| ~IH,1, and
¢) up to k combinations, |_(k!-|TI)”kJ =|Hql.

Continuing with the case study, given A={+,—}, v=2 and
a=2, the in relation yields |H;,|=2 6—1, and together light
and warm yield IHW,,,,I-IH,,“E,;,,I:ZZ. Thus, the potential test
space is intractable, i.e. applying Equation2 gives

% Formulae are derived by rearranging the standard combination formula,
2Ci=n!/ (k!(n—k)!) where n=IT1 and identifying the dominate terms.



21(2'%-2%) containing ~2.6:10° types of distinction.
However, this space includes an exhaustive enumeration of
tests that violate basic properties. We can therefore focus
the potential test space, with respect to the rule at hand, by
incorporating the following restrictions:

® inis neither reflexive nor symmetric

® no object is ever in a light

Rather than exhaustively testing these basic constraints in
every rule, the developer may exercise those properties in
isolation (e.g. testing when in" erroneously contains a pair
of symmetric tuples) and then assume they hold when
testing other rules. The first constraint allows three
queries,

gi={x| (x,y)ein* A (yx)ein”},
g={x| (x,y)ein” A (y,x)ein’}, and
g={x1 (x,y)ein” A (yx)ein },

giving |H,|=2’-1. The second constraint states that for all
scenarios, g, M light'=D, hence H sets that contain this
query can be removed. 23! sets in H,, intersect with ¢,
giving |H;, wit g2l 1H ignes 1 | = 22.1.2 = 8. Therefore, the
relevant number of homogeneous sets is [|Hyl =
[H il HH i gp 1 H gl — 8 = (2*-1)-22 — 8 = 20. Recall that in
our example above, the developer has chosen exhaustive
combination testing of selected relevant components
IT=2%, giving |H=log,(IT)=8. Test coverage results are

1. IHA/HI = 8/(2.6:10°) = 0%

2. IHNH I/ |Hyl= 8/20 = 40%

3. all combinations k=1...IH7l of the cluster Hy are tested,
and no other clusters are tested at all.

Firstly note that a few key restrictions (particularly the
number of tuples in a query) rapidly focus the test space.
Secondly it is clear that the majority of the relevant test
space is completely untested. The developer can now
identify the untested distinctions and decide whether
further tests are required.

Constraints and Expressiveness

As we observed in the previous section, a designer can
isolate scenario classes by encoding constraints. This is an
effective method for improving testing efficiency by
isolating and independently testing particular model
fragments (to  avoid  combinatorial  explosion).
H-complexity can be used to measure the number of
scenario classes that satisfy a collection of constraints, thus
allowing a designer to quantify the reduction in the test
suite.

Consider a simple system with two unary relations, R,
and R,, A={+,~}, and a constraint R,"cR,". From
Equation 1 we have |Hl=4 giving 2* unique scenario
classes, but not all of them will satisfy the constraint. To
determine the set of valid scenario classes, the constraint is
translated into a union of H sets.

Let hy=(R;"N Ry"), hy=(R"M Ry"), hs=(R{ "M Ry"), hy=(R M Ry);

R1+: hl | h2

R2+: hl | h3
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Therefore,
R1+gR2+ = hl () hzg hl () h3
=h,C hy ...remove h, from both sides

So a scenario is only valid if h, € h;, but by definition
homogeneous sets are mutually exclusive, i, N hy = &. It
follows that the only valid scenarios are those where
h,=J. Given n constraints of the form LHS;  RHS;,
where LHS; = h;,\0...Uh;, and RHS; = hU...Uh;, and let
qri={ i shie} [ { Ry, hi;} (H sets exclusively in LHS).
The only valid scenarios are those where every LHS; is
empty, s(g;)=9, thus (refer to the previous section “Basic
Combinatorics”)

Ivalid scenarios| = 2T(IH — lgr1 ... .U qpl).
% of valid scenarios
= |valid scenarios| / lall scenarios|
=2T(H —lgz, U...U gD/ 2TIH
= ZT(_ Iqu U...U anl).

We will derive a function Or for calculating valid
scenarios for any type of constraint. Let reference Table 4
accept a constraint and return the appropriate formula for
calculating valid scenarios. Note that each table entry
takes the form

a2+ ... +a2™"

where each term j=0...n has a sign g€ {1,-1} and an
integer exponent e;. Let ferm map Oy be a map that collects
the sign and size of the exponent from each term in this
series. That is, Or takes a constraint ¢; and returns a list
{(aqo, eo), ..., (a,, e,)} such that for each tuple (a;, e;) there
exists some term ...+ a2 +... in the Table 4 entry for c;.

We can now recursively define the function @y that
accurately calculates the term information from n
constraints, for i=2...n,

Or(c) = {(a, f(X)) | (a, X) € Or(c))} (3.1)
Or(c;)) =0r(ci) X O1(cy) (3.2)

such that, given (a,, X) € Or(c;) and (a,, Y) € O1(c),
(ax, X) X (ay, )=(aa,, g(X, f(Y) )). The function f(X)
determines the information about the exponent that is used,
and g(X, Y) determines how the exponent information of
different terms should be combined. We evaluate the
terms using the formula (where f~ !is the inverse of f)

% valid scenarios = 2. a; 2T- If_l(ej)l.

For example, let two constraints be
Cc1= I’ll thUh3:h3Uh4Uh5
= hg Uh; Chy UhyU hg.

qiL="{hi, o}, qir = {hs, hs}, qr = {h3}
g2 = {he}, G2z = {h1, hg}, qorr = {h7}

( 19 {hl’ hz’ h49 hS})’
(_19 {hl’ hz’ h39 h49 hS}) }



Or(c2) = { s {he),

> {h1, he, hs})

> {he h7})

, {hy, he, hy, hg}), Jorc

~ A~~~
—

( 13 {hlv h67 hS})y
(=1, {h, he, hs, hs}) ... for=

Let f(X)=X and g(X, Y)=X U Y (see Table 5).
O:(c1) =0r(cy)
Or(c2) = 0r(co) X Br(c))
={(19 {hG})x( 1’ {hl’ hz’ h4’ hS})’
(17 {h(,}) X ( - 17 {hly h23 h37 h47 hS})y

(_19 {hly h(n h79 hs}) X
(_19 {hl’ hz’ h39 h49 hS}),
={( 19 {hl’ hz’ h49 hS’ h6})’
1
( 17 {hl? th h39 h49 hSy h(n h73 hs}) }'

set scenarios
comparison | (shaded=valid scenarios)

formula

c -laLl
—lgL U gRI
. Sap=0 saw=2\ | —2
symmetric _ 2—IqL U gLR
with ~
+2 lgL U gR U gLRI
D
A siqLr)=2
= 2—|qL U ¢RI
—lgL U gR U gLRI
. s(q=2 siqr=9 -2
symmetric
with
)
siqLr)=2
Sz
=g 2—IqL U gR U gLRI
Silq=0  silqr=2
siqLr)=2
7 1
_platl
_ 2—IqRI
s(qu=0 siqr)=2 B 2—|qLR|
+ 2—IqL U ¢RI
—lgL U gLRI
siqr)=2 +2 | |
+ 2— gR U gLR|
_ 2—IqL U gR U gLRI

Table 4. Formulae for calculating the number of scenario classes
that satisfy particular set comparisons used in constraints.
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To avoid actually identifying and testing H sets (which is
an extremely resource intensive process due to their
enormous quantity) we can calculate bounds by assuming
maximum and minimum overlap between the constraint
queries. Lower and upper bounds are calculated by
changing the definition of the function f, summarised in
Table 5.

result { error
tolerance (&)
exact X XuY lg(X, V)< a
lower bound X+Y
X1 <
upper bound max(X, Y) gX.N=a

Table 5. Alternative functions used in equations 3.1 and 3.2 for
calculating exact, lower and upper bounds of the number of
scenario classes that satisfy a set of constraints.

The lower bound of % valid scenarios occurs when no
constraints share any H sets, and is calculated by summing
exponents g(X, ¥) = X + Y. The upper bound occurs when
every query is an improper subset of some query, and is
calculated by taking the maximum exponent, g(X, Y) =
max(X, Y).

Finally, we can vastly improve performance by pruning
a term once its exponent has exceeded some threshold, c.
As the exponents grow, the size of the term quickly
becomes negligible, i.e. lim,_,.. 27 = 0. The threshold «is
a function of the required error tolerance € and the number
of terms m = 2y, 101(c)),

a= |—10g2 (m/le)l,

derived as follows. The sum of all removed terms (where
the magnitude of the exponent exceeds some threshold @)
must be less than or equal to the given error tolerance,

€ >m2™“

elm =277
e2%m >1
2% >mle
a >log, (m/e)

For example, an application has 50 constraints and we
want the error to be within 0.01%. The number of terms m
depends on the constraint relations, but for this example on
average let each constraint have 6 terms, giving
m =50 X 6 = 300 terms. Therefore,

a =[log, (300/0.01) ]

=[log, (30000)1
a =15

Conclusions

In this paper we presented the H-complexity metric for
analysing QSTR systems, with the aim of supporting the
design and evaluation of QSTR applications.
H-complexity measures the expressiveness of a QSTR
system according to the number of distinct scenario classes
that can be encoded by the system. Specifically, we



derived H-complexity by firstly defining the concept of
homogeneous sets as the fundamental folding of objects
into equivalence classes permitted by the QSTR language.
We then used homogeneous sets to quantify complexity by
identifying a one-to-one relationship between accessible,
unique subsets and scenario classes. We have shown that
H-complexity of a relation can be quantified independently
of a particular scenario by applying restrictions to the
query language. This enables a developer to measure the
relative difference in expressiveness between two QSTR
systems that contain relations that admit an infinite number
of potential homogeneous sets. Furthermore, we have
shown that relation arity and the number of query variables
significantly dominate expressiveness. This is useful in
determining the relative difference in expressiveness
between two QSTR systems, which can be used by a
developer to guide QSTR application design. Finally, we
presented two examples which illustrate how H-complexity
can be employed to support QSTR application
development, firstly, to calculate the potential test space
for determining test coverage, and secondly to quantify the
reduction in expressiveness due to constraints. These
examples demonstrate that our complexity metric is a
versatile and effective tool for supporting the development
of QSTR applications.
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Abstract

The work takes static spatial configurations defined by
quantitative, graphical data like the positions and
orientations of nature-related objects and infers basic, high-
level, pragmatic meaning of the scenario from a small set of
semantic actions; e.g., the wolves are chasing the sheep. It
uses an inheritance-based knowledge base to define
contextually appropriate, case-based roles, and geometric
constraint satisfaction to recognize spatial dependencies.
This successful pilot study elicits semantic features of
interest for follow-on investigation. It uses a quantitative
survey methodology to compare the performance of the
system against human subjects based on the standard
information-retrieval measures of precision and recall.

Introduction

A static spatial configuration, such as in Figure 1, contains
low-level, quantitative knowledge about its objects and
their positions and orientations. These details are sufficient
to render the image, but they do not directly provide any
insight into the higher-level composition of the scene,
namely what the objects might be doing individually and
collectively, and why. For example, the wolves are
arguably chasing the sheep.

Figure 1: Sample Configuration

Copyright © 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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The goal of this work is to infer from a small set of
spatially relevant semantic actions the superficial
pragmatics characterizing a variety of simple predator-prey
scenarios with wolves, sheep, and several supporting
objects. It uses an inheritance-based knowledge base of
concepts, attributes, and declarative rules to define the
contextually appropriate spatial interpretation of many
contexts. The underlying reasoning mechanism is non-
deductive geometric constraint satisfaction.

This paper addresses a pilot study to determine the
feasibility of follow-on work and to discover general
semantic features it could investigate. It was formally
evaluated through a quantitative survey methodology that
compared the computer performance against human
performance. Specifically, it used the standard measures of
precision and recall from the field in information retrieval.

Related Work

This work extends the base system by Tappan (2004a,
2004b, 2008b), which generates and renders configurations
from natural-language descriptions, and Tappan (2008a),
which infers spatial relations from existing configurations.
The approach to inferring spatial knowledge loosely draws
upon other work by Neumann (1989), Walter et al. (1998),
Koller et al. (1992), and Tsotsos (1985) for scene
interpretation. Tversky (2000) covers in comprehensive
detail many of the spatial issues that complicate the
problem. Several works (Herskovits 1986; Claus et al.
1988; and Olivier and Tsujii 1994), in particular, form the
basis for defining and interpreting spatial frames of
reference. Most early approaches to spatial analysis
adopted purely geometric solutions and did not take
advantage of spatial knowledge relevant to the objects (Xu
2002; Yamada 1993). More recent work, especially in
Geographic Information Systems, attempts to account for
such contextual information (Peters and Shrobe 2003;
Davis 1990; Egenhofer and Franzosa 1991; Frank 1992;
Frank 1996; Hernandez et al. 1995; Randell et al. 1992).
This work follows the latter approach.  Additional
inspiration derives from recent work in spatial-intent
recognition, case-based plan recognition, and recognition
of natural scene categories (Kiefer and Schlieder 2007,
Cheng and Thawonmas 2004; Lazebnik et al. 2006).



Methodology

For space reasons, the description of the system and the
methodology of the study running on it are intertwined.

Spatial Configurations

A spatial configuration consists of objects in a static, two-
dimensional, tabletop zoo environment. The system
currently supports over 120 non-articulated objects, mostly
animals and plants, selected because they exhibit great
variety in their spatial characteristics and interpretations.
The static aspect eliminates the effects of movement, time
dependencies, and the frame problem, among others, which
are indeed relevant to this work, but beyond its scope
(Adorni 1984; Sowa 1991; Srihari 1994; Coyne and Sproat
2001).

The underlying representation of a configuration is a
simple semantic network, which is particularly suited to
this task for three reasons (Sowa 1991). First, its primary
components, nodes and directional arcs, map directly to the
objects, properties, and relations in a configuration. For
example, Figure 2 is a semantic network that describes a
wolf looking north at a sheep a little northeast of it.
Second, as a straightforward computational data structure,
standard graph algorithms can operate on it natively.
Third, as a well-studied and commonly used formalism for
artificial intelligence, it facilitates transferring knowledge
representations to and from other applications (Russell and
Norvig 1995; Sowa 2000).

13 position positio%
[ wolf } [ sheep ]

m orientation

Figure 2: Semantic Network

o
orientation L

The semantic networks derive from two sources. The
first is manual specification of where the objects are and
are facing. This approach is necessary to guarantee
adequate coverage of particular, nuanced scenarios to test,
but it is tedious for large data sets. The second source is
automated scenes derived from rudimentary natural-
language descriptions. It is described in detail in Tappan
(2004a). The basis of its input is small, descriptive
statements, such as:'

There are two wolves and four sheep. The wolves are south
of the sheep, near each other, facing the sheep, and
midrange from the sheep. The sheep are near each other
and facing away from the wolves.

Figure 1 renders one possible interpretation. Any number
can be generated stochastically, which greatly reduces the
amount of time needed to create tests.

1 Paraphrased somewhat for brevity and easier reading. The parser does
not actually support plural nouns, irregular plurals, or comma-delimited
clauses.
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Annotation

A total of 20 manual and automated configurations were
tagged by humans to indicate their plausible spatial
interpretations; e.g., wolves chasing sheep. Open-ended
interpretation is not the goal, so the set of tags is limited to
the following perceived actions. More than one is possible
per configuration.

Unary actions involve only one active object type, such
as wolves. Other object types may be present, but they
play a passive role. Each tag (in monospace font) is
characterized in English here; the actual formalism of their
definition will be covered shortly. The only unary actions
currently supported are simple, collective sheep behavior:

migrate sheep grouped and oriented similarly
graze sheep grouped and oriented dissimilarly
drink sheep positioned around (passive) water object

like pond, lake, or pool

Binary actions involve two active object types. The first
group reflects tactical enclosure interpretations:

flank sheep grouped; 3+ wolves at base and to either
side of group, likely facing it

sheep grouped; 3+ wolves around perimeter of
group, likely facing it

surround

The next group reflects linear attack interpretations:

conceal (passive) view-blocking object, like tree or

rock, between wolf and sheep; wolf facing
sheep, near and likely at edge of view-
blocking object

stalk sheep facing away from wolf; wolf facing
sheep, far from sheep

chase sheep facing away from wolf; wolf facing
sheep, close to sheep

The final group reflects situational awareness:

aware at least one sheep facing wolf

unaware no sheep facing wolf

anticipate all sheep facing wolf

There is also an unknown tag for scenarios that cannot be
assessed as any of the above.

Tagging used a straightforward survey methodology: 9
computer-science undergraduates each annotated the 20
configurations with any combination of these tags. The
images were available online, in color, from three
consistent, fixed vantage points. For this pilot study, the
surveys were not anonymous.

Manual Scenario Extraction

This initial tagging serves as manual training data to
extract common spatial semantic features between similar
configurations. To be effective, there must be reasonable



agreement between taggers on the interpretations. A
formal statistical measure like Kappa correlation is
commonly used to measure intercoder reliability (Fleiss
1971). However, for simplicity, and to align with parallel
work (in progress) that tries to weight the various choices,
this work calculates a straightforward percentage based on
the number of participants who selected a tag. This
consensus-based approach stipulates that a tag with
agreement below an empirically determined threshold of
65% is discarded as too ambiguous and therefore probably
not computable.

Analysis of the discards suggests that disagreement is
due primarily to two factors. One is the lack of articulation
in the objects. For example, the states of sitting, standing,
walking, running, and even sleeping all appear the same,
but they can have profoundly different effects on the
overall interpretation. The other is the lack of temporal
cues in a single snapshot of a dynamic scene. For
example, a wolf facing away from a sheep could be
walking away, or it could be merely turning around.

The goal of scenario extraction is to characterize the
kinds of details that contribute to different interpretations.
They are informally organized into three categories.

Constraint Satisfaction The underlying reasoning form-
alism, to be discussed shortly, uses geometric constraint
satisfaction. Some features of interest map directly to it:

* visibility: can the wolf see the sheep, based on field of
view, range, and visual acuity (possible degradation over
range)?

* accessibility: can the wolf get to the sheep it sees?

* boundary conditions: when do states apply and not
apply, and what kind of transition is there between the
two? For example, is going from not visible to visible
abrupt or smooth?

* scale and range: behavior may be based on size or
scope; e.g., wolves far from sheep may be more cautious
than those close to them, so as not to alert the sheep.

Behavioral Roles High-level interpretation of objects in
concert requires an understanding of their case-based roles
(Turner 1998; Cheng and Thawonmas 2004):

* disabler: an object that hinders an interpretation; e.g.,
an uncrossable stream between the wolf and the sheep.

* enabler: an object that helps an interpretation; e.g., a
bridge over the stream, or a tree for concealment.

* neutral: an object that either party can use, but it favors
neither; e.g., a wall for hiding.

* inert: an object that plays no discernible role; e.g.,
clouds.

* outward action: what an object can and cannot do to
other objects; e.g., a wolf can attack sheep but cannot
attack more than one simultaneously.
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* inward action: what an object can and cannot have done
to it by other objects; e.g., sheep can be attacked by
more than one wolf simultaneously, but not by another
sheep.

Superficial Planning There is not enough information to
do substantial planning currently, but some elements seem
promising:

* necessary and sufficient conditions: how objects initiate
the trajectory for a chain of events; e.g., a wolf shows
up, then the sheep flee. They do not flee without the
wolf. Thus, to tag a configuration without a wolf as
chase makes no sense.

* utility: what the objects value; e.g., a wolf “wins” by
killing sheep, and sheep “win” by not being killed by
wolves.

* Individual vs. collective outcomes: how interpretations
differ according to scope; e.g., killing one sheep is bad
for the individual, but it may allow others to escape,
which is good for the collective.

Knowledge-Base Augmentation

This informal characterization of semantic features is not
adequate for an automated computational approach. The
algorithm needs to be able to infer substantial unstated
details about objects from commonsense background
knowledge. A knowledge base provides this support.

Existing Knowledge Base The system that this work
extends generates a set of plausible images from a
restricted class of English sentences describing zoo-related
scenes. It employs an inheritance-based, declarative
knowledge base of over 120 physical concepts, each of
which either inherits its attributes and rules for spatial
interpretation from its ancestors, or it defines/overrides
them itself. Figure 3 is a highly simplified abstraction,
which Tappan (2004a) formally defines in detail.

(HERBIVORE] (CARNIVORE]

f f

(SHEEP) (cANINE]

Figure 3: Simplified Knowledge Base

An attribute defines whether a concept exhibits a
particular spatial behavior; e.g., whether a concept has a
canonical front, which generally corresponds to its having
a face or eyes. As objects and concepts are not articulated,
any head is always fixed in line with the orientation of the
body. This simplification eliminates the need to determine



the configuration of body parts; e.g., the body of the dog is
oriented north, but it is looking east.

A rule specifies when a particular spatial relation, like
near, applies from one object to another. It uses a
formalism of geometric fields that describe a collection of
cells in a two-dimensional, top-view, polar projection
centered around the object (Yamada et al. 1992; Yamada
1993; Gapp 1994; Olivier and Tsujii 1994; Freska 1992).
Experimentation suggests that 32 sectors and 100 rings
similar to Figure 4 are sufficient for the current domain of
concepts and relations. Each cell defines a small subregion
of the projection that can be conditionally inspected for the
presence of other objects.

TS
M
R
A\

Figure 4: Available Fields

Any combination of selected cells among the 3,200
available is valid, but in practice, only variations of two
types define all spatial relations: wedges for position and
orientation relations, and rings for distance relations.
Figures 5a and 5b show respective examples of the
relations front-of and far-from for object c, which is
facing the direction of the arrows.

Figure 5: Sample Wedge and Ring Fields

Each concept in the knowledge base has access to the
attributes and rules for its spatial interpretation. These
rules define the 42 distance, orientation, and position
relations in Tables 1 through 3, respectively. For space
reasons, Tables 2 and 3 omit 35 other relations prefixed
with direct, which specifies a narrower interpretation
with the same general meaning; e.g., direct-front-of
would fan out less to the sides. The interpretation of
appropriateness depends on certain ad hoc generalities of
the concept. For example, the relation near is closer (in
absolute terms) for a mouse than it is for an elephant due to
their differences in magnitude (Hernandez 1994; Olivier
and Tsujii 1994; Stevens and Coupe 1978).
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Many relations in Table 3 have both local and global
forms, which respectively apply in the intrinsic (or object-
centered) and deictic (or viewer-centered) frames of
reference (Herskovits 1986). For example, the intrinsic
relationship in front of the dog specifies a region outward
from the dog’s face, but the deictic relationship in front of
the tree specifies a region outward from the tree to the
position of the viewer, which is not stated.

inside midrange-from
outside far-from
adjacent-to at-fringe-of
near

Table 1: Distance Relations

facing facing-west

facing-away-from facing-northeast
facing-north facing-northwest
facing-south facing-southeast

facing-east facing-southwest

Table 2: Primary Orientation Relations

local-front-of
local-back-of
local-left-of
local-right-of
local-front-left-of north-of
local-front-right-of south-of
local-back-left-of
local-back-right-of
global-front-of
global-back-of
global-left-of
global-right-of
global-front-left-of

global-front-right-of
global-back-left-of
global-back-right-of
between

east-of
west-of
northeast-of
northwest-of
southeast-of
southwest-of

Table 3: Primary Position Relations

Each concept has access to its contextually applicable
rules that map fields to relations. For example, this
(slightly abridged) rule returns the set of all objects that
have an object (instance) of this concept in their near
field:

(RELATION near
(FIELD-MUST-CONTAIN ?b.field-near ?self))

This rule returns the set of all objects that are in the front
field of this object, if it has a canonical front:

(RELATION facing
(TRUE ?self.has-canonical-front
(FIELD-MUST-CONTAIN ?self.field-front ?b)))

And this rule,

(RELATION in-back-of

(OR
(TRUE ?b.has-canonical-front
(FIELD-MUST-CONTAIN ?b.field-back ?self))
(FALSE ?b.has-canonical-front
(FIELD-MUST-CONTAIN ?b.field-north ?self))))



returns the set of all objects subject to the following
criteria:

 the other object has a canonical front (e.g., WOLF) and
this object is in its back field; or,

* the other object does not have a canonical front (e.g.,
TREE) and this object is in its north field.

These conditional cases account for the deictic and
extrinsic frames of reference, respectively (Tappan 2004b;
Herskovits 1986). The latter extends the intrinsic frame by
fixing the position of the viewer; e.g., in front of the tree
(as seen from the north).

The final element of this stage combines the explicitly
stated knowledge from the semantic network with the
implicitly inferred background knowledge from the
knowledge base. Figure 6 depicts a simplified example of
this process: objects wolf and tree link to concepts SHEEP
and WOLF, respectively. Thus, wolf has access to the rules
about itself and, through inheritance, also to its ancestor
concepts CANINE, CARNIVORE, ANIMAL, and THING. The
same process holds for sheep. It is important to note the
distinction between an object, which is a unique instance in
the configuration, and a concept, which is a shared set of
attributes and rules that all instances of it must have in
common.  For clarity, this distinction is rendered
typographically through italics and capitalized monotype
font, respectively.

[HERé‘;VORE] (CARNIVORE]
t t

] SHE‘E;?} (canINE]

Figure 6: Semantic Network Linked to Knowledge Base

Extended Knowledge Base The knowledge base in the
base version of this system targets how one object relates
to another on an individual, one-to-one basis. The
scenarios to be classified in this work are on a collective
basis, which requires one-to-many, many-to-one, and
many-to-many relationships. For some semantic features,
this extension requires merely adding additional spatial
relations. For example, this rule,

(RELATION migrating-with

(AND
(IS-CONCEPT ?self collective-animal)
(IS-CONCEPT <?b collective-animal)
(FIELD-MUST-CONTAIN
(RANGE ?b field-adjacent field-midrange) ?self)
(FIELD-MUST-CONTAIN
(RANGE ?self field-adjacent field-midrange) ?b)
(SIMILARITY ?b.azimuth ?self.azimuth 0.7)))
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returns the set of all objects subject to the following
criteria:

* this object and the other object are both descendants of
COLLECTIVE-ANIMAL in the knowledge base; and,

* this object and the other object are in any range field
from adjacent to midrange of each other; and,

* this object and the other object are facing generally in
the same direction.

Defining collective concepts is also straightforward:
through the existing restricted multiple inheritance (no
conflicts allowed), SHEEP and WOLF in Figures 3 and 6
now additionally inherit from the new COLLECTIVE-
ANIMAL, which maintains this new, shared migrating-
with rule.

Not all the manually identified semantic features would
be so straightforward to incorporate, of course. For the 12
tags in this study, however, extending the knowledge base
is relatively easy.

Automatic Classification

The knowledge base provides the contextually appropriate,
computable background knowledge to identify which of its
relations apply between which objects in a configuration.
This geometric inference process is documented throughly
in Tappan (2004b, 2008a). It generates a substantial
number of inferences, which correspond to unstated spatial
dependencies. For example, Figure 7 shows experimental
results from Tappan (2008a) for related work, where this
number ranged from 27 inferences for 3 objects to 602 for
10 objects.

600
500
400
300
200

Derived Relations

100

0
3 4 5 6 7 8 9 10

Objects
Figure 7: Inferred Relations

Defining relations for pragmatic spatial features is an
iterative, experimental process. For each change, the
original 20 tagged configurations were run against the
updated knowledge base to determine the effectiveness at
inferring any of the tags. If these results unsatisfactorily
deviated from expectation, as defined in the next section,
the knowledge base was manually tweaked, and the
process was repeated. This approach constitutes
supervised learning in machine-learning terms (Harter and



Hert 1997). The goal is to tailor the knowledge base by
hand to perform well on data it has already seen, referred
to as the training set.

Experiments

Distilling the essence of semantic features through manual
training is admittedly subjective, arbitrary, and ad hoc.
The true test of effectiveness is actually in how well the
approach performs on data it has never seen, referred to as
the fest set. To this end, an additional 20 configurations
were generated as described earlier.

These new configurations were combined with the
original ones and randomly shuffled. The original
participants then tagged this set as described earlier. The
time between the original and subsequent tagging was
three weeks to control for any residual familiarity with the
originals.

Results and Discussion

For both the training and test sets, performance was
evaluated according to the agreement between the results
from the human taggers and the computational approach.
For this approach to be effective, variation in the human
performance must be considered because not every human
tagged the same configurations the same way. Thus, if
humans cannot determine a consistent answer, it might be
unfair to expect a computer to do so.

Controlling for human inconsistency was a two-
dimensional process. Lateral agreement, which was
already discussed for the training set, is defined as how
closely the tags for each configuration within either set
agree among all the participants.

Longitudinal agreement is defined as how consistent
each participant was between the original and subsequent
tagging of the same configurations. This measure was
intended to verify that the participants—students who
knew there are no true right or wrong answers—took the
task seriously and gave consistent answers. It also
moderately controlled for possible survey fatigue, where
participants grow tired of answering questions and put less
effort into later ones (Porter et al. 2004). The system does
not use this measure, but it appears to be helpful in
informally interpreting the salience of the results.

The tags produced by the computational approach and
the human participants can agree or disagree in four ways,
as indicated in Table 4.

Type Computer Human
true positive  (TP) present present
true negative (TN) absent absent
false positive (FP) present absent
false negative (FN) absent present

Table 4: Possible Tag Agreements
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The ultimate performance measure is based on the standard
approach for information retrieval (Harter and Hert 1997):

* precision is the accuracy or relevance of the classifica-
tions; i.e., the probability that a configuration will be
classified with a correct tag. It is defined as the number
of true positives divided by the sum of the true and false
positives.

* recall is the completeness or coverage of the classifica-
tions; i.e., the probability that all the relevant configura-
tions will be found given a tag. It is defined as the
number of true positives divided by the sum of the true
positives and false negatives.

Training Set

As Table 5 shows, overall agreement on the 20 configura-
tions in the training set is perfect: 100% precision and
100% recall for all tags. These results are not surprising,
however, because the knowledge base was painstakingly
tailored to match these configurations precisely. This
decision may have actually overfitted the data and
degraded the results of the subsequent test set (Tetko et al.
1995).

Tag TP TN FP FN Precision Recall
migrate 3 17 0 0 1.0 1.0
graze 4 16 0 0 1.0 1.0
drink 2 18 0 0 1.0 1.0
flank 3 17 0 0 1.0 1.0
surround 5 15 0 0 1.0 1.0
conceal 6 14 0 0 1.0 1.0
stalk 7 13 0 0 1.0 1.0
chase 13 7 0 0 1.0 1.0
aware 11 9 0 0 1.0 1.0
unaware 5 15 0 0 1.0 1.0
anticipate 2 18 0 0 1.0 1.0
unknown 0 20 0 0 n/a n/a
sum 61 179 0 0
average 1.0 1.0

Table 5: Training Results
Test Set

The test set evaluates the computational performance on
the unseen configurations. The previously seen configura-
tions were removed because there is no point in retesting
them, and they would skew the results in the positive
direction. As Table 6 shows, overall agreement on the 20
remaining new configurations in the test set is respectable:
70% precision and 70% recall. Although these results are
not statistically significant given the small sample size,
they do suggest that this proof-of-concept work has
promise.



Tag TP TN FP FN Precision Recall
migrate 4 13 2 1 0.7 0.8
graze 4 14 1 1 0.8 0.8
drink 3 16 0 1 1.0 0.8
flank 4 11 2 3 0.7 0.6
surround 4 9 2 5 0.7 0.4
conceal 3 12 3 2 0.5 0.6
stalk 3 11 2 4 0.6 0.4
chase 9 9 1 1 0.9 0.9
aware 10 8 1 1 0.9 0.9
unaware 11 5 2 2 0.8 0.8
anticipate 3 4 8 5 0.3 0.4
unknown 0 20 O 0 n/a n/a
sum 58 132 24 26
average 07 07

Table 6: Test Results
Discussion

Even for this small tag set, many independent and
dependent relationships are apparent. Some tags are
disjoint. For example, graze and migrate are not
compatible given the small number of sheep. For a larger
number, it is conceivable that one subgroup could be
grazing while the other is migrating, but the configurations
were not set up this way. Other tags may have overlaps.
For example, graze and drink are compatible, as are
flank and surround. Others may exhibit logical
entailment. For example, stalk implies that the wolves
are aware of the sheep, but the sheep are unaware of the
wolves. Some have real-world semantic inconsistencies.
For example, chase implies that each group should be
aware of the other, but aware requires at least one sheep to
be facing the wolves. In practice, fleeing sheep will not
behave this way. Feature rules based on orientation appear
to be more effective than those based on range, possibly
because it is difficult to specify how distance affects their
applicability. Finally, follow-up analysis with the parti-
cipants suggests that false positives appear to be more
plausible than false negatives, perhaps because it may be
easier to justify the possible presence of a semantic action
than to claim its complete absence.

Future Work

This pilot study is intended to direct a more detailed study.
A number of extensions are under consideration:

* Incorporating a stronger statistical definition of agree-
ment.

* Weighting the computational results to reflect the human
results so multiple interpretations can be ranked by
preference.

* Including some degree of articulation in the objects.
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* Supporting more than one configuration snapshot to
provide some degree of temporal progression in a
scenario.

* Adding more breadth and depth to the objects and
relations under study.

* Considering deeper plan extraction, namely strategic,
tactical, and operational elements, for a top-down
decomposition from what the objects are doing to how
they are doing it (Azarewicz et al. 1989).

* Running simulations to determine empirical values for
some of the ad hoc choices in the knowledge base
(Tappan 2008c).

* Performing sensitivity analysis to determine how certain
properties transition from one value to another.

* Allowing the participants to control the vantage points
dynamically. The rendering engine allows complete
control over the perspective, but this functionality is not
available online. It may facilitate additional interpreta-
tions.

Conclusion

This pilot study considered the feasibility of adding higher-
level, collective pragmatic analysis of objects to the
existing lower-level, individual analysis in the base system.
It showed respectable results within a tightly confined
environment. These results are not statistically significant
due to the small sample size, but they are promising. A full
study would undoubtedly uncover many more implicit
semantic and pragmatic dependencies.

References

Adorni, G., Di Manzo, M., and Giunchiglia, F. 1984. Nat-
ural Language Driven Image Generation. In Proceedings of
COLING-84, 495-500. Stanford, CA.

Azarewicz, J., Fala, G., and Heithecker, C. 1989. Tem-
plate-based multi-agent plan recognition for tactical situ-
ation assessment. In Proceedings of Fifth Conference on
Artificial Intelligence Applications, 247-254.

Cheng, D. and Thawonmas, R. 2004. Case-based plan re-
cognition for real-time strategy games. In Proceedings of
5th Game-On International Conference, 36-40.

Claus, B.; Eyferth, L.; Gips, C.; Hornig, R.; Schmid, U.;
Wiebrock. S.; and Wysotzki, F. 1988. Reference Frames for
Spatial Inference in Text Understanding. In Freksa, C.,
Habel, C., and Wender, K., eds., Spatial Cognition—An in-
terdisciplinary approach to representing and processing
spatial knowledge, 214-226.

Coyne, B. and Sproat, R. 2001. WordsEye: An Automatic
Text-to-Scene Conversion System. In Proceedings of SIG-
GRAPH-01, 487-496, Los Angeles, CA.



Davis, E. 1990. Representations of Commonsense Know-
ledge. San Mateo, CA: Morgan Kaufmann.

Egenhofer, M. and Franzosa, R. 1991. Point-Set Topologic-
al Spatial Relations. International Journal of Geographic-
al Information Systems 5(2): 161-174.

Fleiss, J. 1971. Measuring nominal scale agreement among
many raters. Psychological Bulletin 76(5): 378-382.

Frank, A. 1992. Qualitative Reasoning about Distances and
Directions in Geographic Space. Journal of Visual Lan-
guages and Computing 3(4): 343-371.

Frank, A. 1996. Qualitative Spatial Reasoning: Cardinal
Directions as an Example. International Journal of Geo-
graphical Information Systems 10(3): 269-290.

Freska, C. 1992. Using Orientation Information for Qualit-
ative Spatial Reasoning. In Frank, A., Campari, 1., and For-
mentini, U., eds., Theories and Methods of Spatio-Tempor-
al Reasoning in Geographic Space, LNCS 639, Springer-
Verlag, Berlin.

Gapp, K. 1994. Basic Meanings of Spatial Relations:
Computation and Evaluation in 3D Space. In Proceedings
of AAAI-94, 1393-1398, Scattle, WA.

Harter, S. and Hert, C. 1997. Evaluation of information re-
trieval systems: approaches, issues, and methods. Annual
Review of Information Science and Technology 32: 3-94.

Herskovits, A. 1986. Language and Spatial Cognition: An
interdisciplinary Study of the Prepositions in English.
Cambridge, UK: Cambridge University Press.

Hernandez, D. 1994. Qualitative Representation of Spatial
Knowledge. Berlin: Springer-Verlag.

Hernandez, D.; Clementini, E.; and Di Felice, P. 1995.
Qualitative Distances. In Proceedings of Third European
Conference on Spatial Information Theory, 45-58, Sem-
mering, Austria.

Kiefer, P. and Schlieder, C. 2007. Exploring Context-Sens-
itivity in Spatial Intention Recognition. In Proceedings of
Ist Workshop on Behavior Monitoring and Interpretation,
102-116.

Koller, H.; Heinze, N.; and Nagel, H.-H. 1992. Algorithmic
Characterization of Vehicle Trajectories from Image Se-
quences by Motion Verbs. In Proceedings of IEEE Confer-
ence on Computer Vision and Pattern Recognition, 90-95,
Maui, Hawaii.

Lazebnik, S.; Schmid, C.; and Ponce, J. 2006. Beyond
Bags of Features: Spatial Pyramid Matching for Recogniz-
ing Natural Scene Categories. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition.

Neumann, B. 1989. Natural Language Description of
Time-Varying Scenes. In Waltz, D., ed., Semantic Struc-
tures: Advances in Natural Language Processing, 167-207.
Hillsdale, NJ: Lawrence Erlbaum.

68

Olivier, P., and Tsujii, J. 1994. A computational view of the
cognitive semantics of spatial prepositions. In Proceedings
of 32nd Annual Meeting of the Association for Computa-
tional Linguistics, Las Cruces, NM.

Peters, S. and Shrobe, H. 2003. Using Semantic Networks
for Knowledge Representation in an Intelligent Environ-
ment. In Proceedings of 1st Annual IEEE International
Conference on Pervasive Computing and Communications,
Ft. Worth, TX.

Porter, S., Whitcomb, M., and Weitzer, W. 2004. Multiple
surveys of students and survey fatigue. New Directions for
Institutional Research 121: 63-73.

Randell, D.; Cui, Z.; and Cohn, A. 1992. A Spatial Logic
based on Regions and Connection. In Proceedings of 3rd
International Conference on Knowledge Representation
and Reasoning, 165-176, San Mateo, CA.

Russell, S. and Norvig, P. 1995. Artificial Intelligence: A
Modern Approach. Upper Saddle River, NJ: Prentice
Hall.

Sowa, J. 2000. Knowledge Representation: Logical,
Philosophical, and Computational Foundations. Pacific
Grove, CA: Brooks/Cole.

Sowa, J., ed. 1991. Principles of Semantic Networks: Ex-
plorations in the Representation of Knowledge by Com-
puters. New York. NY: Academic Press.

Srihari, R. 1994. Computational Models for Integrating
Linguistic and Visual Information: A Survey. Artificial In-
telligence Review 8: 349-369.

Stevens, A. and Coupe, P. 1978. Distortions in Judged Spa-
tial Relations. Cognitive Psychology 13: 422-437.

Tappan, D. 2004a. Knowledge-Based Spatial Constraint
Satisfaction. In Proceedings of Florida Artificial Intelli-
gence Research Society International Conference, Special
Track on Spatio-Temporal Reasoning, Miami Beach, FL.

Tappan, D. 2004b. Knowledge-Based Spatial Reasoning
for Automated Scene Generation from Text Descriptions.
Ph.D. diss., New Mexico State Univ., Las Cruces.

Tappan, D. 2008a. Augmentation of Explicit Spatial Con-
figurations by Knowledge-Based Inference on Geometric
Fields. In Proceedings of 2nd International Conference on
Knowledge Generation, Communication and Management,
Orlando, FL.

Tappan, D. 2008b. Knowledge-Based Spatial Reasoning
for Scene Generation from Text Descriptions. In Proceed-
ings of Association for the Advancement of Artificial Intel-
ligence, Chicago, IL.

Tappan, D. 2008c. Monte Carlo Simulation for Plausible
Interpretation of Natural-Language Spatial Descriptions.
In Proceedings of WorldComp International Conference on
Artificial Intelligence, Las Vegas, NV.



Tetko, 1., Livingstone, D., and Luik, A. 1995. Neural net-
work studies: Comparison of Overfitting and Overtraining.
Journal of Chemical Information and Computer Sciences
35: 826-833.

Tsotsos, J. 1985. Knowledge Organization and its Role in
Representation and Interpretation for Time-Varying Data:
the ALVEN System. Computational Intelligence 1: 16-32.

Turner, R. 1998. Context-Mediated Behavior for Intelligent
Agents. International Journal of Human-Computer Studies
48(3): 307-330.

Tversky, B. 2000. Levels and structure of spatial know-
ledge. In Cognitive Mapping: Past, present and future, Kit-
chin, R. and Freundshuh, S., eds. London and New York:
Routledge.

69

Walter, 1.; Lockemann, P.; and Nagel, H-H. 1988. Database
Support for Knowledge-Based Image Evaluation. In Pro-
ceedings of 13th Conference on Very Large Databases, 3-
11, Brighton, UK.

Xu, K.; Stewart, J.; and Fiume, E. 2002. Constraint-Based
Automatic Placement for Scene Composition. In Proceed-
ings of Human-Computer Interaction and Computer
Graphics, 25-34, Calgary, Canada.

Yamada, A. 1993. Studies on Spatial Description Under-
standing Based on Geometric Constraints Satisfaction.
Ph.D. diss., Univ. of Kyoto, Japan.

Yamada, A., Yamamoto, T., Ikeda, H., Nishida, T., and
Doshita, S. 1992. Reconstructing Spatial Image from Nat-
ural Language Texts. In Proceedings of COLING-92,
1279-1283, Grenoble, France.



Interval Algebra Networks with Infinite Intervals

André Trudel

Jodrey School of Computer Science
Acadia University
Wolfville, Nova Scotia, B4P 2R6, Canada

Abstract

Interval algebra networks are traditionally defined over
finite intervals. In this paper, we relax this restriction by
allowing one or more of the intervals involved to be infinite.
We then show how algorithms developed for solving
interval algebra networks with finite intervals can be used,
with minor modifications, in the infinite case.

Introduction

Allen (1984) defines a temporal reasoning approach based
on intervals and the 13 possible binary relations between
them. The relations are before (b), meets (m), overlaps (0),
during (d), starts (s), finishes (f), and equals (=) (see Table
1). Each relation has an inverse. The inverse symbol for b
is bi and similarly for the others: mi, oi, di, si, and fi. The
inverse of equals is equals.

A relation between two intervals is restricted to a
disjunction of the basic relations, which is represented as a
set. For example, (A m B) V (A o B) is written as A {m,0}
B. The relation between two intervals is allowed to be any
subset of I = {b,bi,m,mi,0,0i,d.di,s,si,f,fi,=} including I
itself.

An IA (interval algebra) network is a graph where each
node represents an interval. Directed edges in the network
are labeled with subsets of I. By convention, edges labeled
with 1T are not shown. An IA network is consistent (or
satisfiable) if each interval in the network can be mapped
to a real interval such that all the constraints on the edges
hold (i.e., one disjunct on each edge is true).

A scenario of an IA network is a singleton labeling of
the network (i.e., each edge only has one of its original
labels). A consistent scenario is a scenario where each
constraint on each edge is true. An IA network is
consistent if and only if it has a consistent scenario.

Intervals in Allen’s interval algebra are finite and
convex. In this paper, the finiteness condition is relaxed. In
addition to finite intervals, intervals that are half infinite
towards negative infinity, half infinite towards positive
infinity, and infinite in both directions are allowed.

Copyright © 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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Efficient algorithms and implementations have been
developed for solving IA networks (van Beek and
Manchak 1996). These algorithms were specifically
developed for finite intervals. In this paper, we show how
these algorithms can be used, with minor modifications, to
solve IA networks which contain non-finite intervals.

In the next section, we catalogue the different possible
relationships among finite and non-finite intervals. Then,
we show how to solve IA networks that possibly contain
non-finite intervals. Note that we retain the convex
property for all the intervals, including the non-finite ones.

Table 1: Possible relationships between two finite

intervals
Relation Symbol Example
X
X before Y b —
Y
X
X meets Y m —
Y
X
X overlaps Y o —
Y
X
X starts Y $ p—
Y
X
X during Y d —
Y
X
X finishes Y f
Y
X
Xequals Y =
Y




Possible relationships involving non- fnite Table 3: Possible relationships between a finite and a
left-infinite interval

intervals
The following graphical notation is used for intervals: Relation Symbol Example
X
Finite length interval (i.e., finite): X after Y bi - —
Fixed endpoint on the left and infinite on the Y
right (i.e., right-infinite): X
e Fixed endpoint on the right and infinite on the X metby Y mi -—
left (i.e., left-infinite): <G Y
¢ Infinite in both directions (i.e., infinite): <p X overlapped . X
by Y oi —
The possible relationships between two intervals when Y
one or both are non-finite are not obvious. They are o X
catalogued in this section. Table 2 shows the possible X finishes Y f PR
relations between a finite and right-infinite interval. Each Y
entry in Table 2 also has an inverse. For example, in the ) X
first row finite interval X is before (b) right-infinite X during Y d C—
interval Y. It is also the case that Y is after (bi) X. All the Y

possible cases are shown in Table 2 - Table 10.

Table 4: Possible relationships between a finite and an
infinite interval
Table 2: Possible relationships between a finite and a

right-infinite interval Relation Symbol Example
X
Relation Symbol Example X during Y d ——
X
X before Y b -
Y
X
X meets Y m —_—
Y
X
X overlaps Y 0 —_— Table S: Possible relationships between two right-
Y infinite intervals
X
X starts Y s — > Relation Symbol Example
Y . X
X finished by . —
X Y fi —
X during Y d — Y
Y X
Xequals Y = 3
Y
X
X finishes Y f Y_’.
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Table 6: Possible relationships between a right-infinite
and a left-infinite interval

Relation Symbol Example
X overlaps Y o <X_Y >
X -
meets Y m ?
X before Y b - -

Table 7: Possible relationships between a right-infinite
and an infinite interval

Relation Symbol Example
X .
X finishes Y f PR
Y

Table 8: Possible relationships between two left-infinite

intervals
Relation Symbol Example
X started by . 1__X
v si
Y
X
X equals Y = D
Y
X
X starts Y s —‘
Y

Table 9: Possible relationships between a left-infinite
and an infinite interval

Relation Symbol Example
¢ X
X starts Y S —
Y

Table 10: Possible relationships between two infinite

intervals
Relation Symbol Example
A
Xequals Y = —
Y
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A summary of all the possible relations appears in Table
11. The entry in row r and column c is all the possible
relations between an interval of type r and c. For example,
if X is left-infinite and Y is right-infinite, the only
possibilities are X {0, m, b} Y. It is interesting to note that
each entry in Table 11 also appears as entries in Allen’s
(1983) full composition table.

Table 11: Summary

> < <>
b, bi,
m, mi ..
.7 | b,m,o0, | bi,mi,
= | 0,0i1,d, ) d
; . s,d oi, f,d
di, s, si,
f, fi, =
bi, mi . o1, mi
— o fi, = f > f
oi, si, di bi
— b, m, o, o,m,b | si,=,s S
fi, di s ) s T
di fi si =

Important property: Let X and Y be intervals of type
finite, right-infinite, left-infinite, or infinite. Note that X
and Y may or may not be of the same type, and if they are
of the same type they may not be equal. Assume there is a
valid relation r which holds between X and Y (i.e., X {r}
Y). Now map both X and Y to real intervals. If X and/or Y
extend towards negative infinity, chop off these intervals at
a very small negative value called LE. If X and Y contain
any finite endpoints, they are all larger than LE. Do the
same on the right hand side and chop all intervals going
towards positive infinity at a large positive point RE. Both
X and Y are now finite. One can verify manually that it is
the case that regardless of the original intervals and
relation chosen, it is still the case that X {r} Y. An example
of the construction is shown in Figure 1. X is right-infinite,
Y is infinite, and X {f} Y. Both intervals are made finite by
chopping the infinite ends. X’s left endpoint is not
modified. It remains the case that X {f} Y for the finite
versions of the intervals.

a

Figure 1: X {f} Y



Algorithm

A simple IA network is shown in Figure 2. Assume the
intervals are of the following type:

im

/
\/@

Figure 2: IA network

@

If the network in Figure 2 is used as input to standard IA
network finite interval software, we could generate the
solution shown in Figure 3. This solution is correct if all
the intervals are finite. It is incorrect in our case. It is
impossible for the interval B to be before (b) the infinite
interval D. The problem is not with the software, but with
the input given to the software.

Figure 3: Consistent finite interval scenario

Figure 2 has three hidden edges:
AD, BC, and BD
which are each assumed by the software to have a label of
I. This is causing the problem. The label I on each of these
edges is incorrect because not all the labels within I are
possible. For example, B cannot be before (b) the infinite
interval D. To rectify this situation, instead of labeling
missing edges with I as is the standard practice, we must
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label missing edges with the appropriate entry from Table
11. The correctly labeled network from Figure 2 is shown
in Figure 4. Note that the label “oi,mi,bi” in the center of
the figure belongs to the edge CB. This label is the entry in

row:
#

and column:

h
in Table 11.

@/d' T \
\ 01,mi,bi/7 @
o O
Figure 4: IA network with missing edges properly
labeled

If we now input the network in Figure 4 to standard TA
network finite interval software, we could generate the
correct scenario shown in Figure 5. The scenario in Figure
5 represents the relative arrangement of intervals shown in
Figure 6.

T
o

Figure 5: Correct non- fnite interval scenario

A
C
B

D

Figure 6: Solution involving non- fnite intervals



Proposed Algorithm: Given an IA network with non-
finite intervals. First add missing edges labeled with the
appropriate entry from Table 11. Then, apply finite interval
IA network solution software to the network. The software
will either report that the original network is inconsistent,
or return a consistent scenario for it. The algorithm is
simple, and shown to be correct in the next section.

Correctness

Let NF-TAN be an IA network with one or more non-
finite intervals. If NF-IAN has any missing edges, add
them to NF-IAN along with the appropriate label from
Table 11. Let another IA network F-IAN have the same
nodes, edges, and labels as NF-IAN. The only difference
between the two is that all the intervals in F-IAN are finite.
The following theorem proves the correctness of the
proposed algorithm:

Theorem: S is a consistent scenario of NF-
IAN if and only if it is a consistent scenario of
F-IAN.

Proof: Assume S is a consistent scenario of
NF-TAN. We can map all the intervals in S to
intervals over the real numbers such that each
relation in S holds. As we did in Section 2, we
chop off all the left-infinite and infinite
intervals on the left hand side at some arbitrary
number LE which is smaller in value than any
of the finite endpoints which may occur in any
of the other intervals. We do the same with
right-infinite and infinite intervals on the right
hand side. They all get chopped at the same
point RE. As observed in Section 2, this
chopping does not affect the individual
relations between pairs of intervals. All the
edge labels in S will still hold and all the
intervals are finite. We therefore have a
consistent scenario for F-IAN. For example,
assume NF-IAN is the network in Figure 4, F-
TAN is the same network where all the intervals
are finite, and S is the scenario represented by
Figure 6. The non-finite intervals of S are
chopped in Figure 7, and this is a scenario for
F-IAN.

Now consider the case where S is a
consistent scenario of F-IAN. Map all the
intervals in S to finite intervals over the real
numbers such that each relation in S holds. Let
LI bet the set of left-infinite and infinite
intervals in NF-IAN. If LI is non-empty, the
following will be the case:

1. The finite intervals in S corresponding to
the intervals in LI will all have the same
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left endpoint. No other intervals will have
this left endpoint. This follows from the
possible relations in Table 11 involving
left-infinite and infinite intervals.

2. It also follows from Table 11 that no
interval endpoint will be to the left of the
left endpoints of the intervals in S which
correspond to the intervals in LI.

Based on the above properties, we can shift the

left endpoints of the intervals in S which

correspond to the intervals in LI any arbitrary
distance towards negative infinity without
violating any relations in S. Push these
endpoints all the way to negative infinity. Now
perform the same operations in the opposite
direction with the right endpoints of the
intervals which correspond to the right-infinite
and infinite intervals, if there are any. None of
the relations in S have been violated. S has been
transformed into a consistent scenario for NF-

IAN. For example, let F-IAN be the network in

Figure 4 and S be the scenario represented in

Figure 8. Intervals B and D can be extended on

the left towards infinity and, C and D can be

extended on the right towards infinity without

violating any of the relations in S. This is now a

scenario for the NF-IAN version of Figure 4.

Therefore, S is a consistent scenario of NF-

IAN if and only if it is a consistent scenario of

F-IAN.Q.E.D.

»
»

A

»
|

A

D

Figure 7: Chopping the non- fnite intervals

A

D

Figure 8: Finite scenario S



Previous work

The concern with infinity is not limited to Al in
computer science. For example, the IEEE standard 754-
1985 for binary floating-point arithmetic has special values
assigned to positive and negative infinity. The default in
IEEE arithmetic is to round overflowed numbers to infinity
(Goldberg 1991).

I am not aware of any previously published algorithm
for solving IA networks containing non-finite intervals.

The problem of representing non-finite intervals was not
addressed in this paper. Hobbs (2002), and in a later
collaboration with Pan (2004) present a succinct and
elegant first order axiomatization of Allen’s relations for
non-finite intervals. Although they make minimal
ontological commitments, the axiomatization contains
instants, intervals can have endpoints, and relies on the fact
that a left-infinite interval has no left endpoint (similarly
for right-infinite and infinite intervals). This seems to
imply a point based model of time. Note that a model does
not necessarily need to contain an infinite number of points
to represent the non-finite intervals.

Another elegant and formal axiomatization of Allen’s
intervals for non-finite intervals appears in (Cukierman and
Delgrande 2004). This axiomatization includes predicates
to distinguish between the various types of non-finite
intervals. This capability is missing in the logics presented
in (Hobbs 2002) and (Hobbs and Pan 2004), where the user
must extend the logic.

Bouzid and Ladkin (2002) define temporal intervals as
the union of convex finite intervals. They also define
operations over these sets. One operation is union. Since
their underlying structure is the rationals, they require this
infinite interval in their system since the union of a set and
its complement is the set of all the rationals. Positive and
negative infinity are represented by adding two points at
infinity to the set of rationals. They do not consider the
possible relationships between infinite sets.

Infinitely periodic temporal data has been studied in the
temporal database area. Baudinet et. al. (1991) and
Kabanza et. al. (1995) consider infinite sequences of finite
intervals over the integers. Note that the individual
intervals are finite; not infinite.

Another paper from the temporal database area is by
Koubarakis (1994) which uses the rationals as the
underlying temporal structure. He does not consider
infinitely periodic temporal data. But, since he is using an
underlying dense temporal structure, he considers the fact
that temporal information can be true at infinitely many
points over a finite interval to be infinite temporal
information. He does not allow non-finite intervals.
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Conclusions

Allen’s interval algebra was originally defined and
axiomatized for finite temporal intervals. Subsequently,
efficient algorithms were implemented for solving finite
interval IA networks.

This paper shows that, unless the problem domain is
inherently finite, there is no reason to restrict temporal
intervals to be finite. Allen’s relations have been
axiomatized for non-finite intervals (e.g., (Cukierman and
Delgrande 2004) and (Hobbs and Pan 2004)). Existing
finite interval software can be used to solve non-finite
interval Al networks. Care must be taken to properly label
missing IA network edges with the proper entry in Table
11.
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