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HOW TO GIVE IT UP: A SURVEY OF
SOME FORMAL ASPECTS OF THE
LOGIC OF THEORY CHANGE

ABSTRACT. The paper surveys some recent work on formal aspects of the logic of
theory change. It begins with a general discussion of the intuitive processes of contraction
and revision of a theory, and of differing strategies for their formal study. Specific work is
then described, notably Gérdenfors’ postulates for contraction and revision, maxichoice
contraction and revision functions and the condition of orderliness, partial meet
contraction and revision functions and the condition of relationality, and finally the
operations of safe contraction and revision. Verifications and proofs are omitted, with
references given to the literature, but definitions and principal results are presented with
rigour, along with discussion of their significance.

1. INTRODUCTION
1.1. Consequence Operations

Logic has always been concerned with the business of inference - the
passage from a given stock of propositions to others which they support
or imply. And the study of deductive logic, where the implication
envisaged is one of necessity, gives rise to the very useful concept of a
consequence operation. Introduced by Tarski in 1928, this concept is
helpful in providing a framework in which to do “universal logic”, that
18, to discuss problems that arise not only for classical logic, but also for
many systems that in one way or another extend, restrict, or modify
classical logic. A consequence operation is any operation Cn that takes
sets of propositions to sets of propositions, such that three conditions
are satisfied: A< Cn(A) for any set A of propositions, known as
inclusion; Cn(A)= Cn(Cn(A)), or iteration; and Cn(A)< Cn(B)
whenever A < B, or monotony. Mathematicians will recognize this as
simply the concept of a closure operation, in the sense of Kuratowski,
on sets of propositions. Observe that this notion is extremely general;
there is no reference to the properties of specific logical operators such
as, A, v, 2,V,3,...andso it is applicable to just about any deductive
logic, classical or nonclassical. It is not, however, useful for inductive
logic, or any kind of logic dealing with degrees of support, for the third
condition, of monotony, fails for such inferences. The addition of
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premises to a set A, forming a larger set B, notoriously does not always
increase or even preserve the degree of support or credibility of a
conclusion, and in some cases may reduce the support so drastically as
to transform an acceptable inference into a quite unacceptable one. But
our concern here is with deductive relationships. We shall make use of
the concept of a consequence operation Cn, saying also A implies x and
writing A} x to mean x € Cn(A), for any given consequence operation
Cn. We shall assume that Cn includes classical consequence, and that it
satisfies a couple of additional conditions: first, that it is compact, i.e.,
y € Cn(A’) for some finite subset A’ of A whenever ye Cn(A); and
second, that it satisfies the rule of “introduction of disjunction in the
premises”, i.e., whenever ye Cn(AU{x;}) and ye Cn(A U{x,}) then
y € Cn(AU{x; v x3}). As is customary, we shall use the term theory to
indicate any set X of propositions that is closed under Cn, i.e., such that
X = Cn(X), or equivalently, such that X = Cn(Y) for some set Y.
When X = Cn(Y) we say that Y is a base for X, whether or not Y is
finite, and even in the limiting case that Y is X itself.

Now given a consequence operation Cn and a theory Cn(A), it is
clear what is meant by adding a proposition x to Cn(A). It consists in
adding in x set-theoretically, and then closing under Cn. That is, we
can define Cn(A)+x to be Cn(Cn(A)U{x}). And it makes no
difference whether the addition is done to the entire theory Cn(A), as
above, or to its base A. For, as is easily verified from the defin-
ing conditions of a consequence operation, Cn(Cn(A)U{x}) =
Cn(A U{x}) for any proposition x and consequence operation Ch.

1.2. The Intuitive Process of Contraction

Now nobody likes giving things up, but sometimes we have to. If Aisa
body of propositions that implies x, we may find ourselves, for one
reason or another, wishing to reject, or entertain the rejection, of x and
thereby of whatever in A implies it. In other words, we may wish to get
rid of x from the theory Cn(A), or as we shall say, contract the theory to
exclude x. When A is a code of norms of some kind - say a legal code, a
moral code, or a body of regulations governing some activity — this
process is the one familiar to legal theorists as the derogation of x from
the code.

But this process of contraction is a tricky one, for two main reasons.
First, it is not in general fully determined by A and x; without further



FORMAL ASPECTS OF THE LOGIC OF THEORY CHANGE 349

specification it does not give a unique result. This contrasts with the
addition of x to A; for a given A and x, and a given consequence
operation Cn, A+ x = Cn(A U{x}) is fully determined. But in general
there will be many subsets of A that fail to imply x, and worse still,
there will in general be many maximal such subsets (maximal, that is,
under set inclusion). In order to give a unique result, contraction has to
choose among these sets. Second, the result of the operation will
depend upon the formulation of the theory as well as upon its logical
force; contraction from a theory Cn(A) taken as a whole does not in
general give the same or even an equivalent result as contracting from
its base A. There are in general maximal subsets of Cn(A) that fail to
imply x, that are not determined by, and do not even include, any
maximal subsets of A that fail to imply x. Similarly, contracting from
one base of a theory Cn(A)= Cn(A’) is not in general equivalent to
contracting from another, even when each, taken separately, is
uniquely determined. To take a very trivial, but very distressing
example, consider two logically independent propositions a and b, and
put A ={a, b} whilst A'={a a b}. Clearly Cn(A)= Cn(A’), but A~
a ={b} whilst A’ = a = ¢, where we write = for contraction that picks
out a maximal subset (in this case unique) of A that fails to imply x. And
if Cn(A) = a is constrained only to be a maximal subset of Cn(A) that
does not imply a, then it might be significantly different from both of
them; it could for example contain a = b but neither a nor b alone. This
is a very nasty and complexifying situation. Contraction of x out of A
depends upon the formulation of A as much as upon its logical power.

Now one’s first reaction to this might be to shrug one’s shoulders and
say that there is nothing much that formal logic can do to illuminate the
business, beyond a few trivial remarks. One might take it for granted
that the result of contracting x out of A should always be a maximal
subset of A that fails to imply x — an assumption which, as we shall see,
may perhaps need some revision, and certainly needs careful con-
sideration. One might also surmise that the criteria for choosing among
the various subsets are largely nonformal in character — matters of
simplicity, convenience, degrees of “entrenchment”, and various other
epistemic and pragmatic considerations; and in the author’s view this
may often be the case. But it also turns out that the process of
contraction, and the composite process of revision, can nevertheless be
illuminated a great deal by a careful formal analysis. Such an analysis
helps to identify and delineate various options, clarify their con-
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sequences, advantages and limitations, and reveal unsuspected
regularities and irregularities.

1.3. General Remarks on the Strategies of Postulation and Explicit
Construction

When tackling a problem like this — the logical or mathematical
understanding of an intuitive concept or process — there are two
general strategies that tend to present themselves: postulation on the
one hand, and explicit construction on the other. On the former
approach, we seek to formulate a number of postulates, preferably of a
more or less equational nature, that seem plausible for the process,
and then investigate their consequences and interrelations. On the
latter approach, one seeks to formulate explicit definitions or con-
structions of the central concepts, and then investigate how far the
concepts thus constructed satisfy various conditions, including in
particular those which on the former approach may have been sug-
gested as postulates.

Bertrand Russell, when working on the foundations of mathematics,
had some hard words to say about the method of postulation, describ-
ing it as having the advantages of theft over honest toil. But it has
become clear with the passage of time and the accumulation of
examples, that both strategies have an essential role to play: the
former in articulating our intuitions about the processes under study,
in so far as we have any, and the latter in providing specific and
well-defined structures that to some extent may satisfy, and to some
extent may correct or be corrected by, these intuitions. Each of these
two approaches is needed to guide and help correct the other.
Moreover, it sometimes turns out that the two approaches grow rather
close to each other. The postulates may involve some conditions of a
nonequation nature, with a more complex logical structure, that begin
to look like parts of a construction. On the other hand, an enterprise
that sets out to provide an explicit construction may turn out not to
yield a unique object, nor even a class of mutually isomorphic objects,
but some other circumscribed class of objects, so that the *“con-
struction” is really a complex condition. This can happen particularly
when there are choice functions in the affair. Now, in so far as the
process of contraction is concerned, Peter Gardenfors has suggested a
number of conditions that, on reflection, he believes it should satisfy,
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and has isolated some of these as postulates for the others. And Carlos
Alchourrén, Giardenfors, and the author have considered some expli-
cit constructions which, whilst not yielding a unique process, do
provide us with circumscribed classes of operations of a clear and
well-defined nature. In what follows, we shall outline some of that
work.

2. POSTULATION
2.1. Gdrdenfors’ Postulates for Contraction

Girdenfors’ postulates for contraction are quite simple. They are, in
their most convenient versions, and in an order of presentation that
differs from his (cf. [5, 6]) as follows:

(=1) A-—=xis atheory whenever A is a theory (closure);
(=2) A-=x< A (inclusion);

(=3) If x¢ Cn(A) then A= x = A (vacuity);

(—=4) If x¢ Cn(¢) then x ¢ Cn(A = x) (success);

(=5) If Cn(x)= Cn(y) then A= x = Ay (preservation);

and the rather less “obvious” condition,
(=6) Ac Cn((A—=x)U{x}) whenever A is a theory (recovery).

Most of these postulates are fairly straightforward. Inclusion, for
example, tells us that when we contract A to get rid of x, we always
get either a proper subset of A or else A itself. Vacuity tells us that in
the limiting case that x ¢ Cn(A), where x is already excluded from the
consequences of A, the contraction is vacuous and leaves us with A
itself. Success tells us that a contraction of A to exclude x does in fact
get rid of x in all cases except where x is a logical truth and so
impossible to get rid of. Preservation tells us that getting rid of x is the
same as getting rid of any other proposition to which x is equivalent.
Contraction of A to exclude x is thus taken to depend on the logical
force alone of the excluded proposition x, and not on its formulation;
although as we have seen in our general discussion, contraction
cannot in general be invariant under different formulations of A. The
postulate of recovery tells us that when we contract a theory to get rid
of x, and then “change our minds” and add x back again to the result
of the contraction, we recover or recuperate all of the initial theory.
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Clearly A — x will have to be “fairly big” as a subset of A in order to
satisfy this; just how big will be made clear later. The postulate of
closure ensures that contraction on a theory gives a theory; it is
included for convenience so that we can formulate principles about
A = x rather than about Cn(A - x).

2.2. Revision via the Levi Identity, and More Postulates

The concept of contraction leads us to the concept of minimal change
of belief, or briefly, revision. We shall use the notation A + x (in words,
A plus x), to indicate a result of revising A, in a minimal way, so as to
get x in whilst keeping the set consistent. Formally, we define A + x to
be Cn((A-+—x)U{x}) where — is a contraction function. This is
called the Levi identity, as it was suggested by Isaac Levi in a paper [7]
of 1977. It is immediate from the definition of A+ x that:

(-:H) A+x is always a theory;
(+2) xeA+x.

Moreover, the remaining postulates for contraction have immediate
consequences for revision, namely:

(+3) If -ix ¢ Cn(A) then A+ x = Cn(AU{x});

(+4)  If 7ix ¢ Cn(o) then A+ x is consistent;

(+5) If Cn(x)= Cn(y) then A+x=A+y;

(+6) (A+x)N A= A-——1x whenever A is a theory.

The last of these consequences is particularly interesting, and we shall
call it the Gdrdenfors identity. 1t states that just as revision can be
defined from contraction, so too, for a theory A, contraction can be
characterized in terms of revision. In principle, it would thus be
possible to take revision as the basic notion, with contraction defined
from it, and with the present postulates for contraction derived from
the basic properties of revision. In the author’s view, however, to do
this would be to analyse the conceptually simpler in terms of the
conceptually more complex, and so while formally possible, it is
heuristically unwise. For the notion of contraction does seem concep-
tually more basic: we naturally think of revisions, or minimal changes
of belief, as obtained by a composite process of first eliminating and
then adding. In the context of a legal code, for example, we can think
of amendments as obtained by a composite process of explicit, or more
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often implicit, derogation of old material followed by addition of new
norms; whereas we do not think of a derogation as based upon an
(even implicit) prior amendment, even when it can be so specified.

The conditions (+1)—(+6) are, then, derivable from Girdenfors’
postulates for contraction, via the Levi identity defining revision in
terms of contraction. But Gardenfors has suggested that revision also
satisfies some ‘‘supplementary conditions’ that are not derivable from
the above, namely:

+7) A+ (x A y)= Cn((A+ x) U{y}) for any theory A;
and its conditional converse:

(+8)  Cn((A+x) ufyps A +(x A y) for any theory A, provided
that "y ¢ A+ x.

Given the presence of the conditions +(1)—(6), these two supplemen-
tary conditions on + can be shown to be equivalent to various
conditions on —. Some rather complex such conditions are given in
[6], but a particularly elegant and simple pair, equivalent respectively
to (+7) and (+8), are the following:

(=7 (A=x)N(A=y)< A= (xny) for any theory A,
and its conditional converse,

(-8 A-=(xry)=(A=x) for any theory A, provided that
xX¢A=(xny).

Girdenfors adopts (+7) and (+8) as “supplementary postulates™ for
revision. As in this presentation we are resolutely taking contraction
as primitive with revision defined via the Levi identity, we prefer to
choose the simpler (=7) and (=8) as our “supplementary postulates”,
with the conditions (+7) and (+8) as properties following from them.

We shall not here go far into Gérdenfors’ reasons for including
these supplementary postulates. They lie in part in reflections on the
intuitive processes that convince him that these conditions are
reasonable, and in part on the need that he has for them in order to
carry out certain applications of the logic of theory change to an
epistemic account of counterfactual conditionals. We shall however
make two remarks. First, that these supplementary postulates are
satisfied by some of the explicit constructions that we shall consider
shortly, the former being rather more easily satisfied than the latter.
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Second, that the supplementary postulates are quite powerful, and
Gairdenfors manages to derive from them various other principles for
contraction and revision. One of the ‘“nicest” among them is the
following: If xe A+y and ye A+ x then A+x=A+y, for any
theory A. This is reminiscent of a principle concerning the selection of
neighbouring ‘““possible worlds™ that was postulated by Robert Stal-
naker in his seminal 1968 paper [8] on counterfactual conditionals.
For this reason, we shall call it the Stalnaker property.

3. AN EXPLICIT CONSTRUCTION: MAXICHOICE CONTRACTION
AND REVISION FUNCTIONS

3.1. The Maxichoice Operations

We turn now to the strategy of explicit construction, and our first and
principal construction simply takes seriously the idea that A - x
should be a maximal subset of A that does not imply x.

We define A 1 x, in words, A less x, to be the class of all maximal
subsets B of A such that x ¢ Cn(B). It is easily verified that A L x is
nonempty just when x ¢ Cn($). Now let A be a fixed set of prop-
ositions, and let y be any choice function on the family of all classes
Al x, that is, y(A L x) € AL x whenever the latter is nonempty. We
then define A — x by the rule:

A=x=y(ALx)when x¢ Cn(¢)
A= x = A otherwise.

Thus A — x will be some maximal subset of A that fails to imply x, if
such exists, and otherwise will be A itself. We call such contraction
functions maxichoice contraction functions.

Two kinds of questions immediately arise. One is, are there any
interesting ways in which such choice functions may be built up out of
some kind of ordering of the elements of A itself? This is of particular
interest in the context of legal or administrative codes, where we can
often discern some kind of hierarchy among the norms. Such a
hierarchy will sometimes be vague, and sometimes well delineated. It
may be determined in part by the formulations of the regulations
themselves, involving, for example, cross-reference from one to an-
other or clauses of the kind ‘“‘notwithstanding . ..”. It may be deter-
mined in part by considerations of a more extrinsic nature, such as
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conventions of priority associated with the powers and competences of
the issuing bodies, dates of promulgation and amendment, and the
degrees of specificity or generality of the regulations made. This kind
of question has been studied by Carlos Alchourrén and the author [1].
There it was shown how partial orderings of the underlying code A
can be lifted to various kinds of ordering (not in general partial
orderings) of its power set 2, and how these can be used to constrain
and eventually render unique the choice of a set from Al x.
However, we shall here focus on a second kind of question: when
A = x is a maxichoice operation, and revision is defined from con-
traction via the Levi identity, what properties do they have? In parti-
cular, do they satisfy the Gardenfors’ postulates?

3.2. Checking Out the Gdrdenfors’ Postulates

It is easily verified that all six of Gardenfors’ postulates for contraction
(as we have formulated them) hold true of maxichoice contraction
functions. This of course also means that the six corresponding con-
ditions for revision, derivable from their contraction counterparts, are
likewise true of maxichoice revision. We shall not provide verification
of these points here, although they are short and in some instances
(recovery and the Gardenfors identity) interesting. Verifications can
be found in [2].

On the other hand, the two supplementary postulates (=7) and (=8)
do not hold in general for maxichoice revision. To obtain them, the
maxichoice functions must be further constrained.

We say that a maxichoice contraction function - is orderly over A
iff there is some partial ordering (i.e., reflexive, transitive, antisym-
metric) < of 2%, such that B=< A = x for all propositions x and all
Be A1 x. That is, roughly, = is orderly over A iff there is a partial
ordering of the power set of A that always selects A= x as a best
element of A L x. Note that the relation =< is required to be the same
for all propositions x, rather than vary with them - otherwise all
maxichoice contraction functions would be trivially orderly over A.
There is considerable “tolerance” in this definition, in the sense that
we can weaken the condition on < to mere antiSsymmetry, or streng-
then it by adding connectivity, without affecting the logical force of
the concept of orderliness; that is, such definitions can be shown to be
equivalent.
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Now the great thing about orderly contraction functions is that for
them we have thatif A~ye Alzand A~ze Aly, then A=-y=
A=z. Forif A~yeAlz and A=ze Aly then for some partial
ordering =, we have both A~y=A—=-z and A-z=A—-y, so by
antisymmetry, A y= A - z. This lemma provides an avenue for
proving the identity of contractions A—y and A -z of different
propositions y and z from a given set A. Armed with this lemma, and
some others like it, it is not too difficult to show that every maxichoice
revision function that is orderly over a theory A satisfies both of the
supplementary postulates as applied to A, and also has a number of
other interesting properties. Among these is of course the Stalnaker
property, for as we mentioned earlier, that is itself derivable from
Gairdenfors’ supplementary postulates. But there are also others which
were not considered by Gardenfors. One particularly powerful one is a
decomposition condition for contraction: when a maxichoice contrac-
tion function — is orderly over a theory A, then for all propositions x,
y, A=(xAny)=A-xor A= (x A y)= A—y. Finally, it can be shown
that for maxichoice contraction and revision functions, all of the
above properties — the decomposition property, the Stalnaker pro-
perty, the supplementary postulates, and the lemma that we mentioned
— and also various other properties we have not mentioned here, are
severally equivalent to the orderliness of that maxichoice function,
over a given set A. The details and verifications are given in [2].

3.3. Some “Unpleasant” Features of the Maxichoice Operations

That was the good news. Now for the bad news. It is that in certain
kinds of application, maxichoice contraction and revision give us sets
that must be considered as too large to serve as reasonable formal
representations of their intuitive counterparts. To explain the situa-
tion, let us recall that a theory A is said to be complete iff for every
proposition y of its language, either ye A or 1y e A. Now we would
perhaps expect maxichoice revision to preserve completeness, in the
sense that A + x will be complete whenever A is. And so it does. But
it does more, and worse, than that: it creates completeness. It can be
shown that if A is any theory, complete or not, then if 1x € A then
A+ x will be complete. The set A + x will thus in general be much too
large to serve as even an idealization of any intuitive process of
rational revision.
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Underlying the above observation is one about maxichoice con-
traction. If A is any theory with x € A, then for every proposition w,
either (x vw)e A= x or (x viw) e A=~ x. This too seems counterin-
tuitive, for w may presumably be chosen to be a proposition that has
“nothing to do”” with x or the rest of A, so that x vw and x v 1w are
in A “only because” x is there. Withdrawal of x would then leave no
apparent reason for retaining either one of them. In general, neither
x v w nor x v w should be retained in the process of eliminating x
from A unless there is ‘“some reason” in A for their continued
presence.

There are three remarks that may help clarify the interpretation of
these formal results. The first is to suggest that one thing that the
result for contraction reveals is that when A is really a theory, that is,
closed under Cn, and x is an element of A, then no proposition w (in
the language of the theory) really has anything to do with any part of
the theory A. For both of x vw and x v —iw will be in A; and as w
occurs in each of them, w does have, indirectly, quite a lot to do with
A. The “reason” for the continued presence of at least one of x v w
and x v w in A = x is the presence in A of both of the two.

Nevertheless, the formal result on contraction remains at least
surprising, and the formal result on revision, which follows from it,
downright anomalous for any representation of the intuitive process of
revision. The author would suggest that the reason for this is that in
real life, when we perform a contraction or derogation, we never do it
to the theory itself (in the sense of a set of propositions closed under
consequence) but rather on some finite or recursive or at least recur-
sively enumerable base for the theory. And as such bases are in
general far from being closed under Cn - indeed they are usually
closer to the opposite extreme, of being irredundant — the application
of the maxichoice operations to them does not give rise to the above
formal results. In other words, contrary to casual impressions, the
intuitive processes of contraction and revision are always applied to
more or less clearly identified finite or otherwise manageable bases for
theories, which will in general be either irredundant or reasonably
close to irredundant. And when the maxichoice operations are applied
to such bases, as they should be, they do not yield inflated sets. The
fault lies not in our operations, but in the items to which they were
applied.

The third remark concerns the application of the maxichoice
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operations to complete theories. Although the formal results hold for
complete theories, they are not in that case particularly anomalous. It
iS not very surprising or counterintuitive to find that maxichoice
revision preserves completeness. Of course, if the reflections that we
have just made are on the mark, then in real life we never revise
theories, and a fortiori complete theories, themselves; we revise only a
finite or otherwise manageable base of a complete theory, and in
general that will not yield a complete theory. But the application of
the maxichoice operations directly to complete theories remains in-
teresting for another reason. So applied, they can help clarify, not so
much human efforts at theory revision, as transcendental notions of
‘““similarity” between ‘‘possible worlds”.

To see how this may be done, consider for example the classic paper
[8] of Robert Stalnaker on the logic of counterfactual conditionals.
There Stalnaker invites us to consider functions f(e«, x) which take a
pair consisting of a “possible world” « and a proposition x to a world
B that is most like a except that it renders x true. Various conditions
are imposed by Stalnaker and others on such functions, but these
conditions have seemed to be justified more by their ability to validate
and invalidate favoured arrays of logical principles about counter-
factuals, than by a clear intuition. Now it has often been observed that
a possible world may be identified with the set of all propositions that
it renders true. But although this may help us understand better the
notion of a possible world, it does not take us far towards understand-
ing the nature and behaviour of the similarity functions f(«, x). To do
that, it is convenient to regard them as composite functions, that can
be broken down into an initial step of contraction or elimination,
followed by one of addition. A similarity function f(a, x) may be
regarded as a maxichoice revision function A + x applied to the set A
of all propositions true in «, and may thus be seen as a composite
function Cn((A ——x) U{x}) formed by using an underlying maxi-
choice contraction function —. In this way, the properties of maxi-
choice contraction functions yield properties of similarity functions on
possible worlds. If, as in the work of David Lewis and others, f(a, x) is
taken as giving not a single world, but rather a set of worlds closest to
a in which x is true, we can still decompose the process, by first
forming a family B < A 1L —1x of maximal subsets of A that do not
imply —x, and then forming the family of all sets Cn(B U{x}) where
Be 3.
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Why, one might ask, was this breakdown of similarity functions on
possible worlds so slow to appear, despite heuristic hints in its direc-
tion back in Stalnaker’s paper of 1968? Because, we suspect, it
involves breaking out of the ring of all possible worlds: A - —x will
not itself be a possible world (more accurately speaking, will not be
the set of all propositions true in some possible world) even when A is.
Such has been the hypnotic power of the notion of a possible world
since 1963 that it has come to confine logicians as well as to serve
them. To understand operations on possible worlds, we sometimes
need to look at more than possible worlds.

4. OTHER EXPLICIT CONSTRUCTIONS: PARTIAL MEET
CONTRACTION AND HIERARCHICAL CONTRACTION

4.1. Partial Meet Contraction

The ‘“‘unpleasant” features of maxichoice contraction and revision
bring out the interest, even if (as we have argued) not the urgency, of
looking around for other formal processes that might be used as
idealized representations of the intuitive ones. One idea which is
tempting is of course to take A — x to be N(A L x) — the intersection of
all the maximal subsets of A that fail to imply x, whenever A L x is
not empty. In the limiting case that A 1 x is empty — which happens
just when x € Cn(¢) — A= x would be set at A. But this notion of
meet contraction will not do: it can be shown that it gives a set that is
far too small, whether the operation is applied to bases or to theories
(even to irredundant bases or complete theories). In particular, as
shown in [2], when A is a theory and x € A, N(A L x) = Cn(mx) N A.
That is, if we eliminate x from a theory A in this way, we are left with
only the propositions of A that are already consequences of —x.
Nevertheless the operation of meet contraction is a useful one to be
able to refer to, for it does appear to provide a definite lower bound on
any reasonable contraction operation: for any contraction operation
worthy of the name we should have N(A L x)< A~ x < A for every
theory A and proposition x ¢ Cn(¢). Moreover, it can be shown that
any operation satisfying this lower bound condition (and which puts
A-x=A as usual in the limiting case that x e Cn(¢)), satisfies
recovery.

Following this lead, Alchourrén, Girdenfors, and the author [3]
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have been working on an idea that generalizes both maxichoice and
meet contraction. As with maxichoice contraction, a choice function vy
is used, to give however not an arbitrary element of A L x, but rather a
nonempty subclass y(ALx)= ALx when the latter is itself
nonempty, and set at { A} in the limiting case that A L x is empty. The
partial meet contraction A = x is then defined to be Ny(A L x), the
intersection of all the sets in y(A L x). Thus A - x is taken to be the
meet of some class of maximal subsets of A that fail to imply x. The
maxichoice operations thus form a limiting case of partial meet
contraction, where y(A L x) is a singleton; and full meet contraction
can be seen as the special case where y(A L x) = A L x. Partial meet
revision is then introduced by the usual Levi identity A+x=
Cn((A=—x)U{x}) = Cn(Ny(A L1x) U{x}).

This idea is also of interest in that it is closely related to the
construction that we mentioned at the end of section 3 for decompos-
ing the “possible world” selections of David Lewis. For if & is a
nonempty subset of A 1 x, it is easily verified that Cn(NB U {x}) =
N{Cn(B U{x}); B € %}.

Like the maxichoice operations, the operations of partial meet
contraction and revision can be shown to satisfy Géirdenfors’ pos-
tulates +(1)—(6). Conversely, it can also be shown that every operation
over a theory A satisfying the Gardenfors’ postulates for contraction is
itself a partial meet contraction operation. This result serves as
a representation theorem for the class of operations satisfying the
Gardenfors’ postulates.

As with the maxichoice operations, the supplementary postulates do
not hold unless we impose further restraints. An idea that comes
naturally to mind is to restrain the choice function y by some con-
dition akin to orderliness that both makes formal sense and has
plausibility in the more general context of partial meet operations.
One such condition is that of “‘relationality”. We call vy relational over
A iff there is some relation < over 2* that marks off y(A L x) in the
sense that for all x ¢ Cn(d),

v(Alx)={Be AlLx:B' <Bforall Be Al x}.

We call vy transitively relational over A iff there is a transitive relation
< that marks off y(A L x) by the same equation. It is easy to show that
if vy is relational over a theory A, then the first supplementary
postulate, numbered (=7) in our exposition, holds; and if vy is tran-
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sitively relational over a theory A, then both (=7) and (= 8) hold. It is
also possible to prove a converse, that serves as another represen-
tation theorem. Let A be any theory and - an operation satisfying the
Girdenfors’ postulates (—1)—(-6) and the supplementary postulates
(=7) and (=8). Then — is a partial meet contraction function deter-
mined by a choice function +y that is transitively relational over A.
This, and a number of other results in a rather complex web of
interrelationships between conditions around relationality, is proven in
[3].

Since transitively relational partial meet contraction functions
satisfy Gardenfors’ supplementary postulates as well as his basic ones,
they also have all the properties that are derivable from those pos-
tulates, and notably the Stalnaker property noted in section 2.2. But a
word of warning is in order here. We noted in section 3.2 that for
maxichoice contraction and revision functions, the condition of order-
liness is in fact equivalent to each of the supplementary postulates, to
the Stalnaker property, and to the ‘‘decomposition property” A -
(xAny)=A—=xor A=(xAy)=A—+y. Care is needed in attempting
to generalize these results to partial meet functions. In partreular,
decomposition does not always hold for partial meet contraction
functions, even when (=7) and (-8) are both satisfied, and that even
in the finite case. And in the context of partial meet contraction
functions, the supplementary postulates (—7) and (=8) are not in
general equivalent to each other, indeed neither implies the other,
again even in the finite case. These negative results are also noted,
with an outline of proof, in [3].

4.2. Safe Contraction and Revision

Another approach to a formal account of contraction, which prima
facie is rather different from the preceding ones, makes use of the
notion of a ‘“safe” element of A. Let < be an ordering of A itself
(rather than of its power set as with the constructions considered so
far): we need only suppose that < is irreflexive and transitive. Now let
x be any proposition that we may wish to eliminate from among the
consequences of A. We say that an element a of A is safe with respect
to x (modulo <) iff every minimal subset B of A that implies x either
does not contain a or else contains at least one element b <a. In
other words, a is safe iff no inclusion-minimal subset of A that implies
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x contains a as a <-minimal element. Intuitively speaking, a is safe
with respect to x iff it can never be “blamed” for the implication of x;
that is, if we can never find a minimal subset of A implying x that
contains a and does not contain any element “worse” than a. The
notion of safety is a refinement of the cruder notion of “normality”
defined in [1]. We write A/x for the set of all elements of A that are
safe with respect to x, modulo <, and we define A—-x to be
Cn(A/x) N A, that is, the set of all elements of A that are implied by
A/x. When A is itself a theory, this of course reduces to Cn(A/x).

Like the maxichoice and the partial meet operations, these opera-
tions of safe contraction and revision, as we shall call them, satisfy all
of the Gardenfors’ postulates +(1)-(6); success and recovery are the
interesting ones to verify. Consequently, using the representation
theorem of the previous section, the safe contraction operations form
a subclass of the partial meet contraction operations. Once more, the
supplementary postulates appear to fail unless special conditions are
imposed. We can regain the postulate (=7) by imposing an ap-
propriate condition on <. We say that < continues up + iff (in addition
to the background conditions of transitivity and irreflexivity) we have
for all a, b, cin A, if a<b and b+ ¢ then a < c. Similarly, we say that
< continues down + iff at b and b < ¢ implies a <c. Then it can be
shown that if < continues up or continues down  the supplementary
postulate (=7) holds. There are also interesting conditions on < that
enable us to recuperate for safe contraction the other supplementary
postulate (—8). Proofs of these and other results on safe contraction
will appear in [4].

Having surveyed all this formal work, we end with a general
remark. Even if it turns out that none of the formal operations that we
have been considering, or others like them, provide entirely satis-
factory representations or idealizations of the intuitive processes, they
at least serve a purpose. By studying them we can begin to get a grasp
of the options available, the consequences and limitations of each,
with the regularities and irregularities that may be encountered, and
thereby reach a better understanding of the fine points of the intuitive
processes themselves.

NOTE

* This paper was prepared while the author was on leave from Unesco; neither
institution bears any responsibility for content. The author expresses his gratitude to
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Professors Peter Gardenfors and Carlos Alchourrén for permission to include in section
4.1 concepts and results developed in mutual correspondence. The material of sections
4.1 and 4.2 will be presented in detail, with proofs, in two forthcoming papers written by
the three authors as indicated in the bibliography. A draft of this survey has benefited
from comments of Alchourrén, Gérdenfors, and Haim Gaifman, and was presented at
the American University of Beirut, the Hebrew University of Jerusalem, and the CNRS
Toulouse le Mirail.
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