
Learning: Interface Agents v

Pattie Maes

MIT Media Laboratory
20 Ames Street Rm. 401a

Cambridge, MA 02139
pattie@media.mit.edu

Abstract
Interface agents are computer programs that employ
Artificial Intelligence techniques in order to provide
assistance to a user dealing with a particular comput-
er application. The paper discusses an interface agent
which has been modelled closely after the metaphor
of a personal assistant. The agent learns how to as-
sist the user by (i) observing the user’s actions and
imitating them, (ii) receiving user feedback when it
takes wrong actions and (iii) being trained by the us-
er on the basis of hypothetical examples. The paper
discusses how this learning agent was implemented us-
ing memory-based learning and reinforcement learning
techniques. It presents actual results from two proto-
type agents built using these techniques: one for a
meeting scheduling application and one for electronic
mail. It argues that the machine learning approach to
building interface agents is a feasible one which has
several advantages over other approaches: it provides
a customized and adaptive solution which is less cost-
ly and ensures better user acceptability. The paper
also argues what the advantages are of the particular
learning techniques used.

Introduction
Computers are becoming the vehicle for an increas-
ing range of everyday activities. Acquisition of news
and information, mail and even social interactions be-
come more and more computer-based. At the same
time an increasing number of (untrained) users are in-
teracting with computers. Unfortunately, these devel-
opments are not going hand in hand with a change in
the way people interact with computers. The currently
dominant interaction metaphor of direct manipulation
[Schneiderman 19831 requires the user to initiate all
tasks and interactions and monitor all events. If the
ever growing group of non-trained users has to make
effective use of the power and diversity the computer
provides, current interfaces will prove to be insufficient.
The work presented in this paper employs Artificial
Intelligence techniques, in particular semi-intelligent
semi-autonomous agents, to implement a complemen-
ta.ry style of interaction, which has been referred to
as indirect management [Kay 19901. Instead of uni-
directional interaction via commands and/or direct

v

Robyn Kozierok

MIT Media Laboratory
20 Ames Street Rm. 401~

Cambridge, MA 02139
robyn@media.mit .edu

manipulation, the user is engaged in a cooperative pro-
cess in which human and computer agent(s) both initi-
ate communication, monitor events and perform tasks.
The metaphor used is that of a personal us&stunt who
is collaborating with the user in the same work envi-
ronment.

The idea of employing agents in the interface to
delegate certain computer-based tasks was introduced
by people such as Nicholas Negroponte [Negroponte
19701 and Alan Kay [Kay 19841. More recently, sev-
eral computer manufacturers have adopted this idea
to illustrate their vision of the interface of the fu-
ture (cf. videos produced in 1990-1991 by Apple,
Hewlett Packard, Digital and the Japanese FRIEND21
project). Even though a lot of work has gone into the
modeling and construction of agents, currently avail-
able techniques are still far from being able to pro-
duce the high-level, human-like interactions depicted
in these videos. Two approaches for building interface
agents can be distinguished. Neither one of them pro-
vides a satisfactory solution to the problem of how t,he
agent acquires the vast amounts of knowledge about
the user and the application which it needs to success-
fully fulfill its task.

The first approach consists in making the end-user
program the interface agent. Malone and Lai’s Oval
(formerly Object-Lens) system [Lai, Malone, & Yu
19881, for example, has “semi-autonomous agents”
which consist of a collection of user-programmed rules
for processing information related to a particular task.
For example, the Oval user can create an electronic
mail sorting agent by creating a number of rules that
process incoming mail messages and sort them into dif-
ferent folders. Once created, these rules perform tasks
for the user without having to be explicitly invoked by
the user. The problem with this approach to building
agents is that it requires too much insight, understand-
ing and effort from the end-user. The user has to (1)
recognize the opportunity for employing an agent, (2)
take the initiative to create an agent, (3) endow the
agent with explicit knowledge (specifying this knowl-
edge in an abstract language) and (4) maintain the
agent’s rules over time (as work habits change, etc.).

The second approach, also called the “knowledge-
based approach”, consists in endowing an interface

l’dovel Methods in Knowlledge Acquisition 459

From: AAAI-93 Proceedings. Copyright © 1993, AAAI (www.aaai.org). All rights reserved.

agent with a lot of domain-specific background knowl-
edge about its application and about the user (called a
domain model and user model respectively). This ap-
proach is adopted by the majority of people working
on intelligent user interfaces [Sullivan & Tyler 19911.
At run-time, the interface agent uses its knowledge
to recognize the user’s plans and find opportunities
for contributing to them. For example, UCEgo [Chin
19911 is an interface agent designed to help a user solve
problems in using the UNIX operating system. The
UCEgo agent has a large knowledge base about how
to use UNIX, incorporates goals and meta-goals and
does planning, for example to volunteer information or
correct the user’s misconceptions. One problem with
this approach to building interface agents is that it
requires a huge amount of work from the knowledge
engineer: a large amount of application-specific and
domain-specific knowledge has to be entered and little
of this knowledge or the agent’s control architecture
can be used when building agents for other applica-
tions. A second problem is that the knowledge of the
agent is fixed once and for all: it is possibly incor-
rect, incomplete, not useful, and can be neither adapt-
ed nor customized (e.g. to individual user differences
or to the changing habits of one user). Finally, it can
be questioned whether it is possible to provide all the
knowledge an agent needs to always be able to “make
sense” of the user’s actions (people do not always be-
have rationally, unexpected events might happen, the
organization might change, etc.).

A Machine Learning Approach
In our work we explore an alternative approach to
building interface agents which heavily relies on Ma-
chine Learning. The scientific hypothesis that is test-
ed is that under certain conditions, an interface agent
can “program itself”, i.e. it can acquire the knowl-
edge it needs to assists its user. The agent is given a
minimum of background knowledge and it learns ap-
propriate “behavior” from the user. The particular
conditions that have to be fulfilled are (1) the use of
the application has to involve a lot of repetitive behav-
ior, and (2) this repetitive behavior is very different for
different users. If the latter condition is not met, i.e.
the repetitive behavior demonstrated by different users
is the same, a knowledge-based approach might prove
to yield better results than a learning approach. If the
former condition is not met, a learning agent will not
be able to learn anything (because there are no regu-
larities in the user’s actions to learn about).

Our machine learning approach is inspired by the
metaphor of a personal assistant. Initially a personal
assistant is not very “customized” and may not even be
very useful. Some amount of time will go by before the
assistant becomes familiar with the habits, preferences
and particular work methods of the person and orga-
nization at hand. However, with every experience, the
assistant learns, and gradually more tasks that were

initially performed by the person directly, can be tak-
en care of by the assistant.The goal of our research is
to demonstrate that a learning interface agent can in
a similar way become gradually more “helpful” to its
user. In addition, we attempt to prove that the learn-
ing approach has several advantages. First, it requires
less work from the end-user and application developer.
Second, the agent is more adaptive over time and the
agent automatically becomes customized to individual
user preferences and habits. The results described in a
later section support all of the above hypotheses and
predictions.

A particular additional advantage of the learning ap-
proach to building interface agents is that the user and
agent can gradually build up a trust relationship. Most
likely it is not a good idea to give a user an interface
agent that is from the start very sophisticated, quali-
fied and autonomous. Schneiderman has convincingly
argued that such an agent would leave the user with
a feeling of loss of control and understanding [Myers
19911. On the other hand, if the agent gradually devel-
ops its abilities - as is the case in our approach - the
user is also given time to gradually build up a model
of how the agent makes decisions. A particular advan-
tage of the machine learning technique we use, name-
ly memory-bused learning [Stanfill & Waltz 19861, is
that it allows the agent to give “explanations” for its
reasoning and behavior in a language that the user is
familiar with, namely in terms of past examples which
are similar to the current situation. (“I thought you
might want to take this action because this situation
is similar to this other situation we have experienced
before, in which you also took this action.“)

We have developed a generic architecture for build-
ing “learning interface agents”. The following section
discusses the design and implementation of this archi-
tecture. For more technical detail, the reader should
consult [Kozierok & Maes 19931. We also built concrete
examples of interface agents using this generic archi-
tecture. These include (i) a “mail clerk”, which learns
how a specific user prefers to have electronic messages
handled and (ii) a “calendar manager” which learns to
manage the calendar of a user and schedule meetings
according to his or her preferences. Figure 1 shows
some screen snaps from the calendar agent implemen-
tation. The last section discusses the status of these
prototypes and discusses the results obtained so far.

Learning Techniques

The interface agent uses several sources for learning (1)
learning by observing the user, (2) learning from user
feedback and (3) 1 earning by being trained. Each of
these methods for learning is described in more detail
below. More detail on the learning algorithms used
can be found in [Kozierok & Maes 19931.

460 Maes

Figure 1: The alert agent observes and memorizes all of the user’s interactions with the calendar application (left picture).
When it thinks it knows what action the user is going to take in response to a meeting invitation, it may offer a suggestion
(right picture), or even automate the action if its confidence is high enough (not shown).

(4
memory of examples

memorized
situation< --> action 1

situation 2\ action 2
\\ .I

‘. -
-. dl ----w

* - \ -2,. <2,/ ,T new sduatlon --> 9 new
. . .

d3,’
/

situation n --> action n ,,’
w17- wltb wig= w20= w21=
0.65 0.4 0.05 0.43 0.32

Figure 2:
(a) The agent sugg es s t an action to perform based on the similarity of the current situation with previous (memorized)
situations. d; is the distance between the jth memorized situation and the new situation.
(b) The distance between two situations is computed as a weighted sum over the features. The weight of a feature and the
distance between the two values for it depend upon the correlation statistics computed by the agent. The figure shows some
possible feature weights and distances from the calendar manager agent.

Learning by Observing the User

The interface agent learns by continuously “looking
over the shoulder” of the user as the user is performing
actions. The interface agent can monitor the activities
of the user, keep track of all of his/her actions over long
periods of time (weeks or months), find recurrent pat-
terns and offer to automate these. For example, if an
electronic mail agent notices that a user almost always
stores messages sent to the mailing-list “intelligent-
interfaces” in the folder patt ie : email : int-int . txt ,
then it can offer to automate this action next time a
message sent to that mailing-list has been read.

The main learning technique used in our imple-
mentation is a variant on nearest-neighbor techniques
known as, memory-based learning [Stanfill & Waltz
19861 (see illustration in Figure 2(a)). As the user per-

forms actions, the agent memorizes all of the situation-
action pairs generated. For example, if the the user
saves a particular electronic mail message after having
read it, the mail clerk agent adds a description of this
situation and the action taken by the user to its mem-
ory of examples. Situations are described in terms of
a set of features, which are currently handcoded. For
example, the mail clerk keeps track of the sender and
receiver of a message, the Cc: list, the keywords in the
Subject : line, whether the message has been read or
not, whether it has been replied to, and so on. When a
new situation occurs, the agent compares it against the
memorized situation-action pairs. The most similar of
these memorized situations contribute to the decision
of which action to take or suggest in the current situ-
ation.

Novel Methods in Knowledge Acquisition 461

The distance between a new situation and a memo-
rized situation is computed as a weighted sum of the
distances between the values for each feature as de-
tailed in [Stanfill & Waltz 19861 (see Figure 2(b)). The
distance between feature-values is based on a metric
computed by observing how often in the example-base
the two values in that feature correspond to the same
action. The weight given to a particular feature de-
pends upon the value for that feature in the new sit-
uation, and is computed by observing how well that
value has historically correlated with-the action tak-
en. For example, if the Sender: field of a message has
shown to correlate to the action of saving the message
in a particular folder, then this feature (i.e. whether
or not it is the same in the old and new situation) is
given a large weight and thus has a high impact’on
the distance between the new and the memorized situ-
ation. At regular times, the agent analyzes its memory
of examples and computes the statistical correlations
of features and values to actions, which is used to de-
termine these feature-distances and -weights.

Once all the distances have been computed, the
agent predicts an action by computing a score for each
action which occurs in the closest N (e.g. 5) memo-
rized situations and selecting the one with the highest
score. The score is computed as

where S is the set of memorized situations predicting
that action, and d, is the distance between the current
situation and the memorized situation s.

Along with each prediction it makes, the agent com-
putes a confidence level for its prediction, as follows:

dpredictsd

npredictsd

dothcr
nother

nt0tal

N

where:

ON is, as before, the number of situations considered in
making a prediction,
adpredicted is the distance to the closest situation with
the same action as the predicted one,
edother is the distance to the closest situation with a
different action from the predicted one,
~~~~~~~~~~~ is the number of the closest N situations with 
distances less than a given maximum with the same ac- 
tion as the predicted one, 
O?Z,,theT is the minimum of 1 or the number of the closest 
N situations with distances within the same maximum 
with different actions than the predicted one, and 

entotal 
closest 

npredicted + nother, i.e. the total number of the 
situations with distances below the maximum. 

If the result is < 0, the confidence is truncated 
to be 0. This OCCUrS when dpredictedlnpredicted < 
d other/nether which is usually the result of several pif- 
ferent actions occurring in the top N situations. If 

every situation in the memory has the same action at- 
tached to it, dother has no value. In this case the first 
term of the confidence formula is assigned a value of 
1 (but it is still multiplied by the second term, which 
in this case is very likely to lower the confidence val- 
ue as this will usually only happen when the agent has 
had very little experience). This computation takes in- 
to account the relative distances of the best situations 
predicting the selected action and another action, the 
proportion of the top N situations which predict the 
selected action, and the fraction of the top N situa- 
tions which were closer to the current situation than 
the given maximum. 

If the confidence level is above a threshold Tl (called 
the “tell-me” threshold), then the agent offers its sug- 
gestion to the user. The user can either accept this 
suggestion or decide to take a different action. If the 
confidence level is above a threshold T2 > Tl (called 
the “do-it” threshold), then it automates the action 
without asking for prior approval. The agent keeps 
track of all the automated actions and can provide 
a report to the user about its autonomous activities 
whenever the user desires this. The two thresholds are 
set by the user and are action-specific, thus the user 
may, for example, set higher “do-it” thresholds for ac- 
tions which are harder to reverse. (A similar strategy 
is su 
1992 .) f 

gested for computer-chosen thresholds in [Lerner 
The agent adds the new situation-action pair 

to its memory of examples, after the user has approved 
of the action. 

Occasionally the agent “forgets” old examples so as 
to keep the size of the example memory manageable 
and so as to adapt to the changing habits of the user. 
At the moment, the agent deletes the oldest example 
whenever the number of examples reaches some maxi- 
mum number. We intend to investigate more sophisti- 
cated “forgetting” methods later. 

One of the advantages of this learning algorithm is 
that the agent needs very little background knowledge. 
Another advantage is that no information gets lost: the 
agent never attempts to abstract the regularities it de- 
tects into rules (which avoids problems related to the 
ordering of examples in incremental learning). Yet an- 
other advantage of keeping individual examples around 
is that they provide good explanations: the agent can 
explain to the user why it decided to suggest or auto- 
mate a particular action based on the similarity with 
other concrete situations in which the user took that 
action - it can remind the user of these prior situations 
and point out the ways in which it finds them to be 
similar to the current situation. Examples provide a 
familiar language for the agent and user to communi- 
cate in. There is no need for a more abstract language 
and the extra cognitive burden that would accompany 
it. 

One could argue that this algorithm has disadvan- 
tages in terms of computation time and storage re- 
quirements. We believe that the latter is not an issue 

462 Maw 



because computer memory becomes cheaper and more 
available every day. The former is also less of a problem 
in practice. Computing the statistical correlations in 
the examples is an expensive operation (O(n2)), but it 
can be performed off-line, for example at night or dur- 
ing lunch breaks. This does not mean that the agent 
does not learn from the examples it has observed ear- 
lier the same day: new examples are added to memory 
right away and can be used in subsequent predictions. 
What does not get updated on an example basis are 
the weights used in computing distances between ex- 
amples. The prediction of an action is a less compu- 
tation intensive operation (O(n)). This computation 
time can be controlled by restricting the number of ex- 
amples memorized or by structuring and indexing the 
memory in more sophisticated ways. Furthermore, in 
a lot of the applications studied real-time response is 
not needed (for example, the agent does not have to 
decide instantly whether the user will accept a meet- 
ing invitation). In the experiments performed so far, 
all of the reaction times have been more than satisfac- 
tory. More details and results from this algorithm are 
described in a later section and in [Kozierok & Maes 
19931. 

Learning from User Feedback 

A second source for learning is direct and indirect us- 
er feedback. Indirect feedback happens when the user 
neglects the suggestion of the agent and takes a differ- 
ent action instead. This can be as subtle as the user 
not reading the incoming electronic mail messages in 
the order which the agent had listed them in. The us- 
er can give explicit negative feedback when inspecting 
the report of actions automated by the agent (“don’t 
do this action again”). One of the ways in which the 
agent learns from negative feedback is by adding the 
right action for this situation as a new example in its 
database. 

Our agent architecture also supports another way in 
which the agent can learn from user feedback. The ar- 
chitecture includes a database of priority ratings which 
are relevant to all situations. For example, the calen- 
dar manager keeps a database of ratings expressing 
how important the user thinks other users of the sys- 
tem are, and how relevant the user feels certain key- 
words which appear in meeting descriptions are. These 
ratings are used to help compute the features which de- 
scribe a situation. For example, there is an “initiator 
import ante” feature in the calendar manager, which 
is computed by looking up who initiated the meeting, 
and then finding the importance rating for that person. 
When the agent makes an incorrect suggestion, it solic- 
its feedback from the user as to whether it can attribute 
any of the blame to inaccuracy in these priority ratings, 
and if so in which ones. It can then adjust these ratings 
to reflect this new information, increasing or decreas- 
ing them as the difference in the “positiveness” of the 
suggested versus actual action dictates. The details of 

how this is done are described in [Kozierok & Maes 
19931. 

Learning by eing Trained 
The agent can learn from examples given by the us- 
er intentionally. The user can teach/train the agent 
by giving it hypothetical examples of events and situa- 
tions and showing the agent what to do in those cases. 
The interface agent records the actions, tracks relation- 
ships among objects and changes its example base to 
incorporate the example that it is shown. For example, 
the user can teach the mail clerk agent to save all mes- 
sages sent by a particular person in a particular folder 
by creating a hypothetical example of an email mes- 
sage (which has all aspects unspecified except for the 
sender field) and dragging this message to the folder in 
question. Notice that in certain cases it is necessary to 
give more than one hypothetical example (e.g. if the 
user wants to train the system to save messages from 
different senders in the same folder). 

This functionality is implemented by adding the ex- 
ample in memory, including “wildcards” for the fea- 
tures which were not specified in the hypothetical sit- 
uation. The new situation-action pair will match all 
situations in which an email message has been received 
from a user with the same name. One of the unresolved 
questions is how such hypothetical examples should be 
treated differently both when selecting an action and 
when compiling statistics. [Kozierok 19931 explores 
this issue, and describes how both default and hard- 
and-fast rules can be implemented within the memory- 
based learning framework. This paper also discusses 
how rules may be used to compress the database, when 
either all or most of the situations the rule would rep- 
resent have occurred. 

esults 
The generic architecture for a learning interface agent 
is implemented in CLOS (Common Lisp Object Sys- 
tem) on a Macintosh. We have evaluated the design 
and implementation of this architecture by construct- 
ing agents for several application programs. We cur- 
rently have a prototype of a mail clerk as well as a 
calendar manager agent. The application software (the 
meeting scheduling system and electronic mail system) 
was implemented from scratch, so as to make it easi- 
er to provide “hooks” for incorporating agents. Both 
applications have a graphical direct manipulation in- 
terface (also implemented in Macintosh CLOS). The 
agent itself is hardly visible in the interface: a carica- 
ture face in the corner of the screen provides feedback 
to the user as to what the current state of the interface 
agent is. Figure 3 lists some of these caricatures. They 
help the user to quickly (in the blink of an eye) find 
out “what the agent is up to”. 

We have performed testing of both agents with sim- 
ulated users. We are currently testing the calendar 
agent on real users in our own office environment, and 

Novel Methods in owledge Acquisition 463 



Alert Thinking Suggestion 

Surprised 

Confused 

Gratified 

Pleased 

Unsure 

Working 

Figure 3: Simple caricatures convey the state of the agent 
to the user. The agent can be (a) alert (tracking the user’s 
actions, (b) thinking (computing a suggestion), (c) offer- 
ing a suggestion (when above tell-me threshold) (a sugges- 
tion box appears under the caricature), (d) surprised the 
suggestion is not accepted, (e) gratified the suggestion is 
accepted, (f) unsure about what to do in the current situa- 
tion (below tell-me threshold) (suggestion box only shown 
upon demand), (g) confused about what the user does, (h) 
pleased that the suggestion it was not sure about turned 
out to be the right one and (i) working or performing an 
automated task (above do-it threshold). 

will begin real-user testing of the email agent shortly as 
well. These users will be observed and interviewed over 
a period of time. The results obtained so far with both 
prototypes are encouraging. The email agent learns 
how to sort messages into the different mailboxes cre- 
ated by the user; when to mark messages as “to be 
followed up upon” or “to be replied to”, etc. Current 
results on the meeting scheduling a ent are described 
in detail in [Kozierok & Maes 1993 . A collection of B 
seven such agents has been tested for several months 
worth of meeting problems (invitations to meetings, 
scheduling problems, rescheduling problems, etc). All 
seven agents learned over time to make mostly correct 
predictions, with high confidence in most of the correct 
predictions, and low confidence in almost all of the in- 
correct ones. Figure 4 shows the results for a represen- 
tative agent. Again, the results obtained demonstrate 
that the learning interface agent approach is a very 
promising one. From this graph one can see that the 
correct predictions tend to increase in confidence level, 
while the incorrect ones tend to decrease. (We expect 
to see similar results in our real-user tests, but the 
inconsistencies and idiosyncracasies of real users will 
probably cause the agents to take longer to converge 
on such positive results. However, the memory-based 

learning algorithm employed is designed to allow for 
inconsistencies, so we have confidence that the agents 
will indeed be able to perform competently within a 
reasonable timeframe.) Providing the user with access 
to this type of performance information allows him to 
easily set the thresholds at reasonable levels, as shown 
in the figure. 

0.2. I 

I 

II 

0.0, I = - . . - ’ . 
0 10 20 SO 40 50 

Figure 4: Results of a representative agent from the meet- 
ing scheduling application. The graph shows the right and 
wrong predictions made by the agent as plotted over time 
(X-axis). The Y-axis represents the confidence level the 
agent had in each of predictions. The picture also shows 
possible settings for the “tell-me” (Tl) and “do it” (T2) 
thresholds. 

Related Work 

The work presented in this paper is related to a similar 
project under way at CMU. Dent et. al. [Dent et al. 
19921 describe a personal learning apprentice which as- 
sists a user in managing a meeting calendar. Their ex- 
periments have concentrated on the prediction of meet- 
ing parameters such as location, duration and day-of- 
week. Their apprentice uses two competing learning 
methods: a decision tree learning method and a back- 
propagation neural network. One difference between 
their project and ours is that memory-based learning 
potentially makes better predictions because there is 
no “loss” of information: when suggesting an action, 
the detailed information about individual examples is 
used, rather than general rules that have been abstract- 
ed beforehand. On the other hand, the memory-based 
technique requires more computation time to make a 
particular suggestion. An advantage of our approach is 
that our scheduling agent has an estimate of the qual- 
ity or accuracy of its suggestion. This estimate can be 
used to decide whether the prediction is good enough 
to be offered as a suggestion to the user or even to 
automate the task at hand. 

464 Maes 



The learning agents presented in this paper are al- 
so related to the work on so-called demonstrational 
interfaces. The work which is probably closest is 
Cypher’s “ea er 
[Cypher B 

personal assistant” for HyperCard 
1991 . This agent observes the user’s ac- 

tions, notices repetitive behavior and offers to auto- 
mate and complete the repetitive sequence of actions. 
Myers [Myers 19881 and Lieberman [Lieberman 19931 
built demonstrational systems for graphical applica- 
tions. One difference between the research of all of the 
above authors and the work described in this paper is 
that the learning described here happens on a longer 
time scale (e.g. weekly or monthly habits). On the 
other hand a system like Eager forgets a procedure af- 
ter it has executed it. A difference with the systems of 
Lieberman and Myers is that in our architecture, the 
user does not have to tell the agent when it has to pay 
attention and learn something. 

Conclusion 
We have modelled an interface agent after the 
metaphor of a personal assistant. The agent gradu- 
ally learns how to better assist the user by (1) ob- 
serving and imitating the user, (2) receiving feedback 
from the user and (3) being told what to do by the 
user. The agent becomes more helpful, as it accumu- 
lates knowledge about how the user deals with certain 
situations. We argued that such a gradual approach is 
beneficial as it allows the user to incrementally build 
up a model of the agent’s behavior. We have present- 
ed a generic architecture for constructing such learning 
interface agents. This architecture relies on memory- 
based learning and reinforcement learning techniques. 
It has been used to build interface agents for two real 
applications. Encouraging results from tests of these 
prototypes have been presented. 

Acknowledgments 
Cecile Pham, Nick Cassimatis, Robert Ramstadt, Tod 
Drake and Simrod Furman have implemented parts of 
the meeting scheduling agent and the electronic mail 
agent. The authors have benefited from discussions 
with Henry Lieberman, Abbe Don and Mitch Resnick. 
This work is sponsored by the National Science Foun- 
dation (NSF) under grant number IRI-92056688. It 
has also been partially funded by Apple Computer. 
The second author is an NSF fellow. 

References 
Chin D. 1991. Intelligent Interfaces as Agents. In: J. 
Sullivan and S. Tyler eds. Intelligent User Interfaces, 
177-206. New York, New York: ACM Press. 
Crowston, K., and Malone, T. 1988. Intelligent Soft- 
ware Agents. BYTE 13( 13):267-271. 
Cypher, A. 1991. EAGER: Programming Repetitive 
Tasks by Example. In: CHI’91 Conference Proceed- 
ings, 33-39. New York, New York: ACM Press. 

Don, A. (moderator and editor). 1992. Panel: Anthro- 
pomorphism: From Eliza to Terminator 2. In: CHI’92 
Conference Proceedings, 67-72. New York, New York: 
ACM Press. 
Kay, A. 1984. Computer Software. Scientific Ameri- 
can. 251(3):53-59. 
Kay, A. 1990. User Interface: A Personal View. In: 
B. Laurel ed. The Art of Human-Computer Interface 
Design, 191-208. Reading, Mass.: Addison-Wesley. 
Kozierok, R., and Maes, P. 1993. A Learning Interface 
Agent for Scheduling Meetings. In: Proceedings of 
the 1993 International Workshop on Intelligent User 
Interfaces, 81-88. New York, New York: ACM Press. 
Kozierok, R. 1993. Incorporating Rules into a 
Memory-Based Example Base, Media Lab Memo. 
Dept. of Media Arts and Sciences, MIT. Forthcom- 
ing. 
Lai, K., Malone, T., and Yu, K. 1988. Object Lens: 
A “Spreadsheet” for Cooperative Work. ACM Truns- 
actions on Ofice Information Systems 5(4):297-326. 
Laurel, B. 1990. Interface Agents: Metaphors with 
Character. In: B. Laurel ed. The Art of Human- 
Computer Interface Design, 355-366. Reading, Mass.: 
Addison- Wesley. 
Lerner, B.S. 1992. Automated customization of struc- 
ture editors. International Journal of Man-Machine 
Studies 37(4):529-563. 
Lieberman, H. 1993. Mondrian: a Teachable Graph- 
ical Editor. In: A. Cypher ed. Watch what I do: 
Programming by Demonstration. Cambridge, Mass,: 
MIT Press. Forthcoming. 
Dent, L., Boticario, J., McDermott, J., Mitchell, T., 
and Zabowski D. 1992. A Personal Learning Ap- 
prentice. In: Proceedings, Tenth National Conference 
on Artificial Intelligence, 96-103. Menlo Park, Calif.: 
AAAI Press. 
Myers, B. 1988. Creating User Interfaces by Demon- 
stration. San Diego, Calif.: Academic Press. 
Myers, B. (moderator and editor). 1991. Panel: 
Demonstrational Interfaces: Coming Soon? In: 
CHI’91 Conference Proceedings, 393-396. New York, 
New York: ACM Press. 
Negroponte, N. 1970. The Architecture Machine; 
Towards a more Human Environment. Cambridge, 
Mass.: MIT press. 
Schneiderman, B. 1983. Direct Manipulation: A Step 
Beyond Programming Languages. IEEE Computer 
16(8):57-69. 
Stanfill, C., and Waltz, D. 1986. Toward Memory- 
Based Reasoning. Communications of the ACM 
29( 12):1213-1228. 
Sullivan, J.W., and Tyler, S.W. eds. 1991. Intelligent 
User Interfaces. New York, New York: ACM Press. 

Novel Methods in Knowledge Acquisition 465 


